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Abstract: Evidence supporting the ferro-toxic nature of iron in the progression of inflammatory
bowel disease (IBD) is becoming well established. A microbial dysbiosis is observed in IBD patients,
and intra-luminal colonic-iron is able to support a more pathogenic community of bacteria; whether
this is attributed to the development of IBD and how iron could be mediating these microbial changes
is still unknown. Dietary fibres are commonly used in pre-biotic supplements to beneficially affect
the host by improving the viability of bacterial communities within the colon. Alginates are a
class of biopolymers considered as prebiotics due to their fibre-like composition and are able to
bind metal cations, in particular, iron. Considering that iron excess is able to negatively alter the
microbiome, the use of alginate as a food supplement could be useful in colonic-iron chelation.
As such, this first-in-man study aimed to assess whether the use of alginate as a dietary iron chelator
was both safe and well tolerated. In addition, the impact of alginate on the microbiome and iron levels
was assessed by using an intestinal model SHIME (Simulation of the Human Intestinal Microbial
Ecosystem). Alginate was supplemented into the diets (3 g/day) of healthy volunteers (n = 17) for
28 days. Results from this study suggest that daily ingestion of 3 g alginate was well tolerated with
very minor side effects. There were no detrimental changes in a variety of haematological parameters
or the intestinal microbiome. The bacterial communities within the SHIME model were also not
influenced by iron and or alginate; it is possible that alginate may be susceptible to bacterial or
enzymatic degradation within the gastro-intestinal tract.

Keywords: alginate; iron; microbiome; ROS; prebiotic

1. Introduction

It has recently been highlighted that elevated concentrations of iron within the colon are
associated with the progression and development of intestinal diseases, and specifically inflammatory
bowel disease (IBD) [1–3]. This is supported by the finding that depleting iron within the colon is
associated with an ameliorated phenotype [4]. Additionally, enzymes responsible for the breakdown
of iron-complexes (heme-oxygenases) were found to be upregulated and protective in instances of
inflammation within the colon, possibly in an attempt to diminish iron’s pro-inflammatory nature [5].
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High levels of colonic luminal iron have been shown to (i) be pro-inflammatory [6,7], (ii) have catalytic
reactive oxygen species (ROS) generating ability [6,8], (iii) negatively alter the microbiome [1,9–13] and
(iv) have cellular proliferation effects [14,15]. When dietary iron consumption is in excess of nutritional
demands (average consumption of 10 to 12 mg with only 2 mg required) and only 0.7 to 22.9% of
ingested iron is absorbed [16], this suggests a high residual concentration of iron in the colon. This is
particularly the case for patients with IBD who often present with iron-deficiency anaemia and are on
oral iron supplements [17,18].

An intervention that would render this excess colonic iron inert would theoretically be highly
beneficial; a class of bio-actives that may achieve this would be non-absorbable iron chelators. To date,
there have been a number of reports that detail the iron-chelating effects of potentially non-digestible
fibres, of which sodium alginate is of particular interest [19–21]. Alginates are natural polysaccharides
extracted from the cell walls of brown seaweeds. Chemically, these biopolymers are formed from
unbranched (1–4) linked β-D-mannuronic acid (M) and its C5 epimer, α-L-guluronic acid (G) [22].
Alginates are used within the food industry as gelling agents and in anti-reflux preparations due to
their ability to gel, forming “rafts” within the stomach to suppress acid-reflux [23]. Most recently,
an alginate of relatively short chain length and high M content (MLD) has been identified as an ideal
iron chelator, demonstrating limited affinity towards calcium [24]. MLD is a 145 kDa biopolymer
with a G:M ratio of 38:62 which is able to bind ferrous iron (0.6 mg Fe/mg MLD) and inhibit murine
intestinal iron absorption [24]. Previous clinical studies have demonstrated the ability of alginate
supplementation to decrease iron absorption and hence reduce serum-iron concentrations [25]. The use
of MLD may be of particular use in the treatment of gastro-intestinal diseases associated with high
levels of unabsorbed, luminal iron within the colon. No human studies have been conducted to assess
the tolerability of MLD consumption in healthy individuals over a period of 28 days.

Thus, the overall aim of this study was to assess the safety, tolerability and feasibility of 3 g
daily alginate consumption in healthy volunteers over a period of 28 days. This was predominantly
examined using intestinal health questionnaires, in addition to haematological and faecal microbiome
assessments. In a similar approach, the impact of MLD on iron levels and the microbiome was assessed
in a highly controlled in vitro model of the human colon. Such results will guide future clinical
assessments utilising MLD in iron-chelation therapies.

2. Materials and Methods

2.1. Healthy Participant Study Design

Seventeen healthy individuals, over the age of 18 years of either sex, with no previous history of
gastro-intestinal disease were recruited between October 2015 and November 2015. Informed consent
was obtained for all participants recruited. Participants completed a quality of life questionnaire
(Short Inflammatory Bowel Disease questionnaire (S-IBDQ) (McMaster University, Ontario, Canada)
(Figure S1)) and provided a stool sample before consuming MLD. Answers were scored 1–7,
with 1 indicating large changes in lifestyle/general wellbeing and 7 indicating no changes or
problems. Participants were provided with a diary to record compliance, monitor changes in bowel
habit/frequency and document the presence of any adverse symptoms for the duration of the study.
Appointments were made for the subsequent two visits required at the midpoint (day 14) and end
(day 28) of the study. At each of these visits, further blood and stool samples were collected and
S-IBDQ completed. The study design is summarised in Supplementary Figure S2. Venous blood was
taken for analysis of full blood count and biochemistry (Figure S3).



Nutrients 2019, 11, 674 3 of 14

2.2. Ethics Statement

The study was approved by the National Research and Ethics Service Committee West Midlands
on 20 August 2015 (REC reference: 15/WM/0221). The study was registered at www.isrctn.com
as ISRCTN16202716.

2.3. Faecal Microbiota Assessment (Healthy Participant Study and SHIME)

For the assessment of changes in the colonic microbiome, DNA was extracted from stool using
the QIAamp DNA stool mini kit (QIAGEN, Hilden, Germany) following the manufacturer’s protocol.
Three replicate polymerase chain reactions were performed for each faecal sample. In brief, the V4
region of the 16S rRNA gene was amplified with region-specific primers that include the Illumina
flowcell adapter sequences. After cluster formation on a HiSeq/MiSeq instrument, the amplicons were
sequenced with custom primers.

Quality filtering of reads was applied. Sequences were clustered into operational taxonomic
units (OTUs) with 97% similarity and picked using open reference OTU reference picking protocol
with a 97% similarity threshold. Taxonomic assignments of OTUs that reached the 97% similarity
level were made using QIIME (Quantitative Insights Into Microbial Ecology) by comparison with
the Greengene (http://rdp.cme.msu.edu/) databases (gg_13_5_otus). Alpha-diversities of the gut
microbial communities were compared by calculating the number of observed OTUs, Shannon
Diversity and Faith’s Index, and Chao index. Beta diversity was calculated by both unweighted
and weighted Unifrac distances calculated. Differences in OTU abundances were tested with ANCOM
(Analysis of Composition of Microbiomes). To predict functions encoded by the genomes of bacteria,
we performed a phylogenetic investigation of communities by reconstruction of unobserved states
(PICRUSt) analysis based on the 16S rRNA analyses. Estimated abundances of Kyoto Encyclopedia
of Genes and Genomes (KEGG) Orthology groups were compared between different time points.
We obtained 21520246 high-quality filtered reads, corresponding to an average of 377,548 reads per
subject. Contaminant reads were negatively filtered, and triplicates were collapsed by the mean value
for each observation mean. Reads were clustered into 3525 operational taxonomic units (OTUs) at 97%
sequence identity following which their representative sequences were used in taxonomic analysis.
All sequences were classified from phylum to species.

2.4. Healthy Volunteer Faecal Iron and Calcium Assessment

Two pools of iron and calcium were assessed; (i) total iron/calcium and (ii) “free” iron/calcium.
The total iron/calcium in each sample represents the total metal content, regardless of coordination to
ligands/proteins/chemicals whereas the “free” pool represents iron and calcium that is non-associated.
To determine the total iron/calcium pool, faecal samples (3 g, wet weight) were ashed in silica crucibles
at 480 ◦C for 48 h within an open-air furnace. The ashed product was re-suspended in 0.1 M HCl (5 mL)
and stored. To probe the “free” pool of metal, faecal samples (3 g, wet weight) were homogenised in
DI H2O (3 mL) until a slurry was obtained. An additional volume of DI H2O (7 mL) was added to the
slurry and centrifuged at 7500× g for 30 min. The supernatant was collected, and the protein content
was removed by acidification. Iron and calcium concentration within the samples was determined
using flame atomic absorption spectroscopy (fAAS). Water content of faecal samples was determined
by drying overnight at 70 ◦C and further desiccation.

2.5. Faecal Reactive Oxygen Species Assessment

Faecal samples (2 g, wet weight or 3 mL SHIME colon material) were homogenised and
subsequently incubated for 18 h in TRIS buffered saline (4 mL, pH 7.0) containing DMSO (5% (v/v)),
glucose (0.1% (w/v)) and EDTA (50 mM) under agitation at 37 ◦C. Faecal slurries were then centrifuged
and the supernatant acidified using HCl to precipitate the protein, which was further centrifuged and
the resulting supernatant pH re-adjusted to pH = 7.0. Samples were stored at this point at −20 ◦C until
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batch analysis could be performed with all samples. Standards were made to run alongside the samples.
These were methansulfinic acid (0–10 mM) dissolved in the TRIS buffered used to homogenise the
faecal samples; samples and standards were processed identically. A 1.3 mL aliquot of the sample
was mixed with H2SO4 (10 M, 250 µL) and centrifuged at 3500 RPM for 5 min. The supernatant
(1.4 mL) was mixed thoroughly with 1 M sulphuric acid saturated 1-butanol (4 mL) and centrifuged at
3500 RPM for 5 min to allow phase separation. The upper phase was aspirated (3.4 mL) and mixed
with sodium acetate (0.5 M, pH 5.0, 2 mL) and again centrifuged at 3500 RPM for 5 min to allow phase
separation. The lower aqueous phase was removed (1.8 mL) and pH adjusted to pH 2.5, before the
addition of FastBlue BB salt (14 mM, 800 µL) and incubated for 15 min in the dark. After this period,
a toluene:butanol (3:1) mixture (1.5 mL) was added and thoroughly mixed for 2 min, before phase
separation by centrifugation at 3500 RPM for 5 min. The upper phase (1 mL) was removed and washed
with 1-butanol saturated water (2.0 mL). Finally, the samples were centrifuged at 3500 RPM for 5 min,
the upper layer (1 mL) was aspirated, mixed with a pyridine:acetic acid (95:5) mixture (100 µL) and
absorbance read at λ = 415 nm.

2.6. Intestinal Model (SHIME)

A M-SHIME model was set up as previously described, with proximal colonic vessel attachments
only [26]. In brief, the model consisted of a stomach/small intestinal (SI) vessel (not inoculated with
faecal bacteria) which fed three independent colonic vessels (inoculated with faecal bacteria) which
were regulated at pH 5.6–6.9 (proximal colonic environment). Colonic vessels were adapted with
mucin-beads for surface-attached microbes. The beads (K1-carrier, AnoxKaldnes AB, Lund, Sweden)
were prepared by boiling mucin and agar in water until they formed a gel and suspended within the
colonic vessels.

Each treatment within this experiment (Fe only, MLD+Fe and control) had individual stomach/SI
and colonic (n = 3) vessels. Colonic vessels were inoculated, simultaneously with faecal bacteria
obtained from one healthy donor. Before supplementing with Fe or MLD, the colonic vessels were
equilibrated and established over a 7-day period; between day 7 (t = 0) and 22 (t = 15), the colonic
vessels were supplemented with either iron (15 mg) or MLD (1.0 g three times daily). Colonic vessels
were flushed daily with N2 to maintain anaerobicity, and bacterial integrity and health were monitored
by measuring short chain fatty acids (SCFAs) and ammonium concentrations regularly. The protocol
for these assessments has been previously described [27]. All experiments were run in parallel
simultaneously. The whole system was maintained at 37 ◦C.

The supplementation of aqueous Fe and MLD into SHIME was performed through the addition
of stock solutions into the stomach vessel; three injections of FeSO4 in 0.1 M HCl (0.5% w/v, 1 mL)
and three injections of MLD (4% w/v, 12.5 mL) per day. The control vessel received DI H2O only
and volumes were adjusted accordingly to ensure each vessel received equal volumes of DI H2O.
These concentrations were pre-optimised to obtain a total Fe concentration within the colonic vessels of
c. 400 µM and a free Fe concentration of 100 µM. These concentrations were chosen based on previous
in vitro studies examining the iron chelation potential of MLD, and only FeSO4 was used as the iron
source in these experiments.

2.7. SHIME Iron Assessments

The measurement of total Fe in the colonic vessels was undertaken by aspirating samples (200 µL)
of colonic vessels and mixing with 200 µL of TCA (20% w/v) solution. These were boiled for 5 min
at 100 ◦C and subsequently spun at 1500 RPM for 5 min to pellet debris. The supernatant (200 µL)
was aspirated and mixed with a ferrozine solution (600 µL). Measurement of free Fe levels was
performed by aspirating 1 mL of colonic medium and spun at 1000 RPM for 1 min to pellet the bacteria.
The supernatant (500 µL) was aspirated and directly added to the top of a 30,000 MWCO spin column.
This was spun at 15,000 RPM for 10 to 15 min, until equal amounts of filtrate were collected and used
directly with the ferrozine reagent (600 µL), as previously described.
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2.8. Thin Layer Chromatography (TLC)

TLC was performed to assess the integrity of the alginate following culturing within the colonic
vessels of SHIME. A positive control for alginate degradation was prepared by heat degradation as
reported previously [24], and degradation derivatives were assessed using a orcinol-based staining
reagent, as detailed previously [28].

2.9. Statistical Methods

All analysis was performed using Microsoft Excel. Single factor ANOVA was used to detect
changes in the blood results. Paired two-tailed Student’s t test was used to detect changes in the levels
of bacteria when comparing each of the three time-points in the study at a significance level of 0.05.
Values are stated as mean ± standard deviation or median (range).

3. Results

3.1. Study Participant Baseline Demographics

All recruited individuals (13 female and 4 male participants, with a median age of all participants
of 42 ± 9.5 years) completed the study. MLD was well tolerated with no serious side effects reported.
Minor adverse effects were documented (Table 1), with the predominant complaint of excess flatus
followed by bloating.

Table 1. Table of reported adverse effects over the 28-day intervention.

Adverse Effect Number of Participants Reported

Flatulence 16
Bloating 7

Heartburn 2
Abdominal Pain 8

Loose Motion 4
Urgency to Defecate 1

Nausea and Vomiting 3
Headache 1

There were small but significant changes in S-IBDQ participant survey scores when comparing
baseline to day 14 and study endpoint. Mean scores at baseline were 65.5 ± 2.9, which decreased to
62.2 ± 4.0 (p = 0.013) at day 14 and 62.2 ± 4.6 (p = 0.018) at day 28; the total maximum score was 70
(Figure 1A).

Upon consideration of the individual participant responses, these significant changes were
associated with questions 4 and 6; 4. How often during the past two weeks have you been troubled
by pain in the abdomen? 6. Overall, in the past 2 weeks, how much of a problem have you had with
passing large amounts of gas?

The mean response value for question 4 was 6.8, 5.4 and 5.6 at baseline, day 14 and day 28,
respectively (p < 0.005). These scores equate to a drop from “None of the time” to “A little of the
time” or “Hardly any of the time”. For question 6 the mean response was 6.6, 4.3 and 4.4 at baseline,
day 14 and day 28, respectively (p < 0.001). equating to a drop from “No trouble” to “Some trouble”.
The questionnaire and associated scores are detailed in Supplementary Figure S1.
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Figure 1. (A) S-IBDQ-score obtained from volunteer questions at baseline, day 14 and day 28. Each point
represents a volunteer score with the midline and standard deviations plotted. Absolute histograms
(B–K) of individual patient responses for each of the S-IBDQ questions (1–10 respective) at day 0, 14
and 28. Given p values represent statistical significance using an un-paired t-test with p < 0.05 denoting
statistical significance.

3.2. Haematological Biochemical Analyses

Haematological and biochemical analyses were assessed over the period of the intervention.
There were no significant changes in measured levels of haemoglobin (Figure 2A), creatinine (Figure 2B),
Calcium (Figure 2C), alanine aminotransferase (Figure 2D), and magnesium (Figure 2E).Nutrients 2019, 11, x FOR PEER REVIEW 7 of 15 
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Figure 2. Haematological measurements for (A) haemoglobin, (B) creatinine, (C) calcium, (D) alanine
aminotransferase and (E) magnesium. Each point represents a healthy participant with the midline
and standard deviations plotted. 1way ANOVA tests of significance were performed across all time
points, and no significance was observed.
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3.3. Faecal Iron and Calcium Concentration

Total iron and calcium concentrations from day 0, 14 and 28 remained constant (Figure 3A/C).
Average total and free iron concentrations across all samples were 0.37 ± 0.17 and 0.014 ± 0.02 mg/g
faecal dry weight, respectively. There were no significant changes in mean free iron values from day
0 to day 14 and 28 (Figure 3B). Average total and free calcium concentrations across all samples were
323.4 ± 380.5 and 36.66 ± 15.15 mg/g faecal dry weight, respectively (Figure 3B/D). No statistical
changes in the calcium pools measured were detected (Figure 3D).Nutrients 2019, 11, x FOR PEER REVIEW 8 of 15 
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Figure 3. Faecal iron and calcium concentrations (per gram dry weight faecal material) at baseline,
day 14 and day 28 of the intervention. (A) Total iron, (B) free iron, (C) total calcium and (D) free calcium.
Mean values are plotted with error bars denoting standard deviations in the error. No statistical
significance (using 1way ANOVA tests) was found between the data sets.

3.4. Faecal Reactive Oxygen Species

Over the time-course of the intervention there were no significant changes in faecal ROS generating
potential, with mean MeSH concentrations of 1.8 ± 0.6, 2.23 ± 1.23 and 1.98 ± 0.64 mM/g dry weight
faecal material detected at day 0, 14 and 28, respectively (Figure 4).
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Figure 4. Faecal reactive oxygen species (ROS) concentrations at baseline, day 14 and day 28 of the
intervention. No significant changes were observed (1way ANOVA with p < 0.05) across all time points.
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Correlations between ROS generating potential and concentrations of total/free iron and
calcium were also assessed (Figure S4); no significant associations were found. No correlation was
found between calcium concentrations and ROS generating potential in any of the pools assessed
(Figure S3C/D).

3.5. Healthy Participant Microbiome Analysis

The four major gut phylae showed very similar taxonomic compositions. Although the proportion
of Bacterioides increased (∆21) and Firmicutes (∆21) reduced by day 28 compared to baseline, this was
not significant. No significant changes at the family, genus and species levels were observed between
any time points.

Both species richness and diversity were similar for the different sampling time points. There was
no significant change in the gut microbial community structures and individual OTUs when compared
between any time points.

3.6. Iron, ROS and Ammonia Concentrations within SHIME

To assess in a more controlled environment the impact of MLD on intestinal iron levels an artificial
gut model (SHIME) was employed. Total iron changes within the colonic vessels were assessed over the
period of the iron/alginate supplementation (day 0, 6 and 15). All iron-fed vessels were established to
have an equal and constant iron concentration throughout the period of the study. However, small but
significant iron concentration differences were measured for Fe and MLD+Fe vessels at baseline
(353 and 400 µM, respectively) and midpoint (395 and 356 µM, respectively) (Figure 5A).
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Figure 5. Iron and ammonium parameters within SHIME colonic vessels. Total iron (A) was measured
across three time points (baseline, midpoint and at the end of the study) in the control, iron (Fe) and
iron with MLD (MLD + Fe) vessels (n = 3). Free iron (B) was also measured at the midpoint and the end.
The percentage of free iron with respect to total Fe was also calculated (C). Ammonium concentrations
were also measured across three time points (D). Bars represent mean values with error bars denoting
standard deviations in the error. Statistical significance (using 1way ANOVA tests) is represented with
an *, ** or **, where p < 0.05, 0.005 and 0.0005 respectively, with n = 3 for each mean value.

Free iron changes were additionally measured (Figure 5B). However, no significant differences
were measured between the Fe and MLD+Fe throughout the study period. With total iron
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concentrations changing within the vessels, the free iron measured was normalised with the total
iron, and a percentage of free iron with respect to total iron was calculated (Figure 5C); no significant
percentage differences were calculated over the study.

ROS concentrations were also measured throughout the study with no significant changes between
the treatment (Fe and MLD+Fe) and control colonic vessels. Additionally, ammonium concentrations
for day 0, 6 and 15 of the study are also reported (Figure 5D).

3.7. SHIME SCFA Analysis

Short chain fatty acid (SCFA) assessments were carried out routinely as a measure of bacterial
viability throughout the study (Supplementary Figure S5). Relative SCFA concentrations were
calculated with respect to total SCFA changes. Overall concentrations of butyric acid concentrations
were elevated with MLD+Fe treatment with respect to Fe and control, with statistical significance
found at day 6 and day 13 (Figure S5C).

3.8. SHIME Microbiome Analysis

No differences in alpha or beta diversity in the microbial profiles between the three treatment
arms and time points were observed. Additionally, there were no significant differences identified in
OTUs between the groups.

3.9. Breakdown of Alginate

Alginate breakdown derivatives were assessed using TLC (Figure 6). As a positive control,
MLD was degraded by heat, from which degradation products were observed (Figure 6A); increased
streaking and higher retention factors (RFs) were observed for longer degradation times. The possibility
of degradation of alginate within the colonic vessels of SHIME was also assessed (Figure 6B).
SHIME medium from the colonic vessels supplemented with MLD+Fe (at the end of the experiment)
demonstrated extensive streaking indicative of degradation, though, of note, the control samples with
no alginate similarly demonstrated a streaking profile albeit less pronounced.
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Figure 6. Thin layer chromatography (TLC) plates spotted with (A) 1: Native MLD, 2: 5 min heat
degraded MLD, 3: 15 min heat degraded MLD, 4: 60 min heat degraded MLD and (B) 1: Native MLD,
2: Day 16 MLD colonic vessel and 3: Day 16 control colonic vessel. Solvent Fronts (SF) and Spotting
Lines (SL) are indicated. Retention values are calculated and represented on the TLC with a midline.

4. Discussion

Iron excess within the colon has been demonstrated to negatively regulate the microbiome,
influencing the development of pathogenic communities [9,11,13,29–31]. The mechanism behind this
toxicity is not fully understood, but it is likely due to one of two factors: (1) An abundance of iron
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promotes the growth of iron-requiring pathogenic bacteria [9] or (2) chemically, it is able to modulate
the communities through toxic reactions [6,30,32]. An intervention which would evade both possible
mechanisms of microbial dysbiosis would be to chelate the excess iron, rendering it inert, non-reactive
and non-utilisable by bacteria. Dietary iron chelators, of which one particular biopolymeric alginate
(MLD) was assessed in this first-in-man study, with the primary aim of ascertaining the safety and
tolerability associated with consumption. This was assessed through the use of questionnaires and
various biomarkers of health including a variety of haematological parameters and changes to the
microbiome. In addition, assessments were also undertaken using SHIME to assess the impact of
alginate supplementation in a highly controlled intestinal model.

The consumption of alginate in this study was 3.0 g per day, which is greater than that consumed
in an average diet (of which there are many estimations, but maximum daily exposure is estimated
at 2.1 g daily) [33]. In the healthy participant study, alginate supplementation was well tolerated
with little to no side effects observed. However, there were small decreases in the overall S-IBDQ
score following alginate consumption. Upon interrogation of the individual questionnaire responses,
participants reported an increase in abdominal pain from “none of the time” to “hardly any of the
time” and from having problems passing large amounts of gas from “no trouble” to “some trouble”.
The reason for these changes could be an increase in bacterial fermentation-processes, presumably
induced by MLD [34]. This is supported by the observations reported in the artificial gut of a trend
for increased butyrate production following alginate supplementation. These physiological changes
in the amount of bloating and gas are important to consider in the context of the cohort of patients
that such therapies are aimed at, namely those with IBD. As discussed, removal of excess free iron
from the bowel of IBD patients would be highly advantageous; however, if the bioactive increased
the frequency of the symptoms associated with this disease, the use of such an agent needs to be
carefully considered. A limitation of this study was the small cohort size (n = 17); the completion of
this initial safety assessment of MLD allows for both larger test cohorts and testing in IBD patients in
future studies.

To further assess the safety of alginate supplementation, a variety of haematological parameters
were assessed. Reassuringly, 28-day consumption of alginate did not reduce the haemoglobin levels,
and neither were there any effects on liver biomarkers. In addition, there were no changes in
calcium concentration which is important since alginates have a strong affinity for calcium [35].
Since the intestinal microbiome is integral to health and a dysbiosis has been linked with a variety of
diseases, alterations in bacterial communities were also assessed following alginate supplementation.
Throughout the duration of the study, minimal changes were observed with no net positive or negative
growth effects on the bacterial species present. While a shift in the composition of communities present
may have been expected with alginate consumption, no such changes were observed. This may
be due to the fact that the participants were “free living” with no dietary restrictions. In addition,
there inevitably would have been gross differences in diets consumed across all 17 of the participants.
Any possible changes induced by alginate consumption may have been overwhelmed by changes
influenced by these dietary differences.

These limited changes in the human study are in agreement with the lack of changes observed in
the gut model with MLD. Interestingly in this artificial gut model, there were also no alterations in
the microbial communities when colonic vessels were co-incubated with a concentration of c. 400 to
600 µM total iron and c. 200 to 300 µM free iron (based on a 70% iron binding capacity by SHIME
medium). This is surprising since previous studies have linked iron excess with dysbiosis. The lack of
a bacterial dysbiosis in the colonic model could be due to one of several reasons. First, ferrous iron was
the only form and species of iron utilised in the SHIME studies, and it could be the case that other forms
of iron within the diet cause greater dysbacteriosis. This highlights the importance of understanding
the form of iron likely to be present throughout gastrointestinal transit. Second, the SHIME feed
contains many iron chelating additives (such as pectin and mucin) [19,36,37] which may both alter
the availability of iron to specific bacterial communities and reduce the catalysis of ROS production
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(and indeed, no increased ROS production was found in iron-supplemented colonic vessels compared
to control). The list of chemical contents within the SHIME feed is listed in Supplementary Table S1.
Third, the concentration of iron (15 mg/day) may not have been sufficient to induce significant changes.
An additional reason as to why limited microbiome changes were found could be due to the iron-species
present within the SHIME gut model in comparison to that found in man. Specifically, the results of
this study may highlight the importance of dietary ligands on iron and how they impact on the form of
iron present upon entering the colon; iron-speciation can radically alter its physico-chemical properties
(for example, comparison of the reactivity of a “free” ferrous iron to ferric-oxides) [6,8] and, as such,
may alter its activity within a model intestine [38]. The limited changes in ROS concentrations between
the iron and control treatments provide evidence to support this, where oxidised and hydrolysed iron
forms are unable to partake in redox-reactions. Finally, and most interestingly, is the argument that in
the absence of the host compartment (i.e. the colon), iron is unable to mediate any microbiome changes.
This may indicate that the observed dysbiosis reported in the literature may be a consequence of
alterations in the host which subsequently trigger shifts in the microbiome (in an indirect mechanism).
If so, the use of SHIME would only detect a direct action of iron in modulating the microbiome,
which was not observed here. This may be a key factor in understanding the mechanism by which
iron can induce a microbial dysbiosis within the colon. Such non-direct effects on the microbiome have
been reported for other chemicals such as chemotherapeutics [39].

With no changes incident upon iron supplementation within SHIME, a reversal of dysbiotic shifts
during co-administration of a fibre-like iron chelator (MLD) would not be observed; this was indeed
the case. It is considered that MLD could act as a prebiotic and as such, bacterial changes would
be expected, however, no changes were found in this study. This is surprising since the flatulence
and bloating which was reported by the healthy volunteers following alginate consumption likely
reflects fermentation of the alginate and would, thus, likely result in a change in the microbiota to
efficiently utilise this dietary source [40,41]. The degradation experiments and the trend for increased
butyrate production, indeed, likely points to fermentation of the alginate. This is further supported by
a previous study which reports that alginate is degraded within the colon [40].

Thus, in summary, MLD ingestion was safe and well tolerated, with relatively minor side effects
reported of increased flatulence and bloating. Furthermore, there was no evidence of any detrimental
changes to the microbiome. This was somewhat surprising, since the reported increased flatulence
and bloating likely reflects alginate fermentation and this would likely result in some changes to
the composition of the microbiome. To separately assess the impact of iron on the microbiome and
whether this could be reversed using an iron chelator, an artificial gut model was utilised, and the
results of this were equally surprising with no apparent change in the microbiota with iron and or
alginate. This likely reflects the other iron chelating agents found within the food matrix and the
need to characterise the exact species of iron in the colon that is responsible for the dysbiotic effects
previously reported. It is evident from these studies that any future applications of using alginates as
luminal iron chelators require a formulation where bioactivity is targeted to the colon and protected
from any dietary agents and/or digestive processes to maximise iron-binding activity.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/3/674/s1;
Table S1: M-SHIME nutritional feed components, Figure S1: Short Inflammatory Bowel Disease (IBD)
Questionnaire Questions with answer score values, Figure S2: Flow-diagram of healthy volunteer involvement
within the study. Patient information sheet (PIS), Figure S3: Visit one (baseline) haematological measurements
for (A) haemoglobin, (B) creatinine, (C) alanine aminotransferase, (D) calcium and (E) magnesium. Each point
represents a healthy participant, and the mid-line denotes the mean, Figure S4: Correlation plots of both free and
total stool iron and calcium concentrations vs. stool ROS concentrations. (A) Total Fe vs. ROS, (B) free Fe vs. ROS,
(C) total Ca vs. ROS and (D) free Ca vs. ROS. Dashed-lines represent lines of best fit with associated R2 value and
P value representing statistical significance of the observed correlation, Figure S5: Relative short chain fatty acid
(SCFA) changes with respect to total SCFA concentrations. Acetic acid (A), propionic acid (B), butyric acid (C) and
total branched SCFAs were measured over the time course of the experiment. Each point represents the mean
values with error bars denoting standard deviations in the error. Statistical significance (using 1way ANOVA tests,
where p < 0.05) is represented with an * for Fe + LD vs. Fe alone and $ for Fe + LD vs. Control with n = 3 for each
mean value.
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