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Abstract

We are proposing a method for identifying whether the observed behaviour of a

function at an interface is consistent with the typical behaviour of a particular

programming language. This is a challenging problem with significant potential

applications such as in security (intrusion detection) or compiler optimisation

(profiling). To represent behaviour we use game semantics, a powerful method of

semantic analysis for programming languages. It gives mathematically accurate

models (‘fully abstract’) for a wide variety of programming languages. Game-

semantic models are combinatorial characterisations of all possible interactions

between a term and its syntactic context. Because such interactions can be

concretely represented as sets of sequences, it is possible to ask whether they

can be learned from examples. Concretely, we are using LSTM, a technique

which proved effective in learning natural languages for automatic translation

and text synthesis, to learn game-semantic models of sequential and concurrent

versions of Idealised Algol (IA), which are algorithmically complex yet can be

concisely described. We will measure how accurate the learned models are as

a function of the degree of the term and the number of free variables involved.

Finally, we will show how to use the learned model to perform latent semantic

analysis between concurrent and sequential Idealised Algol.
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1. Programming languages and machine learning

Software systems often consist of many components interacting via APIs,

which can be internal to the language (e.g. libraries, modules) or external

(w.g. Web APIs). The final process in producing such a system is usually the

“linking” of several object files into one (or several) binary executable(s). Since

the linker does not have access to the source files it is a reasonable, and very

difficult, question to ask whether the object code in those files originates from an

assumed programming language via correct compilation. This is an important

question to ask in many contexts: compiler correctness, compiler optimisation,

tamper-proofing, intrusion detection, and more. In this paper we propose a

simple black-box approach to answering this question, based on game semantics

and machine learning.

Programming language semantics, the way we ascribe meaning to program-

ming languages, comes in different flavours. There is the operational approach,

which consists of a collection of effective syntactic transformations that de-

scribes the execution of the program in a machine-independent way (see [39]

for a tutorial introduction). There is also the denotational approach, in which

subprograms (terms) are interpreted, compositionally on syntax, as objects in

a mathematical semantic domain (see [44] for an introduction). The two ap-

proaches are complementary, and both have been studied extensively. Most

commonly, especially for most ‘real life’ programming languages, there is an-

other, ad hoc, approach of specifying a language, through a compiler, often

informally described in a ‘standard’.

Relating operational and denotational models is a mathematically difficult

but worthwhile endeavour. Term equality is operationally defined in a way

which is almost unworkable in practice: contextual equivalence. By contrast,

term equality in the denotational model is just equality of the denoted math-

ematical objects. As a result, denotational models are presumably handy in
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applications where equality of terms is important, such as compiler optimisa-

tions. When contextual equivalence coincides with semantic equality the model

is said to be fully abstract, a gold standard of precision for a denotational model.

Constructing fully abstract denotational models even for relatively simple higher

order (PCF [42]) or procedural (Algol [36]) languages turned out to be a dif-

ficult problem, extensively studied in the 1990s. Many interesting semantic

developments emerged out of this concerted effort, including game semantics, a

technique which finally gave the first such fully abstract models first for PCF [1]

and Algol [3] then for many other programming languages [16].

Relating any mathematical (operational or denotational) model to the de

facto ‘model’ which is the compiler is a much different proposition. Whereas

constructing a compiler from a mathematical specification is an arduous but

achievable task, what we want to consider is the converse question. Given a

compiler, could we, at least in principle, construct a semantic model of the

language? What is the right avenue of attack for this daunting problem?

A compiler is in some sense a formal specification. However, the compiler

as a specification does not help us reason about basic properties of terms, such

as contextual equivalence. How can we extract a more conventional kind of

semantics? On the face of it, the question may seem preposterous at worst,

unanswerable at best.

Operational semantics (OS), the workhorse of much applied programming

language theory, seems an unsuitable candidate for this job. Much like structural

models of natural language, the rules of OS have a syntactic intricacy which can-

not be hoped to be reconstructed from behavioural observations. Noting that

recent progress has been achieved in learning the structural semantics of natu-

ral languages [23], operational semantics of programming languages cannot take

advantage of these methods. For example the basic beta-reduction rule present

in some form in all functional languages requires a complex form of substitu-

tion which assumes the concepts of binder, free variable and alpha equivalence.

Denotational semantics on the other hand seems a more plausible candidate

because of its independence of syntax. A final key observation is that some de-
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notational models can be mathematically elementary. This is true of trace-like

models in general [14] and game semantic models [5] in particular. In fact one

can think of game semantics as compositional trace models suitable for higher

order programming languages. This seems to give us a foothold in attacking

the problem. If a model can be specified simply as a set of traces subject to

combinatorial constraints, perhaps such models can be machine-learned using

techniques that proved successful in the learning of natural languages.

For tutorials and surveys of game semantics the reader is referred to the

literature [4, 16]. The basic elements of a game semantics are moves, with a

structure called an arena. Arenas are determined by the type signature of the

term and consist of all the possible interactions (calls and returns) between

a term and its context. Sequences of interactions are called plays and they

characterise particular executions-in-context. Finally, terms are modelled by

sets of plays called strategies, denoting all possible ways in which a term can

interact with its context.

Certainly, not all interactions are possible, so plays are constrained by legal-

ity conditions. Conversely, strategies are subject to certain closure conditions,

such as prefix-closure, stipulating that if certain plays are included so must be

other ones. Because all features of a game semantic model are combinatorial

properties of sequences (plays) or sets of sequences (strategies), using machine

learning to identify them is no longer a preposterous proposition. The question

certainly remains whether these properties can be learned and how accurately.

In this paper we present two sets of computational experiments focussing

on the learnability of known game semantic models of two similar programming

languages. We first look at the intrinsic learnability of the language, automati-

cally creating models from positive examples of legal plays, tested against sets of

plays which are slightly modified so that to become illegal. The second experi-

ment uses the learned models to perform latent semantic analysis [30] on the two

languages, attempting to determine the provenance of a set of legal plays. These

experiments are repeated both for a precise and approximate representation of

the game model.
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To learn the model we use neural networks, more precisely long short-term

memory neural nets [26] (LSTM), which proved to be highly successful in auto-

mated translation [45] and text synthesis [13]. The results are surprisingly good,

with the trained net being able to reliably discriminate both between legal and

illegal plays, and between legal plays from two slightly different programming

languages. Moreover, the neural net had a standard architecture and, rela-

tive to LSTMs used in natural language processing, was quite small. Training

converged rapidly, requiring relatively modest computational resources.

These positive results should be received with cautious optimism. Method-

ologically, a strong case can be made that game semantics gives a possible angle

of attack on the machine-learning problem for programming languages, com-

pared to operational or other denotational programming language semantics

(e.g. domain-theoretic [2]). Moreover, it appears that the algorithmically com-

plex combinatorial patterns which characterise the legality of game models are

learnable enough to be able to reliably distinguish between legal plays and plays

with small illegal irregularities and between plays belonging to slightly different

languages.

Of course, the resulting model is opaque and cannot serve as a basis for

true understanding of a language, but it could be the starting point of a deeper

automation of certain programming language processes which require an ef-

fective, even if opaque, semantic model to distinguish between legal (possible)

behaviour and illegal (impossible) behaviour. Activities such as testing, fuzzing,

or compiler optimisations fall within this broad range.

A possible objection to our approach is that we generate training data sets

from a known semantic model, whereas our stated initial problem referred to

languages ‘in the wild’ which have no such models. To respond, there is no sub-

stantial difference between generated plays from a known model and collecting

interaction traces from instrumented real code, using some form of time-stamped

profiling – that is the consequence of the full abstraction result for the model.

But this process is far more laborious than producing the traces from a known

model. A known model has other advantages compared to using unknown code.
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Models of IA, both sequential and concurrent, have been studied algorithmically

and are known to be complex, so the learning problem is non-trivial [34, 19].

For a controlled experiment in learnability ours is a suitable methodology, and

the results indicate that applying the technique to real languages has potential.

2. Idealised Algol (IA)

For the sake of a focussed presentation we shall look at two variations on

the programming language Idealised Algol (IA) [43]. IA is suitable for this

experiment for several reasons. To begin with, it is a family of well-studied

programming languages having at their core an elegant fusion of functional and

imperative programming. We will concentrate in particular on two members of

this family, Abramsky and McCusker’s version of sequential IA [3] and Ghica

and Murawski’s version of concurrent IA [20]. Both these languages have math-

ematically precise (fully abstract) game semantics which have an underlying

common structure which makes it possible, but not trivial, to compare them.

Finally, from a pragmatic point of view, the models themselves are elegant, can

be presented concisely, and lend themselves well to computational experimen-

tations.

IA has basic data types, such as integers and booleans, with which three

kinds of ground data types are constructed: commands (unit), local variables

(references) and expressions. Function types are uniformly created out of these

ground types. The terms of the language are those common in functional (ab-

straction and application, recursion, if expressions, arithmetic and logic) and im-

perative (local variables, assignment, de-referencing, sequencing, iteration). A

peculiarity of IA, which sets it apart from most commonly encountered program-

ming languages is the fact that it uses a call-by-name mechanism for function

application [41]. For technical reasons, the IA we study here allows side-effects

in expressions and admits a general variable constructor in which reading and

writing to a variable can be arbitrarily overloaded. Concurrent IA, as described

here, uses the same types plus a new type for binary semaphores, along with new
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terms for parallel execution of commands and semaphore manipulation. Both

languages have the type system of the simply-typed lambda calculus, with all

language constants definable as (possibly higher-order) constants.

2.1. Game Semantics

In game semantics the element of interaction between a term-in-context and

the context is called a move. Interactions characterising any particular execution

are called plays. All possible interactions with all possible contexts are called

strategies.

Moves happen in arenas, mathematical structures which define the basic

causal structures relating such actions.

Definition 1 (Arena). An arena A is a set M equipped with a function λ :

M → {o, p} × {q, a} assigning each move four possible polarities and a relation

` ⊆M ×M called enabling.

The four polarities are opponent/proponent and question/answer.

Arenas are used to give interpretion to types.

Definition 2 (Base arenas). The arenas for unit and boolean are:

unit : M = {q, a}, λ = {(q, oq), (a, pa)}, ` = {(q, a)}

bool : M = {q, t, f}, λ = {(q, oq), (t, pa), (f, pa)}, ` = {(q, t), (q, f)}.

The significance of the question q is that a computation is initiated and

of the answer a (or, respectively t or f) is that a result is produced. The

enabling relation establishes that the answer must be justified by the asking

of the question. The interpretation of the opponent/proponent polarity is that

‘proponent’ moves are initiated by the term whereas ‘opponent’ moves by the

context. As we can see, for computation at base types the computation is

initiated via questions asked by the opponent, i.e. the context, and terminated

via answers provided by the proponent, i.e. the term.

Definition 3 (Initial move). The set of moves without an enabler are called

initial moves.
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In both arenas above the set of initial moves is I = {q}. Arenas with multiple

initial moves correspond to product formation, where the two initial questions

correspond to computing the two projections.

From the basic arenas, composite arenas may be created, for example for

function type A⇒ B from arenas for A and B is defined as

Definition 4 (Composite arena).

A = 〈MA, λA,`A〉

B = 〈MB , λB ,`B〉

A⇒ B = 〈MA ]MB , λ
∗
A ] λB ,`A ] `B ] (IB × IA)〉,

The function λ∗ is only λ but with the o and p polarities reversed. The

significance of this polarity reversal is that in the case of arguments to a function

the term/context polarity of the interaction becomes reversed. Enabling for

function arenas relates not only moves in the two component arenas, but also

each initial move in the argument A to each initial move in the return type B,

indicating that arguments may be invoked only after the function as a whole

has started executing.

For a term in context with type judgement x1 : A1, . . . , xk : Ak ` M : A,

the arena in which it is interpreted is A1 ⇒ · · · ⇒ Ak ⇒ A.

An interaction corresponding to an execution run of a term-in-context is

called a play, and it is a sequence of pointed moves subject to correctness condi-

tions which will be discussed later. A pointed move is an arena-move equipped

with two names (in the sense of [40]), the first one representing its ‘address’ in

the sequence and the second one is ‘the pointer’, i.e. the address of an enabling

arena-move which occurs earlier in the sequence [15].

Example 1. The typical play in the interpretation of sequential composition

seq : unit3 → unit2 → unit1 is

q1n1 ? ·q3n2n1 · a3n3n2 · q2n4n1 · a2n5n4 · a1n6n1.

This sequence of actions is explained as follows: start computation (q1), ask

first argument (q3, justified by initial question n1), receive result (a3, justified by
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preceding question), ask second argument (q2, justified also by initial question

n1), receive result (a2, justified by preceding question), indicate termination

(a1, justified by initial question n1). Pointers are usually represented diagram-

matically by drawing an edge between moves with equal pointer names, then

eliding the pointer names:

q1 q3 a3 q2 a2 a1

Because the actual correctness conditions for plays are language-specific we

will present them separately for sequential and concurrent IA, bearing in mind

that everything up to this point is shared by the two.

2.2. Plays for sequential IA

Given a justified sequence s in an arena A the notion of player and opponent

view are defined by induction as follows:

Definition 5 (View).

pview (ε) = ε

pview (s ·mnn′) = pview(s) ·mnn′ when (π1 ◦ λ)(m) = p

pview(s ·mn1n2 · s′ ·m′n′1n1) = pview(s) ·mn1n2 ·m′n′1n1 when (π1 ◦ λ)(m′) = o

pview (s ·mn?) = mn?

oview (ε) = ε

oview (s ·mnn′) = oview(s) ·mnn′ when (π1 ◦ λ)(m) = o

oview(s ·mn1n2 · s′ ·m′n′1n1) = oview(s) ·mn1n2 ·m′n′1n1 when (π1 ◦ λ)(m′) = p

The view of a sequence is related to the stack discipline of computation in

sequential IA, where certain actions, although present in the interaction traces,

are temporarily ‘hidden’ by other actions.
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Legal plays are sequences subject to certain combinatorial conditions which

capture the extent of possible behaviour in a given language.

Definition 6 (IA-legal play). A justified sequence is an IA-legal play if it is:

alternating: the proponent/opponent polarities of consecutive moves are dif-

ferent,

well-bracketed: only the most recently unanswered question in a sequence can

be answered,

P- and O-visible: a proponent (opponent, respectively) move must have a jus-

tifier in the proponent (opponent, respectively) view of the preceding se-

quence

Violating the alternation condition means that successive p-moves or o-moves

occur. The bracketing condition can be violated when questions are answered

in the wrong order or multiple times:

q1 q3 q4 q2 a4 a1 q1 q3 a3 q2 a2 a2

Finally, the sequence below shows a violation of the visibility condition, for

opponent:

q1 q2 q3 q2 q3

2.3. Plays for Idealised Concurrent Algol (ICA)

It is a general, and somewhat surprising, feature of game semantics that

richer languages have simpler models. This is not as strange as it seems, because

the more features a language has the more unrestricted its interaction with the

context can be. In fact it is possible to think of ‘omnipotent’ contexts in which

the interactions are not constrained combinatorially [22]. When sequential IA is

enriched with parallelism, the alternation constraint disappears and bracketing

and visibility are relaxed to the following, more general constraints:
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Definition 7 (ICA-legal play). A justified sequence is an ICA-legal play if it

is:

forking: In any sequence s · qn1n′1 · s′ ·mn2n1 the question q must be pending,

joining: In any sequence s · qn1n′1 · s′ · an2n1 all questions justified by q must

be answered.

The idea is that a ‘live thread’ signified by a pending question can start

new threads (justify new questions) so long as it is not terminated (answered).

Conversely, a thread can be terminated (the question can be answered) only

after the threads it has started have also terminated. The simplest sequences

that violate fork and join, respectively, are:

q1 a1 q2 q1 q2 a1

Example 2. The typical play in the interpretation of parallel composition par :

unit3 → unit2 → unit1 is

q1n1 ? ·q3n2n1 · q2n4n1 · a3n3n2 · a2n5n4 · a1n6n1.

This sequence of actions is interpreted as: start computation (q1), ask first

argument (q3, justified by initial question n1), immediately ask second argument

(q2, justified also by initial question n1), receive the results in some order (a3,

justified by n1, and a2, justified by n4), indicate termination (a1, justified by

initial question n1). The play is represented diagrammatically as in Fig. 1:

q1 q3 a3q2 a2 a1

Figure 1: Legal play with pointers
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2.4. Strategies

As we mentioned, plays characterise an interaction between term and context

occurring in a particular run. In order to characterise the term we take the set of

all such possible interactions, noting that they are also characterised by various

closure conditions. They all share prefix-closure as a common feature, typical

to all trace-like models. In the case of sequential IA, the strategies are required

to be deterministic whereas in the case of concurrent IA they must be closed

under certain permutations of moves in plays. It is strategies which give the

fully abstract model of the language.

We are not going to give the detailed definitions here because we shall focus

on the learning of plays, rather than strategies. Learning strategies seems a

more difficult proposition, which we will shall leave for future work.

2.5. Algorithmic considerations

Compared to the complexity of the syntax, the formal rules describing legal-

ity of behaviours in the language in terms of combinatorial properties of pointer

sequences are remarkably succinct: just three rules for sequential IA (alterna-

tion, bracketing, and visibility) and two for concurrent IA (fork and join). A

reasonable question to ask is whether these sets of sequences, taken as formal

languages, are computationally complex or simple.

It turns out that the answer depends on the order of the arena, where ground

type is order 0 and an arena A ⇒ B is the maximum between the order of A

plus one and the order of B. Plays in sequential IA defined in arenas of order

up to 2 are regular languages, definable in terms of finite state automata [18],

and for arenas of order up to 3 they are context-free languages, definable in

terms of push-down automata [38]. Beyond this, strategies form undecidable

languages [35]. In the case of concurrent IA, games in arenas of order 2 or more

are undecidable [21].

Of course, the results above refer to questions of language equivalence.

Checking whether a (finite) sequence is a valid play in the models of sequential
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or concurrent IA is always decidable. But the results above suggest that the

problem of learning such models is computationally challenging.

3. Learnability of IA models

We will evaluate the learnability of sequential and concurrent IA using latent

semantic analysis. First, a type signature is chosen, which determines an arena.

Then a neural network is trained with random plays of the arena so that the

level of perplexity exhibited by the model is minimised. Using perplexity as

a measure of accuracy is common in natural language processing. Given a

probability model Q, one can evaluate it by how well it predicts a separate test

sample x1, . . . , xN from a sample P .

Definition 8 (Perplexity). The perplexity of the model is defined by:

Ψ = 2−
1
N

∑N
i=1 log2Q(xi).

The concept of perplexity of a probability distribution is the established

measure of quality for a natural language model, and it is the exponentiation of

the (cross)entropy of the model. The reasons for using perplexity rather than

entropy are largely related to the history and culture of the discipline.

Better models have lower perplexity, as they are less ‘perplexed’ by the sam-

ple. In natural language processing, the perplexity of large corpora (1 million

words) is of around 250 (per word). The exponent in the definition of perplex-

ity (the cross-entropy) indicates how many bits are required to represent the

sequence in the word. For high quality natural language corpora, the cross-

entropy is around 8 bits/word or 1.75 bits/letter [9]. The models are validated

by computing the perplexity of a model against a different random sample of

correct plays coming from the same language, over the same arena. A successful

learning model will exhibit similar perplexities between the training set and the

validation set.

The accuracy of the learned model is then tested in two ways. The first test

is to expose the model to a new sample, coming from the same programming
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language but perturbed using several single-character edits (insertions, deletions

or substitutions) applied randomly to each sequence. The number of such edits

is known as “Levenshtein distance”. This results in a set of plays at a small

normalised Levenshtein distance from the correct plays which were used for

training. Concretely, we use a distance of up to 0.1, e.g. 5 random edits applied

to a sequence of length 50. In order for the test to be successful we expect to

see a significant increase in perplexity between the test set as compared against

the validation and training sets.

The second test is to expose the model to a sample of correct plays coming

from the other language, i.e. testing the sequential model against concurrent

plays and vice versa. Noting that each sequential program is a particular (degen-

erate) form of a concurrent program, we expect the concurrently-trained neural

network to exhibit similar levels of perplexity when exposed to the test data set

and the validation data set, but we expect the sequentially-trained program to

exhibit greater perplexity when exposed to the test data set — since obviously

there are concurrent plays which have no sequential counter-part.

Game models are determined by the arena in which they happen. As dis-

cussed in Sec. 2.5, the order of the arena has a significant impact on the algo-

rithmic complexity of the model. We would expect games in low-order arenas to

be faster to learn than games in higher-order arenas, but it is difficult to guess

the effect the arena shape has over the accuracy of the model. As a consequence

we examine both ‘narrow’ and ‘wide’ arenas. If we visualise and arena as a tree,

the order is the height. The width of the arena corresponds to the number of

arguments a function takes, and determines the number of distinct moves in its

vocabulary of symbols. Below we show several arenas, depicted as trees:

(unit ⇒ unit) ⇒ unit
order = 2, width = 1

unit ⇒ unit ⇒ unit
order = 2, width = 3

(unit ⇒ unit ⇒ unit) ⇒ (unit ⇒ unit ⇒ unit) ⇒ unit
order = 2, width = 2
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The arenas above have types (unit⇒ unit)⇒ unit (order 2, width 1), unit⇒

unit ⇒ unit (order 1, width 2) and, respectively, (unit ⇒ unit) ⇒ (unit ⇒

unit)⇒ unit (order 2, width 2).

The total number of moves is of the order O(wo) where w is the width of

the arena and o the order of the arena. From the point of view of the term

modelled, the width corresponds to the number of free variables in the term

or the number of arguments a function might have, whereas the height is the

order of the type of the term. We will conduct the experiment on arenas of

orders 1 to 3. Going beyond 3 seems rather irrelevant as functions of order

4 or higher are rarely used in practice. We will conduct the experiment on

arenas of width 1, i.e. functions taking one argument, in order to emphasise

the complexity of the model as caused by higher-order features, and on arenas

of width 5, i.e. functions with relatively large numbers of arguments. The two

will be contrasted and compared.

The corpora of plays we are creating consists of plays which are abstracted

in two ways. The first simplification is that we replace all ground types with

the unit type. Indeed, in the legality rules for plays, sequential or concurrent,

values play no role, and they can be safely abstracted by a generic notion of

answer-move. This is important, because the presence of integers in plays would

explode the vocabulary of moves beyond what is manageable. The second sim-

plification is eliding the pointer information and focussing on sequences of moves

only. By eliminating pointers we make the model easier to learn, but we simul-

taneously make it less powerful since the pointer information is lost. The reason

for removing the pointers is similar to that of removing values: they are usually

represented by integers, and the presence of integers in traces may increase too

much both the size of the vocabulary and the length of the sequences. How-

ever, eliding pointer information is a common abstraction in games-based static

analysis of programs, so studying its impact on learnability seems relevant [17].

The length of random plays used in learning, validation and testing is at

most 50. The size of the corpus of random sequences used for learning is 10,000

and 100,000, and the size of the corpora used for validation and testing are of
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10,000 sequences. These parameters are arbitrary and not too important. Since

the sequences are generated there are no limits on maximal sequence length or

corpus size. Keeping in mind that the length of a play represents the number

of function-argument interactions, a size of 50 seems generous. The number

of plays in the corpora only impacts accuracy (which is already very good, as

it will be seen) and the duration of the training process (which is reasonable,

as it will be seen). For learning we use LSTMs, briefly described in Sec. 5.1.

The details of the implementation and the (hyper)parameters of the model are

discussed in the next section.

3.1. Latent semantic analysis of plays with justification pointers

Pointers raise an additional problem in that the concrete representation mat-

ters, and it may clutter the learning process with extraneous information. For

example, the sequence qnn′ · an′n′ (diagrammatically, q a ) can be con-

cretely represented, using integers for names, as q01a12, but also equivalently as

q10a03. For learning we must consider a different representation which is nei-

ther the original, based on absolute sequence indices [27], nor the representation

based on using names for pointers [15].

Absolute indices are not invariant under concatenation, so the same combi-

natorial patterns occurring earlier or later in the sequence will involve different

numerical values, which is generally difficult to learn. Using names seems even

harder because, via alpha equivalence, any play can have many equivalent but

distinct representations. Whether alpha equivalence can be learned is an inter-

esting but different question. A representation which seems suitable is to use

relative indices to indicate the offsets of the pointers, in the stile of de Bruijn

indices. So the sequence above will be concretely represented as q0q1. The more

complex play in Fig. 1 is represented as q10q31q22a32a22a15.

The computational experiments consist of creating LSTM models, via learn-

ing, from sets of plays belonging to given arenas, from the two languages, con-

current and sequential variants of IA. We call the former concurrent pointer

models (CPMs) and the latter sequential pointer models (SPMs).
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We are then using the learned models to perform latent semantic analysis by

measuring the perplexity of the model for a new set of plays generated by both

concurrent and sequential variants, in the same arena. We use independently

generated random sets of plays from the same model to validate the data and

random sets of plays for a different model to test the data.

Figs. 2-3 show the perplexity of using the model trained on sequential pointer

plays to analyse concurrent pointer plays as the third bar in each diagram. In-

deed, the latent semantic analysis is conclusive. The validation data, consisting

of a different set of random plays from the sequential model, elicits the same

perplexity from the model as the training data, indicating concordance of the

languages, and more than 4 orders of magnitude lower than the testing data.

There is no obvious benefit, or indeed drawback in terms of precision, from

increasing the size of the corpora tenfold, from 10k to 100k.

Conversely, as seen in Figs. 4-5, we may use the concurrently-trained model

to analyse sequential plays. Since behaviourally sequential plays can be always

found as a subset among the concurrent plays, we expect the perplexity differ-

ences between validation and testing to be significantly smaller, and indeed they

are. However, there is an observable difference between the two, with testing

perplexity being up to 100 times higher than validation perplexity.

How can this be explained if the testing set is a subset of the training set?

A possible explanation is that the distribution of sequential plays among the

concurrent plays is relatively rare. The number of possible interleavings of a

play in the concurrent language grows very fast, faster than exponentially in

the length of the sequence. Out of all possible interleavings, precisely one is

the sequential interleaving. This means that the exposure of the neural network

during training to sequential plays is likely to be negligible, which is consistent

with a higher perplexity for the relatively rare sequential plays. Should we

interpret this as a failure of the latent semantic analysis? The answer to this

question depends on our aim. From the point of view of a formal language

analysis we can consider this as a failure because, formally, sequential plays are

included in concurrent plays. However, if we are interested in sequentiality as an
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Figure 2: Latent semantic analysis of concurrent plays in SPMs (10k plays)

1 2 3
order

100

105

pe
rp

le
xi

ty
 (l

og
 s

ca
le

)

Training
Validation
Testing

(a) Width 1, perp < 105

1 2 3
order

100

101

102

103

104

105

106

pe
rp

le
xi

ty
 (l

og
 s

ca
le

)

Training
Validation
Testing

(b) Width 5, perp < 106

Figure 3: Latent semantic analysis of concurrent plays SPMs (100k plays)
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Figure 4: Latent semantic analysis of sequential plays in CPMs (10k plays)
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Figure 5: Latent semantic analysis of sequential plays CPMs (100k plays)
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idiomatic concurrency then the result is a surprising success, and a success that

would be difficult to achieve using more conventional automata-based methods.

Because just like British English (cf. sequential programming) is a dialect of

English (cf. concurrent programming), it does not mean that British English

text is not, or should be not, recognisable as such.

3.2. Latent semantic analysis of pointer-free plays

We have run the same experiment, but this time we used an abstracted rep-

resentation of plays in which the pointer information has been deleted. We call

these models sequential pointer-free models (SPFMs) and, respectively, concur-

rent pointer-free models (CPFMs).

Fig. 6 and 7 show the perplexity (third bar) of testing a sequential model on

concurrent plays over the same arena. In this case the evidence is overwhelming,

from 2-5 orders of magnitude in perplexity increase. The extra training provided

by using 100k samples is not significant. We conclude that some precision has

been lost, since the difference in perplexity between testing data and validation

data is now smaller. However, even reduced, the perplexity of the testing data

can result in an unambiguous classification.

We again use the concurrent model to test sequential plays (Fig. 8-9), this

time for pointer-free representation. The experiment shows, as expected the

concurrent model cannot identify sequential plays, since all sequential plays can

be again found in the concurrent model. As in the case of the pointer model,

the perplexity of the test set is not as low as that in the validation set. However,

in comparison to the pointer model (Figs. 4-5) the differences in perplexity are

negligible, indicating that the pointer information was useful in identifying the

concurrent behaviour as idiomatic.

3.3. Detecting perturbations in pointer-free plays

In the case of the pointer-free representation we further test the robustness

of the learned model by using test plays from the same model, but intentionally

randomly perturbed at a fixed normalised Levenshtein distance (δ ≤ 0.1). The
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Figure 6: Latent semantic analysis of concurrent plays in SPFMs (10,000 plays)
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Figure 7: Latent semantic analysis of concurrent plays in SPFMs (100,000 plays)
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Figure 8: Latent semantic analysis of sequential plays in CPFMs (10,000 plays)

1 2 3

order

0

1

2

3

4

5

6

7

8

p
e

rp
le

x
it
y

Training

Validation

Testing

(a) Width 1, perp < 8

1 2

order

0

10

20

30

40

50

60

p
e
rp

le
x
it
y

Training

Validation

Testing

(b) Width 5, perp < 60

Figure 9: Latent semantic analysis of sequential plays in CPFMs (100,000 plays)
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results are in Fig. 10 for sequential models trained on 10K samples and in Fig. 11

on models trained on 100K samples, and in Fig. 12-13 for concurrent models.

Each bar chart contains arenas of order 1-3. Where data is missing is because

our hardware computational resources (memory) could not cope with the size

of the model.

We note that in both the case of sequential and concurrent models the model

is significantly more accurate when learned from 100k samples, rather than

10k samples. In absolute terms, the perplexity of the 100k samples models

ranges from single digits to just over 50. However, the absolute perplexity is

not relevant in latent semantic analysis, just the relative difference in perplexity

between training, validation, and test data. Even in the cases with the weakest

discrimination (Fig. 13) the perplexity of the test data is almost 2 times larger

than that of the validation data.

3.4. Implementation notes

We are using the standard implementation of LSTM distributed with Ten-

sorFlow1. The model uses an LSTM cell which processes moves sequentially,

computing probabilities for possible values of the next move in the sequence.

The memory state is initially zeroes, updated after each word. Ideally, in a

recurrent neural net (RNN), the output depends on arbitrarily distant inputs.

However, this makes the training process computationally intractable, so it is

common in practice to ‘unfold’ the net a fixed number of steps; in the concrete

case of our model this value is 20. The inputs are represented using a dense

embedding. This is considered undesirable for text but it is demanded here by

the large size of the symbol set [6]. The loss function for the model is the sam-

ple perplexity, discussed earlier. To increase the expressive power of the model,

two LSTMs are layered, each containing 200 nodes. This is considered a small

LSTM model.

The training cycle consists of several (13) cycles of training (“epochs”), al-

1https://github.com/tensorflow/models
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Figure 10: Latent semantic analysis of perturbed SPFMs (10,000 plays)
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Figure 11: Latent semantic analysis of perturbed SPFMs (100,000 plays)
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Figure 12: Latent semantic analysis of perturbed CPFMs (10,000 plays)
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Figure 13: Latent semantic analysis of perturbed CPFMs (100,000 plays)
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Figure 14: Training convergence of the model on the perturbed sequential plays of order 2 and

width 5. The perplexity is shown after processing each mini-batch (size 20) for all training

epochs. The learning rate is fixed for the first 4 epochs at 1, and then reduced by a factor of

2 at each subsequent epoch reaching 0.002 in epoch 13.

though in almost all cases except the largest arenas, the model converges after

only 1-2 epochs. Further training leads to little or no improvement in the model,

as seen in Fig. 14, which is a typical example. The experiments were carried

out on a mid-range CUDA device, GeForce GTX 960. The training cycle for

each model was around one hour.

4. The challenge of nominal features

In this section we will give some negative results, less successful experiments

attempting to apply neural network learning to nominal patterns.

One of the most difficult conceptual, mathematical, and algorithmic features

of games are justification pointers. We examined both the learnability of plays

with pointers, and of plays with pointers abstracted away. In the case of plays

with pointers we chose a novel representation in which the pointer indicates the

offset between the justifier and the justified moves. This representation would

be awkward for mathematical proofs but it seemed appealing for learning as it

is translation invariant. This means that a particular sub-sequence would have

the same representation whether it occurs earlier or later in a sequence, which

would not be the case if pointers were absolute indices, as used in the original
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Hyland-Ong paper [27]. From a mathematical point of view, however, the most

convenient representation of pointers is using atoms, in the context of nominal

set theory [15].

In nominal set theory the essential property is equivariance, which is closure

over uniform changes of atoms, which represent names. A strategy is in this

setting an equivariant set of sequences, which means it is closed under name

permutations.

Definition 9 (Equivariant strategy). Let π · p as the permutation action of a

bijection π : A → A on a sequence p. For any play p ∈ σ, π · p ∈ σ is also a

play.

Names can be concretely represented by any discrete set such as natural

numbers or strings. For the purpose of learning we will approximate it with

a large finite set, let us say natural numbers less than some N . This means

that even the simplest plays, qnn′ · an′ (diagrammatically, q a ) can have

N × N distinct representations, for any n 6= n′ ≤ N . This seems exceedingly

demanding for the powers of generalisation of a neural net. And indeed, the

results are order of magnitude worse if using the nominal representation. For

example, in the simple case of sequential games of order 1 and width 1 the

perplexity of the model increases from sub-unitary to 22.5.

The poor learnability of the nominal representation inspired us to ask a

related question which, in some sense, represents a lowering of the bar. Pointer-

plays are complex combinatorial structures. However, can much simpler equiv-

ariant structures be learned? We fixed on the pattern abab ∈ A4 as a short,

fixed, simple such pattern. This problem seems both easier, as the pattern is

short and fixed, and harder, as the pattern is purely nominal. As it turns out

the nominal challenge dominates the combinatorial simplification. On the same

neural architecture, with the same parameters as above, and a set of names

fixed at size N = 105 the performance of the net was very poor, as indicated

in Fig. 15. We can see that the evolution of the perplexity is non-monotonic,

which usually indicates an unusually rugged landscape of the loss function with
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Figure 15: Equivariant pattern abab

many local extrema, and an extreme high perplexity (3× 105) for validation an

testing in contrast to the training set, which indicates a memorisation of the

training set rather than genuine learning.

The poor performance of the neural net to learn equivariant patterns was

confirmed by independent experiments [46] carried out using a feed-forward

neural network using various hidden-layer configurations attempting to learn

the same equivariant pattern abab. When the set of atoms was large enough

(N > 210) to prevent the network from simply memorising all instances of

the pattern the precision of recognition dropped under 60%, little better than

random guessing.

The difficulty of learning equivariant patterns is perhaps best illustrated by

an even simpler experiment2. Using the same settings (a feed-forward 4-layer

network with 6 and respectively 2 neurons in the middle layer, activated using

the hyperbolic tangent function) we can compare the success of learning a line

segment in a finite two-dimensional space versus a partition of the same space.

A line is a basic equivariant pattern, a representation of {(x, x) | x ∈ [ − 1, 1]}

whereas a partition [0, 1]× [−1, 1] is not. The results are seen in Fig. 16, which

shows both the training data and the resulting model as a classification of the

entire input space. The partition is learned almost perfectly, whereas only a

2Using ConvNetJS, https://cs.stanford.edu/people/karpathy/convnetjs/
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Figure 16: Attempting to learning a line vs. a partition

gross approximation of the line is produced. For the discretisation used by the

model, the ideal line has a width of 0.25% of the size of the input space, whereas

the rough approximation in the figure has error 7.29% ≤ ε ≤ 17.51% relative

to the size of the input space. In contrast, for the partition the error at the

boundary is mostly within the discretisation margin.

It is of course difficult to conclusively assert that a particular feature is not

learnable by a neural network, particularly as they inhabit an infinitely large

space of configurations. This is not to say that other ML techniques cannot prove

successful at learning nominal features, and in fact the symmetries of nominal

languages can be used to make the learning more effective [28]. What we can say

is only that the same methods that produce remarkably good results for non-

nominal representations fail to produce similar results on nominal (equivariant)

representations.

5. Conclusion, related and further work

5.1. Recurrent neural nets

A perceptron is a simple computational element from a vector of real numbers

to real numbers, which behaves like a weighted sum of the input composed with

a step function. A perceptron is trained by adjusting the weights and the

threshold values so that it fits a given set of examples. A feed-forward neural
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network (FFN) is essentially a directed acyclic graph in which each node is a

perceptron. The most common graph topology for a FNN consists of several

layers of perceptrons so that each output from any given layer is connected to

all inputs of the subsequent layer. A FFN is trained using back-propagation,

which is a family of gradient-descent algorithms for adjusting the weights and

thresholds of the perceptrons to match a given training data set.

Traditional FFNs have been successfully applied to many machine learning

problems, however when it comes to the task of sequence-learning, the archi-

tecture of an FFN suffers from two main limitations: it cannot readily handle

inputs of arbitrary length and it does not explicitly model time [31]. Further

more, FFN models that implement some form of a sliding context window to

implicitly capture the time dependency between the inputs cannot sufficiently

model the time since the range of the captured dependency is limited by the

size of the window [8, 12].

Recurrent neural networks (RNN), unlike FNNs, allow for the presence of

cycles in their underlying topology. This creates memory-like effects in the

network which allow dynamic temporal behaviour. The way in which the RNN is

topologically structured is connected to both its expressiveness and the training

algorithms. As a result of these compromises, RNN architectures can be very

diverse.

Unlike FNNs, recurrent neural networks (RNNs) can readily handle inputs of

arbitrary length and can model the temporal patterns present in sequential data.

On the other hand, the expressive power of an RNN grows exponentially with

the number of its hidden nodes while the growth of the training complexity

is maintained to a polynomial (at most quadratic growth) [31]. In most of

sequence learning tasks, an RNN or a variant of it is usually the state-of-the-

art method. RNNs have been applied not only to learning natural languages,

but also artificially generated languages of algorithmic patterns, and proved

themselves to be more effective than other methods [29].

The addition of the recurrent edges to the architecture of RNNs gives them

great expressive powers, however, they also introduced the ‘vanishing and ex-
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ploding gradient’ problem which occurs while training the network when the

errors are back-propagated across many time steps [7]. The Long Short-Term

Memory (LSTM) is a crucial variant of RNNs that was introduced by [26] specif-

ically to address this problem. Unlike conventional nets in which the weights

have the role of an implicit and quite rudimentary memory, LSTMs have ex-

plicit memory cells in their architecture, used to store gradient information for

training. The architecture of the LSTM is quite sophisticated and a detailed

presentation is beyond the scope here, but accessible tutorials are available [37].

5.2. Machine learning for programming languages

In this exercise we have intentionally used a particularly simple, off-the-

shelf, LSTM-based algorithm for latent semantic analysis. All the parameters

of the computational experiments were fixed in advance and were not tweaked

to improve results. The results were in general excellent. We noted that pointer

models, which have more structure, tended to be more amenable to learning

than pointer-free models, and also that sequential models, which have more

structure, tend to be more recognisable than concurrent models. Investigating

whether more structured languages are more learnable is a general feature of

LSTM-based language learning would be an interesting exercise for the future.

We also note that in general 10k samples was enough, except for detecting

intentional perturbations in pointer-free models when models constructed with

100k samples where good, whereas models constructed with 10k samples where

unsatisfactory. We note that our convergence criterion was fixed (13 epochs)

and it did not take into account residual learning rates. Examining the training

logs suggests that training for these models had high residual learning rates,

thus extra epochs might have helped. It would be interesting to re-evaluate this

study by changing the stopping criterion by considering the evolution in time

of the learning rate rather than fixing the number of epochs.

As in all optimisation work many parameters can be tweaked in search of

improvement, but doing that would detract from the main point of our paper,

which is that the game model is a representation of the semantics of program-
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ming languages which is amenable to machine learning via LSTMs. Details

notwithstanding, we find this fact alone quite remarkable.

Using machine learning for programming language semantics is largely new

and unexplored terrain, even though heuristic search techniques such as genetic

algorithms have been applied to software engineering problems [24]. This is a

well researched area which is related but complementary to our interest. Pri-

marily, search-based software engineering (SBSE) is a collection of syntactic

techniques, which rely on manipulation of code, usually as a syntax tree, to

extract information about the code, to manipulate the code, or to detect pat-

terns in the code (common bugs, anti-patterns, etc.). There is a significant area

of overlap between the aims and techniques of SBSE and other heuristic-heavy

programming-language analyses and manipulation such as refactoring, slicing,

test-generation, or verification. By contrast, semantic models are independent

of syntax. In fact the kind of analysis we have proposed here ignores syntax and

relies directly on program behaviour instead. Indeed, latent semantic analysis

of code when the source code is available is trivial: one can merely scan it for

occurrences of terms associated with concurrency, such as parallel execution or

semaphores. The problem becomes more interesting when the source code is

not available: given a piece of compiled code, e.g. a module or a library, can we

determine whether it originates in one language or another just by examining

the way it interacts with its calling context? Our analysis shows that at least

sometimes the answer is positive.

There are some obvious limitations to our approach. First of all we looked

for distinctions in plays rather in strategies, just because learning strategies

(potentially infinite sets of plays) seems significantly harder than learning the

plays themselves. But there are semantic differences between languages which

are only reflected at the level of the strategy. For example PCF [27], sequential

IA [3] and non-deterministic IA [25] have the same notion of legality on plays

but differ at the level of strategies. PCF requires innocent strategies, sequential

IA deterministic strategies, and non-deterministic IA non-deterministic strate-

gies. Moreover, the formulation of these distinctions requires both pointers and
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answer-values, information which we abstract away from our modelling. Using

our set-up these distinctions are lost. Capturing such subtle distinctions would

require a different approach.

5.3. Future work

However, by and large the results of our experiment are very encouraging.

The quality of the models is high, as evidenced by their robust discriminatory

powers, and the required computational resources modest. These results make

us optimistic about using this methodology on practical programming languages

as encountered ‘in the wild’. The process of creating a corpora of training traces

in the absence of a model is of course different. We need a large code base, a

compiler, and a way to instrument the interface between a part of the code

taken to be as ‘the term’ and the rest of the program taken to be ‘the context’.

Much like a profiler, the instrumentation should record how, in any execution,

the term interacts with the context via its free variables (function or method

calls and returns).

What is interesting is that a model of code obtained from real code ‘in the

wild’ will learn not only what is ‘legal’ behaviour but also what is ‘idiomatic’

behaviour – patterns of behaviour which are specific to the code-base used for

learning. Depending on the quality of the model this can have some possibly

interesting applications. Note that this same phenomenon appears in the case

of machine-learning natural language from corpora [10], except that in the case

of programming languages the idiomatic aspects are more likely to be seen as

embodiments of de-facto practices rather than problematic biases.

For example, the model can be used for novelty detection [32, 33] in order to

augment code inspections: instead of merely studying the code syntactically, the

behaviour of code-in-context can be analysed for conformance with the existing

body of code. Syntax-independent novelty analysis can have other well-known

applications, for example to security. Unexpected or unusual patterns of inter-

actions are, for example, typical for attempts to compromise the integrity of a

system.
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A recogniser running in reverse is a generator, and generating valid traces

– especially idiomatic valid traces – is a possibly interesting way of automating

the testing of functional interfaces. Generating random data for automating

testing is a well-understood process [11]. However, generating random functional

behaviour is a much more complicated proposition, and syntactic approaches

do not seem equally promising.

Semantic-directed techniques, in particular using models that are both com-

positional and operational such as trace semantics or game semantics, have been

advocated for a long time but did not make as deep inroads as expected in the

practice of programming. A pragmatic disadvantage is that semantic models

can be mathematically demanding, but this is not even the main problem. The

main difficulty is that on the balance they are both difficult to construct and

brittle, in the sense that small changes to the language can require a total re-

thinking of its semantic model. Moreover, most languages are not syntactically

(and semantically) self-contained because they interact with other languages via

mechanisms such as foreign function interfaces. Machine learning, if effective on

real languages, solves both these problems. It hides the mathematical complex-

ity of the model behind the automated learning, and it can derive models out of

existing code-bases, capturing not only a sense of what is legal but also what is

idiomatic (for engineering, but also cultural reasons) in a particular language.

In the end, as it tends to be the case with machine learning, the resulting model

may be opaque and uninformative but it may end up being effective enough for

practical purposes.

Finally, our research has incidentally discovered an unexpected limitation of

neural nets in learning equivariant patterns, i.e. patterns closed under permuta-

tion. Even a simple equivariant pattern such as abab was beyond the ability of a

LSTM to generalise, even from thousands of examples, whereas a human subject

will only need a handful of examples to infer the pattern in sequences such as

John, Mary, John, Mary or Tony, Dave, Tony, Dave or Foo, Bar, Foo, Bar is.

Since equivariance is of critical importance in understanding names, either in

the context of programming languages (variables) or natural languages (proper
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names) we think we have identified a significant new challenge for neural nets,

and machine learning in general. This should be investigated more deeply.

Acknowledgments. This paper is motivated by a challenge from Martin

Abadi. Preliminary experiments were conducted by Victor Patentasu and were

presented at the Off the Beaten Track workshop of POPL 2017. Khulood

Alyahya has been supported by EPSRC grant EP/N017846/1. Dan R. Ghica

has been supported by EPSRC grant EP/P004490/1. We than the anonymous

reviewers and the journal editor for their many useful suggestions.

[1] Samson Abramsky, Radha Jagadeesan & Pasquale Malacaria (2000):

Full Abstraction for PCF. Inf. Comput. 163(2), pp. 409–470,

doi:10.1006/inco.2000.2930.

[2] Samson Abramsky & Achim Jung (1994): Domain theory. Handbook of

logic in computer science 3, pp. 1–168.

[3] Samson Abramsky & Guy McCusker (1996): Linearity, Sharing and

State: a fully abstract game semantics for Idealized Algol with ac-

tive expressions. Electr. Notes Theor. Comput. Sci. 3, pp. 2–14,

doi:10.1016/S1571-0661(05)80398-6.

[4] Samson Abramsky & Guy McCusker (1999): Game semantics. In: Com-

putational logic, Springer, pp. 1–55. doi:10.1007/978-3-642-58622-4 1.

[5] Samson Abramsky et al. (1997): Semantics of interaction: an intro-

duction to game semantics. In A. Pitts and P. Dybjeer (Eds.) Se-

mantics and Logics of Computation 1–33. Cambridge University Press,

doi:10.1017/CBO9780511526619.002.

[6] Marco Baroni, Georgiana Dinu & Germán Kruszewski (2014): Don’t count,

predict! A systematic comparison of context-counting vs. context-predicting

semantic vectors. In: Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, ACL 2014, June 22-27, 2014,

33



Baltimore, MD, USA, Volume 1: Long Papers, pp. 238–247, Available at

http://anthology.aclweb.org/P/P14/P14-1023.pdf.

[7] Y. Bengio, P. Simard & P. Frasconi (1994): Learning long-term depen-

dencies with gradient descent is difficult. IEEE Transactions on Neural

Networks 5(2), pp. 157–166, doi:10.1109/72.279181.
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Boston, Boston, MA, doi:10.1007/978-1-4612-4118-8 4.

[44] Robert D. Tennent (1976): The denotational semantics of program-

ming languages. Communications of the ACM 19(8), pp. 437–453,

doi:10.1145/360303.360308.

[45] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad

Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus

Macherey et al. (2016): Google’s Neural Machine Translation System:

Bridging the Gap between Human and Machine Translation. arXiv preprint

arXiv:1609.08144. Available at arXiv:1609.08144.

[46] Liangye Yu, (2018): On the accuracy of machine learning for equivariant

patterns. MSc. Thesis. University of Birmingham.

38


