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Novel applications of Discrete Mereotopelagy “n
Mathematical Morphology

Gabriel Landini®, Antony Galton”, David Randell* Sherec \ Fouad®®

TS

@School of Dentistry, University of Birmin~ham,
b Department of Computer Science, Universil j of F ‘er, UK
¢School of Computing, Engineering and the Built Envii 0~ ent, Yirmingham City
University, UK

Abstract

This paper shows how the Discrete Mereoto,. “logy notions of adjacency and
neighbourhood between regions can be =ap. “~d through Mathematical Mor-
phology to accept or reject changes resu.’ag from traditional morphological
operations such as closing and ope. .~ 'L 1is leads to a set of six morpho-
logical operations (here referred to ge. erically as minimal opening and min-
imal closing) where minimal cuc~ees [1fil specific spatial constraints. We
also present an algorithm to compute “he RCC5D and RCCS8D relation sets
across multiple regions resu’ . ~ in a performance improvement of over three
orders of magnitude over our p1 viously published algorithm for Discrete
Mereotopology.

Keywords: mathema ical mornhology, discrete mereotopology, image
processing, spatial r~asc mg

1. Introductie=

This pape. ~er res on the processing of spatial relationships between dis-
crete regior , using Mathematical Morphology (MM). There has been a long-
standing i terr st ir formal definitions of adjacency and containment between
image regio. as ' aose types of relations can form a basis for model building
in ima ,e contens retrieval and analysis. This has applications to problems
where the des ription of hierarchical structure is important, for instance, in
biologic. ' im ging numerous problems revolve around the characterisation of
re ations of diverse nature, for instance molecules in organelles, organelles in
cc'ls, cell in tissue compartments and tissues in organs. The subject has
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been approached from a variety of points of view, including "eitas »olygon
geometry [1], digital topology [2, 3], hierarchical modelling 4] a1 .. ~mnected
filtering operators [5, 6, 7].

Bloch [8, 9, 10, 11] has provided an extensive body ¢ work o.. spatial re-
lations in computer vision and identified ways to symk lically nd program-
matically harness and represent the inherent imprecisio. arisi.g from image
formation, post-processing, perception and the se’ ianti~~ related to certain
spatial relationships sought. In [11] Bloch shows h-, M] I can function as
unifying framework for spatial knowledge repre. ntati-- and provides con-
nections to formal logics, in particular raising the pos: bility of implementing
Region Connection Calculus (RCC) [12] operate ~ (as - /ell as providing a MM
definition for the RCC’s tangential proper pa, ' (TrP) relation). In [9], it is
proposed to construct modal logics usine **" ~_ the notion of adjunction
[13] to define modal operators that can be . *ilised for symbolic representa-
tion and interpretation of spatial relc 1. ~~hins. In [14] the notion of fuzzy
adjacency between image objects was . v :stigated and formally defined so
the concept of adjacency can extenc ' (e.g using fuzzy MM formulations) to
accommodate degrees of adjacency b - mi.ans of admissible transformations
that lead to strict adjacency a. - ..o~ llow consistent representations and
the management of imprecision mewn. ~ned earlier.

Research has also focused ~n applying MM and spatial reasoning to dis-
crete spaces with the purp sse of « \plying spatial reasoning to digital images.
In this context, Galton [2, *! intr duced the notion of Discrete Mereotopol-
ogy (DM) where he de elons va 10us mereotopological concepts for discrete
spaces. Our work in 15, .6] <aows that a subset of DM functions (closure
and interior) map .recv.- t, the MM dilation and erosion operators [17]
respectively, comr..~ly used in image processing. In [2] that mapping was
exploited to implement .2 full spatial relation set given by the RCC5D and
RCC8D logics (12, in terms of MM. Briefly, the relation sets RCC5D and
RCC8D enco. - fir e and eight set of relations respectively that capture var-
ious notion: of pa. hood, overlap and contact. After mechanically verifying
DM theor ms «dopted in the imaging algorithms (using the theorem prover
SPASS [1§), ve i-aplemented the RCC5/8D relation sets and exploited sev-
eral D" 1 thecrenus as short-cuts in imaging algorithms to compute operations
on pa rs of re ions. DM can therefore be used to perform certain types of
segmen,. “i~ and model-testing analyses based on MM procedures. Those
a’ alyses have applications in histological imaging, where segmented histolog-
ic 1| comy nents regions of interest (those corresponding to, e.g., nuclei and
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cell bodies) represent valid theoretical models of histological - ~ality “hat are
related in specific ways in terms of their spatial relations [5, 1. This log-
ical, model-based approach to image interpretation proviac. . clean formal
semantic framework in which to interpret image segm- ..vation .2sults and,
furthermore, guarantees that the imaging algorithms ‘ncodin, theorems in
DM are provably sound. It also enables development 0. ~lgor’chms that ex-
plicitly encode and ‘reason’ about spatial relations and '~<al structure (e.g.,
cell and tissue organisation) as well as facilitating t. = - .ucoc ng of other struc-
tural data of interest, such as the spatial locali. *ion ~“ molecular markers
in cells and tissues.

Next we report new applications of DM tha. »nric’. MM operations. The
paper is organised as follows. First, we visit ti.. detinitions of adjacency, con-
nection and region neighbourhood in DM ==~ *" - MM counterparts. Next
we present a new, more efficient version o. “he RCC5D and RCC8D algo-
rithm that that outlined in a previous .. “%cation [16]. Finally, we discuss a
novel application of DM that extends M.V with a the notions of morpholog-
ical minimal closing and minimal ¢ . ning, where DM is used to restrict the
changes of the traditional MM closing and< opening operations so the original
region shape is minimally mod. &, —* le still achieving a desirable result.
The paper concludes with a discussi. ™.

2. Methods

The convention ade pted he. . is that images consist of 2D square pixel
arrays with 8-adjacer 1y, » iear' ng every non-boundary pixel of the array is
surrounded by 8 ne'ghu.'rs rorming a 3 x 3 pixel matrix. Image regions
are sets of pixels lc _~lly-connected under 8-neighbour adjacency, representing
objects of interesy in the ‘mage. We assume that these regions exist in binary
images but can .nc 1de multiple planes or slices representing the same spatial
reality, so tha reg’ons can share the same image space without being merged.

2.1. Adjar :ncr

The aay. - ncy relation between pixels is captured by a reflexive and sym-
metric .ciation +.(z,y), meaning that pixel z is adjacent to or equal to pixel
y. A(-,y) is atisfied if d(z,y) < /2, where d : Z? x Z* — R is the two-
dimens. =al "uclidean distance function defined on pixel coordinates in Z2.
Ir DM t-rms [15], the adjacency relation between regions X and Y is referred
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to as external contact and is denoted EC(X,Y"). Tt is built “~m v, ~ other
relations, namely contact:!

CX,Y) =gt Ir,ylzr e X &yeY & Al ), (1)

and overlap:

O(X,Y) Zgt XNY #0 2)

that is, the intersection between overlapping re _fons ¥V and Y is non-null.
External contact is then defined as:

EC(X,Y) =def C(X, Y) & "O(/x7 Y) (3)

In [14] Bloch et al. showed that the ad, «cucy relation (or external contact
in DM [15]) reworked in MM is equivalent to.

EC(X,Y)=(XNY =0)° (X&B)nY #4, (4)

where @ represents a morphological 11 ion operation with a 3 x 3 square
structuring element or kernel 7~ [*71 (. ssumed to be centered at the orign
of space to guarantee the extensiv.v of the dilation). Thus region X has
external contact with region Y if the two regions do not intersect and the
dilation of X leads to a nc 1-emy v intersection with Y.

2.2. Disconnection and regioi. ~ wghbourhood

In DM, a pair of r gior s X and Y are said to be disconnected if they are
not in contact, i.e., -Ci. ~ Y'; this is denoted DC(X,Y’). This relation can
also be defined in ~rms of the mereotopological discrete closure operation
(clp), instead of connec. n, as follows:

DC(X,Y) =clp(X)NY =0. (5)

Here the fu «ction a, (X)) is defined as the union of the set of pixels whose im-
mediate r ~igh our woods overlap X, where the immediate neighbourhood of
a pixel # N(." rontains just those pixels which are adjacent to x, including
pixel - itself:

L'ne svmbols 3, &, €, N, - and = are read “there exists”, “and”, “is a member of”,

itersectic 17, “not”, and “if and only if”, respectively; ) denotes the empty set.

«.
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clp(X) =aer {z [ O(N(z), X)}. (6)
In the case of our assumed 8-connected square grid, clp(X) 1. ~quivalent to
the dilation of X using a structuring element B, which .n our model consists
of an arbitrary pixel and its immediate neighbourhooa so
cdpo(X)=Xo® B. (7)
Therefore definition (5) translates into MM as:

DC(X,Y)= (X @ B) (.~ =0, (8)

We also define a special type of neighbou.. ~od relation between pairs
of regions that is not part of the RCCL, ~u sets but is particularly useful
when considering binary regions residing in "o same image: region Y is a
neighbour of X and separated from i. by . .. pixel. We name this relation
NC (for neighbourhood connection)? and ~efine it as:

NC(X, )@ =def ._‘C(C|D(X),Y), (9)

which in MM terms corresponds to

NC X,Y , = EC((X ® B),Y). (10)

These formulae allow im, '~me itation of the extended MM functions that
follow in Section 4. Fir,ure 1 shows examples of the RCC8D relation set and
the special cases of N ar d P/,

2.3. Region Conn .c*on Calculus via Mathematical Morphology

In [15] we intraduced cquivalences between DM and MM allowing DM to
be implements 4 ar 1 understood in terms of MM procedures. Those equiv-
alences make 1. ~ nvenient to develop DM using standard image processing
application , sunpor..ng basic MM operations (erosion, dilation, reconstruc-
tion). In (6] an T M algorithm implementation was presented which made
use of the ov ~l&p of binary regions in images. That algorithm computes
the sp «ial r'ations between two regions (self-connected or not) residing in
differe 't imag :s. For many applications, however, it is required to find the

2In DM the relation NC is symmetric, i.e., NC(X,Y) — NC(Y, X).
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RCC5D ‘i% i B % VI

DR PO EQ PP k.
Receo i i 6 | B B B I m b
I
DC EC PO EQ TPP {TPP TPPi  NTPPi
Extensions ‘% ﬁ
NC PO*

Figure 1: The five and eight spatial relations that hold L. “ween regions in the RCC5D and
RCC8D sets in the discrete domain. The blue ©  .cuw ropresent region X and the yellow
regions Y, the intersection X NY being shown in b, -vn. The names in RCC5D stand for
disjoint (DR), partial overlap (PO), equal (EC" -raver part (PP) and proper part inverted
(PPi). The RCC8D set makes additional disv nctons: disconnection (DC), external con-
nection (EC), partial overlap (PO), tangrntial . oper part (TPP), non-tangential proper
part (NTPP). TPPi and NTPPi are the inv 1. rela ions, e.g., TPPi(X,Y) means the same
as TPP(Y, X). The extensions considered he e aie NC for ‘neighbourhood connection’ (a
case of a DC relation where the regio.. .. —~ lilation away from adjacency) and PO* (a
case of EC occurring on ‘crossing objects’ " at do not share any overlapping pixels), which
while possible in the discrete domain, is counter-intuitive with real-world objects.

relations held between mui. ~le re 1ons® contained in pairs of images (e.g., bi-
ological objects across afferent . onfocal microscopy imaging planes, or stain
channels). In such ¢ ses the computation can be decomposed into a se-
quence of analyses ! etwe. ~ 7 airs of self-connected regions: first extract two
given regions into ..>w empty images (maintaining their relative positions),
next compute the relatic ~ held between them using the said algorithm, and
repeat this for ul . smaining region pairs. That implementation exploits the
‘start pixels’ «“ rec ions (the first pixel in a given region encountered in raster
scan order) .nd us. * morphological reconstruction [19] to extract each region
separately and apply the RCC test to the extracted pair. Such an approach,
however, qu. «ly ecomes computationally expensive; when dealing with ei-

3W1 le a nor mull region in DM is simply the union of an arbitrary set of pixels, the
alge="*hmuc  .nipulation of regions being assumed here is typically restricted to connected
cc nponer. 3, or simple regions.
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ther large images (for which morphological reconstruction is ~'~w) ¢. ‘mages
featuring many regions (the number of tests is given by t!e pr.u ot of the
number of regions across the images, complexity O(nm)). <.me shortcuts
have been identified, for instance in RCC5D, the disjoir’ .clatio.. DR can be
assumed by default for all region pairs and other spati il relati ns only com-
puted in cases of overlap, avoiding a considerable numbe - of t- sts. Similarly,
EQ can be identified in those regions pairs whose r .nim» pixel value is 3 in
the sum of image X (labelled as 0 and 1) and imag~* (lal elled as 0 and 2).
However, the distribution of DM relations varies -ith t-_ 1mage content and
therefore such shortcuts do not necessarily lead to no.’ceable execution time
improvements. The next section presents a m.. ve eff iient algorithm which
avoids the decomposition of the computatio.. into an exhaustive sequence
of region pairs. The procedure shows a c~=~*"- e advantage in execution
time compared to our previous algorithm 2  ~d it enables DM analysis to be
more efficient and therefore applicabl’ . “ioch-throughput workflows.

3. Fast RCC5/8 Algorithm

We assume n binary region: .. *mace X and m binary regions in image
Y. The aim is to identify the spat..' relations of the regions in X with the
regions in Y. Those relations can be stored in an n X m matrix, here called
the ‘RCC table’ (stored ¢, an 1 1age) where the x and y coordinates are
indices pointing to the zt.. ~ud yt 1 regions in X and Y respectively.

8.1. Computing RCC D

First, two image’ are . e ated using connected component-labelling, one
where all regions i . X have unique labels (according to their raster scan or-
der) and the other sin.’~rly with the labels of the regions in Y. We call
these images 2 ape eq and Yiapenea respectively. Two additional images are
computed, or.~ w} cre pixels belonging to regions in X are labelled as 1 (or
foreground) and v +herwise (background) and the other where pixels belong-
ing to regi ms * 1Y are labelled as 2 (foreground) and 0 otherwise. These two
images are .- mmr :d to produce a third image XY, where pixels now have
values .1 1 (the pixel is in X but not Y'), 2 (it is in Y but not X), 3 (a region
of X werlaps a region of Y at that location) or 0 (image background). A
further ~ina», image O is computed as the intersection (overlap) of X and
Y The = overlaps arise in the case of RCC5D relations PO, EQ, PP and
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PPi. Inspection of the values of the pixels of the overlaps in ™ (by . ~direct-
ing t0 Xjapelled and Yiapenea) reveals which two regions forr a g .o overlap.
We store the label values of the regions of O in arrays ova. = and ovY[ ].
The regions in images X and Y involved in overlappi g relaticas are also
inspected by redirection to image XY, and their min’ num pi ‘el values are
stored in arrays minX[ ] and minY[ ]. These arrays . nre i Jformation on
whether a given region contains non-overlapping pi .el v'es of 1 or 2 (which
occur in PPi and PO cases) or whether all the p. o', in . region are over-
lapping (value 3, which occurs in PP and EQ cas »). A7 ing minX and minY
provides enough information to compute four of the five RCC5D relations
(i.e., all those that involve region overlaps)

Relation minX minV mir tminY

PO(z,y) 1 2 3
EQ(z,y) 3 2 6
PP(z,y) 3 2 5
PPi(z,y) 1 5 4

Table 1: Minimum values of pixel compositi n of overlapping regions X and Y. Region
labels are: background=0, X=1, Y=., X 1. =3. The columns minX and minY indicate
the minimum value in regions X and Y res, ~ctively when a given relation holds.

From this scheme, it an be worked out that the relation R between
regions Xouxs) and Yoy 1o fmage X and Y (given by the overlap region O;)
is:

P'i] = »t'ainX[ovX[i]] + minY[ovY[i]]], (11)

where out [ ] is ¢ lo.'--up table holding labels for relations PO = 3, EQ = 6,
PP =5 and PPi — 4 (see Jable 1, rightmost column). Since the only remain-
ing RCC5D re atic 1, DR, does not involve an overlap, DR can conveniently
be assumed by 7 rault for all possible region pairs and during the analysis
the values 'n the hi'C table are only updated for those regions involved in
overlappi- o re atic is using the procedure described. The procedure is shown
in pseudocoac in Algorithm 1.

3.2. Fr.m BR_.C5D to RCC8D

RCC”D introduces the notion of contact between regions, covering both
o\ ~rlap a .d adjacency [1] and resulting in eight spatial relations which pro-

8




Algorithm 1 Pseudocode for RCC5D computat.. » acioss multiple regions
in images X and Y.

1.

2.

. Create arrays ovX[ 7 aw

Default all relations between regions i.. X a..’ ¥ to DR.

Compute labelled images Xjapeied & ‘U Ilabelled Where each region has a
unique label.

Compute image XY, coded as 1 - » pixel of a region in X but not Y,
2 — pixel of a region in ¥ bu 2t A 3 — pixel of a region in both X
and Y.

Compute binary image O, co’~d as 0 — background, 1—- X NY.

1

ovY[ ] holding the information of which
regions in X and Y form ov rlaps in O, by inspecting region labels in
Xiabelled and Yianer d-

Create arrays m.~XT ] a.d minY[ ] by inspecting for each region in O
the minimum pixel . 1.e for that region in image XY.

For each region 1. O minX + minY gives the RCC5D relation: 3 —
PO,4—"r 5— PP, 6 — EQ.
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vide a more fine-grained spatial description than RCC5D. ™= RC "D re-
lation DR is split into the RCC8D relations EC (external con .c.*on) and
DC (disconnection), the RCC5D relation PP is split into “F P and NTPP
(tangential and non-tangential proper part respectivelv, che to..mer occur-
ring when the proper part abuts the background regic 1s, the atter when it
does not; the same thing happens, mutatis mutandis, w *h tr: inverse rela-
tions. The RCCHD results obtained by the metho . des~~ibed earlier can be
reprocessed to capture the RCCS8D relations of t. = .ame set of regions by
performing single forward image scans testing fo. ~djac~-.cy patterns (rather
than processing region-pairs one at a time). The ¢ mputation of RCC8D
could be seen as a decomposition of the probic. ~ intc a set of sub-problems
(first compute RCC5D, then re-process the in.. ~e without having to consider

all region pairs, while exploiting the pre=i~=-'> _ained results), similar to
the type of problem reduction sought in « mamic programming [20]. We
search for the presence/absence of ce ..~ natterns of adjacent pixels occu-

pancy which, in conjunction with the k1. v 1 RCC5D relations, are indicative
of specific RCC8D relations. The ¢ ..~s PU and EQ are the same in RCC5D
and RCC8D. Of the remaining cases, sup, ose that we know the RCC5D re-
lation between regions X and . 22 Then the RCC8D relation can only
be either DC or EC. For it to be EC v. ~re must be at least one instance where
a pixel of X is adjacent to = nixel of Y. The relation is DC is assumed by
default and then we scan t ie ima, < looking for the adjacency pattern; if it is
found, EC is returned, if ti.. natte m is not found, then the default DC holds
good.

The following not tior is 1 sed to describe the two-pixel patterns. Con-
sider a pixel p and let ,. b one of its immediate neighbours. Set p(X)
to be 1 or 0 acc . 'ing as p does or does not belong to region X; and
likewise with p(Y), n(..', and n(Y). Then the two-pixel pattern exhib-
ited by the pa’. p, » with respect to X and Y is denoted by the quadruple
(p(X), p(Y), 1. X" n(Y)).

From tF: abov. we can say that a DR relation between X and Y will
be DC un’ :ss ¢ ae of the quadruple patterns (0,1,1,0) or (1,0,0,1) is exhibited
for some p,. mai’ in the image, in which case the relation is EC. Similarly,
a case oI PP(X, /) will be NTPP(X,Y") unless patterns (0,0,1,1) or (1,1,0,0)
occur, in whi h case it will be TPP(X,Y"); and likewise with PPi, NTPPi,
and TF. ™) perform these tests, the image is scanned using the ‘forward
 ask’ of nixel p, shown in Figure 2.

At ea h p we determine the two-pixel patterns formed by p with each

10
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N(X-1,Y-1) N(X,Y-1) N(X+1yy-1)

N O1.y) I:>(X,y) N (x+1.y)

N(X-1,Y-1) N(X,y+1) N(X+1,Y= "

S—

Figure 2: The forward mask of pixel p. The pixel »atterns fc occupancy of regions in
image X and Y are tested between the central pixe! p i, “he n .ghbours n in the ‘forward
mask’ (shaded pixels). The pixels in the ‘backward ma.’-” do not need to be tested because
the patterns have already been visited during the rector = n,

of the shaded elements of the mask .. '~ As the scan progresses, an
accumulator records whether these pati v .s have arisen, and the relabelling
of the region relations is done aftc: *he s an is finished. The form of the
mask is dictated by the fact that the in..ge is scanned top-to-bottom and
left-to-right (no need to look at < p..* n for, e.g., p = (z,y),n = (x,y—1),
since this will already have been deu. “ted when (z,y — 1) played the role of

p, with the pattern p = (z,» 1), n = (z,y)).

3.3. FExtended relations N and P Jx

The NC relation (d- dnition ) describes two regions separated by a one-
pixel gap (Figure 1) T'as ¢ curs when a region is detected as DC and
the pixel patterns ¢ ver v. ~ v oxt-nearest neighbours (the external shell of a
5x5 neighbourhor > show that pixels p (in the neighbourhood centre) and
n (in the shell) are occu, ied by pixels of regions of X and Y, or Y and X,
respectively. Tae YO* relation arises when two 8-connected regions ‘cross’
each other in ~orr er-connected regions, without overlapping or sharing any
pixels (Figr.e 1). ™nch a pattern can commonly arise in the square lattice
and it is ir cerp eted as EC in RCC8D. In practical applications, however such
results can . - un’atuitive (e.g. a linear object crosses another without ever
“passi’ g cthrouga” it) and it might be useful to identify these occurrences.
This i: done | y inspecting 2x2 n and p pixel patterns for exclusive corner-
connecuv. ' v el pairs in relations that have been identified as EC.

5 4. Conolexity analysis and performance
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The old algorithm in [16] uses morphological binary re--mstru *ion to
extract every pair of regions before calculating the relat onal ... ~del held
between them. It has been shown in [21] that morphologic.' = econstruction
is a computationally expensive, highly non-linear proce uce. Its complexity
depends on the number of component /pixels to be re  onstruc ed. Even for
the efficient/best-compromise algorithms [22] it is recc mises that a mean
case complexity analysis would be extremely diff cult *+~ compute because
of the variety of input images that may be used T. ad .ition to utilizing
reconstruction, the computational complexity of .o co: - Ut the old algorithm
(in the worst case scenario) is quadratic, O(nm) (wh.1 m =~ n) because the
relations are computed between all possible reg ~n pe rs (n and m) one at a
time, or subquadratic when m#n. While somc ~horvcuts were identified (e.g.
to avoid computing relations between th~-~ -~ _as that are further away
than two dilations, guaranteed to be DC), «.~ important bottleneck remains
with the binary reconstruction steps : .. ~arv 1o extract the region pairs.

The new Algorithm 1, first, avoids ¢ -t acting individual pairs of regions
into new images to compute the 1. .. *ion: thus avoiding morphological re-
construction altogether. Secondly, it ~ou.putes the RCC5D relation from a
sequence of steps that reduce ti. - «o.~» ity from quadratic to linear yield-
ing to an average case complexity o1 (O(n+m)). In particular, steps 1, 3 and
4 in Algorithm 1 have a coretant-time algorithm of order 1 (O(1)). Step 2
(image labelling) requires a max mum time complexity of O(n+m). Steps
5, 6 and 7 process the ove.’ *npin’, subregions that occur across the two im-
ages. It should be note { that 1 ations PP, PPi and EQ are one to one, and
result in one overlap ‘ing segr.ent per region pair. A worst case scenario
where all the relatic us he. ! » e any of the above (therefore n=m) would lead
to a scaling of th ..~ steps to O(n) which is still less than O(n+m). The
PO relation, however, 15 ~ special case in the sense that a region can have
more than one ove -lapping subregion (with one or multiple other regions).
For instance 1. »ge and convoluted regions could potentially lead to a scaling
higher thar O(n). While is not possible to foresee what regions configura-
tions may oe f und in segmented images, it is nevertheless possible to clarify
the impact « thic unknown, experimentally. In a series of performance tests
on rar iom hinacy images (detailed below) we found that on average, the
numb r of ove lapping subregions across 500 tests (average 7152, maximum
19431 re o) was smaller than the number of regions n4+m (average 11168,
raximu: » 38934). The running time of the proposed algorithm would there-
fc e, on a erage, increase linearly with the total number of regions O(n+m),
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with some exceptional configurations where it could be high~ - depc. ding of
the number and nature of the PO relations. As examine . ex .. ™entally,
situations where this is above the quadratic complexity ot v. ~ old algorithm
appear to be unlikely. The successive forward passes or wie labc'led images
to compute the RCC8D relation set, as well as the € ttendea relations NC
and POx, are of the order O(1) and therefore do not in.~ease che algorithm
complexity.

Figure 3 shows the difference in performance, ir seco ids, of the previ-
ously published [16] and the new algorithms ¢. 512°°712 pixels, random
binary images with varying probabilities, p, of foregi und pixels. The tests
were performed on the ImageJ platform, versi» 1.57 [23] under the Linux
operating system on an Intel Xeon CPU (E31.2%) av 3.1GHz. The plot shows
the average of 5 runs at each p in steps o ® " '_ e average difference over
all p was an improvement of 491 times fas. = than the previous algorithm,
while largest difference was found at © 12 where the new algorithm was
1684 times faster than the old one. The ¥ :cution times appear to be depen-
dent not only on the number of reg. . < pe. image but also on the proportion
of the different types of relations th.t ¢ cur at various p (not shown). A
slight advantage was noticed fo - vi.. ~ 1 algorithm implementation on im-
ages with the highest p, (where only -ery few regions exist, the images being
mostly occupied by one large region), but this difference, in practical terms,
becomes negligible as the xecuti n times in those cases are all at a fraction
of a second.

4. New morpholog.-a! filt' rs: Minimal closing and opening

In addition to he applications of DM in histological imaging [15, 16,
24], the fast algorithm ~mables new MM operators with reasonable speed
performance tc e designed, exploiting the relations between image regions
and the chan; ~s t' ey undergo after other morphological operations.

In MM, “he op ration closing ¢ with a kernel B is defined as the dilation
of a regior , fol’'owed by an erosion [17]:

¢B(X) =aet (X ® B) © B. (12)

Clising is an extensive transformation, where voids in regions, and de-
tai’ ‘thau cwunot contain the translations of kernel B, are filled. Note that
n ereotop Hlogical closure, which refers to a topological operator defined on
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Figure 3: Differences between the @ . -~ ex cution times of the old and new RCC8D

algorithms. The tests were done, on ra.. 'nm binary 512x512 pixel images with varying
foreground pixel probabilities. Each point 15 the average of 5 runs and the vertical bars

r

indicate one standard deviation “.c.. the mean.

a discrete space, does rat co. »s.ond to closing but to dilation in MM, de-
spite the similarity in chei names. When closing binary regions, voids are
filled with the foregro.~ « va’ae. While the rest of this section only deals
with closings, thers is a du.. MM operation with respect to the set comple-
ment, namely op' ning an anti-extensive transform, which instead of filling,
removes those o' ‘~ct pixels that cannot be fully covered by the translations
of kernel B.

Closing is co. monly used to ‘fill in” gaps between nearby regions desired
to be joine 4, t~ fill small holes in regions and to reduce the complexity of
region bc nd .ries (‘shorelines’ from now on). These actions are, however,
not inderende. “ gaps, holes and shoreline irregularities are processed con-
currer cly as “he operation does not differentiate between them. In certain
circun. ‘tances | however, it might be desirable to achieve only one of those
rec .S, e.g., joining nearby regions while avoiding major modifications of the
s oreline details that do not yield a connection to another region. Using
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DM this can be modelled as follows. In MM, the set of pixe' adac ' to the
original region by the closing operator is known as the blar s to- - **):

BTH(X) = ¢5(X) — X. (13)

The black top-hat often consists of a set of discc ‘nected components,
the elements of which we call black top-hat segmen?- In =71 this is defined
immediately following, where BTHg, (Y, X) is reac as 1= a connected com-
ponent of the black top-hat of X’ and BTHgees(X) 15 che s ¢ of black top-hat
segments of X. The relation CC(Y, X) which we . e nere, read as ‘Y is a
connected component of X', is also defined i DM—s: e [15], p 572:

BTHsee (Y, X) =aer  CC(Y,LTH(X)), (14)

BTHsegs(Y7X> —def {'7 l rC(Yv BTH(X))} (15)
The set-builder notation used to define 1 - 1ction BTHgees(X) in definition 15

returns a set of regions, namely th> .’s. 'n DM, however, where a region
rather than a set of regions is require’ as the output of a function?, the set

union operator is added, i.e.,

BTHee (V) | J{Y | CC(Y.BTH(X))}, (16)

and the same principle ap Mies fcr equations 19, 20 and 25. The relation
between Y and X, given BTr., (Y, X), is always EC, that is to say they
are adjacent (externa' v ccaner jed) regions—remembering here that the seg-
ments are the result Jf an. ~teasive transformation. In addition, the segments
could also be adjar _ ~t to other regions in their neighbourhood; if the distance
€ separating pairs of reg’ ~ns is no more than half the width of kernel B, the
black top-hat s gu nts create ‘bridges’ between originally disconnected (i.e.,
DC) regions. ~“he 1 considering region X and all other regions Y in the seg-
mented ims ge, tw black top-hat segment types can arise. First we have
what we c .l s orelines where BTHgporeline(Y; X) is read as Y is a connected
shoreline co. non' nt of the black top-hat of X’. In this case the black top-hat
segmer , ( adjo.as exactly one connected component of X:

4™ mew.. o.ng that in DM, a region can comprise several disjoint, region-parts as well

as being &« “imple region.
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BTHshoreline(Y7X) =def
CC(Y,BTH(X)) & 3ZVU[CC(U, X) & EC(U.". )| < U = Z], (17)

i.e., Y is a connected shoreline component of the black “n-F .t of X if and
only if Y is a connected component of the black cop-*-t of X, and there
exists exactly one connected component of X that = =Ct Y.

The second case is where we have a black to, hat . cment that forms a
bridge between two regions. BTHpyigge(Y, X) is read a. “Y is a black top-hat
bridge of X”:

BTHbridge(}/’ X) =def CC<Y7 BTH(X)) &
3Z,UICC(Z,X) & CC(U, X) & . . “EC(Z,Y) & EC(U,Y)], (18)

which is similar to definition (17) ex >t th ve are now at least two connected
components of X externally connectel to Jhe black top-hat segment Y of X
not one.

The spatial relations that hold L. “ween the black top-hat segments and
the original regions provide~ = means for identifying those which act as
bridges (between DC regic « pairs, and those which do not (and consequently
only modify a region shore.. ~e). " rom this it follows that the black top-hat
segments adjacent to ¢ ily ~ne 1.gion are shoreline modifiers (including hole
filling, when the holes ~an ve fi'ied by the kernel), and those adjacent to more
than one region are pridg. - Qetaining one or another type, (e.g., by means
of binary reconstr « *on [19]), gives rise to two types of conditional minimal
closing, shoreline smooti.’ag without region merging:

(;bséloreline(X) = {Y | BTHshoreline(K X)}7 (19)

and region mer zing without boundary smoothing:

55 (X) = {Y | BTHbriaee(Y, X)}. (20)

Note hat in UCC8D, the notion of shoreline or boundary of a region does
not dific ~»* ate between the ‘outside’ boundary and the boundary with an
ir .ernal ~ole. The DM treatment of region holes is dealt with later in this
pe Der.
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With regards to implementation, the different black top-* * vai. nts are
sorted by an exhaustive analysis of the relations between a’. ori ,..~! regions
versus all black top-hat segments generated after an MM (.~ .ng (i.e., X &
B) & B)). Those results, arranged in an m X n mat .a or ta.le indexed
by regions and black top-hat segments in scan order (1ere na ied the RCC
table), provide a convenient way to search for those sp. -ial - clations. The
DM relation between a given region and a black tc s-hat ~egment can be one
of two, out of the eight possible outcomes of the > U8D region set: either
DC or EC. To identify ‘bridge’ black top-hat se, ment- we use indexing of
the original regions and black top-hat segments in 1. ¢ x and y axis of the
RCC table respectively: the number of EC ins. nces .n a row indicates the
number of different regions a given black to, hat segment is adjacent to.
Black top-hat segments with total EC cor=*~ - _w equal to 1 are therefore
shoreline modifiers (i.e., they are adjacent .~ only one region), while those
instances with counts exceeding 1 arc . ~»anteed to be bridges. As will be
seen comparing Figures 4f and 4g, blac. t)p-hat shoreline segments include
those completely surrounded by a v -*~n; w  call these segments lakes. In DM
this can be defined as follows, where B 1. ', (Y, X) is read as ‘Y is a black
top-hat lake of X’; the definitic + «..>~ he DM definition of a hole defined
later:

BTHiake (Y, ") =der STHeee(Y, X) & Hole(Y, X). (21)

The crucial distincticn be. e | a shoreline and lake black top-hat segment
of a given region is th .t a iake also satisfies what it is to be a hole in that
region which again is .~ ode . in another RCC table indexing regions and
holes. Examples of oinary i. gion merging with minimal shoreline smoothing
and shoreline smr ot1. o without region merging are given in Figure 4.

While black ‘~o-hat segments have the same connectivity as the orig-
inal regions (v.g., ~connected) the minimal closing can be minimised fur-
ther by conside.’ g only the adjacency relations of their 4-connected sub-
component .. The rutionale for this is that retaining a given black top-hat
segment i. <ir dar o adding some background pixels to the foreground. Since
the 8-comnecte ' “oreground convention implies a 4-connected background, it
is pos 1ble to “estrict minimal closing to the 4-connected sub-components of
a giver black - op-hat segment that satisfies the bridge or shoreline properties
der _.ibed carlier and not including the whole black top-hat region. Figure
5 shows 1 1e effect of retaining such 4-connected components in cases of pro-
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Figure 4: Closing and minimal closing of ' ..~ images with a disc of radius 3. The

original greyscale image of lymphocytes stainec wi’ .1 silver nitrate for detection of nucleolar
organising regions (dark spots)(a) was ¢ ment. 1 with the minimum error thresholding
algorithm [25] (b). In (c) the traditional c.s.. ~ (with the added pixels in grey that make
the ‘black top-hat’ (d). Panel (e) shows in n. eenca the black top-hat segments that have
an adjacency relation with more tha.. ~uc . = m in (b), acting as bridges. We call this
operation ‘minimal closing bridges’. Panc’ /f) shows those black top-hat segments that
have adjacency to only one other region in (b) (minimal closing shorelines), while in (g)
are shown the lakes which are F'ack . ~-hat segments that have no connection to the rest
of the background’s subset t' at interst -ts the image boundaries. Panel (h) shows the
traditional opening (with addea , *xels .n grey that make the ‘white top-hat’ (i). Panels
(j-1) shown the minimal oy ning of bi.dges, shorelines and islands respectively.

cessing regions wit! null 1. - cior.
Finally, the d» a1 « ~eration of the closing is opening, T:

Tp(X) =4t (X ©B) @ B, (22)

and the correspo. ling top-hat transformation for the opening is called white
top-hat:

WTH(X) —def X - TB(X)a (23)

which identifi s the segments that were removed from the original after the
opening ~m ation. As before and mirroring definitions for the black top-hat
w : defin. a white top-hat segment Y of region X, and the set of white top-hat
se 'ments of X:
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Figure 5: Closing versus minimal closing. (a* A digitisc.i version of a 4th order von Koch
curve with discontinuities, resulting in 30 fi. me w>. The target is to merge all pieces
into a single region. (b) The classical result us .g morphological closing with a circular
kernel of radius 4 (the smallest kernel t. «. ~losc all gaps). Note the loss of detail in
the result. (c) A minimal closing where the gap. between any two fragments were filled
independently with the smallest ker: . ‘==« 1\ assible until a single region was obtained.
(d) The detail of the minimal closing (. ~ck is the original set, magenta (dark grey in
B/W version) represents the black top-hat segments. (e) and (f) show the same example,
but this time retaining only th- = ~mnected subregions of each black top-hat segment
(BTHgegs in the text) that ac’s as a n =reotopological bridge between fragments. Note
that this closing modifies the ¢ ‘oinal ven less than in (c). (g) shows in green (bright
grey) the part sub-regions ¢ . the bla."" cop-hat segments that were not necessary to retain
to achieve the minimal cl- sing 1.e., +he difference between (d) and (f).

W (Y, X) Zau CC(Y, WTH(X)), (24)

WTHgees(X) = {Y | CC(Y,WTH(X))}. (25)

It is tF eref re possible to implement minimal opening operations as the
dual of mu.. - .al ¢ osing. Note that while opening is an anti-extensive trans-
format’ou, the waite top-hat segments are in relation EC to the regions in the
opene | image that is: WTHe, (Y, X) — EC(Y, T5(X)). The two new dual
minima. "ne ng operations are open shorelines and open bridges, depend-
ir z on which type of white top-hat segments are retained or removed. It is
a. 0 possile to define an additional minimal opening operation that removes
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those white top-hat segments that are DC to all other regior~ ‘n the ~pened
image. We call this procedure opening islands, and its dual. clos ., 'kes. In-
terestingly, these opening islands and closing lakes are equiv. ' nt to opening
and closing by reconstruction, respectively [26]. This - _.yuaence »f morpho-
logical operations combining MM with the explicit rc lations »f DM shows
the potential for defining a variety of fine-grained mo1, holor.cal operators
that target a particular goal. It also highlights t} ¢ im=~rtance of securing
computationally efficient ways to compute and stc = clati ns between pairs
of regions when processing segmented images su " as ‘' use assumed in the
RCC table, where these relations are explicitly used . these new operators.
An example of the advantage of these new op.-ators is shown in Figure 5.
Here connecting fragments in a discontinued c. ~ve can be restricted to places
where the closing leads to fragment conr~~*-= /ithout interference at lo-
cations where the connection is not necessa.” By so doing we preserve the
original as much as possible with a ' . *~amavic loss of global detail than
traditional closing.

Similarly to minimal binary op .‘ng «1d closing, the procedures above
can directly be applied to process gr.vsc. le images via threshold decompo-
sition (although the threshold « - v..;~ ition it is usually an inefficient pro-
cedure). Figure 6 shows examples «* the greyscale versions of the minimal
closing and opening respectivaolv.

5. Discussion

Bloch [11, 9] origiall* sug zested that RCC relations can be defined in
MM, and specificall* pro. des che translation forthe TPP(X,Y) relation [11],
which is equivalen “o ours m [15]. It should be noted that while MM is not
specific about discrete ¢ - continuous space, that is not an exact translation
of the RCC8 T'.-1 relation on discrete space, because RCC presupposes an
infinitely divi. ‘hle sne. Instead, for the case of discrete space, the connections
drawn are v ith t.. RCCS8D relation set of discrete mereotopology.

The ir pler .entation of RCC5D, RCC8D and additional DM relations as
MM procec. - es ¢ pens a range of new opportunities to extend some oper-
ations Lcyond u.eir original design by means of exploiting spatial relations
held t stween egions. This is specially useful when designing analytical pro-
cedures “hat _an benefit from mechanically reasoning about image contents.

The ~pproach presented here allows the results of closing and openings
t¢ be ma le conditional on certain types of modifications which might not

20




474

475

476

477

478

479

480

481

482

483

484

486

Closing

Opening
Original

Opening Opening

Close bridges Close boundari < Cl)se lakes

~

Closing sing

Opening
Open bridges Open bou 4 ries Open islands

-—l

Figure 6: Greyscale minimal closing and op ning. The examples were computed using
a 3 X 3 kernel on a greyscale image . texv. Note (second row) how minimal closing
bridges connect nearby regions without mc “fying the shorelines or filling lakes and how
the closing of lakes does not affect the shoreline features. The open bridges procedure
leads to fragmentation of regio» 5 in tu original without affecting other shoreline features
(compared to open shorelines  while t e opening of islands removes the white top-hat
segments with no adjacency relat.. ~s t, any other patterns at a given grey level.

be straightforward t2 al ieve otherwise or might require more complex ap-
proaches such as v ‘ltiscale operators and directional information [27]. While
conditional filteri.ig is . ~t new, traditional conditional morphological opera-
tors apply their c 'straints in a given local sub-image (given by the kernel).
To replicate t'«is t- pe of filtering region-wise is challenging because classical
methods recuire . dditional processing to account for relations between re-
gions and -onc.tions on these to be met, whereas in DM it is built into its
very founa. “ons.

Thr L.idges, ooundaries, island and lakes regions in relation to opening
and ¢ sing (1.>. the white top-hat and black top-hat segments) have similar-
ities to vhat soille and Vogt call ‘binary patterns’ [28] for which they iden-
tif ed formulae for their computation (and include some additional patterns:
c ve, periorations, branches and loops). For minimal closing and opening,
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however DM has the advantage of being able to relate, via *>~ RU"" table,
which original regions are adjacent to those segments and t".ere! ... ~pen the
possibility to control algorithmically whether segments arc * .cluded or re-
moved from particular configurations of regions. That ,cald weald require
further computation in the approach presented in [28]

There has been interest in other types of conditions™ npe~ stions, for ex-
ample homotopic sequential filtering to preserve ’ae tr-ology of an image
[29, 30] or multiscale top-hat transforms to improve ir age ¢ »ntrast [31]. Here
we described how processing can be applied to (>angec~ Uf regions or across
regions. A number of new uses for DM via MM has . =en recently identified
in applications that require dealing with moa.'~ whr ;e image regions fulfil
specific spatial relation between their parts |.% 24, 32]. Such models com-
monly arise in histological imagery, wher~ *~*--' __ regions represent regions
with special biological meanings (such as c.''s, nuclei, tissues, organs) that
not only can be distinctly detected, bt . '~ exist in specific spatial relations
and hierarchies. Such relations need tc¢ b . fulfilled if the extraction of bio-
logically relevant information from .. ages 's to be related to a given context
in terms of ontological levels of orgar.’sav.on [33]. On a different kind of ap-
plication, Cointepas [34] propo. -« I~ e of MM combined with adjacency
relations to construct homotopically “eformable cellular models and resolve
complex problems, such as 31 cerebral cortex segmentation, where topology
preservation is essential to yield n t only accurate but anatomically plausible
results.

The procedures pre ented he e stem from our work in histological imag-
ing using digital ima_es c. 2 tissue sections, and as as such are based on
a 2D Cartesian grid reprc »n ation. It would be desirable to further develop
these concepts ar . ~lgorithms in n-dimensions so they can be applied to
e.g. temporal, volumet. ~ and higher dimensional data sets. Furthermore,
alternative sch me such as simplicial complexes (used to represent multidi-
mensional da.>) [5], graphs [36] and hypergraphs [37, 38] (for non-lattice
implemente Jions . MM) might be advantageous for such generalisation to
higher dir .ens’ons.
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