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Abstract—We consider the class of 2-layer feed-forward neural
networks with sigmoidal activations – one of the oldest black-
box learning machines – and ask the question: Under what
conditions can it provably learn from a random linear projection
of the data? Due to the speedy increase of dimensionality of
modern data sets, and the development of novel data acquisition
techniques in the area of compressed sensing, an answer to this
question is of both practical and theoretical relevance. Part of
this question has been previously attempted in the literature: A
high probability bound has been given on the absolute difference
between the outputs of the network on the sample before and
after random projection – provided that the target dimension is
at least Ω(M2(logMN)), where M is the size of the hidden layer,
and N is the number of training points. By contrast, in this paper
we show that a target dimension independent of both N and M
suffices and is able to ensure good generalisation for learning the
network on randomly projected data. We do not require a sparse
representation of the data, instead our target dimension bound
depends on the regularity of the problem expressed as norms
of the weights. These are uncovered in our analysis by the use
of random projection, which fulfils a regularisation role on the
input layer weights.

Index Terms—Error analysis, Random projection, Multi-layer
perceptron

I. INTRODUCTION

The intriguing prospect to estimate a – possibly nonlinear –
predictive model from low dimensional random linear projec-
tions of high dimensional data sets instead of the original data
has attracted much research interest in the past decade [7]. Due
to the speedy increase of dimensionality of modern data sets,
and the development of novel data acquisition techniques in
the area of compressed sensing, this approach appears to have
potential towards conquering the curse of dimensionality, and
is also a door-opener for privacy-preserving data processing
[6].

In fact, the idea to learn from randomly projected data dates
back to seminal works in theoretical computer science, and
theories of learning [3], [9]. A more recent and practical mo-
tivation is the prospect of making use of novel data acquisition
techniques from compressed sensing, such as CCD and CMOS
cameras [24]. These devices bypass the need to store and
process large data sets and instead collect a random linear
projection of the data directly.

This work is funded by EPSRC Fellowship EP/P004245/1, ”FORGING:
Fortuitous Geometries and Compressed Learning”.

Here we consider the class of feed-forward neural net-
works with a hidden layer and Lipschitz continuous activation
functions. We seek conditions required for it to solve learn-
ing problems to good-enough approximation from random
projections of the data. This class of networks is a classic
and well-weathered workhorse in the predictive data analytics
practitioners’ toolbox, and precursor of a variety of recent
‘deep network’ extensions. The same type of network was
previously analysed under random projections in [24], but our
findings (and approaches) differ.

Let X ⊂ Rd be an input domain. We denote by H =
{x → h(x) : x ∈ X} the function class that implements
neural networks of the following parametric form:

h(x) = u+

M∑
i=1

viσ(wTi x) (1)

where σ : Rd → [−b, b] is a Lipschitz continuous bounded
activation function – traditionally a sigmoidal function, such
as σ(u) = tanh(u), or the logistic function σ(u) = 1

1+e−u .
Further, wi ∈ Rd, u, vi ∈ R are the weights or parameters of
the network. We assume that ‖v‖1 = Cv for some constant
Cv > 0, but do not constrain the first layer weights a-priori.

In practice, these parameters are estimated from a finite set
of labelled training points denoted by T N = {(xn, yn)}Nn=1,
where (xn, yn)

i.i.d∼ D, and D is an unknown distribution over
X × Y with X ⊂ Rd and Y = [−b, b] ⊂ R. Let ` : Y × Y →
[0, ¯̀] be a bounded loss function, assumed to be L`-Lipschitz
in its first argument. It measures the mismatch between the
true and the predicted labels of a labelled point. Typically
the loss function depends on its arguments only through their
product y ·h(x) (for classification), or through their difference,
y − h(x) (for regression).

It is well known that this class of neural networks is capable
of approximating any smooth target function arbitrarily well
when provided with a sufficient number of hidden units [8]
– that is, when the size of the network, M , is large enough.
It is also known that, for good generalisation, the size of the
weights matters more than the size of the network [4].

The quantity of ultimate interest that quantifies the success
of learning is the generalisation error (or risk). For an h ∈ H,
this is defined as E[` ◦ h] := E(x,y)∼D[`(h(x), y)]. However,
since D is unknown, we only have access to the empiri-



cal error, defined as ÊT N [` ◦ h] = 1
N

∑N
n=1 `(h(xn), yn).

The optimal learner within H will be denoted as h∗ =
arg inf
h∈H

E[` ◦ h]. The sample error minimiser of the loss is

ĥ = arg min
h∈H

ÊT N [` ◦ h].

We are interested in the setting where d is too large to
work with directly, as indeed this is the case in many modern
data sets. We shall employ random projection (RP) to reduce
dimension before feeding the data to the neural network. RPs
represent a data-oblivious universal dimensionality reduction
approach whose theoretical properties allow us to gain insight
into its effects on learning and generalisation. In addition, in
this work it will also fulfil a regularisation role – this will
become apparent as one of the insights that our analysis yields.

Denote the random projection (RP) matrix by R ∈ Rk×d,
k < d, with independent and identically distributed (i.i.d.)
entries, or i.i.d. rows drawn independently of T N , from a
suitable 0-mean 1/k-variance distribution, and the compressed
training set is T NR = {(Rxn, yn)}Nn=1. The distribution of the
entries of R is usually chosen so as to satisfy the Johnson-
Lindenstrauss property [13]. In line with this, we shall assume
i.i.d. sub-Gaussian entries.

In the reduced k-dimensional space we have analogous
definitions, and will use a subscript to refer to this reduced
space. The functions in the reduced space have the form:

hR(Rx) = uR +

M∑
i=1

(vR)i · σ((wR)Ti Rx) (2)

where (wR)i ∈ Rk, uR, (vR)i ∈ R are the parameters that are
estimated from T NR . Thus, the compressed function class of
our interest is HR = {Rx→ hR(Rx) : x ∈ X , ‖vR‖1 = Cv}
where Cv > 0 is a constant. We will not restrict the norms
of the nonlinear layer’s parameter vectors (wR)i because the
complexity on this layer is already reduced by the RP. This can
be done if further complexity reduction is desired, as discussed
in a subsequent section.

Let us denote the sample error minimiser in this reduced
class as ĥR = arg min

hR∈HR

1
N ÊT NR [` ◦ hR], where ĥR ∈ HR and

ÊT NR [`◦hR] = 1
N

∑N
n=1 `(hR(Rxn), yn) is the empirical error

in the reduced space. Likewise, the optimal learner within HR
is denoted as h∗R = arg min

hR∈HR
E[` ◦ hR].

II. MAIN RESULT

We will make use of Rademacher complexities, and it will
be convenient to assume that H is closed under negation. This
implies the same for HR, that is HR = −HR. Therefore the
Rademacher complexity [5], [20] of the function class of our
interest, HR, is the following:

R̂N (HR) = Eγ [ sup
hR∈HR

1

N

N∑
n=1

γnhR(Rxn)] (3)

where γ = (γ1, ..., γN ) and γn takes values in {−1, 1} with
equal probability.

The following theorem bounds the generalisation error of
the network ĥR trained on randomly projected data under
fairly standard assumptions.

Theorem 2.1: Let H be the function class of feed-forward
neural networks of the form defined in eq.(1), with Lσ-
Lipschitz continuous activation functions σ : R → [−b, b],
and assume H = −H. Let h∗ = arg inf

h∈H
E[` ◦ h] be

the optimal network in this class, with parameters (W ∗ =
[w∗1 , ..., w

∗
M ] ∈ Rd×M , v∗ = (v∗1 , . . . , v

∗
M ) ∈ RM , u∗ ∈ R),

where ‖v∗‖1 = Cv , and Cv > 0 is a constant. Denote by
` : Y ×Y → [0, ¯̀] a loss function assumed to be L`-Lipschitz
in its first argument, and let ĥR be the sample error minimiser
of this loss with respect to T NR . Let R ∈ Mk×d, k ≤ d be
a random matrix with i.i.d. sub-Gaussian entries Let T NR be
the RP-ed training set of size N , where the original sample
T N i.i.d∼ D. We assume that E[Trace(xxT )] < ∞, but D is
unknown. Then, for any δ ∈ (0, 1), with probability at least
1− δ− φ(δ), the generalisation error of ĥR is upper bounded
as the following:

Ex,y[` ◦ ĥR] ≤ Ex,y[` ◦ h∗] + cL`b(1 + Cv) ·
√
k

N

+ 4¯̀

√
log 2

δ

2N
+ fk(W ∗, v∗, δ) (4)

where c an absolute constant, and

fk(W ∗, v∗, δ) =

min

{
gk(W ∗, v∗) + ¯̀

√
1

2
log

(
1

δ

)
,
gk(W ∗, v∗)

δ

}
· 1(k < rank(E[xxT ]))

where

gk(W ∗, v∗) = L`Lσ‖v∗‖2 · ‖W ∗‖Fro ·
√

2

k
· E[‖x‖2] (5)

where 1(·) takes the value 1 if its argument is true and 0
otherwise.

Theorem 2.1 bounds the generalisation error of the sample
error minimising 2-layer perceptron on randomly projected
data, relative to that of the optimal network in the original
uncompressed class. It shows that this error is controlled
independently of the number of hidden units, by structural
characteristics of the uncompressed optimal network, and
structural characteristics of the input distribution.

In the main bound, eq. (4), the first term on the r.h.s.
is the best achievable generalisation error in the original
function class. The next two terms represent the complexity
of the function class on dimension-reduced inputs. Under the
conditions of the theorem, for the uncompressed function class
the complexity would have been of order

√
d, and it is now

reduced to
√
k. The last term is the price to pay for this

reduction: a bias that, when nonzero, it cannot be eliminated
by a larger sample size. As expected, the choice of k balances
between this bias and the reduced complexity of the function
class.



This last term, fk(W ∗, v∗, δ) can be regarded as a new
complexity term as it tells us how compressible is the problem
– in other words, it contains information about what makes
it possible to learn the network successfully from randomly
projected inputs. Therefore it is interesting to inspect the
factors that influence this term. Also interesting to note that it
is bounded independently of any label information.

We observe that the compressibility term fk(W ∗, v∗, δ) is
governed by the compression dimension k, and the regularity
of the problem – in this analysis, the degree of regularity
is reflected by the size of norms of the weights of the
optimal uncompressed network, and the Lipschitz constants
of nonlinear functions involved.

Some comments are in order about our choice of network
architecture for this analysis. As mentioned in the introduction,
for this analysis we opted not to constrain the first layer
weights in order to let the random projection exert its regulari-
sation effect. It is well known in the classical literature, that the
function class complexity can be reduced by regularisation of
the weights [4], [18] – this is of course applicable here too, but
the effect of regularising wi, i = 1, . . .M would be to further
reduce (the already reduced) function class complexity, at the
expense if a likely increase in the magnitudes of the bias term
(while its algebraic expression remains unchanged) – this may
be undesirable if k is small.

We should point out that Theorem 2.1 does not require the
input domain X to be bounded either. Both the boundedness of
X and boundedness of all weights are restrictions often made
for technical convenience, to ease the analysis. The reason we
were able to avoid them is that our analysis exploits the fact
that the activation function is bonded so we do not need to
worry about the scale of inputs or that of the weights.

A. Bounding the required target dimension

To find out what target dimension k ensures good gen-
eralisation of the compressive learner, we require that the
compressibility term is below a given threshold and solving
for k.

We shall pursue this from the starting point of eq. (5), since
if the threshold is small then the variability is necessarily small
as well. From the proof we shall see that the term gk(W ∗, v∗)
is an upper bound on EREx,y|`(h∗(RTRx), y)− `(h∗(x))|, it
decreases with increasing k, so we require that this term is
below some threshold η > 0, yielding the following corollary.

Corollary 2.2: With the notations and conditions of Theo-
rem 2.1, for any η > 0, the required target dimension of the
compressed space to ensure gk(W ∗, v∗) ≤ η is lower bounded
as the following:

k ≥ η−2 · L2
` · L2

σ · ‖v∗‖22 · ‖W ∗‖2Fro · 2 · (E‖x‖2)
2 (6)

We may interpret the required k, eq. (6) as the degree of
compressibility of the particular learning problem. Our bound
suggests that this depends on the degree of regularity of the
optimal learner in the original uncompressed function class,
as expressed through the norms of the network’s weights, and

the Lipschitz constants of the activation function and that of
the loss function.

In practice, of course the quantities involved in the bound
are unknown. There are other means to set k in practice, in
particular existing model selection methods may be used, such
as cross-validation, structural risk minimisation or others. The
value of k obtained may give us a hint about the amount
of favourable structure for the problem at hand. However,
the main role of our analysis is to gain insights into the
characteristics of the data and the problem responsible when
observing successful vs. unsuccessful learning of the network
from the compressed data. Previous bounds that depended on
the number of hidden units completely miss such explanation.

III. COMPARISON WITH PREVIOUS WORK

The work in [24] derived a lower bound on the required
dimension, k, of a linear random projection for the same type
of neural network as considered here. They did not consider
generalisation analysis, instead their goal was just to bound
the absolute difference between the network’s output when
fed with the original sample and when fed with the random
projection of the same sample. This goal is a subset of ours,
as we also bound this as part of our proof.

We summarise the result of [24] below. To avoid confusion,
we should point out that the quadratic term in M is actually
missing from the original statement of theorem 3.1 in [24] due
to a typo in their proof (see [16] for details), the below is our
corrected version of their result.

Theorem 3.1 ( [24]): Consider the class of feed-
forward neural networks with sigmoid activation function
σ, and M hidden units, as defined in eq.(1). Let R
be a k × d, k < d matrix with entries Rij drawn
i.i.d. from a Gaussian N(0, 1/k). For any η > 0,
1
N

∑N
n=1 |

∑M
i=1 vi

(
σ(wTi R

TRxn)− σ(wTi xn)
)
| ≤ η with

probability at least 1− δ, provided that,

k ≥ Ω

(
η−2M2(logMN)

M
max
i=1
|vi| · ‖wi‖2 · sup

x∈X
‖x‖2

)
(7)

Comparing eq. (7) with our result in eq. (6), the most
striking difference is that our lower bound on k does not
depend on M or N . Hence we can let the number of hidden
units M → ∞, and have as many training points as we
can get (N → ∞), without necessarily blowing up the
compression dimension k. Instead, the various norms of the
weight parameters are sufficient to determine the required
target dimension k – these capture the regularity and benign
geometry of the problem that makes it solvable on a random
subspace.

Our result implies that compressed learning of the network
has similar behaviour as the original in the sense that, for good
generalisation, the size of the weights matters more than the
size of the network. In turn, the lower bound on k from [24]
blows up if M or/and N grows without bounds.

We find it insightful to understand the reasons for this
difference, which is indeed an artefact of the proof technique
used in [24]. The analytic tool used in the analysis of [24]



was the Johnson-Lindenstrauss lemma combined with union
bounds. The spurious logarithmic factors are due to the use
of union bounds, and the explicit dependence on M2 is due
to the inability of that approach to take advantage of possible
couplings between the weights, or any favourable geometry
that may be present in the problem that our bounds are able
to exploit.

In addition, a further difference between our approach and
that of [24] is that that [24] is restricted to Gaussian random
projections. This is because their proof of inner product
preservation relies heavily on the rotation invariance of the
Gaussian. Sub-Gaussian RPs have better computational scaling
while they enjoy similar guarantees [1], [19]. To allow these
one could instead use newer results on dot product preservation
from [14]. However, in order to eliminate the use of union
bounds and be able to exploit the geometry of the problem,
we shall pursue a different line of attack instead.

IV. PROOF OF THEOREM 2.1

For a fixed instance of R, the Rademacher complexity
bound [5], [20] gives that, uniformly for all hR ∈ HR, the
following holds ∀δ ∈ (0, 1) w.p. 1− δ over T N :

E[` ◦ hR] ≤ ÊT N [` ◦ hR] + 2R̂N (` ◦ HR) + 3¯̀

√
log 2

δ

2N
(8)

The first two terms on the r.h.s. are the empirical error
measured on the compressed training set, and the empirical
Rademacher complexity of the function class over the reduced
dimensional input space. Both are now functions of R.

For the empirical minimiser ĥR of the loss in HR we have:

ÊT N [` ◦ ĥR] = min
hR∈HR

ÊT N [` ◦ hR] ≤ ÊT N [` ◦ h∗R] (9)

≤ E[` ◦ h∗R] + ¯̀

√
log 2

δ

2N
(10)

where h∗R = infhR∈HR E[` ◦ hR], and we used a Höffding
bound in the last line, since h∗R is fixed. It follows that,

E[` ◦ ĥR] ≤ E[` ◦ h∗R] + 2R̂N (` ◦ HR) + 4¯̀

√
log 2

δ

2N
(11)

The first part of the proof is to bound the risk of h∗R with
high probability with respect to the random draw of R. The
second part will bound the empirical Rademacher complexity.

A. Part I: Upper bound on E[` ◦ h∗R]

The following is immediate from the definition of h∗R, and
decompose the r.h.s. into a distortion term that we call this the
compressive distortion, denoted D, and the risk of h∗:

E[` ◦ h∗R] = min
hR∈HR

Ex,y[` ◦ hR] (12)

≤ min
hR∈HR

Ex,y|` ◦ hR − ` ◦ h∗|︸ ︷︷ ︸
D

+Ex,y[` ◦ h∗]

(13)

Next, we shall upper bound the compressive distortion D.

Let us denote by W ∗ ∈ Rd×M the matrix that holds the
weight vectors w∗i , i = 1, ...,M in its columns, and v∗ =
(v∗1 , ..., v

∗
M ). Likewise, WR ∈ Rk×M will be the matrix of

weight vectors (wR)i, i = 1, ...,M in the reduced space. Using
the Lipschitz property of `(·) and σ(·) we have: D 6 . . .

L` · min
vR,WR,uR

Ex|
M∑
i=1

(vR)iσ((wR)
T
i Rx) + uR −

M∑
i=1

v
∗
i σ((w

∗
i )
T
x)− u∗|

6 L` ·min
WR

Ex|
M∑
i=1

v
∗
i σ((wR)

T
i Rx) + u

∗ −
M∑
i=1

v
∗
i σ((w

∗
i )
T
x)− u∗|

6 L`‖v∗‖2 min
WR

Ex

√√√√ M∑
i=1

[σ((wR)Ti Rx)− σ((w∗i )T x)]2

by the Cauchy-Schwartz inequality. This is further bounded
by:

≤ L`Lσ‖v∗‖2 min
WR

Ex

√√√√ M∑
i=1

|(wR)Ti Rx− (w∗i )Tx|2

by the Lipschitz property of σ(·). Furthermore, we upper
bound this as:

≤ L`Lσ‖v∗‖2 min
WR

Ex‖WT
RRx− (W ∗)Tx‖2

≤ L`Lσ‖v∗‖2
√

min
WR

Ex‖WT
RRx− (W ∗)Tx‖22 (14)

by Jensen’s inequality.
Observe that the minimiser in the last line has a closed form:

WT
R = (W ∗)TEx[xxT ]RT (REx[xxT ]RT )−1

Hence, (WR)Ti = (w∗i )TEx[xxT ]RT (REx[xxT ]RT )−1. Plug-
ging this back, and denoting Σ = Ex[xxT ], we have:

min
WR

Ex‖WT
RRx− (W ∗)Tx‖22

=

M∑
i=1

Ex|(w∗i )TΣRT (RΣRT )−1Rx− (w∗i )Tx|2

=

M∑
i=1

(w∗i )TΣw∗i − (w∗i )TΣRT (RΣRT )−1RΣw∗i (15)

By SVD, Σ = UΛUT , where UUT = UTU = Id, and Λ is
the diagonal matrix of ρ = rank(Σ) positive and d − ρ zero
eigenvalues of Σ. Denote by Λ the ρ × ρ non-zero diagonal
sub-matrix of λ. Denote by P the sub-matrix of rows of RU
that correspond to the non-zeros in Λ. Denote by w∗i the entries
of UTw∗i that correspond to the non-zeros in Λ. Then we can
rewrite eq.(15) as the following:

=

M∑
i=1

(w∗i )TUΛUTw∗i

− (w∗i )TUΛU ′RT (RUΛUTRT )−1RUΛUTw∗i

=

M∑
i=1

(w∗i )
TΛw∗i − (w∗i )

TΛPT (PΛPT )−1PΛw∗i

=

M∑
i=1

(w∗i )
TΛ1/2

(
Iρ − Λ1/2PT (PΛPT )−1PΛ1/2

)
Λ1/2w∗i

(16)



Interesting to observe that the above can be bounded de-
terministically for any R that is full row rank. Although such
bound is not very informative it nevertheless has some useful
features.

Indeed, eq. (16) can be upper bounded irrespective of the
random matrix R, using the Rayleigh quotient inequality,
and noting that the matrix Iρ − Λ1/2PT (PΛPT )−1PΛ1/2 is
symmetric:

eq. (16)

≤
M∑
i=1

(w∗i )TΣw∗i · λmax(Iρ − Λ1/2PT (PΛPT )−1PΛ1/2)

(17)

=

{∑M
i=1(w∗i )TΣw∗i , if k < rank(Σ)

0, if k ≥ rank(Σ)

≤

{
λmax(Σ)‖W ∗‖2Fro, if k < rank(Σ)

0, if k ≥ rank(Σ)
(18)

The last line follows from the fact that
Λ1/2PT (PΛPT )−1PΛ1/2 has k eigenvalues of 1, and
ρ− k eigenvalues 0.

Plugging this back into eq. (14) it follows that:

D ≤ L` · Lσ · ‖v∗‖2 · ‖W ∗‖Fro ·
√
λmax(Σ) · 1(k < rank(Σ))

From this we observe that whenever k ≥ rank(Σ) then D =
0. However, it is not informative about the behaviour of the
compressive distortion as a function of the target dimension k
when k < rank(Σ).

So far we did not use the random nature of R, and we can
obtain a more informative bound by doing so, as follows.

We return to eq. (13), and take a different route, defining
the distortion D in a slightly different manner. We have:

E[` ◦ h∗R]

= min
hR∈HR

Ex,y[` ◦ hR] (19)

≤ Ex,y[` ◦ h∗ ◦RT ] (20)
≤ Ex,y|` ◦ h∗ ◦RT − ` ◦ h∗|︸ ︷︷ ︸

D

+Ex,y[` ◦ h∗] (21)

The inequality in eq. (20) holds because ` ◦ h∗ ◦ RT ∈ HR,
since the first layer weights are unconstrained, and since both
HR andH contain networks whose second layer weight vector
has l1 norm equal to Cv .

From here onward, D refers to the quantity in eq. (21). This
abuse of notation is because it will play the same role as the
previous form of compressive distortion. We have:

D = Ex,y|` ◦ h∗ ◦RT − ` ◦ h∗|
= Ex,y|`(h∗(RTRx), y)− `(h∗(x))| (22)

Here we will take a deviation approach, by which we bound
D from its expectation, and then bound the expected distortion
ER[D].

By Höffding inequality we have for any ε > 0, Pr{D >
ER[D] + ε} 6 exp

(
−2ε2/¯̀2

)
. Hence, w.p. at least 1− δ

D 6 ER[D] + ¯̀

√
1

2
log

1

δ
(23)

Note that whenever ER[D] is small (close to 0) then so is
D−ER[D], since D is always positive. The Markov inequality
will capture this. Pr{D ≥ ε} ≤ ER[D]/ε. Taking the minimum
we have:

D ≤ min

{
ER[D]

δ
, ER[D] + ¯̀

√
1

2
log

1

δ

}
(24)

Now it remains to bound the expected distortion, ER[D].
Using the Lipschitz property of `(·) and σ(·) we have:

ER[D] ≤ L` · ER,x|
M∑
i=1

v∗i
(
σ(w∗Ti RTRx)− σ(w∗Ti x)

)
|

≤ L` · ‖v∗‖2Ex,R

√√√√ M∑
i=1

[σ(w∗Ti RTRx)− σ(w∗Ti x)]2

by Cauchy-Schwartz inequality; this is further upper bounded
as:

≤ L` · ‖v∗‖2Ex,R

√√√√ M∑
i=1

L2
σ · [w∗Ti RTRx− w∗Ti x]2

by Lipschitzness of σ(·), which in matrix form is the follow-
ing:

= L` · Lσ · ‖v∗‖2 · Ex,R‖W ∗TRTRx−W ∗Tx‖2(25)

We can bound the expectation w.r.t. R that appears above,
since we know the distribution of the entries of R. Specifically,
after some algebra it is not too difficult to show that:

ER‖W ∗TRTRx−W ∗Tx‖2 ≤
√

2

k
· ‖W ∗‖Fro · ‖x‖2. (26)

Applying this to eq. (25), we obtain:

ER[D] ≤ L` · Lσ · ‖v‖2 ·
√

2

k
· ‖W‖Fro · Ex‖x‖2 (27)

Substituting this back into eq.(24), and taking into account
the earlier observation that D = 0 when k ≥ rank(Σ). Hence
we obtain the expression stated in eq. (5).

B. Part II: Upper bound on R̂N (` ◦ HR)

As a general comment before proceeding, recall that we did
not constrain the first layer weights of the network, and also
that we did not require the input domain X to be bounded.
These restrictions are often made for the technical ease of
Rademacher analysis, but for us the purpose is to let the
random projection exert its regularisation effect. Therefore our
Rademacher analysis will proceed through the fat shattering
bound for linear functions rather than the l2 geometry. This is
possible because the activation function is bonded so we do
not need to worry about the scale of weights.



In turn, the regularising effect of random projections, does
not affect the second layer, which is why we had imposed
the condition ‖vR‖1 = Cv . Using this, we can start by well
known properties of the empirical Rademacher complexity. As
in [20],

R̂N (` ◦ HR) ≤ L`R̂N (HR) (28)
= L`(1 + Cv)2bR̂N (FR) (29)

were FR is the class of Lipschitz continuous functions over
the projected k-dimensional input space:

FR = {Rx→ (σ((wR)Ti Rx) + b)/(2b) : Rk → [0, 1]} (30)

In eq. (28) we used Talagrand’s contraction lemma (Theorem
7 in [21]). In eq. (29) we used Rademacher identities that hold
for any function class H [5], [20], namely that R̂N (cH) =
|c|R̂N (H),∀c ∈ R, and R̂N (conv(H)) = R̂N (H) where
conv(·) denotes the convex hull of the set in its argument.

Now, without constraints on (wR)i, we bound the empirical
Rademacher complexity of the Lipschitz continuous function
class FR using that this class has a bounded range of values.
By Dudley’s entropy integral inequality [10], the Rademacher
complexity of any [0, 1]-valued function class can be bounded
in terms of covering numbers:

R̂N (FR) ≤ 12

∫ 1

0

√
logN (α,FR, ‖ · ‖2)

N
dα (31)

where ‖ · ‖2 is the L2-norm with respect to the empirical

measure i.e. for an f ∈ FR, ‖f‖2 =
√

1
N

∑N
n=1 f

2(xn).
The covering number in the above can be further bounded

in terms of the fat shattering dimension1 using the following
result of [2] (Theorem 2.18 in [22]).

Theorem 4.1: [22] There is an absolute constant c′p that
satisfies that ∀H ∈ B(L∞(X)) every sample, every 1 ≤ p ≤
∞,∀α ∈ (0, 1),

N (α,H, ‖ · ‖2) ≤
(

2

α

)cp·fatc′pα(H)

(32)

where c, c′ are absolute constants, and fatγ(·) is the fat
shattering dimension of the function class.

Using this yields:

N (α,FR, ‖ · ‖2) ≤
(

2

α

)c·fatc′α(FR)

(33)

The fat shattering dimension is a measure of the complexity
of a real valued function class. It is known that linear function
classes have fat shattering dimension upperbounded by their
input dimension [11] for any γ. Furthermore, composition with
a Lipschitz function (such as a Lipschitz continuous function
in our case) does not change the fat shattering dimension by
more than a constant [4], [11].

1Let γ > 0 be fixed, and let F be a function class. We say that F γ-
shatters a set A ⊂ X if ∃s : A→ R s.t. ∀E ⊆ A, ∃fE ∈ F satisfying that
∀x ∈ A \ E, fE(x) ≤ s(x)− γ and ∀x ∈ E, fE(x) ≥ s(x) + γ.
The maximum cardinality of A ⊆ X that is γ-shattered by F is defined as
the fat-shattering dimension of F , denoted fatγ(F).

Plugging this back, eq. (31) is bounded as:

R̂N (FR) ≤ 12

∫ 1

0

√
c′′k log(2/α)

N
dα = C

√
k

N
(34)

where C is an absolute constant. This completes the proof of
Theorem 2.1.

V. CONCLUSIONS AND OUTLOOK

We proved size-independent guarantees for compressive
learning of 2-layer feed-forward neural networks, that is, in
contrast to what has been known previously, the required
dimension of the random projection does not explicitly depend
of the number of hidden units in the architecture. Instead,
compressive learning of the network behaves similarly to the
uncompressed one in that small weights, in terms of Frobenius
norm of the first layer weights, matters more than the number
of hidden units. Informally, the intuition from our analysis is
that, the least complex the task the more it can be learned
from drastically compressed data. This is appealing since
it implies that simple tasks demand less computation, and
random projection is a suitable tool that to implement this.

We should mention that our approach in this study exploited
the boundedness of sigmoidal activation functions, so one does
not need to worry about the scale of the first layer weights. It
would be interesting to investigate whether a similar conclu-
sion would hold in the case unbounded activation functions.
This remains for future work.

Finally, in recent work we have used random projection to
analyse uncompressed learning machines [15], [17] – it would
be interesting, in a similar vein, to leverage the insights gained
from the analysis herein to shednew light on the original
uncompressed problem.
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