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Abstract 38 

There is conflict between living according to our endogenous biological rhythms and our external 39 

environment, with disruptions resulting in negative consequences to health and performance. This is 40 

often documented in shift work and jet lag, but ‘societal norms’ e.g. typical working hours, can create 41 

profound issues for ‘night owls’, people whose internal biological timing predisposes them to follow 42 

an unusually late sleep-wake cycle. Night owls have also been associated with health issues, mood 43 

disturbances, poorer performance and increased mortality rates. This study used a randomized control 44 

trial design aimed to shift the late timing of night owls to an earlier time (phase advance), using non-45 

pharmacological, practical interventions in a real-world setting. These interventions targeted light 46 

exposure (through earlier wake up/sleep times), fixed meals times, caffeine intake and exercise. 47 

Overall, participants demonstrated a significant advance of ~2 h in sleep/wake timings as measured by 48 

actigraphy and circadian phase markers (dim light melatonin onset and peak time of the cortisol 49 

awakening response), whilst having no adverse effect on sleep duration. Importantly, the phase 50 

advance was accompanied by significant improvements to self-reported depression and stress, as well 51 

as improved cognitive (reaction time) and physical (grip strength) performance measures during the 52 

typical ‘suboptimal’ morning hours. Our findings propose a novel strategy for shifting clock timing 53 

towards a pattern that is more aligned to societal demands that could significantly improve elements 54 

of performance, mental health and sleep timing in the real world. 55 

 56 
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Introduction  64 

There is often little regard for the impact of sleep and circadian disruptions in society’s attitude 65 

towards the organisation of our typical working day. Disturbances to the sleep/wake system that 66 

impair daily functioning leading to reduced health are prevalent, with around two thirds of the UK’s 67 

adult population (67%) reporting some sort of sleep issue [1, 2]. It is well documented that restricted 68 

sleep and disrupted circadian rhythmicity result in changes to many physiological processes such as 69 

endocrine regulation [3] and core body temperature (CBT) [4], as well as being linked with a variety 70 

of health issues, including mood disturbances [5], increased morbidity and mortality rates [6], and 71 

declines in cognitive and physical performance [7]. Disruption to circadian and sleep/wake processing 72 

represents a substantial economic burden on society, primarily through loss of productivity, 73 

absenteeism and poor performance [8], and increases the risk of occupational accidents [9]. A major 74 

factor influencing these outcomes is a lack of appreciation for individual differences in vulnerability 75 

to sleep disruption and circadian misalignment, and a lack of awareness of the extent to which an 76 

individual’s circadian timing may not align with the normal 09:00 h - 17:00 h working day.  77 

Individual differences in biological rhythms are influenced by physiological [10, 11], genetic [12] and 78 

behavioural [13] factors. These differences allow the categorisation of individuals according to their 79 

circadian timing, with particularly early and late timings often referred to as ‘larks’ and ‘night owls’ 80 

(termed Early and Late circadian phenotypes, ECP/LCP, in this study). At their most extreme these 81 

differences can result in clinical diagnoses of the circadian rhythm sleep-wake disorders (CRSWDs), 82 

Advanced Sleep-Wake Phase Disorder (ASWPD) and Delayed Sleep-Wake Phase Disorder 83 

(DSWPD), which are more prevalent in older and younger subjects, respectively. The extent to which 84 

these clinical disorders overlap in terms of mechanisms with extreme circadian phenotypes in the 85 

healthy population remains unknown.  86 

DSWPD is often associated with mood disorders such as depression [14], and this group of 87 

individuals also tend to be restricted by social factors such as work/school routines which shorten 88 

sleep resulting in an accumulation of ‘sleep debt’. This causes excessive sleepiness during the day and 89 

impairment of cognitive functioning [15]. While clinical assessment is needed to diagnose DSPWD, 90 
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many of its symptoms are shared with ‘night owls’ (LCPs). LCPs are categorized based on late 91 

sleep/wake timings, a delay in dim light melatonin onset (DLMO) and/or defective sleep homeostasis 92 

[16]. LCPs have been associated with higher scores for depression [17], decreased morning cognitive 93 

performance, excessive daytime sleepiness [18], as well increased morbidity and mortality risks [6]. 94 

Diurnal variations in both cognitive and physical performance measures have also been shown to vary 95 

between circadian phenotypes [19], with LCPs often having difficulties fitting into traditional working 96 

hours. Since around 50% of a given population would fall into a ‘Late type’ category (waking after 97 

8:18 h) [20], one could propose that these individuals are compromised by having delayed circadian 98 

timing and could benefit by being shifted towards an earlier pattern.  99 

Resetting biological clocks can be achieved using behavioural methods, pharmacological methods or 100 

a combination of the two. The human circadian system is most responsive to light, which allows 101 

sleep/wake activity and physiology to adapt to the 24 h light dark cycle. As a result, light, or lack of 102 

light, is a major target to try and reset biological clocks through a process called photic entrainment. 103 

Bright light has been shown to shift circadian phase depending on time and duration of light 104 

administered (phase response curve) [21, 22]. Exposure in the early morning phase advances the 105 

circadian system causing DLMO to peak earlier and sleep onset to become advanced [23]. 106 

Conversely, light exposure during the biological night creates a phase delay shown by a later DLMO 107 

[24, 25].  108 

Non photic forms of entrainment have also been researched to try and shift circadian phase [26]. 109 

These behavioural targets i.e. non-pharmacological interventions, include altering sleep/wake cycles 110 

[27], timed physical exercise [28] and timed feeding [29]. Timed feeding has been shown to shift 111 

peripheral clocks in mice without affecting the SCN clock [30]. Furthermore, timed feeding has been 112 

shown to regulate peripheral metabolic rhythms with a 5-hour delay in meal timings delaying rhythms 113 

of plasma glucose and adipose PER2 clock gene expression [29].  An alternative circadian zeitgeber 114 

that has been explored is targeted physical exercise. Timed exercise can alter the rhythm of core body 115 

temperature [31] and melatonin [32]. A recent paper has further supported these findings, showing 116 
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that exercise in the morning and early afternoon elicits a phase advance, whereas scheduled evening 117 

exercise causes a phase delay [33]. 118 

The majority of our society has stringent work and schooling hours requiring attendance between the 119 

hours of 09:00 h and 17:00 h. Despite these traditional imposed social clock requirements, there has 120 

been some shift towards understanding biological constraints by allowing flexibility of working hours 121 

[34], as well as attempts to move school start times to fit to adolescents’ notoriously late running 122 

biological clocks [35]. However, despite awareness of the consequences, there is still a long way to go 123 

to directly translate research outcomes and affect change in our rapidly evolving ‘round the clock’ 124 

society.   125 

Although attempting a phase advance (shifting the clock earlier) using some of these methods has 126 

previously been shown in laboratory studies [28, 36, 37], field studies are lacking. Furthermore, 127 

investigating the impact on mental health and diurnal variations in performance have not yet been 128 

attempted in real world settings. Here we propose a novel intervention strategy for ‘night owls’ 129 

(LCPs), many of whom suffer from chronic circadian misalignment or disrupted sleep homeostasis. 130 

Using simple, practical lifestyle changes, we aimed to phase advance sleep/wake timings, DLMO and 131 

time of peak cortisol awakening response. We hypothesised that if a phase advance is achieved this 132 

would improve self-rated measures of mental health (depression, anxiety and stress) as well as shift 133 

the timing of peak performance earlier, and thus improve simple indices of cognitive (reaction time) 134 

and physical (grip strength) performance at non-optimum times of day. 135 

 136 

 137 

 138 

 139 

 140 

 141 
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Methods 142 

Participants  143 

The study received a favourable ethical opinion from the University of Birmingham Research Ethics 144 

Committee, was performed in accordance with the Declaration of Helsinki and participants gave 145 

written informed consent before involvement. A total of 178 individuals completed the Munich 146 

ChronoType Questionnaire (MCTQ, paper version [38]) to calculate corrected mid-sleep on free days 147 

(MSFsc). Participants classified as Late chronotypes using an age and gender matched MCTQ 148 

database were invited to take part in the study (n = 49). Individuals were screened for no diagnoses of 149 

sleep or neurological disorders via self-report and were not taking any medications that affected sleep, 150 

melatonin and cortisol rhythms. A total of 29 individuals agreed to take part in the study, of which 151 

five were excluded based on medical history and two dropped out prior to starting the study. 152 

The final sample consisted of 22 healthy individuals (15 female, aged 21.3 ± 3.3 years, MSFsc 06:52 ± 153 

00:17 h). The study used a randomized control trial design and was conducted over six weeks for each 154 

participant which took place between April and June 2016 (sunrise range 06:42 h to 04:40 h, sunset 155 

range 19:41 h to 21:32 h, latitude 52° 29' 22.0956'' N). Participants were randomly assigned to the 156 

experimental (n = 12, 9 female) or control (n = 10, 6 female) groups at the start of the study.  Two 157 

weeks of acclimatisation was used to assess habitual sleep patterns using actigraphy and gather 158 

questionnaire data at baseline (pre-intervention). Following this period, participants were asked to 159 

provide saliva samples for melatonin and cortisol in their home environment (details below) before 160 

attending the laboratory for testing sessions at 14:00 h, 20:00 h and 08:00 h. To simulate a ‘real 161 

world’ setting, participants were able to leave the laboratory between testing sessions. Participants 162 

were then given a schedule to follow for the next three weeks (intervention) before returning to repeat 163 

all testing sessions, physiological sampling and questionnaires (Figure 1). Participants completed the 164 

test sessions on the same day pre- and post-intervention. Summary details of participants’ data pre-165 

intervention for experimental and control groups to confirm accurate matching can be found in 166 

Supplemental Table 1. 167 

 168 
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Non-Pharmacological Interventions 169 

At the final pre-intervention testing session, the experimental group were given an intervention 170 

schedule to follow for a period of three weeks. These interventions followed standard sleep hygiene 171 

suggestions and targeted appropriately timed light exposure, sleep, meals, caffeine and exercise 172 

(summarised in Table 1). The control group were given a placebo single instruction to ‘eat lunch at 173 

the same time every day’ with the assumption that there would be no differences in sleep timings and 174 

hence no effect on circadian phase. Adherence to the intervention was monitored through self-report. 175 

Meal timings pre- and post-intervention were collected as part of a diet questionnaire which enquired 176 

about food intake habits over the prior 2 weeks. Timing of naps were monitored through daily sleep 177 

diaries. A feedback questionnaire was administered at the end of the study where participants were 178 

asked whether they adhered to the intervention schedule on a scale of 0 (not at all) to 10 (completely). 179 

At each testing session participants answered an online questionnaire to record timing of external 180 

variables prior to/between sessions such as caffeine intake, exercise and meal times. 181 

 182 

***INSERT TABLE 1*** 183 

Table 1. Details of intervention schedule given to participants in the experimental group. The control 184 
group were given a single instruction (shown in bold). Method of monitoring adherence (in addition to a 185 
feedback questionnaire administered post-intervention) is given for each intervention target. 186 
 187 

Intervention 

target 

Instructions given How adherence was monitored 

Wake up time Participants were asked to try and wake up 2-3 

hours before habitual wake up time. 

Participants were asked to maximise outdoor 

light exposure during the mornings. 

Continuous monitoring pre- and post-

intervention through actigraphy and 

sleep diaries. 

 

Sleep/wake 

timings 

Participants were asked to try and keep 

sleep/wake times fixed (within 15/30mins) 

between workdays and free days. 

Continuous monitoring pre- and post-

intervention through actigraphy and 

sleep diaries. 
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 188 
 189 
 190 
 191 
 192 

 193 
 194 

 195 

 196 
 197 
 198 
 199 
 200 
 201 
 202 
Figure 1. Schematic illustration of experimental protocol. Actigraphy combined with sleep diaries were 203 
completed for the duration of the study as well as physiological sampling for melatonin and cortisol 204 
measurements prior to attending testing sessions during weeks 2 and 5 (pre- and post-intervention). At each 205 
testing session participants completed cognitive (psychomotor vigilance task, PVT) and physical (maximum 206 
voluntary contraction, MVC, of isometric grip strength) performance testing coupled with subjective sleepiness 207 
ratings using the Karolinska Sleepiness Scale (KSS). 208 
 209 

Sleep onset Participants were asked to try and go to sleep 

2-3 hours before habitual bedtime. 

Participants were asked to limit light exposure 

during the evenings. 

Continuous monitoring pre- and post-

intervention through actigraphy and 

sleep diaries. 

Diet/nutrition Participants were asked to keep a regular 

schedule for daily meals. 

Participants were asked to have breakfast as 

soon after wake up as possible. 

Participants were asked to eat lunch at the 

same time every day. 

Participants were asked not to have dinner 

after 19:00 h. 

A diet questionnaire was administered 

pre- and post-intervention. 

An online questionnaire was completed 

at all testing sessions to record time 

since last meal. 

Caffeine intake Participants were asked not to drink any 

caffeine after 15:00 h. 

An online questionnaire was completed 

at all testing sessions to record time 

since caffeine intake. 

Power naps Participants were asked not to nap after 16:00 

h. 

Napping was recorded through self-

reported daily sleep diaries. 

Exercise If exercise was part of an individual’s usual 

routine they were asked to schedule this during 

the morning. 

An online questionnaire was completed 

at all testing sessions to record time 

since exercise. 
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Physiological Data 210 

All participants underwent training in how to collect saliva samples in their home environment 211 

following strict protocols. During the sampling period, participants were asked to refrain from 212 

cleaning their teeth, drinking caffeinated drinks, alcoholic drinks or any drinks that contained artificial 213 

colouring. Each individual was provided with a sample record collection form in order to report the 214 

exact times that samples were given and report any factors that could have affected the sampling 215 

period e.g. exposure to light, disruption to sampling. Participants provided saliva samples during one 216 

morning and one evening during pre-intervention (week 2) and post-intervention (week 5). Samples 217 

for melatonin were collected whilst seated in dim lighting conditions i.e. no overhead lights, no 218 

electronic devices and curtains closed, every 30 minutes from between three and four hours prior to 219 

habitual bedtime until one hour after habitual bedtime. Morning samples for cortisol were collected 220 

over a period of 3 hours from wake-up time (the first five samples every 15 minutes and the 221 

remaining four samples every 30 minutes). Exact sampling times for each individual were recorded. 222 

Radioimmunoassays (RIA) of melatonin and cortisol in human saliva were performed (Stockgrand 223 

Ltd, University of Surrey) using an Iodine125 radioactive labelled tracer and solid phase separation 224 

[39]. Individual DLMOs were calculated with a linear response function using the mean of the 225 

individual pre-intervention concentration values plus two standard deviations of the mean. The time 226 

of highest cortisol concentration recorded during the sampling period was used as an indicator of peak 227 

cortisol awakening response. Due to insufficient or contaminated samples paired DLMO values (pre- 228 

and post-intervention) could not be computed for three subjects in the experimental group and five 229 

subjects in the control group. 230 

 231 
Behavioural Data 232 

Sleep Analysis: Actigraphs (Actiwatch® Light, 2006, Cambridge Neurotechnology Ltd), combined 233 

with daily sleep diaries, were worn on the non-dominant wrist for the entire duration of the study 234 

(weeks 1-5) to monitor actigraphic sleep and rest-activity patterns (1-minute epochs) in the home 235 

environment and analysed with the manufacturer’s software (Sleep Analysis 7.23, Cambridge 236 



10 

Neurotechnology Ltd). Due to incorrect wearing of the devices, actigraphic data from two individuals 237 

(one in the experimental group and one in the control group) were not usable. 238 

Questionnaires: A set of questionnaires were completed by each participant during a set up meeting 239 

pre-intervention and repeated at the end of the final testing session (post-intervention). Questionnaires 240 

included the MCTQ, paper version [38],  Epworth Sleepiness Scale (ESS) [40], Pittsburgh Sleep 241 

Quality Index (PSQI) [41], Profile of Mood States (POMS) [42], Depression, Anxiety and Stress 242 

Scale (DASS) [43], and a Diet Questionnaire [29]. Due to insufficient completion of questionnaires, 243 

three individuals’ results were not recorded for POMS, two for DASS and two for the Diet 244 

Questionnaire. 245 

Sleepiness: Daytime subjective sleepiness, measured using the Karolinska Sleepiness Scale (KSS) 246 

[44], was assessed at each testing session before the cognitive and physical tasks were performed. 247 

Reaction time: Cognitive testing consisted of a two-minute visual psychomotor vigilance task (PVT) 248 

[45]. The PVT was conducted on a desktop computer (DQ67OW, Intel® Core™ i7-2600 processor, 249 

4GB RAM, 32-bit Windows 7) with a standard keyboard and mouse. The same set up was used 250 

throughout the study for each participant and each testing session. Participants also performed three 251 

trial tests during the acclimatisation phase to familiarise themselves with the set up and minimise 252 

learning effects. Milliseconds were recorded for each trial, then a mean response time was taken over 253 

the number of trials. 254 

Grip strength: To obtain a simple measure of physical performance an electronic hand dynamometer 255 

(EH101, CAMRY) was used to perform a six second maximum voluntary contraction (MVC) test of 256 

isometric grip strength [46]. Participants stood with the elbow extended at 180˚ and used their 257 

dominant hand in a pronated position to apply as much grip pressure as possible. Raw scores were 258 

recorded in kg. Three trials were completed with two minutes rest between each trial and the highest 259 

recorded value was used in the subsequent analysis. A set script was used to motivate the participants 260 

due to the influence of motivation on performance [47].  261 

 262 
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Statistical Analysis  263 

Statistical comparisons were performed in GraphPad Prism (version 7.00), using linear regression 264 

analysis and two-way repeated measures ANOVA with post hoc tests corrected for multiple 265 

comparisons, adding intervention group (experimental/control), assessment period (pre- vs. post-266 

intervention) or time of day (08:00 h, 14:00 h and 20:00 h) as factors. Diurnal variations in 267 

performance and sleepiness variables were plotted using second degree polynomial regression curves. 268 

Due to data collection occurring at 14:00 h through to 08:00 h, the model is constrained to this time 269 

period.  270 

The raw scores for the performance measurements (reaction time in milliseconds from the PVT and 271 

grip strength in kilograms from the MVC test) were normalised by converting to percentages relative 272 

to each individual’s time of peak performance. For example, the testing session where fastest reaction 273 

time and strongest grip strength was recorded was designated as 100% for that participant. The 274 

subsequent scores were calculated relative to this. Higher percentages always relate to better 275 

performance achieved (faster reaction time and stronger grip strength). This was to allow diurnal 276 

variations to be quantified in a standardised way across individuals and across different measures of 277 

performance (Facer-Childs et al. 2018). These data were normalised relative to each individual in the 278 

pre- and post-intervention conditions separately. Test statistics are given to one significant figure. 279 

Significance levels are displayed as ns = not significant, p < 0.05 = *, p < 0.01 = **, p < 0.001 = *** 280 

and p < 0.0001 = ****. Values are represented as the mean ± standard error of the mean (SEM) unless 281 

specified otherwise (age and BMI values are given with standard deviations). Exact p values are given 282 

to two significant figures, apart from when significance is identified as less than 0.0001, in which case 283 

p < 0.0001 is reported. The 08:00 h test is described as morning, 14:00 h as afternoon and 20:00 h as 284 

evening. Reaction time (measured using the PVT) will be referred to as a simple index of attentional 285 

cognitive performance and isometric grip strength (measured using an MVC test) as a simple index of 286 

physical performance. 287 

 288 
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Results 289 

To confirm that the study groups were evenly matched according to the range of variables discussed 290 

below, all data were initially compared pre-intervention and no significant differences were found in 291 

any of the parameters measured (Supplemental Table 1). Experimental and control groups were of 292 

similar age (21.7  2.8 and 20.9  3.9 years), BMI (22.9  3.2 and 22.6  2.1) and MSFsc (07:15 h  293 

00:27 and 06:02 h  00:14). At baseline (pre-intervention) significant linear relationships were 294 

observed between MSFsc and wake up time (R2 = 0.53, F = 21.21, p = 0.0002), sleep onset (R2 = 0.40, 295 

F = 12.69, p = 0.0021), peak time of the cortisol awakening response (R2 = 0.39, F = 12.65, p = 296 

0.002), and DLMO (R2 = 0.33, F = 5.98, p = 0.03) (Figure 2). These results support and validate the 297 

classification of participants as LCPs through actigraphic analyses and biological phase markers 298 

following the original identification as Late chronotypes from the MCTQ.  299 

***INSERT FIGURE 2*** 300 

 301 
 302 
 303 
 304 
 305 
 306 
 307 
 308 
 309 
 310 
 311 
 312 
 313 
 314 
 315 
 316 
 317 
 318 
 319 
 320 
 321 
 322 
 323 
Figure 2. Linear relationships between pre-intervention corrected MSFsc and biological phase markers to 324 
validate circadian phenotyping. a) Wake up time (h), b) Time of peak cortisol awakening response (h), c) 325 
Sleep onset (h), d) Dim light melatonin onset (DLMO) (h). Corrected mid-sleep on free days (MSFsc) is 326 
displayed as time of day (h) on the x axis. Statistical analysis was carried out using linear regression analysis. 327 
Asterisks represent significant relationships (* = p < 0.05, ** = p < 0.01, *** = p < 0.001) and R2 value is 328 
shown in the bottom right corner.    329 
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Adherence to Interventions 330 

Overall, the experimental group reported on average 7.8 ± 0.7 adherence to the interventions in the 331 

feedback questionnaire. Adherence to interventions targeting sleep/wake and dietary variables 332 

(monitored through actigraphy and a diet questionnaires) were confirmed with an advance in timings 333 

(see below). Avoidance of naps after 16:00 h was confirmed using self-reported sleep diaries. Results 334 

from the online questionnaire at the evening testing session confirm an advance in self-reported 335 

timing of caffeine intake, exercise and last meal for the experimental group post-intervention. 336 

Average self-reported caffeine intake before the 20:00 h testing session was on average 4 hours earlier 337 

post-intervention in the experimental group (5.9 ± 1.7 h pre-intervention and 10.3 ± 1.5 h post-338 

intervention), meaning this advanced from 14:00 h to 10:00 h. Average self-reported hours since 339 

exercise advanced from 6.8 ± 1.7 h before the evening test session pre-intervention to 7.8 ± 1.8 h 340 

before the evening test session post-intervention, as did hours since last meal from 2.4 ± 0.4 h pre-341 

intervention to 3.8 ± 0.8 hrs post intervention. By contrast, the control group had a slight delay in 342 

timings of exercise and meal time relative to pre-intervention (6.0 ± 1.9 h to 4.8 ± 1.8 h and 3.5 ± 1.0 343 

h to 2.8 ± 0.8 h respectively) and a slight advance in hours in caffeine from 6.1 ± 2.3 h to 8.7 ± 2.6 h.  344 

 345 

Phase Advance 346 

Compared to pre-intervention, a clear phase advance of around 2 h was observed post-intervention in 347 

the experimental group, as measured by the MCTQ, actigraphy and circadian phase markers (Figure 3 348 

and Table 2). MSFsc was shifted significantly earlier by 2.57 ± 0.32 h (p < 0.0001). This advance was 349 

confirmed with actigraphic analysis showing a significant advance of 1.73 ± 0.28 h for sleep onset 350 

and 1.92 ± 0.26 h for wake-up time (both p < 0.0001), with no significant changes in sleep duration, 351 

sleep efficiency or sleep latency. DLMO was advanced by 1.96 ± 0.63 h (p = 0.018), and time of peak 352 

cortisol awakening response by 2.22 ± 0.50 h (p = 0.0005). There were no significant changes in 353 

phase angle (time between sleep onset and DLMO). Average self-reported breakfast time in the 354 

experimental group shifted significantly earlier by 1.11 ± 0.39 h compared to pre-intervention (p = 355 
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0.022). Similarly, average self-reported lunch and dinner times also advanced by 0.75 ± 0.27 h (lunch, 356 

p = 0.023) and 1.44 ± 0.49 h (dinner, p = 0.021). In the control group there was a significant delay of 357 

1.16 ± 0.34 h in sleep onset (p = 0.0067) and 1.24 ± 0.32 h in wake-up time (p = 0.0021) compared to 358 

pre-intervention. By contrast to the experimental group, no other variables were significantly different 359 

following the control intervention.  360 

 361 

Impact of Interventions on Mental Well-Being 362 

Subjective ratings of depression and stress significantly decreased following the interventions in the 363 

experimental group (Figure 4 and Table 2). Overall DASS score decreased by 8.7 ± 2.4 points from 364 

19.8 to 11.2 (pre-intervention). Splitting DASS into depression, anxiety and stress scores separately 365 

revealed a significant effect of intervention (F(1,11) = 13.28, p = 0.0039), and significant decreases in 366 

the depression and stress elements but not anxiety (p = 0.37). Depression was reduced from 5.5 ± 1.0 367 

to 2.3 ± 1.2 (p = 0.025), and stress from 9.5 ± 2.2 to 5.7 ± 1.9 (p = 0.0061). There were no significant 368 

differences found for the control group in any parameters measured. In both study groups no 369 

significant differences were observed for POMS, PSQI or ESS (Figure 4 and Table 2). 370 

 371 

 372 

 373 

 374 

 375 

 376 

 377 

 378 

 379 
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***INSERT TABLE 2*** 380 

Table 2. Summary of main variables and statistical analysis for the experimental group and control 381 
group pre- and post-intervention.1 382 
 383 

 384 

 385 

                                                             
1 Statistical analysis was done with two-way repeated measures ANOVA with Sidak’s post hoc tests corrected 

for multiple comparisons. Intervention group (experimental/control) and assessment period (pre- and post-

intervention) are used as factors in the statistical analysis. Ns = not significant, *= p < 0.05, **= p < 0.01, ****= 

p < 0.0001. Values are shown as mean ± SEM unless specified. 

Variable measured 

Experimental group Control group Interaction 

(intervention group 

and assessment 

period) 

Main Effect of 

Intervention 

Group 

(experimental vs. 

control) 

Main Effect of 

Assessment 

Period (pre- vs 

post-intervention) 

Pre-

intervention 

Post-

intervention 

Pre-

intervention 

Post-

intervention 

MCTQ Score (hh:mm) 07:15 ± 00:27 04:40 ± 00:15  06:02 ± 00:14  07:10 ± 00:18  F (1,20) = 50.8**** F (1, 20) = 3.9ns 

 

F (1, 20) = 14.8** 

 

Nutrition related variables 

Average days per week eating breakfast (days) 4.1 ± 0.6 5.4 ± 0.5 4.7 ± 0.8 4.4 ± 0.8 F (1, 19) = 4.1ns 

 

F (1, 19) = 0.04ns 

 

F (1, 19) = 1.6ns 

 

Average breakfast time (hh:mm) 10:33 ± 00:25 09:24 ± 00:24 10:01 ± 00:34 10:41 ± 00:20 F (1, 18) = 9.2** 

 

F (1, 18) = 0.4ns 

 

F (1, 18) = 0.6ns 

 

Average lunch time (hh:mm) 14:36 ± 00:30 13:51 ± 00:27 13:27 ± 00:17 13:39 ± 00:19 F (1, 18) = 6.4* 

 

F (1, 18) = 1.6ns 

 

F (1, 18) = 2.1ns 

 

Average dinner time (hh:mm) 20:07 ± 00:45 18:41 ± 00:14 18:49 ± 00:17 19:06 ± 00:20 F (1, 15) = 6.5* 

 

F (1, 15) = 0.7ns 

 

F (1, 15) = 3.0ns 

 

   Mental well-being variables 

Pittsburgh Sleep Quality Index (PSQI) 4.8 ± 0.7 4.2 ± 0.7 5.3 ± 0.8 4.8 ± 0.5 F (1, 20) = 0.02ns 

 

F (1, 20) = 0.4ns 

 

F (1, 20) = 1.1ns 

 

Profile of Mood States (POMS) 10.3 ± 6.2 -2.9 ± 4.5 8.5 ± 5.7 7.1 ± 6.1 F (1, 17) = 2.2ns F (1, 17) = 0.3ns 

 

F (1, 17) = 3.4ns 

 

Epworth Sleepiness Scale (ESS) 7.1 ± 1.2 6.3 ± 1.1 9.0 ± 1.0 8.7 ± 0.7 F (1, 20) = 0.2ns 

 

F (1, 20) = 2.8ns 

 

F (1, 20) = 0.7ns 

 

Depression Anxiety and Stress Scale (DASS) 19.8 ± 3.4 11.2 ± 3.1 13.8 ± 3.7 13.6 ± 5.0 F (1, 18) = 2.6ns 

 

F (1, 18) = 2.0ns 

 

F (1, 18) = 5.2* 

 

   Actigraphy variables 

Sleep Onset (hh:mm) 02:46 ± 00:26 01:03 ± 00:18 01:37 ± 00:30 02:47 ± 00:27 F (1, 18) = 42.7**** 

 

F (1, 18) = 0.3ns 

 

F (1, 18) = 1.7ns 

 

Wake Up Time (hh:mm) 10:31 ± 00:23 08:36 ± 00:15 09:37 ± 00:29 10:51 ± 00:29 F (1, 18) = 59.6**** 

 

F (1, 18) = 1.7ns 

 

F (1, 18) = 2.8ns 

 

Sleep Duration (h) 7.75 ± 0.20 7.55 ± 0.20 7.8 ± 0.2 7.9 ± 0.1 F (1, 18) = 0.9ns 

 

F (1, 18) = 0.6ns 

 

F (1, 18) = 0.2ns 

 

Sleep Efficiency (%) 76.80 ± 1.48 75.40 ± 1.25 78.3 ± 1.9 77.2 ± 1.5 F (1, 18) = 0.03ns 

 

F (1, 18) = 0.7ns 

 

F (1, 18) = 1.8ns 

 

Sleep Latency (hh:mm) 00:27 ± 00:04 00:28 ± 00:02 00:21 ± 00:03 00:22 ± 00:03 F (1, 18) = 0.07ns 

 

F (1, 18) = 2.0ns 

 

F (1, 18) = 0.2ns 

 

   Physiological variables 

Dim Light Melatonin Onset (hh:mm) 00:02 ± 00:37 22:04 ± 00:21 23:18 ± 00:54 22:54 ± 00:45 F (1, 12) = 2.2ns 

 

F (1, 12) = 0.005ns 

 

F (1, 12) = 5.0* 

 

Cortisol Peak Time (hh:mm) 11:19 ± 00:31 09:06 ± 00:19 11:05 ± 00:36 11:19 ± 00:32 F (1, 20) = 11.1** 

 

F (1, 20) = 2.7ns 

 

F (1, 20) = 7.2* 
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***INSERT FIGURE 3*** 386 

 387 

 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 
 402 
 403 
 404 
 405 
 406 
Figure 3. Actigraphy, MCTQ and physiological data pre-intervention (pre-) and post-intervention (post-) 407 
for experimental (white) and control (light grey) groups. a) Sleep onset, b) Wake up time, c) Corrected 408 
mid-sleep on free days (MSFsc), d) Sleep onset latency, e) Sleep duration, f) Sleep efficiency, g) Time of 409 
cortisol maximum during the cortisol awakening response, H) Dim light melatonin onset (DLMO). Data 410 
are shown as Tukey box-plots; the line in the box indicates the median, the mean value is shown by the + 411 
symbol. Asterisks represent significant differences pre- and post-intervention. Ns = not significant, *= p < 412 
0.05, ***= p < 0.001, ****= p < 0.0001.    413 
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***INSERT FIGURE 4*** 414 
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 430 

 431 

Figure 4. Sleep and mental well-being data pre-intervention (pre-) and post-intervention (post-) for 432 
experimental (white) and control (light grey) groups. a) Pittsburgh Sleep Quality Index (PSQI), b) Epworth 433 
Sleepiness Scale (ESS), c) Profile of Mood States (POMS), d) Breakfast time of day (h), e) Lunch time of 434 
day (h), f) Dinner time of day (h). Depression, Anxiety and Stress Scale (DASS) data for experimental (g) 435 
and control (h) groups and shown with a clear pattern (pre-interventions) and a dotted fill pattern (post-436 
intervention). Data are shown as Tukey box-plots; the line in the box indicates the median, the mean value 437 
is shown by the + symbol. Asterisks represent significant differences pre- and post-intervention. Ns = not 438 
significant, *= p < 0.05, **= p < 0.01.    439 
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Impact of Interventions on Performance and Sleepiness 440 

Using second order polynomial regression analysis, peak performance and sleepiness times were 441 

identified from best fit diurnal variation curves (Figure 5). Within the constraints of the model (08:00 442 

h to 20:00 h), sleepiness was highest at 08:00 h for both the experimental and control groups pre- and 443 

post-intervention. At the pre-intervention testing, strongest grip strength in the experimental group 444 

occurred at the 20:00 h testing session which advanced to 15:21 h post-intervention. In the control 445 

group, timing of peak grip strength was delayed from 17:12 h to 20:00 h post-intervention. The same 446 

was seen for the PVT with fastest reaction time advancing in the experimental group from 20:00 h to 447 

12:30 h and delaying in the control group from 15:48 h to 19:48 h.  448 

There was a significant reduction in inter-individual variation of performance in the experimental 449 

group but no significant changes in the control group. During pre-intervention testing, average grip 450 

strength varied by 14.2% in the experimental group, which was reduced to 7.2% post-intervention (p 451 

= 0.0024). The same was seen for reaction time with average inter-individual differences reduced 452 

from 13.0% pre-intervention to 4.4% post-intervention (p = 0.028).   453 

A significant interaction of time of day and intervention was found for sleepiness in the experimental 454 

group (F(2,22) = 3.44, p = 0.049) as well as main effects of time of day (F(2,22) = 11.41, p = 0.0004) 455 

and interventions (F(2,11) = 5.36, p = 0.041). Following interventions, sleepiness was lower at 08:00 456 

h (4.6 ± 0.6 vs 6.3 ± 0.3) and 14:00 h (3.6 ± 0.5 vs 4.7 ± 0.5) but these differences were only 457 

significant at 08:00 h (p = 0.0061). The experimental group also showed a significant main effect of 458 

time of day on grip strength performance (F(2,22) = 21.73, p < 0.0001), as well as a significant main 459 

effect of interventions (F(1,11) = 4.94, p = 0.048) and an interaction effect (F(2,22) = 9.19, p = 460 

0.0013). Post hoc tests revealed that grip strength at both 08:00 h and 14:00 h significantly improved 461 

following interventions (p = 0.015 and p = 0.0075 respectively). For PVT performance, there was a 462 

main effect of time of day (F(2,22) = 3.85, p = 0.037) but not interventions. The interaction was found 463 

to be significant, however (F(2,22) = 7.93, p = 0.0026). Reaction time at 08:00 h was significantly 464 

faster after interventions (p = 0.017) but there was no change at 14:00 h or 20:00 h.  465 
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In the control group, a significant main effect of time of day was found for sleepiness (F(2,18) = 8.86, 466 

p = 0.0021), MVC (F(2,18) = 14.73, p = 0.0002) and PVT (F(2,18) = 3.63), p = 0.048) performance, 467 

but not for interventions or the interaction. Post hoc tests did not show any significant changes from 468 

pre- to post-intervention in the control group for any parameters.  469 

 470 

***INSERT FIGURE 5*** 471 

 472 

 473 

 474 

 475 
Figure 5. Nonlinear regression curves to show diurnal variations in sleepiness, cognitive and physical 476 
performance pre-intervention (black) and post-intervention in experimental (red) and control (blue) 477 
groups. (a,d) Subjective sleepiness measured with the Karolinska Sleepiness Scale (KSS). (b,e) Psychomotor 478 
vigilance task (PVT) performance (average percentage of individual maximum), (c,f) Grip strength performance 479 
(average percentage of individual maximum). Higher percentages relate to better performance e.g. 100% is 480 
fastest reaction time and strongest grip strength. Dashed lines represent the time of peak performance in each 481 
condition (pre-intervention is black in both groups and post-intervention is shown in red for the experimental 482 
group and blue for the control group). Clock time of test (h) is shown on the x-axis for each parameter. Ns = not 483 
significant, *= p < 0.05, **= p < 0.01, ***= p < 0.001.    484 
 485 
 486 
 487 
 488 
 489 
 490 
 491 
 492 
 493 
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Discussion 494 

Researchers, clinicians and industry experts are constantly seeking ways to better understand how we 495 

can improve mental health, well-being and performance. One factor that seems constantly overlooked 496 

is the timing of behaviour e.g. sleeping, eating and working. Here we took a group of ‘night owls’ and 497 

attempted to reset their habitual late timings in behaviour in a real-world setting using simple, 498 

practical, non-pharmacological interventions. We show that a phase advance of around two hours can 499 

be achieved which was accompanied by significant reductions in subjective ratings of depression and 500 

stress. In addition, elements of cognitive (reaction time) and physical (grip strength) performance 501 

significantly improved during ‘non optimal’ times, and diurnal peaks in performance occurred earlier 502 

in the day.  503 

 504 
Phase Advance 505 

Actigraphy analysis revealed a significant advance in both actigraphic sleep onset and wake up time 506 

pre- to post-intervention in the experimental group. Sleep duration, latency and efficiency all 507 

remained similar pre- and post-intervention confirming that the earlier sleep onset was not associated 508 

with increased sleep latency and hence a curtailment of sleep duration. The behavioural impact of the 509 

intervention can therefore be attributed specifically to the shifting of sleep timing and not to an 510 

alteration of sleep homeostasis. In support of the actigraphy data, we also found a significant phase 511 

advance in melatonin onset (DLMO) of nearly 2 h (00:02 to 22:04 h). This was coupled with a similar 512 

advance in peak timing of the cortisol awakening response that shifted from 11:19 to 09:06 h. Phase 513 

angle, measured as the time between DLMO and sleep onset, was also consistent pre- and post-514 

intervention. By using a gold standard circadian phase marker, in addition to objective actigraphy, 515 

these results suggest a true circadian phase advance was observed in the experimental group following 516 

the interventions. 517 

As light is the dominant zeitgeber of the circadian system it has been one of the main treatment 518 

options of CRSWDs such as DSWPD [48], and mood disorders e.g. seasonal affective disorder [49]. 519 

Although controlled light exposure was not specifically administered in this study, participants were 520 
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asked to wake up earlier and maximise exposure to morning light, thereby contributing to a phase 521 

advance in the circadian system. Simultaneously, the earlier sleep onset times observed combined 522 

with the instructions to decrease evening light exposure e.g. from room lighting and electronic 523 

devices, could have contributed to the delay in DLMO and sleep onset [50] [51].  Timing of food 524 

intake could also be a factor influencing the phase advance. Meal timing has been suggested to have 525 

an entraining effect on the circadian system, in particular the peripheral clocks involved in 526 

metabolism [29] . Along with the importance of sleep for appetite regulation, studies have found that 527 

a morning carbohydrate rich meal can phase advance CBT [52]. There was a significant advance in 528 

average self-reported breakfast time (10:33 to 09:25 h) and an increase in the number of days/week 529 

breakfast was eaten, although this did not quite reach significance. The same was seen with average 530 

self-reported timing of lunch and dinner, which occurred significantly earlier post-intervention, 531 

allowing us to confirm adherence to the intervention requirement of not eating dinner after 19:00. 532 

These advances in meal times, which were observed in the experimental group but not the control 533 

group, could potentially be contributing to the advance in circadian timing, however, as the phase 534 

shifting effects of food were not measured directly in this study it remains speculative. 535 

 536 
Impact of interventions on mental well-being and performance 537 

The association of a delayed sleep phase with reduced mental health e.g. depression, has been shown 538 

in a number of independent studies [17, 53, 54]. Targeting sleep and circadian phase has also become 539 

a focus in the development of novel treatments in neuropsychological disorders. Following the 540 

interventions, we found a significant decrease in depression and stress score in the experimental 541 

group, indicative of better mental health. This was coupled with a similar trend in mood disturbances, 542 

with POMS score reducing from 10.33 to -2.89, although this did not quite reach statistical 543 

significance. Interestingly, it was the depression and stress elements of the DASS scale that were 544 

reduced significantly, with anxiety score not being affected. Although anxiety and depression are two 545 

separate conditions with different diagnostic criteria, they are often comorbid. These results, however, 546 

suggest each factor is affected independently, indicating separable relationships with sleep timing. 547 
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This is consistent with the literature suggesting that the temporal relationship between 548 

anxiety/depression and reductions in sleep quality or quantity is also different (i.e. anxiety generally 549 

preceding sleep issues, depression generally following sleep issues [55]). Being able to objectively 550 

explore these factors separately and identify the direction of causality would be an important future 551 

step within this work to determine the potential clinical usefulness of the approach for improving 552 

mental health.  553 

Daytime sleepiness, measured here using the KSS, is one of the key factors associated with poor 554 

performance [56] and higher risk of errors [57]. Increased sleepiness, leading to lapses of 555 

concentration and even micro sleeps, has been proposed as a main influence in many of the vehicle-556 

related incidents recorded annually [58]. Being able to reduce daytime sleepiness remains a leading 557 

motivation in both clinical settings and when considering performance/productivity in the real world 558 

[59-61]. Here we show that the experimental intervention significantly decreased daytime sleepiness 559 

at 08:00 h and at 14:00 h. Sleepiness was still at its highest in the morning, although significantly 560 

lower than pre-intervention. This near two-point difference in the morning means a change from 561 

‘some signs of sleepiness’ to ‘rather alert’ (score of 6 to 4 on the KSS). There was a loss of significant 562 

diurnal variations in KSS score, similar to what was observed for reaction time and grip strength 563 

measures. The KSS score has previously been shown to correlate significantly with performance 564 

variables such as the PVT [62], as well as objective drowsiness [63]. Therefore, this intervention 565 

could prove useful to those professions that are generally more affected by sleepiness and require high 566 

vigilance such as air traffic control, lorry driving and aviation [64], especially since the risk of 567 

accidents has been shown to exhibit diurnal variation [65]. 568 

Understanding diurnal variations in performance has allowed some studies to shed light on the reason 569 

behind the high risk of motor accidents at non-optimal times of day [66], whilst others have examined 570 

the effect on performance in athletes [67, 68]. In line with these suggestions, we now show the 571 

potential of manipulating these diurnal variations in night owls (LCPs), producing a phase advance, to 572 

create a profile with peak performance occurring earlier in the day.  There were significant 573 

improvements in reaction time (measured using a PVT) and isometric grip strength (measured using 574 
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an MVC test) at ‘non-optimal’ morning times in the experimental group but not in the control group. 575 

The experimental group also showed a significant decrease in diurnal variations of sleepiness and 576 

performance variables. This reduction in amplitude is in line with previous research which showed a 577 

much larger range in performance differences for night owls (LCPs) compared with morning larks 578 

(ECPs) [67, 69]. The diurnal curves of reaction time and grip strength mirror the advance in sleep and 579 

circadian timings, with peak grip strength being shifted from 20:00 h to 15:21 h, and fastest reaction 580 

time occurring at 12:30 h instead of 20:00 h post-intervention.  581 

 582 
Limitations  583 

It is important to recognise that since we investigated relatively simple measures of cognitive 584 

(reaction time) and physical (grip strength) performance we should be cautious in over generalising 585 

how this intervention would impact more complex measures. Sleep deprivation studies [70, 71] would 586 

suggest that more complex cognitive processes are likely to be affected, although the impact tends to 587 

be smaller. The PVT is a standard tool used in clinical and research settings to measure sustained 588 

attention, and has been shown to be sensitive to sleep loss and time of day [72], with minimal practice 589 

effects. Here we used a shortened version of the PVT (2-minute vs 10 minute) which could have 590 

reduced the sensitivity to time of day effects, as pointed out by Basner, Mollicone [73]. An 591 

investigation into the validity of a 2 minute and 5 minute PVT, however, showed similar time of day 592 

relationships compared to the 10 minute PVT, although overall reaction times were increased with 593 

task duration, as expected [45]. This can give us confidence that the time of day effects we observed 594 

in our study are reliable. Grip strength is a simple measure of muscle strength, which is frequently 595 

used as an evaluation of muscle function in exercise and clinical settings. MVC of isometric grip 596 

strength offers a robust approach to investigating contributions from central and peripheral 597 

mechanisms because the ability to produce maximal force relies on the capability of the muscle as 598 

well as the activation from the central nervous system [69]. Using isometric grip strength allows us to 599 

provide an insight into how this intervention can impact a simple index of physical performance. 600 

Previous research has correlated measures of muscle strength with sprint and jump performance [74]. 601 
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However, performance itself is multifaceted and cannot be defined by one measure alone, so future 602 

work will need to explore how diurnal variations in different cognitive and physical performance 603 

tasks are influenced by this intervention. 604 

We have relatively small sample sizes so further studies will be required to investigate how this 605 

intervention could impact larger cohorts and different populations. This also limits our ability to 606 

perform higher order analysis due to low power, which should be incorporated in future research in 607 

line with the discussion from Bland and Altman [75].  608 

Although we were able to partially monitor adherence to the interventions, with the experimental 609 

group reporting 78% adherence (7.8 ± 0.7 out of 10), this was mostly done by self-report. Since the 610 

control group were only asked to eat lunch at the same time each day, this was confirmed with no 611 

significant changes in timing of lunch reported in the diet questionnaire. A more tightly controlled 612 

experiment would have perhaps allowed more detailed assessment of each individual’s behaviour and 613 

adherence to the protocol, however a strength of this study is that we were investigating individuals in 614 

a more realistic setting as opposed to artificial laboratory conditions.  615 

Despite the value in using a real-world protocol due to its relative ease of implementation and less 616 

disruption to individuals’ daily lives, it does limit the ability to control the many environmental and 617 

social influences that can have an impact. In addition, care should be taken when using these 618 

interventions to ensure that the timings do not risk overlapping with the delay period of the human 619 

phase response curve to light  [21, 22]. Constant routine and forced desynchrony protocols allow the 620 

characterisation of a truly endogenous rhythm through removing/minimising the influence of external 621 

cues. The present study, however, was not aimed at finding endogenous components to performance 622 

and mental health measures but looked at the integrated system as a whole. The combination of 623 

endogenous circadian rhythms, sleep homeostasis, environmental cues and social schedules is what 624 

affects daily functioning and diurnal variations in the real world. Therefore, although we cannot 625 

attribute the changes we see strictly to one or other of these influences, we provide evidence that a 626 

practical intervention can phase advance night owls in a real life setting with positive outcomes on 627 

self-reported depression and stress, reaction time and grip strength.   628 
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 629 

Conclusions 630 

Here we show the ability of a simple non-pharmacological intervention to phase advance night owls, 631 

reduce negative elements of mental health and sleepiness as well as manipulate peak performance times 632 

in the real world. These findings could yield considerable benefits in a number of different settings. 633 

Within the general population, of which a large proportion are night owls, these findings could offer a 634 

simple strategy to improve mental well-being and performance. Within clinical settings, further 635 

treatments for mental health in depression and stress could be explored specifically targeting circadian 636 

disruption without the need for pharmacological agents. This intervention could also be applied within 637 

more niche settings e.g. industry or sporting sectors, who have a key focus on developing strategies to 638 

maximise productivity and optimise performance. Despite the need for further research, this remains an 639 

exciting prospect for a society that is increasingly suffering from poor health, reduced mental well-640 

being and under continuous pressure to achieve personal best performance. 641 
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Supplemental Information  848 
 849 
Supplemental Table 1 (S1). Summary of demographic, mental well-being, nutrition related, 850 
actigraphic and physiological details pre-intervention for experimental and control groups. 2 851 

                                                             
2 Values are shown as mean ± SEM unless specified. Significance is shown with aunpaired two 

sample t-tests, bnon-parametric Mann-Whitney or cFisher’s exact test. Phase angle is calculated by the 

interval time between dim light melatonin onset and sleep onset.  

Variable Measured (mean ± SEM) Experimental Group 

(Ex) 

Control Group (Con) Significance 

Sample Size N = 12 N = 10 n/a 

Demographic variables 

Age (years, mean ± SD) 21.7 ± 2.8  20.9 ± 3.9  p = 0.60b 

Percentage of Males/Females (%) 
M: 25  M: 40 

p = 0.65c 

F: 75 F: 60 

BMI (mean ± SD) 22.9 ± 3.2 22.6 ± 2.1 p = 0.81a 

MCTQ Score (hh:mm) 07:15 ± 00:27 06:24 ± 00:14  p = 0.12a 

Nutrition related variables    

Average days per week eating breakfast (days) 4.09 ± 0.62 4.70 ± 0.84 p = 0.38a 

Average breakfast time (hh:mm) 10:33 ± 00:25 10:01 ± 00:34 p = 0.47a 

Average lunch time (hh:mm) 14:36 ± 00:30 13:27 ± 00:17 p = 0.10b 

Average dinner time (hh:mm) 20:07 ± 00:45 18:49 ± 00:17 p = 0.34b 

Mental Well-Being Variables   

Pittsburgh Sleep Quality Index (PSQI) 4.83 ± 0.71 5.30 ± 0.80 p = 0.67a 

Profile of Mood States (POMS) 10.33 ± 6.15 8.50 ± 5.74 p = 0.54a 

Epworth Sleepiness Scale (ESS) 7.08 ± 1.16 9.00 ± 0.99 p = 0.24a 

Depression Anxiety and Stress Scale (DASS) 19.83 ± 3.36 13.78 ± 3.66 p = 0.24a 

Actigraphy Variables and Non-Parametric Circadian Rhythm Analysis (NPCRA) 

Bed Time (hh:mm) 02:19 ± 00:25 01:16 ± 00:30 p = 0.15a 

Get Up Time (hh:mm) 10:46 ± 00:23 09:54 ± 00:31 p = 0.17a 

Sleep Onset (hh:mm) 02:46 ± 00:26 01:37 ± 00:30 p = 0.13a 

Wake Up Time (hh:mm) 10:31 ± 00:23 09:37 ± 00:29 p = 0.14a 

Sleep Duration (h) 7.75 ± 0.20 7.81 ± 0.20 p = 0.91a 

Sleep Efficiency (%) 76.80 ± 1.48 78.26 ± 1.91 p = 0.55a 

Sleep Latency (hh:mm) 00:27 ± 00:04 00:21 ± 00:03 p = 0.34a 

Fragmentation Index 34.86 ± 3.63 30.47 ± 2.27 p = 0.48b 

Inter-daily Stability  0.38 ± 0.03 0.38 ± 0.05 p = 0.26b 

Intra-daily Variability 0.85 ± 0.05 0.79 ± 0.06 p = 0.25a 

L5 Onset (hh:mm) 03:57 ± 00:27 03:03 ± 00:34 p = 0.40a 
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M10 Onset (hh:mm) 12:43 ± 00:37 12:14 ± 00:36 p = 0.96a 

Relative Amplitude 0.83 ± 0.03 0.82 ± 0.03 p = 0.26b 

Physiological Variables 

Dim Light Melatonin Onset (DLMO) (hh:mm) 00:02 ± 00:34 23:18 ± 00:54 p = 0.97a 

Phase Angle (h) 2.94 ± 0.29 2.47 ± 0.72 p = 0.30b 

Peak Melatonin Concentration (pg/nl) 26.89 ± 3.98 21.02 ± 5.85 p = 0.22a 

Peak Time of Melatonin (hh:mm) 02:06 ± 00:28 02:01 ± 00:33 p = 0.73a 

Cortisol Peak Time (hh:mm) 11:19 ± 00:31 11:05 ± 00:36 p = 0.78a 

Peak Cortisol Concentration (nmol/l) 23.31 ± 2.39 22.64 ± 3.57 p = 0.79b 

Cortisol Awakening Response (%) 113.16 ± 33.71 112.37 ± 45.28 p = 0.64b 

Area Under the Curve (total time) 98.83 ± 10.47 104.41 ± 14.01 p = 0.75a 


