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Abstract 

This paper focuses on the cost analysis of offshore wind 

power system using Modular Multilevel Converter (MMC) 

based HVDC or Modular Multilevel Matrix Converter (M
3
C) 

based fractional frequency transmission (FFT). Capital 

investment and long-term costs due to unavailability, 

Operation & Maintenance and power loss are analysed. The 

total cost is broken down into elements and those have larger 

impact on the overall cost are highlighted. Cost comparison 

between the two technologies is presented. Economical 

breakeven distance is analysed for schemes with different 

power ratings. In addition, sensitivity analysis is conducted 

considering discount rate, energy price, capacity factor, wind 

farm life time and wind turbine type to gain insight into the 

overall cost. 

1 Introduction 

UK is leading in offshore wind energy development. 

Considering the extensive exploitation of near-coast wind 

resource, future offshore wind development will move further 

offshore with higher voltage level and larger capacity. In 

terms of high power converter, Modular Multilevel Converter 

(MMC) and Modular Multilevel Matrix Converter (M
3
C) are 

two promising candidates with various technical merits, e.g., 

low harmonics, low switching loss and flexible scalability. 

The schematic diagram of a MMC-HVDC system is shown in 

Figure 1(a). It does not suffer from charging current and has 

lower cable loss. It is considered as an ideal technology for 

long distance power transmission. Figure 1(b) shows a M
3
C 

fractional frequency transmission (FFT) system. The principle 

is to use a proportion of the system frequency, mostly 1/3 for 

the generation side, for power transmission. In this way the 

charging current is greatly reduced so that more active power 

can be transmitted. Although MMC and M
3
C share some 

advantages, without a DC link, M
3
C is a direct AC-AC 

converter also with fast decoupled control capabilities and 

there is no offshore converter station. More details on 

technical aspect are available in the literature [1, 2]. 

 

This paper focuses on cost analysis and comparison between 

MMC and M
3
C technologies. Before modular multilevel 

devices got popular, early cost analyses often adopted 

cycloconverter as the frequency changer in FFT. However, it 

was later proven as unsuitable for offshore wind applications 

due to defects of poor controllability, severe harmonics and 

unsatisfactory fault ride through ability [3]. In [4], a 

comparison is carried out between the traditional HVAC and 

HVDC. A cost model is developed in [5] to analyse the 

investment cost for offshore wind power.  [6] studies the 

economic aspect for cycloconverter based FFT system. 

However, many researches focus only on capital investment 

or neglect the time effect of the costs. Considering that the 

life time of an offshore wind power system is usually 

designed as 20-25 years, long-term costs can add up to be 

considerable. Therefore, to take this effect into account, all 

the cost terms are explored and modelled in section 2. 

Necessary data are collected and presented. Cost comparison 

is conducted through case studies in section 3 and sensitivity 

analysis is performed in section 4. 

 

Figure 1: Schematic diagrams of offshore wind connection 

via: (a) MMC-HVDC (Left), and (b) M
3
C-FFT (Right) 

2 Cost Analysis for Offshore Wind Power 

Transmission System 

The total cost of an offshore wind power system can be 

divided by components (wind turbine, transformer, cable and 

converter station) or by the nature of the cost (capital, 

unavailability, Operation & Maintenance (O&M) and power 

loss). According to the latter, the total cost can be calculated 

as: 

 𝐶𝑠𝑦𝑠  =  𝐶𝐶𝐴𝑃_𝑠𝑦𝑠 + 𝐶𝑈𝐴_𝑠𝑦𝑠 + 𝐶𝑂𝑀_𝑠𝑦𝑠 + 𝐶𝑃𝐿_𝑠𝑦𝑠 (1) 

where 𝐶𝐶𝐴𝑃_𝑠𝑦𝑠 , 𝐶𝑈𝐴_𝑠𝑦𝑠 ,  𝐶𝑂𝑀_𝑠𝑦𝑠  and 𝐶𝑃𝐿_𝑠𝑦𝑠  correspond to 

the capital cost (CC), unavailability cost (UC), O&M cost 

(OMC) and power loss cost (PLC) of the system respectively. 

Among those, UC, OMC and PLC are long-term costs 

throughout the whole project life. To convert them into net 

present cost (NPC), Equation  (2) is used [7] : 

 𝐶𝑁𝑃𝐶  =  𝐶annual

(1 + 𝑖)𝑛 − 1

𝑖(1 + 𝑖)𝑛
 (2) 

where 𝐶annual is the annual cost, n is the project life in year 

and 𝑖 is the discount rate. The detailed division of the cost can 

be seen in Table 1.    
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Table 1: Cost decomposition of an offshore wind power system

2.1 Capital Cost 

Wind turbines capital cost includes manufacture, 

transportation, installation and foundation construction. It 

varies from project to project, and due to confidentiality, data 

that are publicly available are scarce. Two popular wind 

turbine types nowadays are doubly-fed induction generator 

(DFIG) and permanent magnet synchronous generator 

(PMSG). According to the National Renewable Energy 

Laboratory (USA), offshore wind turbine project cost is 

approximately £1m/MW [8]. However it does not clarify 

costs of specific types of wind turbines. [9] gives reference 

costs on typical turbine types, with DFIG at £1.8m/MW and 

PMSG at £1.55m/MW. As the technology gets increasingly 

mature, the price drop of wind turbines is anticipated. Except 

that the price of PMSG also depends on the price of the 

expensive rare earth magnets it needs. According to [10], the 

cost structure of a DFIG can be presented as Figure 2. The 

study indicates that when the DFIG operates at fractional 

frequency, the gearbox ratio can be decreased to one third, 

and the weight of the wind tower is also reduced. Accordingly, 

the cost of a DFIG can be 5.2% lower [11]. This influence 

when operating at fractional frequency is neglected for PMSG 

in this paper as most PMSGs at present are direct-driven. 

However, it should be pointed out that the newest 8-10 MW 

PMSG has employed one level gearbox [12], and 

consequently there is potential benefit for PMSG as well. 

 
Figure 2: Cost breakdown of a DFIG wind turbine 

For transformer platform and converter stations, their average 

costs can be found in [13] and they are listed in Table 2. 

Transformer at fractional frequency is bulker and heavier and 

based on the calculation result from [14] the price is hence 75% 

more expensive. Capital cost of the onshore converter station 

covers land use, building, valves etc. M
3
C consists of full-

bridge submodules and according to [15], full-bridge 

converter leads to 20% more expensive of the converter 

station compared to half-bridge counterpart. In addition, there 

are nine instead of six arms located in the onshore converter 

station. As a result, the cost of the onshore M
3
C station is 

approximated to be 1.8 times as the onshore HVDC converter 

station.  

The cable capital cost can be expressed as: 

 𝐶𝐶𝐴𝑃_𝑐𝑎𝑏  =  𝑛𝑐𝑎𝑏 ∙ 𝑙𝑐𝑎𝑏 ∙ 𝑐𝑐𝑎𝑏  (3) 

where  𝑛𝑐𝑎𝑏  is the number of cable sets, 𝑙𝑐𝑎𝑏  is the cable 

length (km) and 𝑐𝑐𝑎𝑏  is the unit price of cable (£m/km). 

Power rating and transmission length determine the choice of 

submarine cable. For AC cables, the main disadvantage is the 

charging current and it limits the maximum distance the cable 

can transmit. FFT significantly reduces the required charging 

current and hence enhances the transmission capability. [16] 

indicates that AC cable at 220 kV is able to transmit 500-600 

MW to 300-400 km away in case of FFT and with reactive 

compensation. Cable costs of HVDC and FFT are available in 

[17] and they are extracted and shown in Table 2. Besides, 

compensation costs for AC cables are collected from [18] and 

they can be plotted as Figure 3. For the sake of simplicity, it 

is considered to be linear versus the transmission length.    

Component Capital Cost 

DFIG £1.8m/MW 

DFIG at fractional frequency £1.7m/MW 

PMSG £1.55m/MW 

Offshore transformer (plus platform) £0.129m/MW 

Offshore transformer FFT (plus platform) £0.194m/MW 

Offshore Converter Station £0.254m/MW  

Onshore Converter Station £0.107m/MW 

Onshore M3C Station £0.171m/MW 

AC Cable (FFT)  

132 kV (0-300 MW) £0.86m/km 

220 kV (300-600 MW) £1.00m/km 

400kV (600-1000 MW) £2.15m/km 

DC Cable  

±150 kV (0-500 MW) £0.785m/km 

±300 kV (500-1000 MW) £1.015m/km 

Table 2: Capital cost of offshore wind components 

 
Figure 3: Compensation cost for different voltage ratings 
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2.2 Unavailability Cost 

Unavailability cost corresponds to the energy not supplied to 

the grid due to unavailability of the offshore wind power 

system. According to the definition of IEC 61400 standard 

[19], unavailability is the percentage between the system 

unavailable time and the total time of the study timeframe, 

which can be described as (4) on an annual basis: 

 𝑈𝐴𝑠𝑦𝑠  =  
𝑡𝑈𝐴_𝑠𝑦𝑠

𝑇𝑦𝑒𝑎𝑟

× 100% (4) 

where 𝑈𝐴𝑠𝑦𝑠 is the unavailability of the system, 𝑡𝑈𝐴_𝑠𝑦𝑠 is the 

unavailable time of the system in a year and 𝑇𝑦𝑒𝑎𝑟  equals to 

the total time of a year (8760hrs). The energy not supplied is 

then converted to unavailability cost based on the energy 

price using (5):  

 𝐶𝑈𝐴_𝑠𝑦𝑠  =  𝑈𝐴𝑠𝑦𝑠 ∙ 𝑃𝑟𝑎𝑡𝑒𝑑 ∙ 𝐶𝐹 ∙ 𝐸𝑃𝑤𝑖𝑛𝑑  (5) 

where 𝐶𝑈𝐴_𝑠𝑦𝑠 is the system unavailability cost, 𝑃𝑟𝑎𝑡𝑒𝑑 is the 

power rating of the system, 𝐶𝐹 is capacity factor and 𝐸𝑃𝑤𝑖𝑛𝑑 

is the energy price. Note that unavailability only considers 

unplanned down time, with scheduled maintenance excluded 

from the calculation. Also, it is assumed that when a fault 

happens to one component, the rest of the system will not 

operate. As a result, the system total unavailability is the sum 

of the unavailability of each of the components, which can be 

described as (6). The definition of variables can be found in 

Table 3. 

 𝑈𝐴𝑠𝑦𝑠  =  𝑈𝐴𝑤𝑡 + 𝑈𝐴𝑡𝑟𝑎𝑛 + 𝑈𝐴𝑐𝑎𝑏 + 𝑈𝐴𝑐𝑜𝑛 (6) 

Symbol Quantity Value (%)  

𝑈𝐴𝑤𝑡 Unavailability of wind turbine / 

𝑈𝐴𝑃𝑀𝑆𝐺 Unavailability of PMSG 2.57 

𝑈𝐴𝐷𝐹𝐼𝐺 Unavailability of DFIG at grid frequency 5.11 

𝑈𝐴𝐷𝐹𝐼𝐺𝐹𝐹 
Unavailability of DFIG at fractional 

frequency 
3.69 

𝑈𝐴𝑡𝑟𝑎𝑛 Unavailability of transformer 0.59 

𝑈𝐴𝑐𝑎𝑏 Unavailability of cable per 100km 0.18 

𝑈𝐴𝑐𝑜𝑛 Unavailability of converter station / 

𝑈𝐴𝑚𝑚𝑐_𝑜𝑛 
Unavailability of MMC HVDC onshore 

converter station 
0.35 [23] 

𝑈𝐴𝑚𝑚𝑐_𝑜𝑓𝑓 
Unavailability of MMC HVDC offshore 

converter station 
0.8 [24] 

𝑈𝐴𝑚3𝑐 
Unavailability of M3C onshore converter 

station 
0.52 

Table 3: Unavailability of offshore wind components 

Gearbox, generator, rotor blade and converter electronics 

make up most of the unavailable time of a wind turbine [20]. 

Their annual failure rates and downtimes are presented in 

Table 4. Annual unavailable time equals to the product of the 

failure rate and downtime.  

Failure Rate(per year) PMSG DFIG Downtime(/days) 

Gearbox / 0.185 42 

Generator 0.046 0.123 32 

Rotor Blade 0.16 0.16 42 

Converter Electronics 0.593 0.106 2 

Table 4: Reliability of wind turbine components [20, 21] 

From Table 4, it can be seen that PMSG has a much higher 

converter electronics failure rate than DFIG. This is due to the 

larger size and rating of PMSG’s fully rated converter than 

DFIG’s partially rated converter. As previously discussed, 

gearbox can be significantly simplified when the wind turbine 

operates at fractional frequency. It is assumed that the failure 

rate of the gearbox would drop to one third of the original.  

 

For transformer, cables and converter stations, unavailability 

data are gathered and presented in Table 5. Transformer at 

fractional frequency has been used in railway networks in 

plenty of countries for over a century [22]. It is therefore 

considered as reliable as the transformer operating at grid 

frequency. The calculation of a multilevel converter is based 

on the assumption that its availability depends on proper 

function of all arms. A fault in one arm will lead to 

unavailability of the converter. Calculation results of 

unavailability are given in Table 3.  

Component 
Failure Rate(per 

year) 
Downtime(/hours) 

Transformer  0.024 2160 

AC Cable(/100km) 0.1114 1440 

DC Cable(/100km) 0.1114 1440 

Table 5: Reliability of transformers and cables [13] 

2.3 Operation & Maintenance Cost 

The O&M cost of offshore wind power system usually 

includes accounting expenses, labour, rent, insurance, 

component expenses, travel and vessel expenses etc. [25]. 

The actual cost is case-dependent as each wind farm has 

different geographical condition and accessibility. 

Maintenance strategy, availability of professional crew and 

vehicle (vessel/helicopter) and weather condition play 

decisive roles in offshore wind O&M. In cost analysis studies, 

the annual O&M cost is often approximated as a percentage 

of the capital expenditure [26, 27]. This ratio can be 

calculated as:      

 𝑘𝑂&𝑀  =  
𝑐𝑂&𝑀_𝑠𝑦𝑠

𝐶𝐶𝐴𝑃_𝑠𝑦𝑠

× 100% (7) 

where 𝑘𝑂&𝑀 is the O&M cost ratio and 𝑐𝑂&𝑀_𝑠𝑦𝑠 is the annual 

cost of O&M. The O&M ratios for different components of 

an offshore wind power system are available in [8, 13] and 

they are presented in Table 6. 

Component O&M Ratio(/ year) 

Wind Turbine  3.4% 

Offshore Converter Station 2%  

Onshore Converter Station 0.7%  

Submarine Cable 2.5%  

Offshore Transformer 0.15% 

Table 6: Annual O&M ratio of offshore wind components 

2.4 Power Loss Cost 

Power loss in an offshore wind power system can be in form 

of mechanical loss, copper loss, iron loss and power 

electronic loss. The loss is then converted to cost based on the 

energy price:  

 𝐶𝑃𝐿_𝑠𝑦𝑠  =  𝑃𝐿𝑠𝑦𝑠 ∙ 𝑇𝑟𝑎𝑡𝑒𝑑 ∙ 𝑃𝑟𝑎𝑡𝑒𝑑 ∙ 𝐸𝑃𝑤𝑖𝑛𝑑 (8) 
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where 𝑃𝐿𝑠𝑦𝑠 is the power loss percentage of the whole system 

and 𝑇𝑟𝑎𝑡𝑒𝑑  is the scheduled operation time at rated power 

annually. For wind turbine, converter electronics loss is 

primary in PMSG due to its bigger converter rating but 

mechanical loss is small due to low rotor speed. Contrarily, 

mechanical loss, especially gearbox loss is a main source of 

DFIG losses. Detailed calculations of losses of wind turbines 

can be found in [28]. Results are listed in Table 7. Gearbox 

loss at fractional frequency is estimated to be one third of the 

original.  

 

Losses of transformer are mainly current heating losses in 

transformer windings and losses from magnetizing current in 

the core. For simplicity, the power loss ratio of transformer at 

fractional frequency is assumed to be unchanged. The 

discrepancy this simplification brings is negligible since 

transformers have very high efficiency [29]. In Table 7, it can 

be confirmed that the main losses come from other 

components in the system. 

 

The loss of DC cable primarily depends on active power 

current. However for AC cable, cable capacitance produces 

reactive current. Together with active current, AC cable has 

higher power loss than DC cable. Detailed calculations of 

cable power losses can be found in [18, 30]. Results show that 

for 100 km cables, power loss for AC cable lies between 3-5% 

of the wind power system production, while DC cable is only 

0.5-2.5%.  

 

Converter losses are mainly switching losses and conduction 

losses. For MMC-HVDC, the half-bridge valves add up losses 

of approximately 1% per converter station. In terms of full-

bridge valves in M
3
C, the switching loss remains the same as 

half-bridge submodules while the conduction loss doubles 

[31]. Result gives that M
3
C power loss is 1.95%.     

 

Component Power Loss (%) 

PMSG 6.4 

DFIG 5.0 

DFIG at fractional frequency 3.0 

Transformer 0.8 

AC Cable (100 km) 3.0-5.0 

DC Cable(100 km) 0.5-2.5 

Offshore Converter Station 1.0 

Onshore Converter Station 1.0 

Onshore M3C Station 1.95 

Table 7: Power loss of offshore wind components 

3 Cost Comparison between MMC and M3C: 

Two Case Studies 

3.1 Case Study1: Lower Power Rating 

In case study 1, the power rating is selected to be 500 MW 

and costs of both MMC-HVDC and M
3
C-FFT are calculated 

based on the analysis in section 2. PMSG is chosen and other 

parameters are listed in the appendix. To explore what the 

total costs are made up of, cost constituents are plotted in 

Figure 4. As can be seen, two technologies share some 

similarities. Despite the choice of transmission technology, 

around half of the total cost of an offshore wind power system 

is spent on the purchase, installation and testing of the wind 

turbines. O&M cost ranks second with slightly less than 20%. 

Power loss cost has relatively small percentage (less than 

10%) and unavailability cost has the smallest percentage. In 

terms of differences, M
3
C-FFT has more expensive cable and 

offshore transformer, while MMC-HVDC is featured by the 

larger expense on converter stations.    

 
Figure 4: Cost constituents of 500 MW wind power systems 

at 100 km: (Left) MMC-HVDC, (Right) M
3
C-FFT 

To determine the economical distance for both technologies, 

the total costs versus distance are plotted in Figure 5. It shows 

that the breakeven distance is 109 km, before which M
3
C-

FFT costs less and after which MMC-HVDC is cheaper. The 

reason can be explained using Figure 6. The cost differences 

(MMC-HVDC minus M
3
C-FFT) are plotted before and after 

the breakeven point in this figure. At short distance, the 

capital cost of the offshore converter station is prominent. 

And compared to converter station power loss, AC cable loss 

is larger. So MMC-HVDC has positive capital cost difference, 

negative power loss cost difference and positive total cost 

difference. However, as distance gets longer, the AC cable 

capital, O&M and power loss costs all rise. The increase is 

significant enough to cancel out the unavailability and O&M 

cost advantages. Hence, the total cost difference becomes 

negative and MMC-HVDC becomes more economical at long 

distance. 

 
Figure 5: Total cost versus distance at 500 MW 

 
Figure 6: Cost differences at 100 km and 120 km 
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3.2 Case Study2: Higher Power Rating 

In case study 2, parameters remain the same except that the 

power rating is increased to 1 GW. Cost constituent 

percentages are similar so it is not depicted again due to space 

limit. Total costs are plotted in Figure 7 so that cost effective 

range can be studied. As can be seen, the breakeven distance 

is pushed closer to 63 km. At such a short distance, the 

traditional HVAC transmission has advantage over M
3
C-FFT 

due to no converter station cost and smaller offshore 

transformer platform. In other words, M
3
C-FFT may not have 

economical distance range at all in this case. The root reason 

is that the AC submarine cable for high power rating is too 

expensive compared to the DC cable. In this case it becomes 

so dominant that the economic advantage gained from other 

aspects is rapidly diminished as distance grows.    

 
Figure 7: Total cost versus distance at 1 GW 

4 Sensitivity Analysis  

It should be admitted that the offshore wind power industry is 

still developing dramatically. Consequently, sensitivity 

analysis is necessary to investigate how the parameters 

change would affect the cost analysis and the selection of the 

more economical technology. In this section, sensitivity 

analysis is performed considering discount rate, energy price, 

capacity factor, wind farm life time and wind turbine type. 

Results are shown in Figure 8. 

 

The choice of discount rate can be influenced by the inflation 

rate, profit return ability of the project and the risk of the 

investment. As discount rate gets higher, the capital cost 

becomes more decisive. This fact magnifies the weakness of 

the AC submarine cable which has been discussed in section 

3.1. Therefore, the breakeven distance decreases. Also, 

increased energy price brings down the breakeven distance. 

Both unavailability cost and power loss cost are related to 

energy price. However, the percentage of unavailability cost 

is much smaller than that of power loss cost. And more 

importantly, AC cable power loss grows with length but 

unavailability cost difference is not sensitive with length 

changes. Hence, higher energy price leads to shorter 

breakeven distance. Regarding capacity factor, higher value 

induces larger unavailability cost of MMC-HVDC. 

Nevertheless, higher capacity factor also means higher 

average wind speed or longer operation time, which enhances 

the power loss cost of AC cable more significantly. Overall, 

the breakeven distance has a descending trend. In terms of 

wind farm life time, change of it only affects long-term costs.    

MMC-HVDC has higher unavailability cost due to an extra 

converter station, it also has higher O&M cost around the 

breakeven distance but lower power loss cost. The overall 

annual cost narrowly surpasses M
3
C-FFT. As a result, longer 

project life time favors M
3
C-FFT but to a very small extent. If 

DFIG is selected as the wind turbine type, breakeven distance 

would be pushed much further to almost 300km because of 

savings from wind turbine costs on capital, unavailability, 

O&M and power loss.   

 

 

 
Figure 8: Sensitivity analysis of the wind power system 

5 Conclusions 

This paper has presented a detailed cost analysis on offshore 

wind power system and provided cost comparisons between 

MMC-HVDC and M
3
C-FFT. For both technologies, wind 

turbine capital cost takes up around half of the total project 

cost. O&M cost ranks second at about 20% of the total project 

cost. At several hundred MW scale, M
3
C-FFT is a promising 

solution at medium distance for offshore wind transmission. It 

is mainly hampered by the disadvantages of expensive AC 

cable, higher cable loss and bulker offshore transformer. The 

disadvantages of MMC-HVDC come from the offshore 

converter station on capital expense, higher chance of 

unavailability, extra O&M and power loss. For long distance 

transmission, it is still an ideal solution as the merits on DC 

cable compensate for its weaknesses. In the sensitivity 

analysis, it is found that increasing discount rate, energy price 

or capacity factor would lead to shorter breakeven distance 

between MMC-HVDC and M
3
C-FFT.  Change of discount 

rate is less sensitive compared to energy price or capacity 

factor. Wind farm life time is the least significant among all 

factors. The economic strength of M
3
C-FFT is optimised 

when partnering with DFIG wind turbines. It is the cost-

effective solution even at around 300 km. 

6 Appendix: Parameters for Case Studies 

Symbol Quantity Value   

𝐶𝐹 Capacity factor 40% [32] 

𝑇𝑟𝑎𝑡𝑒𝑑 Rated operation time 2500hrs [32] 
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𝑖 Discount rate 5% [7] 

𝐸𝑃𝑤𝑖𝑛𝑑 Offshore wind energy price £50/MWh [33] 

𝑛 Project life 20 years 
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