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Small Non-coding RNAs:
New Class of Biomarkers and
Potential Therapeutic Targets
in Neurodegenerative Disease
Callum N. Watson1,2* , Antonio Belli1,2 and Valentina Di Pietro1,2,3

1 Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham,
Birmingham, United Kingdom, 2 National Institute for Health Research Surgical Reconstruction and Microbiology Research
Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom, 3 Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States

Neurodegenerative diseases (NDs) are becoming increasingly prevalent in the world,
with an aging population. In the last few decades, due to the devastating nature of
these diseases, the research of biomarkers has become crucial to enable adequate
treatments and to monitor the progress of disease. Currently, gene mutations, CSF and
blood protein markers together with the neuroimaging techniques are the most used
diagnostic approaches. However, despite the efforts in the research, conflicting data still
exist, highlighting the need to explore new classes of biomarkers, particularly at early
stages. Small non-coding RNAs (MicroRNA, Small nuclear RNA, Small nucleolar RNA,
tRNA derived small RNA and Piwi-interacting RNA) can be considered a “relatively”
new class of molecule that have already proved to be differentially regulated in many
NDs, hence they represent a new potential class of biomarkers to be explored.
In addition, understanding their involvement in disease development could depict the
underlying pathogenesis of particular NDs, so novel treatment methods that act earlier
in disease progression can be developed. This review aims to describe the involvement
of small non-coding RNAs as biomarkers of NDs and their potential role in future
clinical applications.

Keywords: small non-coding RNAs, microRNAs, neurodegenerative disease, biomarkers, new therapeutic targets

INTRODUCTION

Neurodegenerative diseases (NDs) are classified as a class of disorders affecting the central nervous
system and they are characterized by the progressive loss of neuronal tissues. NDs are age-
dependent disorders which are increasing internationally, due to the ever increasing elderly
population, which is leaving greater numbers of people subjected to the chronic, debilitating
nature of these incurable diseases (Heemels, 2016). Currently, the most represented NDs are:
Alzheimer’disease (AD) with 5 million people affected in America only, followed by Parkinson’s
diseases (PD) with 1 million people; multiple sclerosis (MS) 400,000; Amyotrophoic lateral sclerosis
(ALS) 30,000 and Huntington’s disease (HD) with 3,000 incidents (Agrawal and Biswas, 2015).

Some treatments for ND have aimed to reduce the syndrome of NDs; these include L-dopa and
deep brain stimulation in PD (Groiss et al., 2009; Nagatsua and Sawadab, 2009). However, very
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few have aimed to slow or reverse ND development, and
those that have been investigated e.g., stem cell therapy
(Chung et al., 2002; Rachakonda et al., 2004) highlight the
requirement for more research. Late diagnosis leads to strategic
treatment being ineffective due to irreversible disease progression
(Sheinerman and Umansky, 2013). This has been reported
for example, on anti-AD therapies in late-stage clinical trials
(including dimebon of Medivation and Pfizer, solanezumab of
Eli Lilly and bapineuzumab of Pfizer and Johnson & Johnson).
Biomarkers for early diagnosis could prevent or limit disease
development through prophylactic or early treatment, which
has ignited interest. Currently, the most accurate diagnosis
relies on neuropathology, mainly based on autopsy, or in the
measurement of cerebrospinal fluid (CSF) proteins, such as tau
or Aβ- in AD, which requires invasive procedures. However,
blood proteins, such as Aβ1-42 peptide in AD or cytokines for
ALS or HD (Agrawal and Biswas, 2015), as well as genetics
diagnostics markers such as ApoE isoforms in AD or α-synuclein
or Parkin for PD, have also demonstrated potential clinical utility
(Agrawal and Biswas, 2015).

Neuroimaging techniques can also help to make the correct
diagnosis and monitor the progress of NDs. Magnetic resonance
imaging (MRI) is one of the most widely used neuroimaging
techniques used for AD (Jack et al., 2011; McKhann et al.,
2011) and for dementia with Lewy bodies (DLB) (Ciurleo et al.,
2014). Magnetic resonance spectroscopy (MRS) has also showed
promise in early diagnosis of PD and traumatic brain injury,
measuring metabolic dysfunctions and irreversible neuronal
damage (Vagnozzi et al., 2008).

Recently, a new class of circulating RNAs – non-coding
RNAs – have been re-evaluated and are being considered
as potential biomarkers. After years of the belief that 98%
of the genome was “junk” due to its non-coding nature it
was realized these genes had biologically functionality. Non-
coding genes include introns, pseudogenes, repeat sequences
and cis/trans-regulatory elements that function as RNA without
translation. Estimations have suggested that 99% of total RNA
content is made up of non-coding RNA, with numbers of
validated non-coding RNAs (ncRNAs) increasing every year
(Palazzo and Lee, 2015).

Currently ncRNAs can be defined by length – small 18–200 nts
and long >200nts – or functionality with housekeeping ncRNAs
such as ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs)
or regulatory ncRNAs like microRNAs (miRNAs), small nuclear
RNAs (snRNAs), piwi-interacting RNA (piRNAs), tRNA derived
small RNAs (tsRNAs) and long non-coding RNAs (lncRNAs)
(Dozmorov et al., 2013). Nonetheless, difficulty distinguishing
categories persists due to the crossover of properties.

Small non-coding RNAs (sncRNAs) have diverse roles,
which in conjunction with other molecules involve gene
regulation through either RNA interference, RNA modification
or spliceosomal involvement (Table 1). Consequently, during
disease progression their expression can alter. MiRNAs are the
most studied sncRNA as biomarkers with involvement in various
diseases including cancers, aging and neurodegenerative disease
(Calin and Croce, 2006; Grasso et al., 2014; Di Pietro et al.,
2017). Other sncRNAs have shown promise as biomarkers,

TABLE 1 | Classification of types of small non-coding RNAs.

Type of small non-coding RNA Size (nts) Function

MicroRNA (miRNA) ∼22 Ago – RNAi

Small nuclear RNA (snRNA) ∼150 Spliceosome components

Small nucleolar RNA (snoRNA) 60–140 RNA modification

Piwi-interacting RNA (piRNA) 26–31 PIWI – RNAi

tRNA derived small RNA (tsRNA) 15–50 Diverse

with links to neurodegenerative disease (Munoz-Culla et al.,
2016). There is the potential for multiple sncRNA biomarkers
for neurodegenerative diseases, which if found, could aid
diagnosis in a clinical setting while demonstrating the processes
underpinning the disease development. In future, this could
produce novel therapies to treat neurodegenerative diseases using
original methodologies.

In this review, we consider the evolving role of sncRNAs
and discuss their involvement in neurodegenerative disease with
particular emphasis on their potential as biomarkers.

MICRORNA

MiRNAs are the most studied sncRNA. Their biogenesis
commences with the formation of a pri-miRNA made up of two
stem-loop structure. A Drosha and DGCR8 complex cleaves the
pri-miRNA to form a single stem-loop pre-miRNA. Dicer cleaves
the pre-miRNA to create a double stranded miRNA, which is
loaded onto Argonaute family of proteins to form the miRISC
complex (Figure 1Ai). Accompanied to the miRISC complex,
miRNAs regulate gene expression post-transcriptionally through
degradation and repression of mRNA sequences by an Argonaute
family protein mediated method (Figure 1Aii; O’Brien et al.,
2018). A single miRNA can have multiple targets, likewise a target
mRNA can be bound to by many different miRNAs, to enable
more diverse signaling patterns.

MiRNAs show specific signaling in the brain, and were also
found differentially expressed in bio-fluids. Although there is no
consistent consensus on particular miRNAs or brain area yet, and
no specific miRNA overlap between brain tissues and bio-fluids
(as reported in Table 2) these findings certainly provide insights
in the study of NDs pathogenesis.

MiRNAs are best studied in Alzheimer’s disease (AD), which
manifests itself as deposition of neurofibrillary tangles (NFT)
and extracellular amyloid-β (Aβ), before neuronal degeneration
and clinical symptoms materialize in the form of behavioral
changes such as memory issues. NFT, Aβ and neuronal
degeneration have been associated with dysregulation of miRNA
gene expression, which could emanate from altered Aβ or Tau
metabolism. MiRNAs effect Aβ metabolism by interacting with
amyloid precursor protein (APP) through direct binding of
the 3′untranslated region (3′UTR) to the APP mRNA, indirect
inhibition through downregulation of Beta-secretase 1 (BACE1)
and ATP-binding cassette transporter (ABCA1) or regulating
alternative APP splicing. MiRNAs also affect Tau through
regulation of microtubule associated protein tau (MAPT)
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FIGURE 1 | Biogenesis of sncRNAs and an example of their biological function. A (i) MicroRNAs are single stranded ∼22 bp sequences formed from double
stranded precursors (ii) that prevent mRNA translation. B (i) Small nuclear RNAs biogenesis is made up of two classes Sm class snRNA and Lsm-class snRNA (Not
shown), (ii) which form the major and minor spliceosome. C (i) Small nucleolar RNAs have two different classes formed using different machinery; Box C/D RNA and
Box H/ACA RNA, (ii) which cause methylation and pseudouridylation respectively. D (i) Piwi interacting RNAs are formed by either primary alone or by both primary
and secondary biogenesis (ii) that prevent transposon translation through methylation. E (i) Transfer RNA cleavage forms transfer RNA derived fragments to be
formed, (ii) which can prevent translation or cause gene repression.

splicing, affecting tau isoforms 3R and 4R. Direct or indirect
binding either modulates phosphorylated Tau-associated protein
kinases or influences degradation of phosphorylated tau by
binding 3′-UTR BCL2 associated athanogene 2 (BAG2) mRNA
(Zhao et al., 2017).

MiRNAs have an established involvement in neurobiological
functions and pathogenesis of numerous other neurodege-
nerative diseases (Serafin et al., 2014; Fransquet and Ryan, 2018;
Ricci et al., 2018). Mitochondrial dysfunction caused by miRNA
dysregulation leads to oxidative stress, which causes cell death,
α-synuclein aggregation and neurodegeneration known to be
present in PD (Spano et al., 2015). In ALS, both TAR DNA
binding protein (TARDBP) and fused in sarcoma (FUS) are
well-established causative genes, which are involved in miRNA
processing. TARDBP has specific roles in facilitation of post-
transcriptional processing achieved through association directly
with miRNA or processing factors such as Dicer (Kawahara
and Mieda-Sato, 2012). FUS regulates miRNA-mediated gene
silencing through facilitation of the interaction between miRNA,
mRNA and RISC components (Zhang et al., 2018). In HD,
a miRNA formulation is being trailed as therapeutic agents
to alter the aberrant Huntingtin (HTT) protein expression
(Aronin and DiFiglia, 2014).

MiRNA involvement in ND development has demonstrated
the capability of distinguishing between disease subtypes and
shown promise for future stratification. For example in AD,
30 differentially regulated miRNAs found in the brain and
blood of AD patients were assigned to different Braak stages,
a methodology for classifying AD pathology, with 10 associated
with Braak stage III (hsa-mir-107, hsa-mir-26b, hsa-mir-30e, hsa-
mir-34a, hsa-mir-485, hsa-mir200c, hsa-mir-210, hsa-mir-146a,
hsa-mir-34c, and hsa-mir-125b) (Swarbrick et al., 2019). Likewise
in PD, miR-331-5p is differentially expressed in plasma of early
onset Parkinson’s disease (EOPD) patients, which was not seen
in late onset Parkinson’s disease (LOPD) patients (Cardo et al.,
2013; Table 2). Studies comparing between subtypes of NDs are
still in the minority and more are required to understand the true
capability of miRNA markers in stratification of NDs.

SMALL NUCLEAR RNAs

Small nuclear RNAs (snRNAs), the component parts of the
spliceosome – responsible for removal of non-coding introns
from precursor mRNA – are highly conserved uridine rich
sequences with five snRNAs making up its spine; U1, U2, U4, U5,
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TABLE 2 | MiRNAs with an involvement in the neurodegenerative disease development.

Neurodegenerative
disease

Source miRNA

Alzheimer’s disease Whole blood miR-106b-5p, miR-106a-5p, miR-107, miR-9-5p (Yilmaz et al., 2016a)
Let-7d-5p, Let-7f-5p, miR-107, miR-26a-5p, miR-26b-5p (Leidinger et al., 2013)
miR-142-5p (Sorensen et al., 2016)

Brain tissues miR-9, miR-128 (Lukiw, 2007)
miR-26a, miR-27b, miR-30e-5p, miR-34a, miR-92, miR-125, miR-145, miR-200c, miR-381, miR-422a,
miR-423 miR-9, miR-132, miR-146b, miR-212 (Cogswell et al., 2008)
miR-197, miR-511, miR-320, let-7i, miR-101, miR-106b, miR-15a, miR-181c, miR-19b, miR-22, miR-210,
miR-26b, miR-29b-1, miR-363, miR-9, miR-93 (Hebert et al., 2008)
miR-29a (Shioya et al., 2010)
miR-26b (Absalon et al., 2013)
miR-370, miR-328, miR-138, miR-132 and miR-15a (Bekris et al., 2013)

CSF let-7f, miR-105, miR-125a, miR-135a, miR-138, miR-141, miR-151, miR-186, miR-191, miR-197, miR-204,
miR-205, miR-216, miR-302b, miR-30a5p, miR-30a3p, miR-30b, miR-30c, miR-30d, miR-32, miR-345,
miR-362, miR-371, miR-374, miR-375, miR-380-3p, miR-429, miR-448, miR-449, miR-494, miR-501,
miR-517, miR-517b, miR-518b, miR-518f, miR-520a∗, miR-526a, miR-10a, miR-10b, miR-125, miR-126∗,
miR-127, miR-142-5p, miR-143, miR-146b, miR-154, miR-15b, miR-181a, miR-181c, miR-194, miR-195,
miR-199a∗, miR-214, miR-221, miR-328b, miR-422, miR-451, miR-455, miR-497, miR-99a (Bekris et al., 2013)
miR-9, miR-125b, miR-146a, miR-155 (Alexandrov et al., 2012)
let-7b (Lehmann et al., 2012)
miR-146a, miR-155 (Lukiw et al., 2012)
miR27a-3p (Sala Frigerio et al., 2013)
miR-100, miR-146a, miR-296, miR-3622b-3p, miR-4467, miR-505, miR-766, miR-103, miR1274a, miR-375,
miR-708, miR-219 (Denk et al., 2015)

Plasma miR-142-3p, miR-483-5p (Nagaraj et al., 2017)
miR-125b-5p, miR-29b-3p, miR-3065-5p, miR-342-3p/5p (Lugli et al., 2015)
miR-107 (Wang et al., 2008)
miR-34a (Bhatnagar et al., 2014)
miR-146a, miR-34a (Kiko et al., 2014)
Let-7d-5p, Let-7g-5p, miR-142-3p, miR-15b-5p, miR-191-5p (Kumar et al., 2013)

Serum miR-143, miR-146a, miR-93 (Dong et al., 2015)
miR-125b, miR-26b (Galimberti et al., 2014)
Let-7d-5p, Let-7g-5p, miR-191-5p, miR-26b-3p, miR-30e-5p, miR-342-3p, miR-483-3p (Tan et al., 2014b)
miR-125b, miR-181c, miR-9 (Tan et al., 2014a)
miR-106b-3p, miR-181c-3p, miR-26a-5p (Guo R. et al., 2017)
Let-7f-5p, miR-26b-5p, miR-501-3p (Hara et al., 2017)
miR-125b (Jia and Liu, 2016)
miR-106a-5p, miR-106b-3p, miR-143-3p, miR-15b-3p, miR-3065-5p, miR-30e-5p, miR-342-3p, miR-93-5p
(Cheng et al., 2015)
miR-181c (Geekiyanage et al., 2012)
miR-455-3p (Kumar et al., 2017)
miR-222 (Zeng et al., 2017)
miR-29c-3p, miR-19b-3p (Wu et al., 2017)

PBMCs miR-29b (Villa et al., 2013)
Let-7f, miR-34a (Schipper et al., 2007)

Early onset Parkinsons
disease (EOPD)

Whole blood miR-1, miR-22, miR-29a (Margis et al., 2011)

Brain tissues miR-34b,c (Minones-Moyano et al., 2011)

Plasma miR-331-5p (Cardo et al., 2013)

Serum miR-141, miR-146b-5p, miR-193a-3p, miR-214 (Dong et al., 2016)

Late onset Parkinson’s
disease (LOPD)

Whole Blood miR-103a, miR29a, miR-30b (Serafin et al., 2015)
miR-3143, miR-335-3p, miR-4671-3p, miR-561-3p, miR-579-3p (Yilmaz et al., 2016b)

Brain tissues miR-34b,c (Minones-Moyano et al., 2011)
miR-181a,b,c,d, miR-22, miR-29a,b,c (Liao et al., 2013)
miR-106a, miR-21, miR-224, miR-26b, miR-301b, miR-373 (Alvarez-Erviti et al., 2013)
miR-205 (Cho et al., 2013)
miR-135b, miR-198, miR-485-5p, miR-548d (Cardo et al., 2014)
Let-7i-3p/5p, miR-10b-5p, miR-1224, miR-127-3p, miR-127-5p, miR-16-5p, miR-184, miR-29a-3p (Hoss
et al., 2016)
miR-144, miR-145, miR-199b, miR-221, miR-488, miR-543, miR-544, miR-7 (Tatura et al., 2016)
miR-225, miR-236, miR-46 (Wake et al., 2016)

(Continued)
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TABLE 2 | Continued

Neurodegenerative
disease

Source miRNA

CSF Let-7g-3p, miR-1224-5p, miR-127-3p, miR-128, miR-132-5p, miR-19a,b, miR-212-3p, miR-370,
miR-409-3p, miR-4448, miR-485-5p, miR-873-3p (Burgos et al., 2014)
Let-7g-3p, miR-1, miR-103a, miR-10a-5p, miR-119a, miR-126, miR-127-3p, miR-132-5p, miR-136-3p,
miR-151, miR-153, miR-16-2, miR-19b-3p, miR-22, miR-26a, miR-28, miR-29a,c, miR-301a, miR-30b,
miR-331-5p, miR-370, miR-374, miR-409-3p, miR-433, miR-485-5p, miR-873-3p (Gui et al., 2015)
miR-1249, miR-1274b, miR-150, miR-16, miR-18b, miR-199b, miR-20a, miR-21, miR-320a,b, miR-378c,
miR-4293, miR-671, miR-769, miR-92b (Soreq et al., 2013)

Plasma miR-222, miR-505, miR-626 (Khoo et al., 2012)

Serum miR-19b, miR-29a,c (Botta-Orfila et al., 2014)
miR-133b (Zhao et al., 2014)
miR-29a,b,c (Bai et al., 2017)
miR-146a, miR-214, miR-221, miR-29c (Ma et al., 2016)
miR-1294, miR-16-2-3p, miR-30a,e, miR-338-3p (Burgos et al., 2014)
miR-148b, miR-223, miR-24, miR-30c, miR-324-3p (Vallelunga et al., 2014)
miR-15b, miR-181a, miR-185, miR-195, miR-221 (Ding et al., 2016)

PBMCs miR-126, miR-126∗, miR-147, miR-151-3p,5p, miR-199a-3p,5p, miR-199b, miR-19b, miR-26a, miR-28-5p,
miR-29b,c, miR-301a, miR-30b,c, miR-335, miR-374a,b (Martins et al., 2011)
miR-155, miRNA-146a (Caggiu et al., 2018)

Amyotrophic lateral
sclerosis (ALS)

Whole Blood let-7a-5p, let-7d-5p, let-7f-5p, let-7g-5p, let-7i-5p, miR-103a-3p, miR-106b-3p, miR-128-3p, miR-130a-3p,
miR-130b-3p, miR-144-5p, miR-148a-3p, miR-148b-3p, miR-15a-5p, miR-15b-5p, miR-151a-5p,
miR-151b, miR-16-5p, miR-182-5p, miR-183-5p, miR-186-5p, miR-22-3p, miR-221-3p, miR-223-3p,
miR-23a-3p, miR-26a-5p, miR-26b-5p, miR-27b-3p, miR-28-3p, miR-30b-5p, miR-30c-5p, miR-342-3p,
miR-425-5p, miR-451a, miR-532-5p, miR-550a-3p, miR-584-5p, miR-93-5p (Liguori et al., 2018)

CSF miR-150, miR-99b, miR-146a, miR-27b, miR-328, miR-532-3p (Butovsky et al., 2012)
miR-132-5p, miR-132-3p, miR-143-3p, miR-143-5p, miR-574-5p (Freischmidt et al., 2013)
miR-338-3p (De Felice et al., 2014)
miR-181a-5p, miR-21-5p, miR-195-5p, miR-148-3p, miR-15b-5p, miR-let7a-5p, miR-let7b-5p, miR-let7f-5p
(Benigni et al., 2016)
miR-124-3p, miR-127-3p, miR-143-3p, miR-125b-2-3p, miR-9-5p, miR-27b-3p, miR-486-5p, miR-let7f-5p,
miR-16-5p, miR-28-3p, miR-146a-3p, miR-150-5p, miR-378a-3p, miR-142-5p, miR-92a-5p
(Waller et al., 2017b)

Plasma miR-4649-5p, miR-4299 (Takahashi et al., 2015)
miR-424, miR-206 (de Andrade et al., 2016)
miR-206, Pairs miR-206/miR-338-3p, miR-9∗/miR-129-3p, miR-335-5p/miR-338-3p
(Sheinerman et al., 2017)

Serum miR-132-3p, miR-132-5p, miR-143-3p, miR-143-5p, let-7b (Freischmidt et al., 2013)
miR-206, miR-106b (Toivonen et al., 2014)
miR-4745-5p, miR-3665, miR-4530, miR-1915-3p (Freischmidt et al., 2014)
miR-1825, miR-1234-3p (Freischmidt et al., 2015)
miR-206, miR-133a, miR-133b, miR-146a, miR-149∗, miR-27a (Tasca et al., 2016)
miR-1, miR-133a-3p, miR-133b, miR-144-5p, miR-192-3p, miR-195-5p, miR-19a-3p, let-7d-3p, miR-320a,
miR-320b, miR-320c, miR-425-5p, miR-139-5p (Raheja et al., 2018)
miR-206, miR-143-3p, miR-374b-5p (Waller et al., 2017a)
miR-142-3p, miR-1249-3p (Matamala et al., 2018)

Huntington’s disease Brain tissues miR-9/miR-9∗, miR-124a, miR-132 (Packer et al., 2008)
miR-10b-5p, miR-196a-5p, miR-615-3p, miR-10b-3p, miR-1298-3p, miR-196b-5p, miR-302a-3p,
miR-1247-5p, miR-144-3p, miR-223-3p, miR-3200-3p, miR-302a-5p, miR-1264, miR-6734-5p,
miR-144-5p, miR-138-2-5p, miR-431-5p, miR-132-3p, miR-200c-3p, miR-23b-5p, miR-448, miR-486-3p,
miR-490-5p, miR-5695, miR-885-5p, miR-1224-5p, miR-1298-5p, miR-142-3p, miR-346, miR-891a-5p,
miR-16-2-3p, miR-363-3p, miR-148a-3p, miR-199a-5p, miR-4449, miR-106a-5p, miR-142-5p, miR-549a,
miR-214-5p, miR-141-3p, miR-5680, miR-3065-5p, miR-224-5p, miR-4787-3p, miR-452-5p,
miR-129-1-3p, miR-4443, miR-101-5p, miR-483-5p, miR-2114-5p, miR-1185-1-3p, miR-670-3p,
miR-129-5p, miR-135b-5p, miR-194-5p, miR-208b-3p, miR-4488, miR-888-5p, miR-126-5p, miR-34c-5p,
miR-218-1-3p, miR-150-5p, miR-486-5p, miR-433-3p, miR-219b-3p, miR-548n, miR-663b, miR-148a-5p,
miR-29a-3p, miR-320b, miR-181a-3p, miR-153-5p, miR-28-5p, miR-7-2-3p, miR-877-5p, miR-3687,
miR-4516, miR-3139, miR-663a, miR-34b-3p, miR-1538 (Hoss et al., 2015a)

CSF miR-520f-3p, miR-135b-3p, miR-4317, miR-3928-5p, miR-8082, miR-140-5p (Reed et al., 2018)

Plasma miR-10b-5p, miR-486-5p (Hoss et al., 2015b)
miR-34b (Gaughwin et al., 2011)
miR-877-5p, miR-223-3p/5p, miR-30d-5p, miR-128, miR-22-5p, miR-222-3p, miR-338-3p, miR-130b-3p,
miR-425-5p, miR-628-3p, miR-361-5p, miR-942 (Diez-Planelles et al., 2016)

∗Passenger miRNA strand.
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TABLE 3 | Interactions of small non-coding RNAs with
Neurodegenerative diseases.

sncRNA Disease Interaction

snRNA major
spliceosome

AD U1 snRNPs present in cytoplasmic
aggregates

SMA SMN1 gene dysregulation alters U
snRNA levels

Neurodegeneration U2 snRNA mutation alters
pre-mRNA splicing

ALS
FTD

A disease related di-peptide repeat
C90RF72 interacts with U2 snRNP

RP Mutation found in PRPF4 which
encodes U4/U6 di-snRNP protein

snRNA minor
spliceosome

ALS Decreased U12 snRNA in spinal
motor neurones

Decreased TDP-43 disrupts U12
mediated pre-mRNA splicing

FUS mutants cannot bind U11 so
decreased minor intron splicing

snoRNA AD Differential expression of two C/D
box snoRNAs e307 and e470 in
mouse model

ASD SNORD115 duplication in mouse
causes abnormal brain development

piRNA AD 9 piRNAs found to be differentially
regulated in AD risk variant patients
(6 APOE and 3 RNU6-560P)

PD 70 differentially expressed piRNAs in
combined patient tissue and cells

tsRNA ALS ANG mutants implicated in
pathogenesis

PD A subset of ALS-associated ANG
mutants

Intellectual disability NSun2 mutation causes 5′tiRNA
accumulation

PCH CLP1 gene mutation disruption of
tRNA splicing

Neurodegenerative
patient

KAE1 gene mutation alters tRNA
modification

and U6. These snRNAs combine with partner proteins to form
the small nuclear ribonucleoprotein (snRNPs) complex, which is
essential pre-mRNA splicing to enable production of functional
mRNA for protein translation.

Sm-class snRNAs are synthesized by RNA polymerase II
and after transcription contain a 7-methylguanosine cap, Sm-
protein binding site and 3′ stem-loop. The latter two are
recognized by the SMN complex, which recruits a set of
Sm proteins to create the Sm-core RNP. Following this,
the cap undergoes hypermethylation by trimethylguanosine
synthase-1 (TSG1) creating a 2,2,7-trimethylguanosine cap. The
3′ end is then trimmed by an unknown exonuclease before
subsequent maturation through modifications (Matera et al.,
2007; Figure 1Bi).

Two types of spliceosome “major” and “minor” (0.35% of
all introns) can be assembled. Major spliceosome assembly
commences by U1 interacting with the 5′ splice site while
U2 snRNP binds to the branch point sequence. This leads to
the recruitment of the premade U4/U6.U5 tri-snRNP complex,
in this state the spliceosome is inactive. After destabilization or

release of either U1 or U4, the spliceosome becomes active. The
active spliceosome undergoes two phases of catalysis leading to its
dissociation – including U2, U5, and U6 that are recycled – when
it releases the mRNA, as mRNP (Wahl et al., 2009; Figure 1Bii).
The minor spliceosome has divergent and highly conserved 5′
splice site and branch point sequences, which interact with U5
as well as alternative factors U11, U12, and U4atac/U6atac that
are functional analog of its major counterpart (Verma et al., 2018;
Figure 1Bii). Both spliceosomes show the capability to contribute
to the development of neurodegenerative disease, demonstrating
snRNA involvement (Bai et al., 2013; Tsuiji et al., 2013; Ratti and
Buratti, 2016; Jutzi et al., 2018).

In sporadic and familial AD, U1 snRNP subunits – including
U1-70K and U1A – were present in cytoplasmic aggregates,
which occurs by the basic-acidic dipeptide (BAD) domain
binding to tau in U1-70K (Bishof et al., 2018). Inordinate levels
of unspliced RNA also reside, caused by dysregulation of RNA
processing. In conjunction with evidence that inhibition of U1
snRNP increases APP, this implicates U1 snRNP dysregulation
in the pathogenesis of AD (Bai et al., 2013; Hales et al.,
2014a,b). Recent evidence has shown abnormal expression of
U1 snRNA can cause premature cleavage of pre-mRNA via
polyadenylation (PCPA) at the 3′ poly-A site. This affects
splicing and could demonstrate a novel AD causing pathology
(Cheng et al., 2017) (Table 3).

U snRNAs are also associated with spinal muscular atrophy
(SMA). SMN1 gene dysregulation alters U snRNA levels through
its role in U snRNA biosynthesis; nonetheless, the underlying
pathology is still unclear (Zhang et al., 2013). Many studies have
proposed a reduction in U snRNAs is key to SMA pathology due
to their involvement in mRNA processing, with U1 and U11 of
particular interest (Gabanella et al., 2007; Zhang et al., 2008).
In contrast, U snRNAs can accumulate in the motor neurons of
ALS patient spinal cords when compared to control patients, to
cause defects showing that U snRNA level can depict disease state,
depending of cell type (Tsuiji et al., 2013).

More recently, when considering induced pluripotent stem
cell (iPSC) derived motor neurones cultures, a study suggested
that an imbalanced ratio of variant U1 to U1 might cause
the SMA phenotype rather than an overall reduction in U1
snRNA (Vazquez-Arango et al., 2016). Demonstrating that
purely measuring U snRNA level may be an oversimplified
measurement and variant U snRNA could indicate the
underlying pathophysiology of aberrant spliceosome related
neurodegeneration.

Other U snRNAs studied in neurodegenerative disease include
U2. A U2 snRNA mutation causes neuron degeneration, through
altering pre-mRNA splicing at select splice sites that are
associated with alternative pre-mRNA splicing (Jia et al., 2012).
In addition, a dipeptide repeat (C90RF72) linked to both ALS and
frontotemporal dementia (FTD), interacts and interferes with
U2 snRNP. In patient derived cells, this led to mislocalisation
but mis-splicing linked to ALS/FTD has yet to be established
(Yin et al., 2017).

Mutations found within the gene PRPF4 – which encodes
hPrp4 a U4/U6 di-snRNP protein – undertake an important
role in the development of retinitis pigmentosa (RP)
(Chen et al., 2014). hPrp4 is known to interact with
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CypH and hPrp3 to regulate the stability of the tri-snRNP,
U4/U6.U5. Thus, aberrant splicing could cause RP through
direct or indirect mechanisms that have been hypothesized,
but not defined.

The minor spliceosome has ND relevance as in ALS, TDP-43
functionality decreases (Colombrita et al., 2012), which reduces
the number Gemini of coiled bodies (GEMs). GEMs contribute
to U12 snRNA biogenesis, so in spinal motor neurones of ALS
patients there was a decrease of U12 snRNA and U11/U12 snRNP,
which may disrupts pre-mRNA splicing (Ishihara et al., 2013).
Additionally, an ALS mutant (P525L) cannot promote minor
intron splicing due to an aberrant FUS gene that routinely binds
to U11 snRNP to direct splicing. This leads to mislocalisation of
FUS-trapped U11 and U12 snRNAs, which form aggregates in
the cytoplasm so incorrect splicing results (Reber et al., 2016). In
addition, a cerebral ataxia mutation RNU12 causes minor intron
retention in homozygous mutant patients (Elsaid et al., 2017).
When combined this demonstrates a likely role for minor intron
splicing in motor neurone maintenance.

SMALL NUCLEOLAR RNAs

Small nucleolar RNAs (SnoRNAs) modify RNA through there
conserved motifs, with boxes C/D guiding methylation and
H/ACA guiding pseudouridylation, respectively (Ohtani, 2017;
Figure 1Cii). Each class of snoRNAs displays a unique secondary
structure composed of conserved proteins to form the defined
C/D and H/ACA snoRNPs. SnoRNAs mainly target rRNA to
modify functionally important regions of the ribosome (Decatur
and Fournier, 2002) but other purposes include pre-rRNA
endonucleolytic processing (Tollervey and Hurt, 1990), guiding
snRNAs such as U6 snRNA (Tycowski et al., 1998) and more
recently mRNA guiding (Sharma et al., 2016) or regulation of
alternative splicing in pre-mRNAs (Falaleeva et al., 2016).

Box C/D snoRNP biogenesis commences when a protein
complex of SNU13 and NOP58 is pre-formed and loaded onto
the snoRNA with the help of HSP90/R2TP. This recruits assembly
factors and the pre-snoRNPs are transferred to the Cajal bodies
where final processing occurs. Box H/ACA RNPs biogenesis
starts by SHQ1 and DKC1 combining to prevent to non-specific
RNAs binding. SHQ1 is released with the help of the R2TP
complex allowing DKC1 to bind H/ACA RNAs at the site
of transcription. Numerous assembly factors including NHP2,
NOP10, and NAF1 are present during this pre-snoRNP form.
When NAF1 – which binds the C-terminal domain of RNA
polymerase II to keep H/ACA RNP inactive – is replaced by
GAR1, mature and functional H/ACA RNPs are produced. Both
forms are transported to the nucleolus to elicit their actions
(Massenet et al., 2017; Figure 1Ci).

A study showed differential regulation of two C/D box
snoRNAs (e307 and e470) prior to the development of AD
in mouse model. After formation of a β-amyloid plaque, this
differential expression is no longer present, demonstrating that
they could be useful in early diagnosis. No clear evidence of
pathogenesis just hypothesized using bioinformatics methods
(Gstir et al., 2014) (Table 3).

Despite the fact that autism spectrum disorder (ASD) might
not be considered a neurodegenerative disease. Studies have
found links in ASD with numerous snoRNA genes found to
be differentially expressed using RNA-seq (Wright et al., 2017).
Duplication of SNORD115 in mouse chromosome 7 that mirrors
human chromosome 15q11-13 – duplication of this is one
of the most common chromosomal abnormalities in ASD –
has been shown to increase SNORD115 levels and results in
abnormal brain development. In addition, SNORD115 (HBII-
48 and HBII-52) levels are dysregulated in superior temporal
gyrus of human ASD brain samples, which could explain 5-HT
changes (Gabriele et al., 2014) and alternative splicing seen in
ASD (Voineagu et al., 2011) as HBII-52 may regulate 5-HT2C
receptor mRNA levels (Stamova et al., 2015) as well as alternative
splicing (Kishore et al., 2010).

Another study demonstrated that maternal alcohol
consumption in pregnancy alters the C/D box RNA levels
in brain cells during abnormal fetal development. DNA
methylation, microRNA and snoRNA levels altered with
emphasis on SNORD115 increasing and SNORD116 decreasing
(Laufer et al., 2013).

PIWI-INTERACTING RNA

Piwi-Interacting RNAs (PiRNAs) are a diverse range of small
RNAs that are highly enriched in the germline tissues. They
interact with PIWI-class Argonaute proteins with sequence bias
for only the first 5′ nucleotide to be a Uracil. This diverse
population can be mapped back to distinct areas of the genome
known as piRNA clusters, which contain highly enriched areas of
fragmented dysfunctional transposable element (TE) sequences.
These are thought to emanate from the memory of previous
TE invasions, and can be utilized to protect against TEs (Toth
et al., 2016). In addition, PIWI proteins function at the chromatin
level by guiding DNA methylation and deposition of repressive
histone marks to silence TE transcription (Le Thomas et al.,
2013; Figure 1Dii).

The biogenesis of piRNAs gives rise to two different forms
primary and secondary of 26–30 bps in length, stemming
from single-stranded precursors (Yan et al., 2011; Mani and
Juliano, 2013), which are best studied in Drosophila. Primary
piRNAs biogenesis is poorly defined but precursors of around
200 bp stemming nearly entirely from piRNA clusters are
cleaved – Zucchini (ZUC) is thought to do this – to enable
loading onto a PIWI protein in association with other factors
(Figure 1Di). This piRNA-PIWI complex interacts with TEs
to prevent insertion through methylation or transcriptional
repression, thereby affecting gene expression (Toth et al., 2016).

In Drosophila, secondary piRNAs are formed through a more
defined “ping-pong” pathway, which utilizes the primary piRNAs
formed from TE fragments present in piRNA clusters loaded
onto Aubergine (AUB) to find complementary antisense TE
transcripts (Figure 1D). Once found the complementary TE
mRNA binds, and is cleaved ten nucleotides along from the
5′ end by AUB, which terminates its function. Additionally it
creates a new 5′ end and piRNA precursor, which accompanied by
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AGO3 is processed into secondary piRNA. The secondary piRNA
promotes the development of more cluster-derived piRNAs – it is
representative of the sense TE strand – through complementary
cluster transcripts to develop a greater repertoire against active
TEs (Toth et al., 2016; Figure 1Di).

Originally piRNAs were solely thought to be present in
germline cells, more recently they have been found in other
areas of the body including blood (Yang et al., 2015), blood
plasma (Freedman et al., 2016) and the brain (Roy et al.,
2017) as well as interacting with diseases in the liver (Rizzo
et al., 2016), cardiovascular system (Loche and Ozanne, 2016)
and brain (Roy et al., 2017) demonstrating their roles are far-
reaching. In neurodegenerative disease there have been recent
studies on PD and AD.

Risk variants APOE (rs2075650) and RNU6-560P (rs10792835
+ rs3851179) have been linked with AD through genome-
wide association studies (GWAS). These risk variants were
significantly correlated with nine (6 APOE and 3 RNU6-
560P) different piRNAs, showing regulatory capabilities (Guo X.
et al., 2017). PiRNA dysregulation may be integral to the
development of AD through aberrant downstream signaling.
The link to pathogenesis in AD was clarified in three AD
dysregulated piRNAs (piR-38240, piR-34393, and piR-40666)
after establishing complementary target genes (CYCS, KPNA6,
and RAB11A) through inverse expression correlation (Roy
et al., 2017). The target genes were known to regulate AD
pathways through oxidative stress induced neurodegeneration,
apoptosis and vesicular trafficking of Aβ. This demonstrates a
regulatory role for piRNAs in preventing AD and so monitoring
dysregulation could allow early diagnosis and implicate a
treatment method.

There was a difference found in piRNA expression between
PD- and control- patient derived cells. Patient tissue samples
showed the same trend, with 70 different piRNAs overlapping
between both (Table 3). Two distinct trends come from these
piRNAs, up or down regulation (Schulze et al., 2018). In
the down-regulated piRNA fraction, those that were short-
interspersed nuclear elements (SINE) and long-interspersed
nuclear elements (LINE) derived elements in cell lines
and LINE in tissues, showed significant enrichment when
compared to genome-wide expression (Schulze et al., 2018).
This is indicative of an inability to silence SINE and LINE
derived elements in PD-derived neurones, which could show a
pathogenesis of PD disease.

TRANSFER RNAs

Transfer RNAs (tRNAs) are the most abundant form of sncRNA,
making up 4–10% of all cellular RNAs. Previously thought
to be static contributors to gene expression, acting as an
adaptor molecule in translation. Recently it has been found
that small non-coding tRNAs have unique function that enable
wider signaling and dynamic regulation of various functions
(Gebetsberger and Polacek, 2013).

Mature tRNA is formed through transcription of precursor
tRNA (pre-tRNA) using RNA polymerase III. Endonucleolytic

ribonuclease P (RNase P) and ribonuclease Z cleave the
transcribed pre-tRNA at the 5′ leader sequence and 3′ polyuracil
(poly –U) tail, respectively, before tRNA nucleotidyl transferase
adds a 3′CCA tail (Figure 1Ei). Many post-transcriptional
modifications will occur during maturation and only tRNAs
appropriately processed will leave the nucleus via nuclear
receptor-mediated export process, with wrongly processed
terminating. The mature tRNAs are between 73–90 nts in
length and contain a clover-leaf shaped secondary structure,
composing of a D-loop, an anticodon loop, a T-loop, a variable
loop and an amino acid acceptor stem (Kirchner and Ignatova,
2015). The mature of pre-tRNA can be cleaved – into specific
products unlike previously thought – into two main categories of
cleaved tRNAs have been categorized; (1) tRNA-halves, (2) tRNA
derived fragments.

tRNA halves are produced by cleavage of the anticodon
loop giving rise to two halves; 30–35 nt 5′-tRNA halves and
40–50 nt 3′tRNA halves (Li and Hu, 2012; Figure 1Eii). A subtype
of tRNA halves known as tRNA-derived stress-induced RNAs
(tiRNAs) are by-products of stress. They induce cleavage by
angiogenin (ANG) – a ribonuclease – of mature cytoplasmic
tRNAs (Yamasaki et al., 2009).

tRNA derived fragments (tRFs) are produced from either
pre-tRNAs or mature tRNAs (Figure 1Eii). Four main types
have been established stemming from the fragment location on
tRNAs: 5-tRFs, 3-tRFs, 1-tRFs, and 2 tRFs. 5-tRFs – located most
abundantly in the nucleus – are generated from cleavage of the
D-loop of tRNAs by Dicer, with adenine being present at the
3′ ends. Further subdivision classifies 5-tRFs isoforms into “a”
(∼15 nts), “b” (∼22 nts) and “c” (∼30 nts) (Kumar et al., 2015;
Lee et al., 2009). 3-tRFs result from cleavage by Dicer, ANG or
another member of the Ribonuclease A superfamily of the T-loop,
containing a CCA tail sequence (18–22 nts) (Lee et al., 2009;
Maraia and Lamichhane, 2011; Kumar et al., 2015). 1-tRFs are
formed by the cleavage of the 3′-trailer fragment of pre-tRNAs
by either RNaseZ or ELAC2, this usually commences after the
3′-ends of mature tRNA and contains a poly-U 3′-end (Lee et al.,
2009; Liao et al., 2010). 2-tRFs, less known about but may be
formed from the anticodon loop (Goodarzi et al., 2015).

Numerous neurodegenerative disorders are associated with
tRFs. ANG mutants show reduced ribonuclease (RNase) activity
and were first implicated in the pathogenesis of amyotrophic
lateral sclerosis (ALS) (Greenway et al., 2006). Latterly, a subset of
the ALS-associated ANG mutants were observed in Parkinson’s
disease (PD) patients (van Es et al., 2011). Recombinant ANG can
improve life span and motor function in an ALS [SOD1 (G93A)]
mouse model, demonstrating that tRFs may have an important
role in motor neuron survival (Kieran et al., 2008) (Table 3).

The link between ANG-induced tiRNAs, cellular stress and
neurodevelopment disorders was strengthened with the finding
of NSun2 (Blanco et al., 2014). Mutations in the cytosine-5 RNA
methyltransferase NSun2 have been shown to cause intellectual
disability and a Dubowitz-like syndrome in humans (Abbasi-
Moheb et al., 2012; Martinez et al., 2012). NSun2 methylates
two different cytosine residues of tRNA. Without NSun2,
cytosine-5 RNAs are not methylated, which increases the stress-
induced ANG-mediated endonucleolytic cleavage of tRNAs and
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so 5′-tiRNAs accumulate. Accumulation of these factors leads
to cell death in hippocampal and striatal neurons because of
translational repression leading to cellular stress. Subsequently,
NSun2 knockout mice show reduced neuronal size and impaired
formation of synapses, which could explain the impairment of
NSun2 gene mutation patients (Blanco et al., 2014).

A mutation in CLP1 gene (R140A) – a RNA kinase involved in
tRNA splicing – is present in pontocerebellar hypoplasia (PCH)
patients, a heterogeneous group of inherited neurodegenerative
disorders characterized by the loss of motor neurons, muscle
paralysis, impaired development of various parts of the brain
and differential tRNA splicing (Karaca et al., 2014; Schaffer et al.,
2014). The role of CLP1 in RNA splicing means the mutant gene
has reduced kinase activity and affinity to the tRNA endonuclease
complex (TSEN), impairing pre-tRNA cleavage and elevating
unspliced pre-tRNAs in patient derived neurons (Schaffer et al.,
2014). TSEN cuts the transcript at 3′ intron-extron junctions,
so the absence of CLP1 means 5′-unphosphorylated tRF cannot
interact with the pre-tRNAtyr 3′-exon and subsequent splicing
steps are interrupted (Cassandrini et al., 2010).

N6-threonyl-carbamoyl-adenosine (t6A) is a complex modifi-
cation of adenosine involved in cytoplasmic tRNA modification.
It is located next to the anticodon loop of many tRNAs
that decode ANN codons, at position 37 (t6A37). Recently,
a biosynthetic defect in the t6A molecule resulting from a
mutation in the kinase-associated endopeptidase (KAE1) gene,
which is part of the kinase, endopeptidase and other proteins of
small size (KEOPS) complex was found in two phenotypically
neurodegenerative patients, implicating tRNA modification in
neuronal maintenance (Edvardson et al., 2017).

Although, tRNA-derived small non-coding RNAs, have
already demonstrated a role in cancer progression (Sun et al.,
2018), their role as biomarkers in NDs has not been fully
investigated yet.

However, animal studies showed 13 dysregulated tRFs in
brain samples of SAMP8 mouse model for AD. In particular,
four were upregulated (AS-tDR-011775, AS-tDR-011438, AS-
tDR-006835 and AStDR-005058) and 9 down regulated (AS-tDR-
013428, AS-tDR-011389, AS-tDR-009392, AS-tDR012690, AS-
tDR-010654, AS-tDR-008616, AS-tDR-010789, AS-tDR-011670,

and AS-tDR-007919), demonstrating their potential involvement
of tRFs in early detection of AD.

CONCLUSION

The key problem with the ND field is the lack of understanding in
the events preceding the development of protein-based markers –
such as Tau – currently used to diagnose NDs. By this stage, the
diseases become more difficult to treat.

SncRNAs play an important regulatory role in the
maintenance of the homeostatic brain. Therefore, changes in
their concentration levels can be indicative of mechanistic
changes that could precede protein-based markers. One single
sncRNA biomarker is unlikely to differentiate between diseases.
However, a combination of sncRNA biomarkers could be
illustrative of the mechanistic development of NDs to enable
early diagnosis, enhanced disease monitoring as well as defining
subtle differences between NDs. Consequently, novel treatment
methods directly related to their mechanistic underpinning of
specific NDs, and potentially other brain related pathologies
can be envisaged.

Novel, less-well studied sncRNAs could be integral to
understanding the overall disease progression. So new
methodologies may be necessary to quantify these changes and
allow for future biomarker development.
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