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Novel applications of Discrete Mereotopology to

Mathematical Morphology

Gabriel Landinia, Antony Galtonb, David Randella, Shereen Fouada,c

aSchool of Dentistry, University of Birmingham, UK
bDepartment of Computer Science, University of Exeter, UK

cSchool of Computing, Engineering and the Built Environment, Birmingham City
University, UK

Abstract

This paper shows how the Discrete Mereotopology notions of adjacency and
neighbourhood between regions can be exploited through Mathematical Mor-
phology to accept or reject changes resulting from traditional morphological
operations such as closing and opening. This leads to a set of six morpho-
logical operations (here referred to generically as minimal opening and min-
imal closing) where minimal changes fulfil specific spatial constraints. We
also present an algorithm to compute the RCC5D and RCC8D relation sets
across multiple regions resulting in a performance improvement of over three
orders of magnitude over our previously published algorithm for Discrete
Mereotopology.

Keywords: mathematical morphology, discrete mereotopology, image
processing, spatial reasoning

1. Introduction1

This paper centres on the processing of spatial relationships between dis-2

crete regions using Mathematical Morphology (MM). There has been a long-3

standing interest in formal definitions of adjacency and containment between4

image regions as those types of relations can form a basis for model building5

in image contents retrieval and analysis. This has applications to problems6

where the description of hierarchical structure is important, for instance, in7

biological imaging numerous problems revolve around the characterisation of8

relations of diverse nature, for instance molecules in organelles, organelles in9

cells, cells in tissue compartments and tissues in organs. The subject has10
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been approached from a variety of points of view, including digital polygon11

geometry [1], digital topology [2, 3], hierarchical modelling [4] and connected12

filtering operators [5, 6, 7].13

Bloch [8, 9, 10, 11] has provided an extensive body of work on spatial re-14

lations in computer vision and identified ways to symbolically and program-15

matically harness and represent the inherent imprecision arising from image16

formation, post-processing, perception and the semantics related to certain17

spatial relationships sought. In [11] Bloch shows that MM can function as18

unifying framework for spatial knowledge representation and provides con-19

nections to formal logics, in particular raising the possibility of implementing20

Region Connection Calculus (RCC) [12] operators (as well as providing a MM21

definition for the RCC’s tangential proper part (TPP) relation). In [9], it is22

proposed to construct modal logics using MM and the notion of adjunction23

[13] to define modal operators that can be utilised for symbolic representa-24

tion and interpretation of spatial relationships. In [14] the notion of fuzzy25

adjacency between image objects was investigated and formally defined so26

the concept of adjacency can extended (e.g. using fuzzy MM formulations) to27

accommodate degrees of adjacency by means of admissible transformations28

that lead to strict adjacency and thus allow consistent representations and29

the management of imprecision mentioned earlier.30

Research has also focused on applying MM and spatial reasoning to dis-31

crete spaces with the purpose of applying spatial reasoning to digital images.32

In this context, Galton [2, 3] introduced the notion of Discrete Mereotopol-33

ogy (DM) where he develops various mereotopological concepts for discrete34

spaces. Our work in [15, 16] shows that a subset of DM functions (closure35

and interior) map directly to the MM dilation and erosion operators [17]36

respectively, commonly used in image processing. In [2] that mapping was37

exploited to implement the full spatial relation set given by the RCC5D and38

RCC8D logics [12] in terms of MM. Briefly, the relation sets RCC5D and39

RCC8D encode five and eight set of relations respectively that capture var-40

ious notions of parthood, overlap and contact. After mechanically verifying41

DM theorems adopted in the imaging algorithms (using the theorem prover42

SPASS [18]) we implemented the RCC5/8D relation sets and exploited sev-43

eral DM theorems as short-cuts in imaging algorithms to compute operations44

on pairs of regions. DM can therefore be used to perform certain types of45

segmentation and model-testing analyses based on MM procedures. Those46

analyses have applications in histological imaging, where segmented histolog-47

ical components regions of interest (those corresponding to, e.g., nuclei and48
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cell bodies) represent valid theoretical models of histological reality that are49

related in specific ways in terms of their spatial relations [15, 16]. This log-50

ical, model-based approach to image interpretation provides a clean formal51

semantic framework in which to interpret image segmentation results and,52

furthermore, guarantees that the imaging algorithms encoding theorems in53

DM are provably sound. It also enables development of algorithms that ex-54

plicitly encode and ‘reason’ about spatial relations and local structure (e.g.,55

cell and tissue organisation) as well as facilitating the encoding of other struc-56

tural data of interest, such as the spatial localisation of molecular markers57

in cells and tissues.58

Next we report new applications of DM that enrich MM operations. The59

paper is organised as follows. First, we visit the definitions of adjacency, con-60

nection and region neighbourhood in DM and their MM counterparts. Next61

we present a new, more efficient version of the RCC5D and RCC8D algo-62

rithm that that outlined in a previous publication [16]. Finally, we discuss a63

novel application of DM that extends MM with a the notions of morpholog-64

ical minimal closing and minimal opening, where DM is used to restrict the65

changes of the traditional MM closing and opening operations so the original66

region shape is minimally modified, while still achieving a desirable result.67

The paper concludes with a discussion.68

2. Methods69

The convention adopted here is that images consist of 2D square pixel70

arrays with 8-adjacency, meaning every non-boundary pixel of the array is71

surrounded by 8 neighbours forming a 3 × 3 pixel matrix. Image regions72

are sets of pixels locally-connected under 8-neighbour adjacency, representing73

objects of interest in the image. We assume that these regions exist in binary74

images but can include multiple planes or slices representing the same spatial75

reality, so that regions can share the same image space without being merged.76

2.1. Adjacency77

The adjacency relation between pixels is captured by a reflexive and sym-78

metric relation A(x, y), meaning that pixel x is adjacent to or equal to pixel79

y. A(x, y) is satisfied if d(x, y) ≤
√

2, where d : Z2 × Z2 → R is the two-80

dimensional Euclidean distance function defined on pixel coordinates in Z2.81

In DM terms [15], the adjacency relation between regions X and Y is referred82
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to as external contact and is denoted EC(X, Y ). It is built from two other83

relations, namely contact :184

C(X, Y ) ≡def ∃x, y [x ∈ X & y ∈ Y & A(x, y)], (1)

and overlap:85

O(X, Y ) ≡def X ∩ Y 6= ∅, (2)

that is, the intersection between overlapping regions X and Y is non-null.86

External contact is then defined as:87

EC(X, Y ) ≡def C(X, Y ) & ¬O(X, Y ). (3)

In [14] Bloch et al. showed that the adjacency relation (or external contact88

in DM [15]) reworked in MM is equivalent to:89

EC(X, Y ) ≡ (X ∩ Y = ∅) & (X ⊕B) ∩ Y 6= ∅, (4)

where ⊕ represents a morphological dilation operation with a 3 × 3 square90

structuring element or kernel B [17] (assumed to be centered at the orign91

of space to guarantee the extensivity of the dilation). Thus region X has92

external contact with region Y if the two regions do not intersect and the93

dilation of X leads to a non-empty intersection with Y .94

2.2. Disconnection and region neighbourhood95

In DM, a pair of regions X and Y are said to be disconnected if they are96

not in contact, i.e., ¬C(X, Y ); this is denoted DC(X, Y ). This relation can97

also be defined in terms of the mereotopological discrete closure operation98

(clD), instead of connection, as follows:99

DC(X, Y ) ≡ clD(X) ∩ Y = ∅. (5)

Here the function clD(X) is defined as the union of the set of pixels whose im-100

mediate neighbourhoods overlap X, where the immediate neighbourhood of101

a pixel x, N(x), contains just those pixels which are adjacent to x, including102

pixel x itself:103

1The symbols ∃, &, ∈, ∩, ¬ and ≡ are read “there exists”, “and”, “is a member of”,
“intersection”, “not”, and “if and only if”, respectively; ∅ denotes the empty set.
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clD(X) =def {x | O(N(x), X)}. (6)

In the case of our assumed 8-connected square grid, clD(X) is equivalent to104

the dilation of X using a structuring element B, which in our model consists105

of an arbitrary pixel and its immediate neighbourhood, so106

clD(X) = X ⊕B. (7)

Therefore definition (5) translates into MM as:107

DC(X, Y ) ≡ (X ⊕B) ∩ Y = ∅. (8)

We also define a special type of neighbourhood relation between pairs108

of regions that is not part of the RCC5/8D sets but is particularly useful109

when considering binary regions residing in the same image: region Y is a110

neighbour of X and separated from it by one pixel. We name this relation111

NC (for neighbourhood connection)2 and define it as:112

NC(X, Y ) ≡def EC(clD(X), Y ), (9)

which in MM terms corresponds to113

NC(X, Y ) ≡ EC((X ⊕B), Y ). (10)

These formulae allow implementation of the extended MM functions that114

follow in Section 4. Figure 1 shows examples of the RCC8D relation set and115

the special cases of NC and PO∗.116

2.3. Region Connection Calculus via Mathematical Morphology117

In [15] we introduced equivalences between DM and MM allowing DM to118

be implemented and understood in terms of MM procedures. Those equiv-119

alences make it convenient to develop DM using standard image processing120

applications supporting basic MM operations (erosion, dilation, reconstruc-121

tion). In [16], an DM algorithm implementation was presented which made122

use of the overlap of binary regions in images. That algorithm computes123

the spatial relations between two regions (self-connected or not) residing in124

different images. For many applications, however, it is required to find the125

2In DM, the relation NC is symmetric, i.e., NC(X,Y )→ NC(Y,X).
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Figure 1: The five and eight spatial relations that hold between regions in the RCC5D and
RCC8D sets in the discrete domain. The blue regions represent region X and the yellow
regions Y , the intersection X ∩ Y being shown in brown. The names in RCC5D stand for
disjoint (DR), partial overlap (PO), equal (EQ), proper part (PP) and proper part inverted
(PPi). The RCC8D set makes additional distinctions: disconnection (DC), external con-
nection (EC), partial overlap (PO), tangential proper part (TPP), non-tangential proper
part (NTPP). TPPi and NTPPi are the inverse relations, e.g., TPPi(X,Y ) means the same
as TPP(Y,X). The extensions considered here are NC for ‘neighbourhood connection’ (a
case of a DC relation where the regions are one dilation away from adjacency) and PO* (a
case of EC occurring on ‘crossing objects’ that do not share any overlapping pixels), which
while possible in the discrete domain, is counter-intuitive with real-world objects.

relations held between multiple regions3 contained in pairs of images (e.g., bi-126

ological objects across different confocal microscopy imaging planes, or stain127

channels). In such cases, the computation can be decomposed into a se-128

quence of analyses between pairs of self-connected regions: first extract two129

given regions into new empty images (maintaining their relative positions),130

next compute the relation held between them using the said algorithm, and131

repeat this for all remaining region pairs. That implementation exploits the132

‘start pixels’ of regions (the first pixel in a given region encountered in raster133

scan order) and uses morphological reconstruction [19] to extract each region134

separately and apply the RCC test to the extracted pair. Such an approach,135

however, quickly becomes computationally expensive; when dealing with ei-136

3While a non-null region in DM is simply the union of an arbitrary set of pixels, the
algorithmic manipulation of regions being assumed here is typically restricted to connected
components, or simple regions.
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ther large images (for which morphological reconstruction is slow) or images137

featuring many regions (the number of tests is given by the product of the138

number of regions across the images, complexity O(nm)). Some shortcuts139

have been identified, for instance in RCC5D, the disjoint relation DR can be140

assumed by default for all region pairs and other spatial relations only com-141

puted in cases of overlap, avoiding a considerable number of tests. Similarly,142

EQ can be identified in those regions pairs whose minimum pixel value is 3 in143

the sum of image X (labelled as 0 and 1) and image Y (labelled as 0 and 2).144

However, the distribution of DM relations varies with the image content and145

therefore such shortcuts do not necessarily lead to noticeable execution time146

improvements. The next section presents a more efficient algorithm which147

avoids the decomposition of the computation into an exhaustive sequence148

of region pairs. The procedure shows a considerable advantage in execution149

time compared to our previous algorithm 2 and it enables DM analysis to be150

more efficient and therefore applicable to high-throughput workflows.151

3. Fast RCC5/8 Algorithm152

We assume n binary regions in image X and m binary regions in image153

Y . The aim is to identify the spatial relations of the regions in X with the154

regions in Y . Those relations can be stored in an n×m matrix, here called155

the ‘RCC table’ (stored as an image) where the x and y coordinates are156

indices pointing to the xth and yth regions in X and Y respectively.157

3.1. Computing RCC5D158

First, two images are generated using connected component-labelling, one159

where all regions in X have unique labels (according to their raster scan or-160

der) and the other similarly with the labels of the regions in Y . We call161

these images Xlabelled and Ylabelled respectively. Two additional images are162

computed, one where pixels belonging to regions in X are labelled as 1 (or163

foreground) and 0 otherwise (background) and the other where pixels belong-164

ing to regions in Y are labelled as 2 (foreground) and 0 otherwise. These two165

images are summed to produce a third image XY , where pixels now have166

values of 1 (the pixel is in X but not Y ), 2 (it is in Y but not X), 3 (a region167

of X overlaps a region of Y at that location) or 0 (image background). A168

further binary image O is computed as the intersection (overlap) of X and169

Y . These overlaps arise in the case of RCC5D relations PO, EQ, PP and170
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PPi. Inspection of the values of the pixels of the overlaps in O (by redirect-171

ing to Xlabelled and Ylabelled) reveals which two regions form a given overlap.172

We store the label values of the regions of O in arrays ovX[ ] and ovY[ ].173

The regions in images X and Y involved in overlapping relations are also174

inspected by redirection to image XY , and their minimum pixel values are175

stored in arrays minX[ ] and minY[ ]. These arrays store information on176

whether a given region contains non-overlapping pixel values of 1 or 2 (which177

occur in PPi and PO cases) or whether all the pixels in a region are over-178

lapping (value 3, which occurs in PP and EQ cases). Adding minX and minY179

provides enough information to compute four of the five RCC5D relations180

(i.e., all those that involve region overlaps)181

Relation minX minY minX+minY

PO(x, y) 1 2 3
EQ(x, y) 3 3 6
PP(x, y) 3 2 5
PPi(x, y) 1 3 4

Table 1: Minimum values of pixel composition of overlapping regions X and Y . Region
labels are: background=0, X=1, Y =2, X ∩ Y =3. The columns minX and minY indicate
the minimum value in regions X and Y respectively when a given relation holds.

From this scheme, it can be worked out that the relation R between182

regions XovX[i] and YovY[i] in images X and Y (given by the overlap region Oi)183

is:184

R[i] = out[minX[ovX[i]] + minY[ovY[i]]], (11)

where out[ ] is a look-up table holding labels for relations PO = 3, EQ = 6,185

PP = 5 and PPi = 4 (see Table 1, rightmost column). Since the only remain-186

ing RCC5D relation, DR, does not involve an overlap, DR can conveniently187

be assumed by default for all possible region pairs and during the analysis188

the values in the RCC table are only updated for those regions involved in189

overlapping relations using the procedure described. The procedure is shown190

in pseudocode in Algorithm 1.191

3.2. From RCC5D to RCC8D192

RCC8D introduces the notion of contact between regions, covering both193

overlap and adjacency [1] and resulting in eight spatial relations which pro-194
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Algorithm 1 Pseudocode for RCC5D computation across multiple regions
in images X and Y .

1. Default all relations between regions in X and Y to DR.

2. Compute labelled images Xlabelled and Ylabelled where each region has a
unique label.

3. Compute image XY , coded as 1 → pixel of a region in X but not Y ,
2 → pixel of a region in Y but not X, 3 → pixel of a region in both X
and Y .

4. Compute binary image O, coded as 0→ background, 1→ X ∩ Y .

5. Create arrays ovX[ ] and ovY[ ] holding the information of which
regions in X and Y form overlaps in O, by inspecting region labels in
Xlabelled and Ylabelled.

6. Create arrays minX[ ] and minY[ ] by inspecting for each region in O
the minimum pixel value for that region in image XY .

7. For each region in O, minX + minY gives the RCC5D relation: 3 →
PO, 4 → PPi, 5 → PP, 6 → EQ.
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vide a more fine-grained spatial description than RCC5D. The RCC5D re-195

lation DR is split into the RCC8D relations EC (external connection) and196

DC (disconnection), the RCC5D relation PP is split into TPP and NTPP197

(tangential and non-tangential proper part respectively), the former occur-198

ring when the proper part abuts the background regions, the latter when it199

does not; the same thing happens, mutatis mutandis, with the inverse rela-200

tions. The RCC5D results obtained by the method described earlier can be201

reprocessed to capture the RCC8D relations of the same set of regions by202

performing single forward image scans testing for adjacency patterns (rather203

than processing region-pairs one at a time). The computation of RCC8D204

could be seen as a decomposition of the problem into a set of sub-problems205

(first compute RCC5D, then re-process the image without having to consider206

all region pairs, while exploiting the previously obtained results), similar to207

the type of problem reduction sought in dynamic programming [20]. We208

search for the presence/absence of certain patterns of adjacent pixels occu-209

pancy which, in conjunction with the known RCC5D relations, are indicative210

of specific RCC8D relations. The cases PO and EQ are the same in RCC5D211

and RCC8D. Of the remaining cases, suppose that we know the RCC5D re-212

lation between regions X and Y is DR. Then the RCC8D relation can only213

be either DC or EC. For it to be EC there must be at least one instance where214

a pixel of X is adjacent to a pixel of Y . The relation is DC is assumed by215

default and then we scan the image looking for the adjacency pattern; if it is216

found, EC is returned, if the pattern is not found, then the default DC holds217

good.218

The following notation is used to describe the two-pixel patterns. Con-219

sider a pixel p and let n be one of its immediate neighbours. Set p(X)220

to be 1 or 0 according as p does or does not belong to region X; and221

likewise with p(Y ), n(X), and n(Y ). Then the two-pixel pattern exhib-222

ited by the pair p, n with respect to X and Y is denoted by the quadruple223

(p(X), p(Y ), n(X), n(Y )).224

From the above, we can say that a DR relation between X and Y will225

be DC unless one of the quadruple patterns (0,1,1,0) or (1,0,0,1) is exhibited226

for some p, n pair in the image, in which case the relation is EC. Similarly,227

a case of PP(X, Y ) will be NTPP(X, Y ) unless patterns (0,0,1,1) or (1,1,0,0)228

occur, in which case it will be TPP(X, Y ); and likewise with PPi, NTPPi,229

and TPPi. To perform these tests, the image is scanned using the ‘forward230

mask’ of pixel p, shown in Figure 2.231

At each p we determine the two-pixel patterns formed by p with each232
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Figure 2: The forward mask of pixel p. The pixel patterns for occupancy of regions in
image X and Y are tested between the central pixel p in the neighbours n in the ‘forward
mask’ (shaded pixels). The pixels in the ‘backward mask’ do not need to be tested because
the patterns have already been visited during the raster scan.

of the shaded elements of the mask in turn. As the scan progresses, an233

accumulator records whether these patterns have arisen, and the relabelling234

of the region relations is done after the scan is finished. The form of the235

mask is dictated by the fact that the image is scanned top-to-bottom and236

left-to-right (no need to look at the pattern for, e.g., p = (x, y), n = (x, y−1),237

since this will already have been detected when (x, y − 1) played the role of238

p, with the pattern p = (x, y − 1), n = (x, y)).239

3.3. Extended relations NC and PO∗240

The NC relation (definition 9) describes two regions separated by a one-241

pixel gap (Figure 1). This occurs when a region is detected as DC and242

the pixel patterns over the next-nearest neighbours (the external shell of a243

5×5 neighbourhood) show that pixels p (in the neighbourhood centre) and244

n (in the shell) are occupied by pixels of regions of X and Y , or Y and X,245

respectively. The PO* relation arises when two 8-connected regions ‘cross’246

each other in corner-connected regions, without overlapping or sharing any247

pixels (Figure 1). Such a pattern can commonly arise in the square lattice248

and it is interpreted as EC in RCC8D. In practical applications, however such249

results can be unintuitive (e.g. a linear object crosses another without ever250

“passing through” it) and it might be useful to identify these occurrences.251

This is done by inspecting 2×2 n and p pixel patterns for exclusive corner-252

connected pixel pairs in relations that have been identified as EC.253

3.4. Complexity analysis and performance254
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The old algorithm in [16] uses morphological binary reconstruction to255

extract every pair of regions before calculating the relational model held256

between them. It has been shown in [21] that morphological reconstruction257

is a computationally expensive, highly non-linear procedure. Its complexity258

depends on the number of component/pixels to be reconstructed. Even for259

the efficient/best-compromise algorithms [22] it is recognised that a mean260

case complexity analysis would be extremely difficult to compute because261

of the variety of input images that may be used. In addition to utilizing262

reconstruction, the computational complexity of the core of the old algorithm263

(in the worst case scenario) is quadratic, O(nm) (when m ≈ n) because the264

relations are computed between all possible region pairs (n and m) one at a265

time, or subquadratic when m6=n. While some shortcuts were identified (e.g.266

to avoid computing relations between those regions that are further away267

than two dilations, guaranteed to be DC), an important bottleneck remains268

with the binary reconstruction steps necessary to extract the region pairs.269

The new Algorithm 1, first, avoids extracting individual pairs of regions270

into new images to compute the relations, thus avoiding morphological re-271

construction altogether. Secondly, it computes the RCC5D relation from a272

sequence of steps that reduce the complexity from quadratic to linear yield-273

ing to an average case complexity of (O(n+m)). In particular, steps 1, 3 and274

4 in Algorithm 1 have a constant-time algorithm of order 1 (O(1)). Step 2275

(image labelling) requires a maximum time complexity of O(n+m). Steps276

5, 6 and 7 process the overlapping subregions that occur across the two im-277

ages. It should be noted that relations PP, PPi and EQ are one to one, and278

result in one overlapping segment per region pair. A worst case scenario279

where all the relations held are any of the above (therefore n=m) would lead280

to a scaling of these steps to O(n) which is still less than O(n+m). The281

PO relation, however, is a special case in the sense that a region can have282

more than one overlapping subregion (with one or multiple other regions).283

For instance large and convoluted regions could potentially lead to a scaling284

higher than O(n). While is not possible to foresee what regions configura-285

tions may be found in segmented images, it is nevertheless possible to clarify286

the impact of this unknown, experimentally. In a series of performance tests287

on random binary images (detailed below) we found that on average, the288

number of overlapping subregions across 500 tests (average 7152, maximum289

19431 regions) was smaller than the number of regions n+m (average 11168,290

maximum 38934). The running time of the proposed algorithm would there-291

fore, on average, increase linearly with the total number of regions O(n+m),292
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with some exceptional configurations where it could be higher depending of293

the number and nature of the PO relations. As examined experimentally,294

situations where this is above the quadratic complexity of the old algorithm295

appear to be unlikely. The successive forward passes on the labelled images296

to compute the RCC8D relation set, as well as the extended relations NC297

and PO∗, are of the order O(1) and therefore do not increase the algorithm298

complexity.299

Figure 3 shows the difference in performance, in seconds, of the previ-300

ously published [16] and the new algorithms on 512×512 pixels, random301

binary images with varying probabilities, p, of foreground pixels. The tests302

were performed on the ImageJ platform, version 1.51 [23] under the Linux303

operating system on an Intel Xeon CPU (E31225) at 3.1GHz. The plot shows304

the average of 5 runs at each p in steps of 0.01. The average difference over305

all p was an improvement of 491 times faster than the previous algorithm,306

while largest difference was found at p = 0.42 where the new algorithm was307

1684 times faster than the old one. The execution times appear to be depen-308

dent not only on the number of regions per image but also on the proportion309

of the different types of relations that occur at various p (not shown). A310

slight advantage was noticed for the old algorithm implementation on im-311

ages with the highest p, (where only very few regions exist, the images being312

mostly occupied by one large region), but this difference, in practical terms,313

becomes negligible as the execution times in those cases are all at a fraction314

of a second.315

4. New morphological filters: Minimal closing and opening316

In addition to the applications of DM in histological imaging [15, 16,317

24], the fast algorithm enables new MM operators with reasonable speed318

performance to be designed, exploiting the relations between image regions319

and the changes they undergo after other morphological operations.320

In MM, the operation closing φ with a kernel B is defined as the dilation321

of a region, followed by an erosion [17]:322

φB(X) =def (X ⊕B)	B. (12)

Closing is an extensive transformation, where voids in regions, and de-323

tails that cannot contain the translations of kernel B, are filled. Note that324

mereotopological closure, which refers to a topological operator defined on325
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Figure 3: Differences between the average execution times of the old and new RCC8D
algorithms. The tests were done, on random binary 512×512 pixel images with varying
foreground pixel probabilities. Each point is the average of 5 runs and the vertical bars
indicate one standard deviation from the mean.

a discrete space, does not correspond to closing but to dilation in MM, de-326

spite the similarity in their names. When closing binary regions, voids are327

filled with the foreground value. While the rest of this section only deals328

with closings, there is a dual MM operation with respect to the set comple-329

ment, namely opening, an anti-extensive transform, which instead of filling,330

removes those object pixels that cannot be fully covered by the translations331

of kernel B.332

Closing is commonly used to ‘fill in’ gaps between nearby regions desired333

to be joined, to fill small holes in regions and to reduce the complexity of334

region boundaries (‘shorelines’ from now on). These actions are, however,335

not independent; gaps, holes and shoreline irregularities are processed con-336

currently as the operation does not differentiate between them. In certain337

circumstances, however, it might be desirable to achieve only one of those338

results, e.g., joining nearby regions while avoiding major modifications of the339

shoreline details that do not yield a connection to another region. Using340
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DM this can be modelled as follows. In MM, the set of pixels added to the341

original region by the closing operator is known as the black top-hat):342

BTH(X) = φB(X)−X. (13)

The black top-hat often consists of a set of disconnected components,343

the elements of which we call black top-hat segments. In DM this is defined344

immediately following, where BTHseg(Y,X) is read as ‘Y is a connected com-345

ponent of the black top-hat of X’ and BTHsegs(X) is the set of black top-hat346

segments of X. The relation CC(Y,X) which we use here, read as ‘Y is a347

connected component of X’, is also defined in DM—see [15], p 572:348

BTHseg(Y,X) ≡def CC(Y,BTH(X)), (14)

BTHsegs(Y,X) =def {Y | CC(Y,BTH(X))}. (15)

The set-builder notation used to define function BTHsegs(X) in definition 15349

returns a set of regions, namely the Y s. In DM, however, where a region350

rather than a set of regions is required as the output of a function4, the set351

union operator is added, i.e.,352

BTHsegs(X) =
⋃
{Y | CC(Y,BTH(X))}, (16)

and the same principle applies for equations 19, 20 and 25. The relation353

between Y and X, given BTHseg(Y,X), is always EC, that is to say they354

are adjacent (externally connected) regions—remembering here that the seg-355

ments are the result of an extensive transformation. In addition, the segments356

could also be adjacent to other regions in their neighbourhood; if the distance357

ε separating pairs of regions is no more than half the width of kernel B, the358

black top-hat segments create ‘bridges’ between originally disconnected (i.e.,359

DC) regions. When considering region X and all other regions Y in the seg-360

mented image, two black top-hat segment types can arise. First we have361

what we call shorelines where BTHshoreline(Y,X) is read as ‘Y is a connected362

shoreline component of the black top-hat of X’. In this case the black top-hat363

segment Y adjoins exactly one connected component of X:364

4Remembering that in DM, a region can comprise several disjoint, region-parts as well
as being a simple region.
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BTHshoreline(Y,X) ≡def

CC(Y,BTH(X)) & ∃Z[∀U [CC(U,X) & EC(U, Y )]↔ U = Z], (17)

i.e., Y is a connected shoreline component of the black top-hat of X if and365

only if Y is a connected component of the black top-hat of X, and there366

exists exactly one connected component of X that is EC to Y .367

The second case is where we have a black top-hat segment that forms a368

bridge between two regions. BTHbridge(Y,X) is read as “Y is a black top-hat369

bridge of X”:370

BTHbridge(Y,X) ≡def CC(Y,BTH(X)) &

∃Z,U [CC(Z,X) & CC(U,X) & Z 6= U & EC(Z, Y ) & EC(U, Y )], (18)

which is similar to definition (17) except there are now at least two connected371

components of X externally connected to the black top-hat segment Y of X,372

not one.373

The spatial relations that hold between the black top-hat segments and374

the original regions provides a means for identifying those which act as375

bridges (between DC region pairs) and those which do not (and consequently376

only modify a region shoreline). From this it follows that the black top-hat377

segments adjacent to only one region are shoreline modifiers (including hole378

filling, when the holes can be filled by the kernel), and those adjacent to more379

than one region are bridges. Retaining one or another type, (e.g., by means380

of binary reconstruction [19]), gives rise to two types of conditional minimal381

closing, shoreline smoothing without region merging:382

φshoreline
B (X) = {Y | BTHshoreline(Y,X)}, (19)

and region merging without boundary smoothing:383

φbridge
B (X) = {Y | BTHbridge(Y,X)}. (20)

Note that in RCC8D, the notion of shoreline or boundary of a region does384

not differentiate between the ‘outside’ boundary and the boundary with an385

internal hole. The DM treatment of region holes is dealt with later in this386

paper.387
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With regards to implementation, the different black top-hat variants are388

sorted by an exhaustive analysis of the relations between all original regions389

versus all black top-hat segments generated after an MM closing (i.e., X ⊕390

B) 	 B)). Those results, arranged in an m × n matrix or table indexed391

by regions and black top-hat segments in scan order (here named the RCC392

table), provide a convenient way to search for those special relations. The393

DM relation between a given region and a black top-hat segment can be one394

of two, out of the eight possible outcomes of the RCC8D region set: either395

DC or EC. To identify ‘bridge’ black top-hat segments, we use indexing of396

the original regions and black top-hat segments in the x and y axis of the397

RCC table respectively: the number of EC instances in a row indicates the398

number of different regions a given black top-hat segment is adjacent to.399

Black top-hat segments with total EC counts per row equal to 1 are therefore400

shoreline modifiers (i.e., they are adjacent to only one region), while those401

instances with counts exceeding 1 are guaranteed to be bridges. As will be402

seen comparing Figures 4f and 4g, black top-hat shoreline segments include403

those completely surrounded by a region; we call these segments lakes. In DM404

this can be defined as follows, where BTHlake(Y,X) is read as ‘Y is a black405

top-hat lake of X’; the definition uses the DM definition of a hole defined406

later:407

BTHlake(Y,X) ≡def BTHseg(Y,X) & Hole(Y,X). (21)

The crucial distinction between a shoreline and lake black top-hat segment408

of a given region is that a lake also satisfies what it is to be a hole in that409

region which again is encoded in another RCC table indexing regions and410

holes. Examples of binary region merging with minimal shoreline smoothing411

and shoreline smoothing without region merging are given in Figure 4.412

While black top-hat segments have the same connectivity as the orig-413

inal regions (e.g., 8-connected) the minimal closing can be minimised fur-414

ther by considering only the adjacency relations of their 4-connected sub-415

components. The rationale for this is that retaining a given black top-hat416

segment is similar to adding some background pixels to the foreground. Since417

the 8-connected foreground convention implies a 4-connected background, it418

is possible to restrict minimal closing to the 4-connected sub-components of419

a given black top-hat segment that satisfies the bridge or shoreline properties420

described earlier and not including the whole black top-hat region. Figure421

5 shows the effect of retaining such 4-connected components in cases of pro-422
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Figure 4: Closing and minimal closing of binary images with a disc of radius 3. The
original greyscale image of lymphocytes stained with silver nitrate for detection of nucleolar
organising regions (dark spots)(a) was segmented with the minimum error thresholding
algorithm [25] (b). In (c) the traditional closing (with the added pixels in grey that make
the ‘black top-hat’ (d). Panel (e) shows in magenta the black top-hat segments that have
an adjacency relation with more than one region in (b), acting as bridges. We call this
operation ‘minimal closing bridges’. Panel (f) shows those black top-hat segments that
have adjacency to only one other region in (b) (minimal closing shorelines), while in (g)
are shown the lakes which are black top-hat segments that have no connection to the rest
of the background’s subset that intersects the image boundaries. Panel (h) shows the
traditional opening (with added pixels in grey that make the ‘white top-hat’ (i). Panels
(j-l) shown the minimal opening of bridges, shorelines and islands respectively.

cessing regions with null interior.423

Finally, the dual operation of the closing is opening, Υ:424

ΥB(X) =def (X 	B)⊕B, (22)

and the corresponding top-hat transformation for the opening is called white425

top-hat :426

WTH(X) =def X −ΥB(X), (23)

which identifies the segments that were removed from the original after the427

opening operation. As before and mirroring definitions for the black top-hat428

we define a white top-hat segment Y of region X, and the set of white top-hat429

segments of X:430
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Figure 5: Closing versus minimal closing. (a) A digitised version of a 4th order von Koch
curve with discontinuities, resulting in 30 fragments. The target is to merge all pieces
into a single region. (b) The classical result using morphological closing with a circular
kernel of radius 4 (the smallest kernel that closes all gaps). Note the loss of detail in
the result. (c) A minimal closing where the gaps between any two fragments were filled
independently with the smallest kernel sizes possible until a single region was obtained.
(d) The detail of the minimal closing (black is the original set, magenta (dark grey in
B/W version) represents the black top-hat segments. (e) and (f) show the same example,
but this time retaining only the 4-connected subregions of each black top-hat segment
(BTHsegs in the text) that acts as a mereotopological bridge between fragments. Note
that this closing modifies the original even less than in (c). (g) shows in green (bright
grey) the part sub-regions of the black top-hat segments that were not necessary to retain
to achieve the minimal closing, i.e., the difference between (d) and (f).

WTHseg(Y,X) ≡def CC(Y,WTH(X)), (24)

WTHsegs(X) = {Y | CC(Y,WTH(X))}. (25)

It is therefore possible to implement minimal opening operations as the431

dual of minimal closing. Note that while opening is an anti-extensive trans-432

formation, the white top-hat segments are in relation EC to the regions in the433

opened image, that is: WTHseg(Y,X) → EC(Y,ΥB(X)). The two new dual434

minimal opening operations are open shorelines and open bridges, depend-435

ing on which type of white top-hat segments are retained or removed. It is436

also possible to define an additional minimal opening operation that removes437
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those white top-hat segments that are DC to all other regions in the opened438

image. We call this procedure opening islands, and its dual, closing lakes. In-439

terestingly, these opening islands and closing lakes are equivalent to opening440

and closing by reconstruction, respectively [26]. This sequence of morpho-441

logical operations combining MM with the explicit relations of DM shows442

the potential for defining a variety of fine-grained morphological operators443

that target a particular goal. It also highlights the importance of securing444

computationally efficient ways to compute and store relations between pairs445

of regions when processing segmented images such as those assumed in the446

RCC table, where these relations are explicitly used in these new operators.447

An example of the advantage of these new operators is shown in Figure 5.448

Here connecting fragments in a discontinued curve can be restricted to places449

where the closing leads to fragment connections, without interference at lo-450

cations where the connection is not necessary. By so doing we preserve the451

original as much as possible with a less dramatic loss of global detail than452

traditional closing.453

Similarly to minimal binary opening and closing, the procedures above454

can directly be applied to process greyscale images via threshold decompo-455

sition (although the threshold decomposition it is usually an inefficient pro-456

cedure). Figure 6 shows examples of the greyscale versions of the minimal457

closing and opening respectively.458

5. Discussion459

Bloch [11, 9] originally suggested that RCC relations can be defined in460

MM, and specifically provides the translation forthe TPP (X, Y ) relation [11],461

which is equivalent to ours in [15]. It should be noted that while MM is not462

specific about discrete or continuous space, that is not an exact translation463

of the RCC8 TPP relation on discrete space, because RCC presupposes an464

infinitely divisible one. Instead, for the case of discrete space, the connections465

drawn are with the RCC8D relation set of discrete mereotopology.466

The implementation of RCC5D, RCC8D and additional DM relations as467

MM procedures opens a range of new opportunities to extend some oper-468

ations beyond their original design by means of exploiting spatial relations469

held between regions. This is specially useful when designing analytical pro-470

cedures that can benefit from mechanically reasoning about image contents.471

The approach presented here allows the results of closing and openings472

to be made conditional on certain types of modifications which might not473
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Figure 6: Greyscale minimal closing and opening. The examples were computed using
a 3 × 3 kernel on a greyscale image of text. Note (second row) how minimal closing
bridges connect nearby regions without modifying the shorelines or filling lakes and how
the closing of lakes does not affect the shoreline features. The open bridges procedure
leads to fragmentation of regions in the original without affecting other shoreline features
(compared to open shorelines), while the opening of islands removes the white top-hat
segments with no adjacency relations to any other patterns at a given grey level.

be straightforward to achieve otherwise or might require more complex ap-474

proaches such as multiscale operators and directional information [27]. While475

conditional filtering is not new, traditional conditional morphological opera-476

tors apply their constraints in a given local sub-image (given by the kernel).477

To replicate this type of filtering region-wise is challenging because classical478

methods require additional processing to account for relations between re-479

gions and conditions on these to be met, whereas in DM it is built into its480

very foundations.481

The bridges, boundaries, island and lakes regions in relation to opening482

and closing (i.e. the white top-hat and black top-hat segments) have similar-483

ities to what Soille and Vogt call ‘binary patterns’ [28] for which they iden-484

tified formulae for their computation (and include some additional patterns:485

core, perforations, branches and loops). For minimal closing and opening,486
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however DM has the advantage of being able to relate, via the RCC table,487

which original regions are adjacent to those segments and therefore open the488

possibility to control algorithmically whether segments are included or re-489

moved from particular configurations of regions. That would would require490

further computation in the approach presented in [28].491

There has been interest in other types of conditional operations, for ex-492

ample homotopic sequential filtering to preserve the topology of an image493

[29, 30] or multiscale top-hat transforms to improve image contrast [31]. Here494

we described how processing can be applied to changes of regions or across495

regions. A number of new uses for DM via MM has been recently identified496

in applications that require dealing with models where image regions fulfil497

specific spatial relation between their parts [16, 24, 32]. Such models com-498

monly arise in histological imagery, where detected regions represent regions499

with special biological meanings (such as cells, nuclei, tissues, organs) that500

not only can be distinctly detected, but also exist in specific spatial relations501

and hierarchies. Such relations need to be fulfilled if the extraction of bio-502

logically relevant information from images is to be related to a given context503

in terms of ontological levels of organisation [33]. On a different kind of ap-504

plication, Cointepas [34] proposed the use of MM combined with adjacency505

relations to construct homotopically deformable cellular models and resolve506

complex problems, such as 3D cerebral cortex segmentation, where topology507

preservation is essential to yield not only accurate but anatomically plausible508

results.509

The procedures presented here stem from our work in histological imag-510

ing using digital images of 2D tissue sections, and as as such are based on511

a 2D Cartesian grid representation. It would be desirable to further develop512

these concepts and algorithms in n-dimensions so they can be applied to513

e.g. temporal, volumetric and higher dimensional data sets. Furthermore,514

alternative schemes such as simplicial complexes (used to represent multidi-515

mensional data) [35], graphs [36] and hypergraphs [37, 38] (for non-lattice516

implementations of MM) might be advantageous for such generalisation to517

higher dimensions.518
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Novel applications of Discrete Mereotopology to Mathematical Morphology.

Highlights

• Six new mathematical morphology operators using mereotopological concepts.

• Novel “minimal closing” and “minimal opening” morphological operations

• A new discrete region connection calculus algorithm with improved execution speed.




