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the vitamin C clock reaction
R. Kerr, W. M. Thomson and D. J. Smith

School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK

WMT, 0000-0001-9087-7495; DJS, 0000-0002-3427-0936

Chemical clock reactions are characterized by a relatively

long induction period followed by a rapid ‘switchover’ during

which the concentration of a clock chemical rises rapidly.

In addition to their interest in chemistry education, these

reactions are relevant to industrial and biochemical

applications. A substrate-depletive, non-autocatalytic clock

reaction involving household chemicals (vitamin C, iodine,

hydrogen peroxide and starch) is modelled mathematically via

a system of nonlinear ordinary differential equations. Following

dimensional analysis, the model is analysed in the phase

plane and via matched asymptotic expansions. Asymptotic

approximations are found to agree closely with numerical

solutions in the appropriate time regions. Asymptotic analysis

also yields an approximate formula for the dependence of

switchover time on initial concentrations and the rate of

the slow reaction. This formula is tested via ‘kitchen sink

chemistry’ experiments, and is found to enable a good fit to

experimental series varying in initial concentrations of both

iodine and vitamin C. The vitamin C clock reaction provides an

accessible model system for mathematical chemistry.
1. Introduction
‘Clock reactions’ encompass many different chemical processes in

which, following mixing of the reactants, a long induction period

of repeatable duration occurs, followed by a rapid visible change.

These reactions have been studied for over a century, with early

examples including the work of H. Landolt on the sulphite–

iodate reaction in the 1880s—for review, see Horváth & Nagypál

[1], and the work of G. Forbes et al. [2] on G. Vortmann’s

thiosulphate–arsenite/arsenate reaction [3]. The origin of the

term ‘clock’ is unclear, however Richards and Loomis in 1927 [4]

referred to ‘. . .the long familiar iodine “clock” depending upon the
reduction of potassium iodate by sulfurous acid. . .’, suggesting that

the term had already been in common use for some time.

Conway’s 1940 article [5] referred to both reactions as common

tools in the classroom for teaching the Law of Mass Action. An

early example of detailed mathematical modelling of multi-step

reactions via systems of nonlinear differential equations was
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given by Chien [6]; this work exhibited a number of analytical techniques including solving a Riccati-

type equation resulting from quadratic reaction kinetics (a step we will find useful in what follows).

Anderson [7] demonstrated the computer solution of chemical kinetics problems, including the iodine

clock reaction. Further review and history of the field can be found in [1,8].

Through dynamical systems analysis and the method of matched asymptotic expansions, Billingham &

Needham [8] identified and studied two clock reaction mechanisms, both alone and in combination. The first

mechanism is autocatalysis: the reaction producing the clock chemical is catalysed by the clock chemical itself,

for example, the reaction P þ 2B! 3B, where B is the clock chemical and P is a precursor. This type of

reaction is characterized by nonlinear kinetics; in the above case, the reaction rate for production of B
would be proportional to pb2, where lower case letters correspond to chemical concentrations.

The second mechanism identified was inhibition. An inhibitor chemical C removes the clock chemical,

e.g. B þ C! D, keeping the concentration of B low. Simultaneously, clock chemical is produced

upstream from a precursor, e.g. via the reaction P! B. Provided that the supply of precursor is

sufficiently large relative to the initial concentration of inhibitor, the inhibitor will eventually be

depleted, allowing the clock chemical concentration to rise. Billingham & Needham [8] then applied this

framework to the iodate–arsenous acid system, characterizing the process as involving a combination of

inhibition (B þ C! 2A) of the clock chemical and indirect autocatalysis in one of the reactants A. The

catalysis is indirect because it is through the combination of this reaction with (P þ 5A! 3B) results in A
effectively catalysing its own production (5A produce 6A). For the iodate–arsenous acid system, the

clock chemical B is iodine (I2), the inhibitor C is arsenite ion AsO3�
3 , the precursor P is iodate (IO�3 ) and

the other reactant A is the iodide ion (I2). Further mathematical development can be found in [9,10],

application of this approach to systems of industrial importance [11] and biochemistry [12]. Further

discussion on the appropriateness of the term ‘clock reaction’ for various processes involving induction

periods can be found in [13].

The system we will consider was described by Wright [14,15] as a variation on the iodine clock

reaction requiring only safe household chemicals. A combination of iodine (B) and iodide ions (A) are

supplied initially. In the presence of hydrogen peroxide, iodide ions are converted to iodine molecules,

2Hþ(aq)þ 2I�(aq)þ H2O2(aq)! I2(aq)þ 2H2O(l): (1:1)

The rate of this reaction has been considered by a number of authors [16–18], who have observed that the

rate is linear in both I2 and H2O2 concentrations due to a rate-limiting step involving nucleophilic attack

of I2 on H2O2. However, these studies have worked with hydrogen peroxide concentrations which are

similar to the other substrates, whereas we will work with hydrogen peroxide in great excess. In

consequence, the H2O2 concentration may be omitted from the model, and a one-step reaction with

rate that is quadratic in I2 concentration (as would be expected from applying the law of mass action)

is found to match well to experimental results. We therefore have in simplified form,

2A! B, rate k0a2: (1:2)

Starch in solution appears blue in the presence of iodine. There is no separate precursor P in this reaction.

The inhibitor C is ascorbic acid—i.e. vitamin C—which converts iodine to iodide (alongside

producing equal quantities of Hþ ions) via the reaction,

I2(aq)þ C6H8O6(aq)! 2Hþ(aq)þ 2I�(aq)þ C6H6O6(aq) (1:3)

or in simplified form,

Bþ C! 2A, rate k1bc: (1:4)

In contrast to the iodate–arsenous acid system, the pair of reactions (1.2) and (1.4) are not overall

autocatalytic in either A or B; the sum a þ 2b is conserved. The reaction has similar form to the

reaction of iodide and peroxydisulfate in the presence of thiosulphate, which has been characterized

by Horváth & Nagypál [1] as a pure substrate-depletive clock reaction (and therefore fitting Lente et al.’s
strict definition of a clock reaction [13]). When sufficient inhibitor C is present, the reaction (1.4)

dominates, and iodine is held at relatively low concentration in comparison to iodide ions. However,

the reaction (1.4) depletes vitamin C, and hence eventually this reaction can no longer continue. At

this point, the slower reaction (1.2) dominates, resulting in concentration of the clock chemical iodine

rising, and hence the solution turning from clear/white to blue. The time at which this reversal in the

dynamics occurs is repeatable. A similar reaction involving persulfate in place of hydrogen peroxide

has recently been analysed by Burgess & Davidson [19].
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2. Ordinary differential equation model

From the law of mass action, the reactions (1.2) and (1.4) and the assumption that the system is well

mixed and isothermal, lead to the ordinary differential equation model,

da
dt
¼ 2k1bc� 2k0a2, (2:1)

db
dt
¼ �k1bcþ k0a2 (2:2)

and
dc
dt
¼ �k1bc, (2:3)

with initial conditions based on the initial concentrations of A, B and C, respectively.

a(0) ¼ a0, b(0) ¼ b0 and c(0) ¼ c0: (2:4)

Inspecting equations (2.1) and (2.2), it is clear that the total concentration of iodine atoms a(t) þ 2b(t) is

conserved. Denoting the initial concentration by m0 ¼ a0 þ 2b0, we then have,

a(t) ¼ m0 � 2b(t), (2:5)

which leads to the two-variable system,

db
dt
¼ �k1bcþ k0(m0 � 2b)2 (2:6)

and
dc
dt
¼ �k1bc: (2:7)

Non-dimensionalizing the system with the scalings,

b ¼ m0b, c ¼ c0g and t ¼ (k1c0)�1t, (2:8)

leads to the dimensionless initial-value problem,

db

dt
¼ �bgþ er(1� 2b)2 (2:9)

and
dg

dt
¼ �rbg, (2:10)

with initial conditions,

b(0) ¼ f :¼ b0

m0
and g(0) ¼ 1, (2:11)

where the dimensionless parameters r ¼ m0/c0 and e ¼ k0/k1. A key feature of the dynamics is that

because the reaction producing clock chemical is much slower than the inhibitory reaction, the latter

ratio is very small, i.e. e � 1. The ratio r will be assumed to be order 1; it will also turn out to be that

rf :¼ b0/c0 , 1 in order for the vitamin C supply to survive the initial transient.
3. Qualitative analysis of the dynamics
Significant insight into the induction period of the system (2.9) and (2.10) can be obtained through an

informal quasi-steady analysis, that is to exploit the fact that the clock chemical B is slowly varying

during this period. If db/dt � 0 in equation (2.9), then it follows that bg � er(1 2 2b)2. Substituting

this expression into equation (2.10) for inhibitor depletion leads to,

dg

dt
� �er2(1� 2b)2: (3:1)

Given that clock chemical concentration is small during the induction period, b � 0 and so equation (3.1)

can be simplified as dg/dt � 2er2, therefore g � c1 2 er2t, where c1 is a constant which we will

determine in §4.2. This expression shows that the length of the induction period scales with (er2)21 in

dimensionless variables.

The system (2.9) and (2.10) has the unique equilibrium (b, g) ¼ (1/2, 0) which represents the long-

term fate of the system (zero inhibitor, all reactants converted to clock chemical). The eigenvalues of
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the linearized system at this point are 0, with eigenvector (1, 0) and 2r/2, with eigenvector (1, r). The

zero eigenvalue indicates the slow manifold {(s, 0) : s [ R} which we will find the system approaches

after the induction period is complete. The negative eigenvalue indicates a stable manifold

{(s, rs) : s [ R} which lies outside the physically reasonable region of interest 0�b�1/2, 0�g.
ietypublishing.org/journal/rsos
R.Soc.open

sci.6:181367
4. Asymptotic analysis
The smallness of the reaction rate ratio e enables an approximate solution to be sought via matched

asymptotic expansions, in a similar manner to Billingham & Needham [8,9]. A visual summary of the

asymptotic regions in the phase plane is shown in figure 1. We will assume throughout that the initial

I2 and vitamin C concentrations are such that rf , 1.

4.1. Initial adjustment (region I)
The first region that can be identified is where the independent variable t and both dependent variables

b, g are order 1. Seeking a solution of the form,

b ¼ b0 þ eb1 þ � � � and g ¼ g0 þ eg1 þ � � � , (4:1)

we find at leading order,

db0

dt
¼ �b0g0 (4:2)

and
dg0

dt
¼ �rb0g0, (4:3)

with initial conditions b0(0) ¼ f, g0(0) ¼ 1. The quantity rb0(t) 2 g0(t) is therefore constant, leading to the

separable ordinary differential equation,

db0

dt
¼ �b0(r(b0 � f)þ 1) and b0(0) ¼ f, (4:4)

with solution,

b0(t) ¼ f(1� rf)e(rf�1)t

1� rfe(rf�1)t
: (4:5)

It follows that

g0(t) ¼ rf(1� rf)e(rf�1)t

1� rfe(rf�1)t
þ 1� rf: (4:6)

As t!1 we observe that (b0(t), g0(t))! (0, 1 2 rf ). This behaviour is the initial transient through

which the system rapidly adjusts to quasi-equilibrium. During this interval, approximately rf ¼ b0/c0 of

the initial quantity of inhibitor is consumed. The next order terms in the dynamics may be found through

straightforward but lengthy manipulations which do not reveal any significant further insight.

4.2. Induction (region II)
Once b(t) ¼ O(e) the system reaches a quasi-steady state. Rescaling T ¼ et and b̂(T) ¼ e�1b(T=e), with

ĝ(T) ¼ g(T=e), the system takes the form,

e
db̂

dT
¼ �b̂ĝþ r(1� 2b̂)2 (4:7)

and
dĝ

dT
¼ �rb̂ĝ: (4:8)

Again seeking asymptotic expansions b̂ ¼ b̂0 þ eb̂1 þ � � � and ĝ ¼ ĝ0 þ eĝ1 þ � � � we have the leading

order problem,

0 ¼ �rb̂0ĝ0 þ r (4:9)
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Figure 1. Schematic diagram of the asymptotic regions and equilibrium point (1/2, 0) in the (b, g) – phase plane. If the system is
started in region I, the time coordinate scales as t ¼ O(1) in region I, t ¼ O(e21) in regions II and IV, and t 2 e21[r22 2

r21f ] ¼ O(e21/2) in region III.
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and
dĝ0

dT
¼ �rb̂0ĝ0, (4:10)

which has solutions of the form,

ĝ0 ¼ c1 � r2T and b̂0 ¼
r

1� rf� r2T
: (4:11)

Taking T! 0 and matching to the region I solution as t!1 shows that the constant c1 ¼ 1 2 rf. In the

original dimensionless variables, the leading order solution in region II is therefore,

b(t) ¼ er

1� rf� r2et
þO(e2) and g(t) ¼ 1� rf� r2etþO(e): (4:12)

The solution (4.12) becomes non-uniform as t! (1 2 rf )/(r2e), which corresponds to the end of the

induction period. In dimensional variables, the ‘switchover’ time is therefore characterized by,

tsw ¼
1� b0=c0

k1c0(m0=c0)2(k0=k1)
¼ c0 � fm0

m2
0k0

: (4:13)

We will return to equation (4.13) to interpret the experimental results in §5.
4.3. Long-term state (region IV)
We now turn our attention to the asymptotic dynamics in the long-term state of the system after the

switchover, in which b(t) is again O(1) and t ¼ O(e21). The corner region III between II and IV will

be addressed later. Denoting �b(T) ¼ b(e�1T) and �g(T) ¼ g(e�1T), the system takes the form,

e
d�b

dT
¼ ��b�gþ er(1� 2�b)2 (4:14)

and

e
d�g

dT
¼ �r�b�g: (4:15)

Again substituting expansions of the form �b ¼ �b0 þ e�b1 þ � � � and �g ¼ �g0 þ e�g1 þ � � � yields at leading

order,

�b0�g0 ¼ 0, (4:16)

hence �g0 ¼ 0, and moreover at O(en),

d�gn�1

dT
¼ �r(�b0�gn þ � � � þ �bn�g0): (4:17)



(a) (b)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(c)

0 0.2 0.4
0

0.1

0.2

0.3

b

0 0.2 0.4
b

g g

g

Figure 2. A numerical phase space diagram with phase directions and magnitudes shown by arrows and quasi-steady trajectory
bg ¼ er(1 2 2b)2 by the dash-dot line; dimensionless groups e ¼ 0.01 and r ¼ 2. (b,c) Close-up detail for small b and g,
respectively, with arrows rescaled for visibility.
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Hence �g0 ¼ � � � ¼ �gn�1 ¼ 0 implies that �gn ¼ 0. By induction it follows that �gn ¼ 0 for all n. Therefore,

once b ¼ O(1) and T ¼ O(e21), then g is zero at all orders in e. Taking �g � 0 then yields,

d�b

dT
¼ r(1� 2�b)2, (4:18)

(note that we are now working with �b rather than just the leading order term) which has solution,

�b(T) ¼ 1

2
� 1

2(c2 þ 2rT)
, (4:19)

c2 being a constant. The matching condition b(T )! 0 as T! r22 2 r21f yields c2 ¼ 1 þ 2f 2 2r21.

In the original variables,

b(t) � 1

2
� 1

2(1þ 2[f� r�1 þ ret])
and g(t) � 0, (4:20)

the error term in both solutions being beyond any O(e n).

4.4. Corner (region III)
It remains to match regions (II) and (IV), which occurs when b is no longer O(e) and g is no longer O(1),

i.e. in the bottom left corner of the phase space in figure 2. Introducing the shifted time coordinate
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�t ¼ em(et� [r�2 � r�1f]) and rescaled variables �b ¼ enb and �g ¼ e pg we find that the most structured

balance occurs when m ¼ n ¼ p ¼ 21/2.

The rescaled system is then,

d�b

d�t
¼ ��b�gþ r(1� 2e1=2 �b)2 (4:21)

and
d�g

d�t
¼ �r�b�g: (4:22)

Expanding as �b ¼ �b0 þ e1=2�b1 þ � � � and similarly for �g, the leading order problem is,

d�b0

d�t
¼ ��b0�g0 þ r (4:23)

and
d�g0

d�t
¼ �r�b0�g0: (4:24)

The system (4.24) can be rearranged to yield the Riccati equation [8],

d�g0

d�t
¼ �(r2�tþ c3 þ �g0)�g0, (4:25)

where c3 is a constant. Seeking a solution of the form �g0 ¼ u0=u yields the separable equation

u00 ¼ �(r2�tþ c3)u0, and hence,

�g0 ¼
exp (��t(r2�t=2þ c3))

Ð �t
0 exp (�s(r2s=2þ c3))dsþ ~c4

: (4:26)

The solution to the system can then be expressed in terms of the error function as

�b0 ¼
exp (��t(r2�t=2þ c3))

ffiffiffiffiffiffiffiffi
p=2

p
exp (c2

3=2r2) erf (r2�tþ c3)=r
ffiffiffi
2
p� �
þ c4

� �þ r�tþ c3

r
(4:27)

and

�g0 ¼
r exp (��t(r2�t=2þ c3))

ffiffiffiffiffiffiffiffi
p=2

p
exp (c2

3=2r2) erf (r2�tþ c3)=r
ffiffiffi
2
p� �
þ c4

� � : (4:28)

The unknown constant c4 can be fixed by considering the asymptotic form of �g0 as �t! �1. Using the

asymptotic form erf(x) � 1� e�x2
x�1p�1=2(1þO(x�2)) and for brevity defining f(�t) :¼ (r2�tþ c3)=r

ffiffiffi
2
p

, we

have that

erf(f(�t)) ¼ �1� exp (�f(�t)2)
ffiffiffiffi
p
p

f(�t)
(1þO(f(�t)�2)) as �t! �1: (4:29)

Hence,

�g0(�t) ¼ r exp (�f(�t)2)
ffiffiffiffiffiffiffiffi
p=2

p
�1� (exp (�f(�t)2)=

ffiffiffiffi
p
p

f(�t))(1þO(f(�t)�2))þ c4

� � as �t! �1: (4:30)

Since f(�t)! �1 as �t! �1 we deduce that for �g0(�t) to tend to a non-zero limit we must have that c4 ¼ 1.

In this case, the asymptotic behaviour is then

�g0(�t) ¼ �r
ffiffiffi
2
p

f(�t)(1þO(f(�t)�2)) ¼ �(r2�tþ c3)(1þO(�t�2)) as �t! �1: (4:31)

In the region II variables, we then have

g(T) ¼ �r2T þ (1� rf)� e1=2c3 þO(e): (4:32)

Matching to the region II solution then yields c3 ¼ 0.

The approximate solutions in region III in the original variables are therefore,

(r�t)2 ¼ e�1(ret� [r�1 � f])2,

b(t) ¼ e1=2 exp (�e�1(ret� [r�1 � f])2=2)
ffiffiffiffiffiffiffiffi
p=2

p
erf e�1=2(ret� [r�1 � f])=

ffiffiffi
2
p� �
þ 1

� �þ ret� [r�1 � f]þO(e) (4:33)
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and

g(t) ¼ e1=2 r exp (�e�1(ret� [r�1 � f])2)
ffiffiffiffiffiffiffiffi
p=2

p
erf e�1=2(ret� [r�1 � f])=

ffiffiffi
2
p� �
þ 1

� �þO(e): (4:34)
cietypublishing.org/journal/rsos
R.Soc.open

sci.6:181367
4.5. Summary of asymptotic solutions
In region I, (b, g, t ¼ O(1)),

b(t) ¼ f(1� rf)e(rf�1)t

1� rfe(rf�1)t
þO(e) (4:35)

and

g(t) ¼ rf(1� rf)e(rf�1)t

1� rfe(rf�1)t
þ 1� rfþO(e): (4:36)

In region II, (b ¼ O(e), g ¼ O(1), t ¼ O(e21)),

b(t) ¼ er

1� rf� r2et
þO(e2) (4:37)

and
g(t) ¼ 1� rf� r2etþO(e): (4:38)

In region III, (b ¼ O(e 1/2), g ¼ O(e 1/2), t 2 e21[r22 2 r21f ] ¼ O(e21/2)),

b(t) ¼ e1=2 exp (�e�1(ret� [r�1 � f])2=2)
ffiffiffiffiffiffiffiffi
p=2

p
erf e�1=2(ret� [r�1 � f])=

ffiffiffi
2
p� �
þ 1

� �þ ret� [r�1 � f]þO(e) (4:39)

and

g(t) ¼ e1=2 r exp (�e�1(ret� [r�1 � f])2)
ffiffiffiffiffiffiffiffi
p=2

p
erf e�1=2(ret� [r�1 � f])=

ffiffiffi
2
p� �
þ 1

� �þO(e): (4:40)

In region IV, (b ¼ O(1), g ¼ O(en) for all n . 0, t ¼ O(e21)),

b(t) ¼ 1

2
� 1

2(1þ 2[f� r�1 þ ret])
(4:41)

and
g(t) ¼ O(en), all n . 0, (4:42)

the error being beyond any algebraic term in e . A combined plot of all of the four asymptotic solutions is

given in figure 3, showing (a,b) the time course of each of b and g against a logarithmic time axis, and

also (c) in the (b, g)–phase plane, for comparison with figures 1 and 2.
4.6. Comparison of asymptotic and numerical approximations
A comparison of the asymptotic approximations against a numerical solution of the system (calculated

with the stiff solver ode15s, Matlab, Mathworks) is shown in figure 4, with the reaction rate ratio e

taken as 0.001, reactants ratio r ¼ 2 and iodide : iodine ratio f ¼ 0.2 (these values are chosen arbitrarily).

The region I solution follows the numerical approximation very closely up to around t ¼ 5. The region

II solution then follows the numerical solution to within a few per cent up to around t ¼ 100. The

region III solution then follows the numerical solution closely around the dimensionless switchover

time e21[r22 2 r21f ] ¼ 150, up to around t ¼ 200. Finally, the agreement between the region IV

solution for t . 200 is excellent, as would be expected from the smaller-than-algebraic error in

equations (4.41) and (4.42).
5. Experiments
In this section, we present the results of some ‘kitchen sink’ experiments, conducted with readily

available chemicals. The protocol is essentially as described by Wright [14] (Procedure D. Reaction

Using Kitchen Measuring Ware) only with 3% Lugol’s iodine instead of tincture of iodine 2%, and

varying the quantities of water and iodine used.
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Vitamin C stock solution was prepared by mixing a 1000 mg vitamin C tablet with 30–120 ml

water. Solution ‘A’ is prepared from 5 ml (1 teaspoon) of vitamin C stock solution, between 2.5 and

10 ml of 3% w/v Lugol’s iodine, and 60 ml (4 tablespoons) of warm tap water at 408C. Solution ‘B’

is prepared from 15 ml of 3% hydrogen peroxide, 1 level teaspoon of powdered laundry starch and

60 ml of warm water. Solutions A and B are added in a beaker, at which point a timer is started,

and the mixture is stirred manually for 5 s. The timer is stopped when the colour change from clear

to blue occurs.

Lugol’s iodine is formulated as a 1 : 2 mixture of iodine (I2) and potassium iodide (KI) [20]. Based on

molar masses of 126.9 g mol21 for iodine and 166 g mol21 for potassium iodide, Lugol’s 3% w/v solution

contains 1 þ 2 � 126.9/166 ¼ 2.5289 g/100 ml of iodine. The range 2.5–10 ml of 3% w/v Lugol’s

therefore corresponds to between 0.0632 and 0.2529 g of iodine, i.e. 0.4982–1.9928 mmol. The initial

concentration of molecular iodine in Lugol’s is unknown, so the quantity f ¼ b0/m0 will be

determined alongside the reaction rate via parameter fitting.

Vitamin C has a molar mass of 176.12 g mol21 and hence a 1000 mg tablet diluted in 30–120 ml water

yields stock solutions with a concentration of 0.18926–0.04731 mol l21. Hence 5 ml contains 0.9463–0.2366
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Table 1. Switchover time experimental results for (a) variable vitamin C concentration, (b) variable iodine concentration. Results
show two repeats.

Vit. C dil. (ml)
Vit. C stock conc.
(mol l21) Lugol’s (ml) c0 (mol l21) m0 (mol l21) tsw (s)

(a)

120 0.04731 5 0.001632 0.0068718 (48.12, 43.56)

90 0.06309 5 0.002175 0.0068718 (68.72, 74.32)

60 0.09463 5 0.003263 0.0068718 (116.86, 122.34)

45 0.12618 5 0.004351 0.0068718 (153.03, 168.08)

30 0.18926 5 0.006526 0.0068718 (243.67, 210.94)

(b)

60 0.09463 2.5 0.003320 0.0034962 (426.97, 495.78)

60 0.09463 3.75 0.003292 0.0051987 (285.42, 246.28)

60 0.09463 5 0.003263 0.0068718 (116.86, 122.34)

60 0.09463 7.5 0.003208 0.0101330 (55.71, 43.71)

60 0.09463 10 0.003154 0.0132855 (19.51, 22.64)
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mmol of vitamin C. Concentrations are calculated based on 120 ml water, 5 ml stock, 15 ml peroxide and

2.5–10 ml Lugol’s. The concentration of hydrogen peroxide in all experiments is 0.098 mol l21.

Results for two series, (a) varying vitamin C with iodine held fixed, and (b) varying iodine with

vitamin C held fixed, are shown in table 1. The outcome of unconstrained least-squares fitting

equation (4.13) for the parameters k0 and f to both experimental series simultaneously is shown in

figure 5; we find k0 � 0.57 M21 s21 and f ¼ 27 � 1025 � 0.
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6. Discussion
Clock reactions have long provided an instructive pedagogical example in chemistry education, in

addition to their industrial and biochemical importance. This study focused on the vitamin C clock

reaction, the dynamics of which are governed by substrate-depletion without autocatalysis. A fast

vitamin C-dependent reaction converts iodine to iodide, depleting vitamin C in the process. A slow

vitamin C-independent reaction converts iodide back to iodine. During a long induction period, the

fast reaction dominates and very little molecular iodine is present in comparison to iodide. Once the

vitamin C supply is exhausted, the slow reaction takes over and the molecular iodine level rises,

which can be visualized by a colour change in the presence of starch.

This system can be described effectively via techniques of matched asymptotic expansions, previously

used successfully for the indirectly catalytic iodate–arsenous acid reaction [8] in addition to other

systems. This analysis enables the construction of an approximate solution, and moreover a compact

expression for the switchover time which depends on the initial concentrations of vitamin C and

iodine, and the rate of the slow reaction, i.e.

tsw ¼
[C6H8O6]0 � [I2]0

(2[I2]0 þ [I�]0)2k0

: (6:1)

Results from ‘kitchen sink chemistry’ experiments were found to follow this model very closely, with the

parameters k0 and f being fitted simultaneously to data series varying in each of c0 and m0. The fitted

parameter representing initial molecular iodine proportion f was approximately zero.

The analysis presented here should be of interest in both applications involving substrate-depletion

dynamics, and also for pedagogical purposes in mathematical chemistry. The core ideas employed:

law of mass action, dimensional analysis, quasi-steady kinetics, phase planes, matched asymptotics,

numerical solutions and parameter fitting, are central to mathematical biology and chemistry, and

within the reach of advanced undergraduates and masters students in mathematical modelling.

Moreover, the experiment can be carried out using relatively safe chemicals and minimal equipment.

A potential interesting avenue for further investigation, also accessible to student modellers, would be

to vary the temperature of the reactants and assess whether the change to switchover time may be

predicted via an Arrhenius equation for k0. A further topic to explore would be to use techniques

from analytical chemistry such as UV–visible absorbance [19] to measure the trajectory of the solution

quantitatively and compare to the mathematical solution. Clock reactions provide enduring and

accessible examples of mathematical modelling and experiment.

Data accessibility. Data are available at the Dryad Digital Repository: https://datadryad.org/resource/doi:10.5061/dryad.

68q4hf7 [21].

Competing interests. We declare we have no competing interests.

Authors’ contributions. W.M.T. and R.K. carried out the mathematical modelling and analysis with support from D.J.S. R.K.

conducted the experiments and parameter fitting. D.J.S. supervised the research and wrote the paper.

Funding. D.J.S. acknowledges Engineering and Physical Sciences Research Council award no. EP/N021096/1.

https://datadryad.org/resource/doi:10.5061/dryad.68q4hf7
https://datadryad.org/resource/doi:10.5061/dryad.68q4hf7
https://datadryad.org/resource/doi:10.5061/dryad.68q4hf7


12
References

royalsocietypublishing.org/journal/rsos

R.Soc.open
sci.6:181367
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