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Abstract—The reduction of train energy consumption is 

becoming more important due to increasing worldwide 

environmental concerns. This paper presents a driving strategy 

optimization study and field test results on an urban rail transit 

system. A genetic algorithm based optimization method has been 

developed specifically for this purpose. In order to identify and 

evaluate the practicability and performance of the optimization 

results, a field test has been carried out on Guangzhou Metro Line 

No.7. A driver training study has been developed to help drivers 

to implement the energy saving features of the optimization. The 

field test results show that by applying the optimal driver strategy 

the train traction energy consumption can be significantly 

reduced within the given journey time constant, proving the 

developed optimization method is practicable and effective. 

 
Index Terms—Optimization; Railway engineering; Rail 

transportation; Testing; Vehicle driving; 

 

I. INTRODUCTION 

HE urban rail transit system has gained popularity as an 

efficient and convenient method to transport large numbers 

of passengers, particularly in large metropolitan areas. 

However, the rail transit system costs a considerable amount in 

energy consumption in its daily operation. Due to heightened 

environmental concerns and rising energy costs, rail operators 

are facing ever greater pressures to save energy, whilst still 

maintaining service quality and meeting increasing passenger 

demand. As one of the main foundations of the rail transit 

system, the driving strategy plays a key role in the overall 

energy consumption and managing the driving strategy is a 

popular way to enhance energy efficiency. 

A number of researchers have developed various methods 

and solutions to model the train operation and optimize the train 

energy consumption from different theoretical points of view. 

Howlett applied a Pontryagin principle and proposed a method 

to find the nature of the optimal strategy and determine the 

precise optimal strategy [1, 2]. Shuai developed a numerical 

algorithm to calculate the optimal train trajectory with a fixed 

journey time and formulated a cooperative train control model 

to adjust the train running behavior to further reduce the energy 
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consumption [3]. Miyatake proposed a new mathematical 

formulation in order to calculate the optimal energy-saving 

operation and implemented three different algorithms to solve 

the problem [4]. However, due to the complexity of the 

problem, the numerical algorithms require a significantly large 

computation time in order to obtain a global optimal solution. 

Therefore, a number of mathematical methods (e.g. genetic 

algorithms) have been developed to reduce the computation 

time with a satisfactory suboptimal solution. Genetic 

algorithms are very mature and have been applied by many 

researchers in various fields and the results reveal that they 

converge to the best solution quickly with less number of 

generations. Bocharnikov proposed a combined searching 

method including genetic algorithm and fuzzy logic to calculate 

the most appropriate train coasting strategy [5, 6]. Chang used a 

novel approach with a genetic algorithm to calculate the best 

coasting control strategy [7, 8]. Shigen applied a cooperative 

train control to achieve prescribed performance tracking [9-11]. 

Shaofeng implemented a liner programming algorithm to a 

distance-based train trajectory searching model to calculate the 

optimal train trajectory [12]. 

However, most of the previous driving strategy optimization 

studies are based on computer modelling and simulation. Few 

of the results have been evaluated using practical data obtained 

from field tests. In practice, trains may perform differently 

compared with the simulation due to external disturbances such 

as driver response delay and system delay. Therefore, it is 

necessary to carry out field tests in order to evaluate the 

performance of the optimization algorithm and identify the 

practicability of implementing the optimal driving strategy in 

the real world. 

This paper firstly introduces a modelling of train kinematics, 

followed by a description of a genetic algorithm based driving 

strategy optimization method, which aims to calculate the most 

appropriate train movement mode sequence for the operation. 

The paper then presents a driver training study to help the 

drivers to implement the energy saving features of the 

optimization. Finally, a field test of the optimal driving strategy 

on Guangzhou Metro Line No.7 has been presented. The 

performance of the optimal driving strategy has been evaluated 

and compared using the practical data obtained from the train 

on-board information measurement system.   

II. VEHICLE KINEMATICS MODELLING 

Lomonossoff’s Equations are used for the kinematics 

modelling as the general vehicle motion equations in this study. 
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The equations are based on Newton’s second law of motion, 

and subject to the constraints imposed on the train movement 

[13-15], shown as follows:  

 

𝐹𝑡𝑜𝑡𝑎𝑙 = 𝐹𝑡𝑟 (𝑣) − 𝑅𝑚𝑜 (𝑣) − 𝑅𝑐𝑢(𝑠) − 𝐹𝑔𝑟𝑎𝑑 (𝑠)      (1) 
 
 

 
 
 
 

 
 
 𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑀𝑒𝑓𝑎 = 𝑀𝑒𝑓

𝑑𝑣

𝑑𝑡
= 𝑀𝑒𝑓

𝑑2𝑠

𝑑𝑡2
            

𝑅𝑚𝑜 = 𝐴 + 𝐵 𝑣 + 𝐶𝑣2                                    

𝑅𝑐𝑢 = 𝑤𝑐𝑢𝑀𝑒𝑓𝑔 =
𝐴𝑅

𝑅𝐴𝐷
𝑀𝑒𝑓𝑔                       

 𝐹𝑔𝑟𝑎𝑑 = 𝑤𝑔𝑟𝑀𝑒𝑓𝑔 = 𝑡𝑎𝑛 𝛼 𝑀𝑒𝑓𝑔                

𝑀𝑒𝑓 = 𝑀𝑙𝑠 1 + 𝜆𝑤 + 𝑀𝑝                               

 (2) 

 
 

where Ftotal, Ftr, Fgrad are the total force, traction force and 

braking force respectively at the current train speed v; s is the 

train position; t is the time; g is the gravitational acceleration; a 

is the train acceleration; Rmo is the resistance to motion at the 

location s, the constants A, B, C being empirical and related to 

the track and aero-dynamic resistance known as the Davis 

equation [16]; Rcu is the curve resistance; The constant number 

AR is set at 600 in this study (England and Chinese standard); 

RAD is the curve radius; Fgrad is the force due to the gradient; α 

is the gradient angle; Mef is the effective mass; Mls is the rolling 

stock mass; Mp is the passenger mass; λw is the rotary 

allowance. 

The initial condition and final conditions are imposed as 

follows: 

 
 𝑣𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0, 𝑠𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0 
 𝑣𝑓𝑖𝑛𝑎𝑙 = 0, 𝑠𝑓𝑖𝑛𝑎𝑙 = 𝑠𝑡     

                         (3) 
 

 

where st is the train position at the terminal station. 

In this vehicle kinematics model, the time is a dependent 

variable. Based on Equation (1), the state equation of the train 

motion and the boundary condition can be further described as 

follows: 

 
  
 

  
 
𝑠 = 𝑣                                                                           
𝐹𝑡𝑜𝑡𝑎𝑙 = 𝑢𝑓 ∙ 𝐹𝑡𝑟  𝑣 − 𝑢𝑏 ∙ 𝐹𝑏𝑟  𝑣 − 𝑅𝑚𝑜  𝑠      

−𝑅𝑐𝑢  𝑠 − 𝐹𝑔𝑟𝑎𝑑  𝑠                 

𝑣 ≤ 𝑣limit  𝑠                                                               
𝑢𝑓 ∈

 0, 1                                                                   

𝑢𝑏 ∈  0, 1                                                                   

(4) 

 
 

where uf is the control signals for forward traction effort; Fbr 

is the braking force; ub is the control signals for backward 

braking effort. vlimit(s) is the line speed limit at the current 

position s; the traction or braking effort will equal to zero when 

the corresponding control signal is set at 0. 

Four typical movement modes form a train motion are 

considered [17], as shown in Fig. 1. 

 

1) In the motoring mode, the forward traction control signal 

is set at 1. The traction power is then applied to increase 

the train speed;  

2) In the cruising mode, the traction power is used to 

overcome the motion resistance, the curve resistance and 

the force due to the gradient. The train is then running at a 

constant speed;  

3) In the coasting mode, both the forward and the backward 

traction control signal are set at 0. The train motion is then 

only affected by the resistances and the force due to the 

gradient. It is considered that the coasting mode should be 

used as long as possible in order to achieve an 

energy-effective operation [18, 19];  

4) In the braking mode, the backward braking control signal 

is set at 1. The train then applies necessary braking effort 

to reduce the speed. 

 

S
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Speed limit
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mode

uf = 1

ub = 0

a > 0 

2. Cruising 

mode

uf = 1

ub = 0

a = 0

3. Coasting 

mode

uf = 0

ub = 0
a depends on the 

gradient

4. Braking 

Mode

uf = 0

ub = 1

a < 0

Time  
Fig. 1 Four train movement modes. 

 

As shown in Fig. 2, in this study, the route is divided into a 

number of subsections (grey vertical dash lines) with respect to 

gradient changes, line speed restriction changes and section 

length. Applying different movement modes (TM) and 

maximum cruising speed (CVmax) in each section will result in 

different driving strategies. 

 

 
Fig. 2. Driving strategy optimization for an inter-station journey. 

III. DRIVING STRATEGY OPTIMIZATION ALGORITHM 

A. Optimization Objectives 

In this study, the aim of the driving strategy optimization is 

to search the most appropriate train movement mode sequence 

(TM) and cruising speed (CVmax) to form a train trajectory to 

minimize train energy consumption (Et) within a given delay 

allowance (Dt). f represents for the simulation process to 

calculate energy consumption (InE) and journey time (InT) for 

each inter-station operation. The fitness function is shown as 

follows: 

 

min     𝑀𝑓𝑖𝑡 = 𝐸𝑠𝑡 × 𝐶𝑂𝑆𝑒  ,   𝑖𝑓   𝐷𝑠𝑡  ≤ 𝐷𝑚𝑎𝑥      

      
 𝐼𝑛𝑇, 𝐼𝑛𝐸 = 𝑓 𝑇𝑀,𝐶𝑉𝑚𝑎𝑥                 

   𝑇𝑀 = [𝑇𝑀1 ,𝑇𝑀2 ,… ,𝑇𝑀𝑠𝑖 ]                  
   

      (5)  
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where Mfit is the train traction energy composition that needs 

to be optimized for a single journey; COSe is the unit energy 

cost per kWh; IT is the inter-station journey time; Est and Dst are 

the train energy consumption and delay time respectively; Eit is 

the inter-station energy consumption; si is the number of 

sections; Dmax is the maximum delay time. In order to minimize 

the impact of the timetable rescheduling, it is best to set Dmax at 

a small number (1 second in this study). Esg, Tsg and Dsg are the 

single train energy consumption, journey time and delay time, 

which can be calculated using the following equations: 

 

 
 
 
 

 
 
 

 

𝑇𝑠𝑡 =   𝐼𝑛𝑇𝑖 ,

𝑠𝑛

𝑖=1

   𝑖𝑓  𝐼𝑛𝑇𝑖 − 𝐼𝑛𝑇𝑠ℎ𝑖   ∈  0, 𝐼𝑛𝑇𝑟          

𝐸𝑠𝑡 =  (𝐼𝑛𝐸𝑖)                                                        

𝑠𝑛

𝑖=1

            

𝐷𝑠𝑡 = 𝑇𝑠𝑡 − 𝑇𝑠ℎ                                                                      

 

 

(6)  

 
 

where sn is the number of stations; ITsh is the scheduled 

inter-station journey time; ITr is the maximum variation 

between scheduled journey time and optimal journey time 

(30 seconds in this study); Tsh is the scheduled journey time.  

In this optimization, each possible movement mode 

sequence is assumed as a candidate solution. Depending on the 

number of sections, the solution domain can be huge. In this 

study, a genetic algorithm has been applied. It presents a 

stochastic and iterative process on a generation of individuals. 

B. Initialization 

Firstly, a number of random individual will be produced, 

representing the first generation (G). Each individual (S) shows 

a potential solution to the given problem. The genes in each 

individual represent the variables of the solution. The number 

of individuals (indi_num) for generation is set at 100 in this 

study. This stage includes the following steps: 

 

1) Set α =1; 

2) If α≤indi_num. The algorithm randomly produces an 

individual Si=(s1, s2,…,sθ). The individual should meet the 

constraint requirements shown in Equation (6); 

3) Set α=α+1. The algorithm returns to Step 2 and repeats the 

process until α >indi_num. 

C. Evaluation 

After the initialization stage, each generated solution needs 

to be evaluated and ranked through a fitness-based process to 

identify their capability for breeding new individuals. This 

stage includes the following steps: 

 

1) For each solution, a pair of inter-station journey times 

(InT) and energy consumption (InE) will be produced 

using Equation (6). A fitness value (Mfit) for each solution 

will be calculated using Equation (5).  

2) The solutions will be ranked by their fitness values using 

ascending order. The ranked solutions, including TM and 

VSmax will be stored into a matrix EVAL(S). 

𝐸𝑉𝐴𝐿 𝑆 ← 𝐹 𝑇𝑀,𝑉𝑆𝑚𝑎𝑥                           7   

D. Genetic Operation -Selection- 

A genetic operation will be applied to these ranked solutions. 

Appropriate parent individuals will be chosen to produce new 

offspring individuals in order to form a new generation (Gnew). 

The generic operation includes four phases, namely selection, 

crossover, mutation and replacement. In the selection phase, the 

first top_num (10 in this study [20]) top ranking individuals in 

EVAL(S) are retained to form the new generation. This phase 

includes the following steps: 

 

1) Set β=1; 

2) If β≤top_num, then S’β=EVAL(Sβ);  

3) Set β=β+1. The algorithm returns to Step 2 and repeats the 

process until β>top_num. 

E. Genetic Operation -Crossover and Mutation- 

The following cros_num and muta_num ranking individuals 

will be selected for crossover and mutation respectively. In this 

study, the numbers are set at 70 and 10 [21, 22]. The crossover 

phase includes the following steps: 

 

1) Set γ=1; 

2) If γ≤cros_num/2, then two allele genes from two 

individuals will be selected and exchanged with each 

other. For instance, assuming two individuals Sη=(s1, sm, 

sn, sθ), Sζ= (s#
1, s#

m, s#
n, s#

θ), and genes number m and n are 

selected, then the new individuals will be generated as S*
γ 

=(s1 , s#
n, s#

m, sθ), S*
γ+1 =(s#

1, sn, sm, s#
θ); 

3) Set γ=γ+2. The algorithm returns to Step 2 and repeat the 

process until γ>cros_num/2.  

 

The mutation phase includes the following steps: 

1) Set δ=1; 

2) If δ≤muta_num, then one gene from one individual will be 

selected and replaced with a random value. For instance, 

assuming the individual So= (s1, sp, sθ) and gene p are 

selected. Then the new individual will be generated as S”
δ 

=(s1, s”p, sθ); 

3) Set δ=δ+1. The algorithm returns to Step 2 and repeat the 

process until δ>muta_num. 

F. Genetic Operation -Replacement- 

The replacement will produce repl_num (in this study) new 

individuals to replace the last repl_num ranking individuals in 

EVAL(S). This phase includes the following steps: 

 

1) Set ε=1; 

2) If ε≤repl_num, then the algorithm will randomly generate 

a new solution S^ε to replace the existing Sε; 

3) Set ε=ε+1. The algorithm returns to Step 2 and produces 

another S^
ε until ε>repl_num. 

G. New Generation 

After the Genetic Operation, a new generation (Gnew) has 

been formed, as shown in Equation (8). 
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 𝐺

𝑛𝑒𝑤 =  𝑆𝛽
′ ,… . ,𝑆𝑡𝑜𝑝𝑛𝑢𝑚

′ , 𝑆𝛾
∗,… , 𝑆𝑐𝑟𝑜 𝑠𝑛𝑢𝑚 2 

∗ , 𝑆𝛿
" ,… , 

  𝑆𝑚𝑢𝑡𝑎 _𝑛𝑢𝑚
" , 𝑆휀

^,… , 𝑆𝑟𝑒𝑝𝑙 _𝑛𝑢𝑚
^          

𝑝𝑜𝑝𝑛𝑢𝑚 = 𝑡𝑜𝑝𝑛𝑢𝑚 + 𝑐𝑟𝑜𝑠𝑛𝑢𝑚 2 + 𝑚𝑢𝑡𝑎_𝑛𝑢𝑚 +
𝑟𝑒𝑝𝑙_𝑛𝑢𝑚                                

      (8) 

 
 

H. Termination Conditions 

The algorithm returns to Stage C (Evaluation) and the 

generational process is repeated until one of the following 

terminating conditions are achieved: the number of generations 

reaches at 100, or the cumulative change in the fitness value is 

less than 1×10-4, or the manual inspection is done. 

I. Algorithm Performance 

Fig. 3 demonstrates the procedure by which the fitness 

function output evolves with the generation using the data 

shown in Fig. 4 and TABLE 3. It can be found that the 

searching converges to the optimum in the 40th with the 

computation time at 542 seconds. The optimal train trajectory 

is shown in Fig. 7 (e). 

 

 
Fig. 3. The mean and minimum outputs at each generation using a GA 

 

Compared with the genetic algorithm, numerical algorithms 

(e.g. brute force) offer the guarantee of finding the global 

optimal for a given problem as they enumerate all possible 

solutions in the solution domain. However, the algorithms 

become impractical for complex problems as the computation 

time grows exponentially with the problem size [23, 24]. A 

brute force algorithm has been developed to solve the same 

problem for comparison. The results are shown in TABLE 1 

 
TABLE 1 

COMPARSION BETWEEN GENETIC ALGORITHM AND BRUTE FORCE 

Algorithm Best fitness value Computation time, s 

Brute force 239.1 320,951 

Genetic Algorithm 242.4 542 

 

 The genetic algorithm uses iteration methods to guide the 

search procedure converging. In every generation, each 

individual acts as a starting point. There are multiple points 

when the search starts, and multiple directions when the search 

proceeds. Furthermore, the probability of exploration of the 

solution domain is very high comparative other algorithms 

[25].  Therefore, the genetic algorithm is able to achieve much 

smaller computation time and is able to achieve near-optimal 

solution more efficiency and accuracy. 

IV. DRIVER TRAINING AND FIELD TEST 

A. Background 

In the previous chapter, an optimal train trajectory has been 

produced using the genetic algorithm. In order to verify the 

practicability and performance of the optimization result, a 

field test was arranged on Guangzhou Metro Line No.7. It is a 

typical urban rail transit located in the south of Guangzhou 

City, connecting Guangzhou South Railway Station to 

Guangzhou University Town with 7 intermediate stations. It is 

a busy commuter railway line with minimum service interval at 

180 seconds and average dwell time at 30 seconds. The 

scheduled timetable and the line profile are shown in TABLE 2 

and Fig. 4. The station speed restriction is 50 km/h. 

 
TABLE 2 

SCHEDULED TIMETABLE (EARLY-STAGE) 

 
Station 

Distance between 
stations, m 

Scheduled journey time, 
seconds 

1 Guangzhou South  0 0 

2 Shibi 1120 130 
3 Xiecun 1908 170 

4 Zhongcun 2172 185 

5 Hanxichanglong 1642 180 
6 Hezhuang 2116 185 

7 Guantang 2365 220 

8 Nancun 2406 210 
9 Daxuecheng South 3778 330 

Total 17507 1610 

 

 
Fig. 4. Guangzhou Metro Line No.7 speed limits and gradient. 

 

TABLE 3 shows the traction characteristics of the vehicle 

operating on Guangzhou Metro Line No.7. The line is 17 km 

long and equipped with a 1500 V third-rail power supply 

network system. The line was put into operation in December 

2016 with an early-stage timetable. As a result, the trains are 

running at a relatively low maximum speed (approximately 

65 km/h). After a few month’s trial operation, a new timetable 

will be implemented to speed up the trains and fully function 

the system. In this case study, the mass of the train is 

204 tonnes and the passenger load is considered as 0 tonnes 

because the train will be empty during the field test. 
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TABLE 3 
TRAIN TRACTION CHARACTERISTICS. 

Parameters Value/Equation 

Rolling stock mass, tonnes 204  

Passenger mass, tonnes 0 (AW0, for field test) 

Train formation 4M2T 

Train length, m 118.32 

Rotary allowance 0.08 

Resistance, N/tonne 27+0.0042v2 (v: km/h) 

Power supply DC 1500V 

Maximum traction power, kW 3716.8 

Maximum braking power, kW 3911.2 

Engine efficiency from electrical 

power to mechanical power 
82% 

Maximum operational speed, km/h 80 

Maximum Tractive effort, kN 289 

Braking effort, kN 352 (constant) 

Train control system 
Automatic Train Operation (ATO), 
manually 

B. Driver Training 

The field test was carried out by human drivers because it is 

impossible to modify the existing ATO system due to company 

policy and safety concerns. Therefore, a driver training course 

has been designed to help implement the energy saving features 

of the optimization to the drivers. The training course presents 

the concepts of optimization, introduces the benefits of using 

the optimal driving strategy, and provides training instruction 

material. All the calculated optimal driving strategies have been 

converted into the material. The driver is expected to control 

the train in accordance with the information shown in the 

document. 

 

Next order

Order Distance, m Time Target speed, km/h Movemetn mode

1 0 00:00:00 78 Motoring

2 355 00:00:32 78 Cruising

3 793 00:00:53 55 Coasting

4 1488 00:01:28 0 Braking

5 1642 00:01:49 Stop Dwelling

Third order

Fourth 

order

First order

TM1     TM2       TM3           TM4        TM5        TM6       TM7       TM8         TM9        TM10 

  (Mo)     (Mo)       (Mo)         (Cr)         (Cr)        (Co)       (Co)      (Co)         (Co)        (Br)

 
Fig. 5. Converting the optimal driving strategy into a driver training instruction 

material. 

 

As shown in Fig. 5, the instruction material contains a 

number of orders in sequence. Each order represents a 

movement mode for the driver to carry out during the train 

operation. For instance, in Fig. 5, the train is just departing from 

the station platform. The first order instructs the driver that the 

train should accelerate up to a speed of 78 km/h within 

32 seconds. Afterwards, the driver is given a second order to 

control the train cruising at 78 km/h for a further 21 seconds, 

followed by a coasting order and a braking order until the train 

stops at the next station. 

C. Field Test 

Four operations were carried out in the field test: 

1) The first test represents the existing operation (with the 

early-stage timetable), where the driver will use his 

normal strategy to control the train; 

2) The second test stands for a fast operation (with a future 

fast timetable). This driving strategy will be applied after 

the current trial operation period; 

3) In the third and fourth tests, the optimal operation (with 

the early-stage timetable) will be implemented to evaluate 

the performance of the optimization results. 

The results of the optimal operations will be compared with 

the other two operations to identify the performance of the 

driving strategy optimization. 

Fig. 6 shows a photo of the field test being carried out on 

Guangzhou Metro Line No.7 and the designed driver training 

instruction material. The orders on the material have been 

divided by the inter-station operations (blue highlighted). Each 

inter-station operation includes 5 orders, as shown in Fig. 5. 

 

 
Fig. 6. Designed driver instruction material (left). Field test on Guangzhou 

Metro Line No.7 (right). 

D. Driving Strategy Comparison 

All the train operation and energy consumption data from the 

field test are captured by the train on-board information 

measurement system (TIMS) in real-time. Fig. 7 (a) to Fig. 

7 (d) show the field test results of the existing operation, the fast 

operation, and the two optimal operations respectively. 

Furthermore, in order to identify the outcome of the driver 

training, the simulation optimal operation is also presented in 

Fig. 7 (e), which can be considered as a reference for the 

optimal operations. 

As shown in Fig. 7 (a) and Fig. 7 (b), both the existing 

operation and the fast operation trains use very little coasting 

throughout the journey. When the train gets to the top speed, it 

keeps on cruising until the train reaches the braking points. 

Compared with the fast operation train, the top speed of the 

existing operation train is relatively low due to the use of the 

early-stage timetable, normally between 65 km/h and 70 km/h. 
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Fig. 7. Driving strategy comparison between different operations (including the simulation optimal operation). 

Fig. 7 (c) and Fig. 7 (d) show the results of the two optimal 

operations. It can be observed that the trains are running more 

efficiently throughout the journey. After reaching the target 

speed, the trains perform a long coasting until braking is 

applied for the station stops. Such a running strategy 

significantly reduces the energy consumption by up to 21% 

compared with the existing train operation, while the total 

journey time difference is less than 1 minute. 

Fig. 7 (e) shows the simulation result of the optimal driving 

strategy. It can be seen that the train trajectory is similar to the 

actual optimal operations presented in Fig. 7 (c) and Fig. 7 (d) 

in terms of the maximum running speeds, coasting points and 



 7 

coasting ending speeds. This identifies that the proposed driver 

training is able to help the drivers improve their driving strategy 

effectively and thus achieve the design requirements. 

Furthermore, it also shows that the developed train kinematics 

model and optimization algorithm are accurate and satisfactory. 

E. Energy Consumption Comparison 

Fig. 8 shows the accumulated and inter-station energy 

consumptions for the four actual field test operations discussed 

in the previous section. It can be found that due to the 

implementation of the coasting mode, the optimal operations 

(yellow line and purple line) achieve significantly smaller 

accumulated energy usage, which is 17% and 21% lower than 

the normal operation (blue line) respectively. Furthermore, the 

optimal operation trains cost less inter-station energy than the 

other two operations throughout the journey. 

 

 

 
Fig. 8. Energy comparison between different operations. 

 
TABLE 4  

RESULTS BETWEEN DIFFERENT OPERATIONS IN THE FIELD TEST 

Station 

1st test  
(existing) 

2nd test 
(fast) 

3rd test  
(optimal 1) 

4th test  
(optimal 2) 

Time 

(s) 

Energy 

(kWh) 

Time 

(s) 

Energy 

(kWh) 

Time 

(s) 

Energy 

(kWh) 

Time 

(s) 

Energy 

(kWh) 

Guangzhou 
South Station 

0 0 0 0 0 0 0 0 

Shibi 135 18 119 17 136 12 134 14 

Xiecun 184 20 153 24 180 17 182 17 
Zhongcun 190 27 172 28 194 20 194 20 

Hanxichanglo

ng 
186 16 145 21 191 15 186 13 

Hezhuang 191 24 163 24 186 19 195 18 

Guantang 223 27 208 25 223 21 225 17 

Nancun 215 20 174 25 217 16 213 16 
Daxuecheng 

South 
300 49 298 50 333 46 322 44 

Total 1624 201 1432 214 1660 
166  

(-17%) 
1651 

159  
(-21%) 

 

TABLE 4 presents a detailed comparison of the journey time 

and energy usage between the four actual operations. It can be 

observed that the total journey times of the existing operation 

train and optimal operation trains are 1624, 1660 and 1651 

seconds respectively. Compared with the number in the 

scheduled timetable (1610 seconds), the differences are smaller 

than 1 minute, which are in line with the metro operator policy. 

The fast operation train runs much quicker because it follows a 

fast timetable. It costs a larger amount of energy compared with 

the existing operation train, but the journey time is significantly 

reduced by 12% from 1624 seconds to 1432 seconds. 

V. CONCLUSION 

This paper presents a study of driving strategy optimization 

and the results of a field test on an urban rail transit system. A 

train kinematics model and a genetic algorithm have been 

developed specifically for this purpose in order to calculate the 

optimal driving strategy.  

A field test has been carried out in order to evaluate the 

practicability and performance of the optimization results. 

Furthermore, a driver training has been delivered to help 

implement the optimal driving strategy to the drivers. 

Compared with expensive Driving Advisory Systems, the 

training course provides a more flexible and balanced 

cost-benefit method for train operators to gain benefit. 

The field test results show that the actual optimal operation 

trains perform a similar running trajectory to the simulation 

results. Therefore, it can be proven that the train drivers are able 

to control the trains in accordance with the optimization results 

delivered in the driver training course. Furthermore, the 

comparisons between the optimal operations and the existing 

operation show that applying the optimal driving strategy is 

able to significantly reduce the train energy consumption by up 

to 21% (42 kWh) without affecting the scheduled timetable. 

There are 304 services each day on Guangzhou Metro Line 

No.7. Assuming an energy cost of £0.1 per kWh, the annual 

energy saving could up to 4,660,320 kWh, that is, £466,032 per 

year. Therefore, it can be concluded that the developed optimal 

driving strategy is practicable and is able to deliver a significant 

reduction in energy consumption cost. 
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