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VALUE is a network that developed a framework to evaluate statistical downscaling
methods including model output statistics such as simple bias correction and quan-
tile mapping; perfect prognosis methods such as regression models and analog
methods; and weather generators. The first experiment addresses the downscaling
performance in present climate with perfect predictors. This paper presents a synthe-
sis of the VALUE special issue, with a focus on the results of this first experiment.
This paper presents a synthesis of the results. Model output statistics performs
mostly well, but requires predictors at a resolution close to the target one. Perfect
prog performance depends crucially on model structure and predictor choice.
Weather generators perform in principle well for all aspects that can be expressed by
the available model structure. Inter-annual variability is underrepresented by both
perfect prog and weather generator approaches. Spatial variability is poorly repre-
sented by almost all participating methods (inherited by model output statistics from
the driving model, not represented by the perfect prog and weather generator
methods). Further studies are required to systematically assess (a) the role of predic-
tor choice for perfect prog; (b) the performance of spatial weather generators, to
study the performance based on GCM predictors; (c) downscaling skill in simulated
future climates; and (d) the credibility of simulated predictors in a future climate.

KEYWORDS

bias correction, evaluation, regional climate, statistical downscaling, validation

1 | INTRODUCTION

Operational global coupled general circulation models
(GCMs) such as those studied in the Coupled Model Inter-
comparison Project Phase 5 (CMIP5; Taylor et al., 2009)
have a resolution too coarse to realistically represent the
influence of regional-scale topography on climate, as well as
regional-scale climatic phenomena themselves, in particular
localized extreme events. This scale-gap is often bridged by
downscaling (Giorgi and Mearns, 1999; Benestad, 2016;
Maraun and Widmann, 2018), either by dynamical regional
climate models (RCMs) or by statistical downscaling based
on empirical relationships.

Regional climate projections are still a scientific chal-
lenge and require thorough evaluation (Nature, 2010; Barsu-
gli et al., 2013; Hewitson et al., 2014; Maraun et al., 2015).
The evaluation of downscaling-based regional climate pro-
jections requires (a) to assess how large-scale predictors are
simulated and (b) to assess how well the downscaling itself
performs. In a climate change context, both assessments
have to address not only the performance in present climate,
but also the performance to represent past climatic changes
and potential future climates. The latter assessment of course
can only be based on process-based plausibility arguments
(Maraun and Widmann, 2018).
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Regional climate phenomena have marginal (regarding
the univariate unconditional distribution), temporal, spatial
and inter-variable aspects (Maraun et al., 2015). Some
aspects may specifically characterize extreme events, such as
the tails of the marginal distribution or long spells. Most
evaluation studies so far have only addressed marginal and
to some extent temporal aspects, some with a focus on
extreme events (Haylock et al., 2006; Goodess et al., 2010;
Bürger et al., 2012). Spatial and inter-variable aspects have
hardly been evaluated so far (Ferraris et al., 2003; Frost
et al., 2011; Hu et al., 2013; Paschalis et al., 2013; Wilcke
et al., 2013). Downscaling evaluation studies have typically
focussed on a few methods, mostly from within one
approach such as bias correction (Gudmundson et al., 2012;
Teutschbein and Seibert, 2012; Gutmann et al., 2014). Until
recently no comprehensive intercomparison and evaluation
of different downscaling approaches existed.

The EU COST Action VALUE (Maraun et al., 2015) set
out to systematically address this gap as far as possible.
Three experiments have been designed: Experiment 1 to iso-
late downscaling skill in present climate by using observed
(reanalysis-based, “perfect”) predictors; Experiment 2 to
assess the overall performance of GCM and downscaling in
present climate; and Experiment 3 to assess downscaling
skill in a future pseudo reality. In addition, the relevance of
credible GCM projections has been assessed in a bias correc-
tion context (Maraun et al., 2017). As EU COST Action,
VALUE received funding for travel and coordination only.
The actual research was based on in-kind contributions. So
far, VALUE has carried out Experiment 1. Owing to the lim-
ited capacity of the participants, inter-variable relationships
have not been assessed yet. Similarly, it was not possible to
systematically compare a range of different predictor selec-
tions for a specific method type. This special issue presents
the VALUE results so far, including a discussion of the
interface between climate modelling and users (Roessler
et al., 2017), uncertainties resulting from observational data
sets (Kotlarski et al., 2017; Herrera et al., submitted manu-
script, 2018), and the evaluation results of the perfect predic-
tor experiment (Gutiérrez et al., 2018; Maraun et al., 2018;
Hertig et al., 2018; Soares et al., submitted manuscript,
2018; Widmann et al., submitted manuscript, 2018).

This short communication synthesizes the results across
the special issue papers. The focus is on the results from the
perfect predictor experiment, in particular regarding mar-
ginal, temporal, and spatial aspects, including extremal
aspects. In addition to these aspects, also a process-oriented
evaluation has been carried out. Given that the results for
this assessment (Soares et al., submitted manuscript, 2018)
are rather experimental and available only for selected cli-
matic phenomena, we do not include them here in detail.
Key messages regarding process-oriented evaluation, how-
ever, are discussed in the conclusions.

Details on Experiment 1 and the participating methods
can be found in Gutiérrez et al. (2018). In particular, the pre-
dictors chosen for each method are listed therein. Note that
Experiment 1 addresses the performance of downscaling
methods in present climate only. A good performance in this
experiment is not sufficient for a good performance in a
future climate, let alone for an overall skilful regional cli-
mate projection.

2 | SYNTHESIS OF THE PERFECT
PREDICTOR EXPERIMENT

Prior to discussing the results, we briefly review the different
approaches of statistical downscaling. Depending on how
statistical downscaling methods incorporate their predictors
under calibration, they can be categorized into perfect prog
(PP) and model output statistics (MOS; Rummukainen,
1997; Maraun et al., 2010; Maraun and Widmann, 2018).

A PP model is calibrated with both observed predictands
and observed (here reanalysis-based) predictors. To generate
regional future projections, the model is then applied to pro-
jections of the predictors as simulated by a climate model.
Typical models are based on regression (including canonical
correlation analysis [CCA] and nonlinear regression such as
artificial neural networks), analogs and weather types. PP
models have to fulfil three assumptions in a climate change
context (Maraun and Widmann, 2018): (a) the PP-condition
has to be fulfilled, that is, the predictors have to be realisti-
cally simulated in present climate, and credibly projected
into the future. (b) Predictors need to be informative, that is,
they have to explain a large fraction of local variability on
all relevant time scales, including the response to climate
change. (c) The structure of the statistical downscaling
model has to be such that the influence of the predictors on
the predictand is adequately represented for the aspects of
interest, including at least moderate extrapolation to future
climates.

In MOS, the model is calibrated between observed pre-
dictands, but simulated predictors. This approach intrinsi-
cally adjusts model biases. While the temporal synchrony
between predictors and predictands in PP (because both are
observed) allows for building regression models with a
broad range of different predictor variables, MOS in a cli-
mate change context is typically much simpler: the climate
model is not in synchrony with observations, such that only
long-term distributions can be mapped. In a climate change
context, MOS is thus typically restricted to bias correction of
the simulated predictor variable. Widely used implementa-
tions are simple additive and scaling corrections or variants
of more flexible quantile mapping. To be used for climate
projections, MOS methods have to fullfil three assumptions
(Maraun and Widmann, 2018): (a) the predictor needs to be
realistically simulated in present climate, apart from correct-
able biases; under future conditions, the predictor has to be

2 MARAUN ET AL.



credibly simulated. (b) The predictor needs to represent the
predictand, that is, the same spatial scale and location.
(3) The transfer function needs to have a suitable structure to
represent the aspects of interest, and needs to be applicable
in a future climate. The latter typically involves at least mild
extrapolations to unobserved extremes.

Additionally weather generators (WGs) have been devel-
oped that can be implemented either as complex PP methods
(when conditioned on predictors) or as so-called change fac-
tor weather generators. In general, WGs are stochastic
models that explicitly model at least the marginal and tempo-
ral aspects of a meteorological variable, often even the rela-
tionships between a set of variables, sometimes also spatial
dependence. In VALUE, all WGs are change-factor WGs,
that is, they are used without predictors. Under future cli-
mate change, the parameters of such models would be
adjusted according to changes simulated by a climate model.
For these models, the assumptions are similar to those of
MOS: (a) the change factors for the WG parameters have to
be credibly simulated; (b) these simulated changes have to
be representative of the changes at the WG location and
scale; and (c) all relevant parameters that may change are
modified by change factors.

The VALLUE perfect predictor experiment uses the
ERA-Interim reanalysis (Dee et al., 2011) as driving data:
either directly as input for the participating MOS methods
and to calculate predictors for the PP methods; or as lateral
boundary conditions for KNMI’s RACMO2 RCM (van
Meijgaard et al., 2008), which is used as alternative input
for the MOS methods. The choice of reanalysis data as input
ensures that boundary conditions and predictors are essen-
tially bias free and—on inter-annual and longer timescales—
synchronized with observations. This setup allows us to
isolate the downscaling skill of the participating methods.
As predictand data we choose 86 stations from the ECA-D
data base (Klein Tank et al., 2002). The methods are cali-
brated and evaluated in a cross validation setup over the
period 1979–2008. For details see Gutiérrez et al. (2018).

The VALUE perfect predictor experiment cannot address
the PP and credibility assumptions: in this experiment, pre-
dictors are by construction perfectly simulated. It is designed
to address the informativeness (PP)/representativeness
(MOS) and the model structure assumptions under present
climate conditions. A key issue, which is often overlooked
for PP methods, is the fact that downscaling skill does not
only depend on the chosen predictors, but also on the chosen
model structure. In fact, the structure can often give informa-
tion on model skill already prior to any evaluation (e.g., a
deterministic regression model cannot capture extremes,
which are not fully determined by the predictors; an analog
method without additional adjustment of within-analog
changes cannot represent thermodynamic changes (von
Storch et al., 2000; Gutiérrez et al., 2013; Maraun and Wid-
mann, 2018).

In the following we discuss the results of the perfect pre-
dictor experiment, separately for each downscaling approach
and across the different aspects. Figures 1–3 summarize the
performance of all participating methods for selected diag-
nostics for daily maximum (Tmax) and minimum (Tmin) tem-
perature as well as precipitation. The diagnostics are briefly
presented in Table 1. We do not discuss all methods individ-
ually, but focus on widely used implementations. For more
in depth information, please refer to the individual papers of
this special issue. We also do not discuss the representation
of the seasonal cycle explicitly. It is calibrated for almost all
methods, a good representation is thus trivial. Whether this
calibration is still valid under future conditions is a separate
issue which will be briefly discussed in the conclusions.

2.1 | Model output statistics

When driven with perfect and representative predictors,
MOS methods should trivially improve all aspects they are
calibrated for. The methods participating in VALUE all cor-
rected marginal aspects only, some with a specific focus on
extremes. Thus, almost all MOS methods perform well for
essentially all marginal aspects for temperature, and the non-
extreme aspects of precipitation. Regarding the tail of the
precipitation distribution we obtained the following results:
first, parametric models that explicitly model the tail outper-
form those based on a parametric distribution for the whole
range of values (e.g., GPQM vs. GQM). Seasonally cali-
brated models perform better than those calibrated for the
whole year (e.g., EQM vs. EQMs, but see the discussion in
the conclusions). But finally, transfer functions with a con-
stant extrapolation typically perform better than those with a
parametric distribution (e.g., EQM vs. GPQM). The latter
result to some extent questions the use of complex paramet-
ric extreme value models for the tail. But note that none of
these approaches rests upon physical arguments. Whether
any of these models are applicable under extrapolation to
unobserved extremes under future climate conditions is
essentially an open question.

Temporal variability is largely inherited by the driving
model, it is only indirectly affected by modifications of the
marginal distribution (e.g., by adjusting wet-day frequen-
cies). The ERA and RCM performance for temperature is
high regarding short term dependence and spells. For precip-
itation, the drizzle effect of ERA and the RCM is adjusted,
resulting in a good representation of short-term dependence
and spells. The representation of inter-annual variability by
ERA-Interim and the RCM varies with season and variable.
For temperature it is evident that the underestimation in
spring by the RCM cannot be corrected by bias correction.
For precipitation—in particular for more complex methods
and almost independently of the performance of the driving
data—bias correction often results in an overrepresentation
of inter-annual variability. The effect is strongest in summer
and is likely an inflation effect (Maraun, 2013).
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FIGURE 1 Results for daily maximum temperature Tmax. Depending on the index, either the performance for the whole year (column separated by the
dashed line) is shown, and/or all four seasons (four columns, from left to right: DJF, MAM, JJA, SON). In some cases the performance is evaluated only for
the whole year. The definition of reference scales follows Maraun et al. (2018). Mean: twice the standard deviation of daily values; variance (daily and inter-
annual), spell length, amplitude of seasonal cycle, spatial correlation length: the value itself; return level: absolute deviation from mean; correlations: 1; phase
of the annual cycle: 1 month [Colour figure can be viewed at wileyonlinelibrary.com]
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Also, spatial dependence is mostly inherited by the driv-
ing model. For example, the ERA-Interim temperature fields
are far too smooth, an effect which is not corrected by

univariate bias correction. Adjusting the marginal distribu-
tion has, however, an effect on precipitation fields by adjust-
ing wet day frequencies. As a result, the added value of the
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FIGURE 2 As Figure 1, but for daily minimum temperature Tmin. The data uploaded to the VALUE portal for CDFt-R and MLR-ASW are most likely
incorrect [Colour figure can be viewed at wileyonlinelibrary.com]
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RCM is crucial to improve spatial fields in particular for
temperature, but in many cases also for precipitation. Bias
correction methods that explicitly adjust the spatial–temporal

structure would improve the evaluation results. But such a
correction will by construction destroy the consistency with
the driving model, the stronger, the worse the structure is
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simulated (Cannon, 2016; Maraun, 2016). This issue needs
to be considered when applying such approaches to climate
model output.

As discussed, bias correction largely inherits temporal
and spatial variability from the driving model. Thus, the
selection of appropriate driving models is crucial. Impor-
tantly, this is also a question of added value. Often it is
argued that bias correction may be directly applied to a
GCM as such an approach is cheaper than including an inter-
mediate dynamical downscaling step. Our results show that
this reasoning is in general wrong: of course, bias correction
will trivially adjust present day climatologies to match
observations at any available target scale (station, high-
resolution grid). But RCMs resolve processes and small-
scale variability below the GCM resolution that are crucial
to represent short term persistence and spatial structure. Well
performing RCMs may thus add crucial value as has been
shown for, for example, short term persistence of daily maxi-
mum temperature (visible in Maraun et al., 2018) and spatial
correlations of temperature (Widmann et al., submitted man-
uscript, 2018) (see also Figures 1 and 2). Of course,

deficiencies of the chosen RCM may also deteriorate the per-
formance of the driving model as has been the case, for
example, for inter-annual variability of spring temperatures
(Maraun et al., 2018; see also Figures 1 and 2). In short: bias
correction cannot add value, but only climatological detail.

2.2 | Perfect prognosis

The performance of perfect prognosis depends strongly on
the variable considered, the chosen method, and on the pre-
dictor choice. The mean of temperature and precipitation is
essentially well represented for all methods.

Some implementations of the analog method have minor
biases in mean temperature (see Gutiérrez et al., 2018, not
visible in the summary plots) as the mean is not a calibrated
statistic in the analog method. But in general the analog
method represents marginal aspects well. Temporal depen-
dence, however, is strongly underestimated for temperature,
including long warm and cold spells and inter-annual vari-
ability. Here, algorithms sampling longer analogs or includ-
ing a Markov component might help. For precipitation, the
(anyhow weaker) dependence is well represented apart from

TABLE 1 Diagnostics considered in this synthesis. Further diagnostics are shown in the individual papers

Index Variables
Performance
measure Resolution Description

Marginal diagnostics

Mean Tmax, Tmin

precipitation
Bias/rel. bias Seasonal Mean

Variance Tmax, Tmin

precipitation
Rel. bias Seasonal Variance

Skewness Precipitation Bias Seasonal Skewness

Wet day frequency Precipitation Bias Seasonal Number of wet days in year/season

Wet day intensity Precipitation Relative bias Seasonal Mean on wet days only

20-year/seas return level,
low/high

Tmax, Tmin

precipitation
Bias/rel. bias Seasonal 20-year/season return level low/high: lower/upper tail of the

distribution. Only upper tail for precipitation

Temporal diagnostics

ACF1/3 Tmax, Tmin Bias Seasonal Lag-1/lag-3 autocorrelation

Wet–wet transition prob. Precipitation Bias Seasonal Probability of a wet day, given that the previous day was wet

Dry–wet transition prob. Precipitation Bias Seasonal Probability of a dry day, given that the previous day was wet

Inter-annual variance Tmax, Tmin

precipitation
Rel. error Seasonal Variance of seasonally/annually averaged data

Longest warm spell Tmax Bias Seasonal Median of the annual max. warm (>90th percentile) spell
duration

Longest cold spell Tmin Bias Seasonal Meadian of the annual max. cold (<10th percentile) spell
duration

Longest wet spell Precipitation Bias Seasonal Median of the annual max. wet (≥1 mm) spell duration

Longest dry spell Precipitation Bias Seasonal Median of the annual max. dry (≤1 mm) spell duration

Amplitude of seasonality Tmax, Tmin Bias Annual Amplitude of the annual cycle

Rel. amplitude of season Precipitation Rel. error Annual Relative ampl. of the annual cycle

Phase of seasonality Tmax, Tmin,
precipitation

Bias Annual Day of the maximum of the smoothed seasonal cycle

Spatial diagnostics

Spatial correlation length Tmax, Tmin Bias Seasonal Spatial distance at which the Pearson correlation between two
series has decayed to 0.5

Spatial correlation length Precipitation Bias Seasonal Spatial distance at which the Spearman correlation between
two series has decayed to 0.35

Note. For details see http://www.value-cost.eu/validationportal/app#!indices and click on “details” for the underlying R-code (note that registration is required).
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inter-annual variability. The representation of spatial depen-
dence depends crucially on the implementation: if the ana-
logs are defined simultaneously for several locations,
dependence between these locations is well represented. If
the analogs are defined only for single stations, spatial
dependence is strongly underrepresented. Here a trade-off is
necessary between tailoring predictors (which define the
analog) for a small area, and representing spatial dependence
over a large area. Classical analog methods, however, are
strongly limited in representing long-term forced climatic
changes (Gutiérrez et al., 2013). They sample from observed
analogs and cannot represent climatic states with strongly
altered thermodynamic conditions. For example, a certain
circulation type will have a typical temperature in present
climate, but a much warmer temperature in a future climate
(and similarly more intense precipitation). Some authors
suggest “constructed” analogs to create such unobserved
future analogs (Maurer and Hidalgo, 2008).

Simple linear regression without randomisation modestly
misrepresents marginal aspects (apart from the calibrated
mean) of temperature, indicating that much of the local vari-
ability is explained by the predictors. Here, the dependence
depends considerably on the chosen predictors: some imple-
mentations (MLT-T) use grid-box surface temperature as
predictor and thereby obtain favourable results. These pre-
dictors, however, will likely not fullfill the perfect prog con-
dition, that is, the performance would strongly drop with
GCM simulated predictors. Inflation apparently improves
temperature variance and high quantiles. But this approach
is ill-designed and wrongly assumes that all local variance is
explained by large-scale predictors. The inflation problem is
mostly visible in the temporal correlation: it is by construc-
tion not improved compared to the deterministic regression
as no local variability is simulated.1 Linear regression or any
kind of deterministic regression (including inflation) fails to
downscale daily precipitation: apart from the mean essen-
tially all aspects are badly represented. The main reason is
that the predictors explain a rather low fraction of local pre-
cipitation variability and do not represent the skewed pro-
cess. A generalized linear model with randomisation (GLM),
however, performs well for almost all aspects. In particular,
also temporal aspects are well represented even though no
dependence conditional on the predictors is modelled. This
finding indicates that most of the precipitation dependence
does not result from any direct dependence between subse-
quent precipitation events, but is rather imprinted by the
large-scale circulation. All regression models participating in
VALUE have difficulties representing spatial dependence:
the deterministic implementations are too smooth in space
(in particular for precipitation) because they do not simulate
local variability; the stochastic methods with randomisation
do not simulate the dependence between stations and are
thus too noisy in space. Here, an explicit spatial dependence
model would be necessary.

In contrast to simple bias correction methods (the situa-
tion is different for regression-based MOS in weather fore-
casting), PP includes information on physical processes and
thus can in principle added value to the driving model. For
instance, the analog method models spatial dependence con-
ditionally on specific large-scale weather types.

2.3 | Weather generators

In principle, weather generators can represent any aspect
they are calibrated for. This general statement is of course
strongly limited by the availability of a sufficiently complex
statistical model, and by the amount of data to constrain the
model structure and parameters. In general, however, mar-
ginal aspects are well represented. For temperature, a Gauss-
ian distribution seems to be sufficient, although high and
low extremes are not very well captured in summer and win-
ter, respectively. For precipitation, a double exponential dis-
tribution (SS-WG) seems to suffice, a simple gamma
distribution does not fully represent skewness and extremes
(the MARFI WGs). Nonparametric resampling-based
models, of course, perform well for marginal aspects
(GOMEZ). Temperature and precipitation spells are well
represented apart from long dry spells. Inter-annual variabil-
ity is, as often noted in the literature, strongly underrepre-
sented. Here, conditioning on atmospheric predictors may
improve the results (Katz and Parlange, 1993; Wilks and
Wilby, 1999), although the corresponding findings for per-
fect prog demonstrate the limitations of this idea. None of
the weather generators employed an explicit spatial model
and therefore fully miss to represent spatial dependence.
More advanced models are required such as multisite
Richardson-type or truncated Gaussian weather generators
(Bárdossy and Plate, 1992; Wilks, 1998; Ferraris et al.,
2003; Paschalis et al., 2013), spatial GLMs (Yang et al.,
2005), non-homogeneous hidden Markov models (Hughes
and Guttorp, 1994), spatial Poisson cluster models (Cox and
Isham, 1994; Northrop, 1998) or random cascade weather
generators (Schertzer and Lovejoy, 1987; Thober et al.,
2014). Knowledge of their actual performance in practical
applications is still limited and often contradictory (Frost
et al., 2011; Hu et al., 2013). Whether weather generators
can add value or not depends on their setup: in a PP setting
they can in principle (see discussion in section 2.2), in a
change factor setting they do not include any process infor-
mation and thus—as MOS (section 2.1)—can only add cli-
matological detail.

3 | DISCUSSION AND CONCLUSIONS

We have presented a synthesis of the VALUE perfect pre-
dictor evaluation experiment for statistical downscaling
methods. The main results are:
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• With perfect predictors, MOS is performing best in pre-
sent climate, in particular flexible quantile mapping
approaches. MOS can rather easily be applied over large
areas, but relies on skilfully simulated predictors with a
resolution close to the target resolution. In other words:
standard MOS cannot by itself bridge a scale-gap, and
dynamical downscaling could potentially add substantial
value. This is most clear for spatial dependence, where
the bias correction of the RCM is much more skilful than
the bias correction of the reanalysis. Thus, MOS applied
to GCM data will produce information representing the
GCM resolution, and also MOS applied to RCM data
will not represent point scale values.

• The performance of perfect prognosis is generally lower
and depends strongly on the method type and the chosen
predictors. Here, a good understanding and choice of
model structure for a given purpose is crucial. Essen-
tially all method types fail to reproduce inter-annual and
spatial variability. A key issue that has to be considered
is the perfect prog condition: grid-box surface predictors
may be well simulated in the reanalysis and will result in
high predictive power. But they will likely be poorly
represented by a free running GCM, resulting in low
downscaling skill. If a realistic representation of spatial–
temporal variability is required, perfect prog has its
strength in producing tailored output for a small domain.
For large areas, a tailored predictor selection will be
costly, and spatial models will be computationally
expensive and likely infeasible; here, perfect prog may
provide a cheap way to generate local information of
mean climate from large ensembles.

• Weather generators with the right model for the marginal
distribution perform well for all aspects apart from inter-
annual variability, long dry spells and spatial variability.
For the latter aspect, further research is required to assess
the skill of specifically designed multi-site weather gen-
erators. The strength of weather generators is in produc-
ing either single-site information (also over many sites)
with characteristics very close to the observed, or—
potentially—to produce tailored spatial–temporal models
over a small domain.

Seasonality in present climate is well captured by most
methods—it is explicitly modelled either by monthly or sea-
sonal training, or by adding a parametric cycle. Such models
trivially perform well in present conditions, but may not cap-
ture changes in the seasonal cycle. In fact, seasonally vary-
ing biases indicate that biases may also change in a future
climate. Some methods therefore attempt to describe the sea-
sonal cycle by atmospheric predictors. Such predictors have
to account not only for variations of circulation, but also for
thermodynamic variations (e.g., changing moisture content)
throughout the year.

A key question in downscaling is that of added value.
Bias correction does not incorporate any process information
and thus can only add climatological detail2. As a conse-
quence, the performance of a bias corrected climate model
simulations depends strongly on the chosen climate model.
In particular for representing temporal and spatial variability,
VALUE has demonstrated that dynamical downscaling has
the potential to crucially add value: for instance, a GCM in
standard resolution will not realistically represent the spatial
dependence structure of precipitation events. An RCM may
prove to be much more realistic. Soares et al. (submitted
manuscript, 2018) found similar results in the process-
oriented evaluation: if the sensitivity of local weather to rele-
vant weather phenomena (such as the NAO, synoptic
weather patterns, or regional phenomena such as Foehn
winds) is not represented by the driving model, bias correc-
tion cannot generate this sensitivity. Perfect prognosis incor-
porates process information and may in principle add value.
For instance, the analog method links spatial dependence to
large-scale weather types and thus improves the correspond-
ing GCM representation. However, Soares et al. (submitted
manuscript, 2018) found that in practice, perfect prognosis
methods often do not realistically incorporate the sensitivity
of local weather to regional-scale weather phenomena. In
terms of added value, change factor weather generators
behave as bias correction: it can only add climatological
detail.

In addition to the evaluation of downscaling methods,
VALUE also addressed the quality of observational datasets
used as reference for the evaluation (Kotlarski et al., 2017;
Herrera et al., submitted manuscript, 2018). Kotlarski et al.
(2017) evaluated a suite of RCMs against three different
gridded reference data sets. They found that the uncertainty
inherent in these datasets was typically smaller than climate
model uncertainty. For individual regions and seasons, how-
ever, the ranking of the different climate models depended
on the choice of the reference data set. Herrera et al. (sub-
mitted manuscript, 2018) analysed the influence of station
density, interpolation method and spatial resolution on
gridded data sets. They found that a sufficient station density
of about six stations per grid box is crucial to obtain a good
representation of area average statistics. These results high-
light the relevance of high-quality reference data for climate
model evaluation at the regional scale.

In the VALUE perfect predictor experiment we have not
systematically investigated the influence of different perfect
prog predictors on the downscaling skill (although some
conclusions could be drawn in Maraun et al. (2018). Further-
more, no models have participated that explicitly simulate
spatial dependence. Both aspects are important though and
require further research.

The results from the considered VALUE experiment
only hold for perfect predictors in present climate. So far, we
have not assessed (a) how well the predictors are simulated
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by climate models, (b) how well the downscaling methods
perform under future climate conditions, and (c) how credi-
ble the driving climate models simulate the predictors in a
future climate. Issues (a) and (b) are planned to be assessed
in further experiments (in the framework of EURO-COR-
DEX, where VALUE activities have been merged). For the
different downscaling approaches, these issues specifically
involve the following questions raised in Maraun and Wid-
mann (2018):

• For MOS: which model biases are correctable at all? Is
the model output representative of the observations and
simulates local forcings and feedbacks? Is the model
structure, in particular of different quantile mapping vari-
ants, suitable to account for changes in model biases? To
what extent are multivariate MOS approaches feasible
and defensible?

• For PP: is the perfect prog condition fulfilled, that is, are
the predictors realistically simulated in present climate,
and credibly projected into the future? Are all predictors
necessary to describe climatic changes in the aspects of
interest included? Is the model structure appropriate to
describe the interplay of predictors, and their changes?
The issue of predictor selection and model building is
highly non-trivial as models are calibrated on short-term
variability, but applied to long-term variability, such that
standard statistical procedures are strictly speaking not
valid.

• For change factor weather generators: are all relevant
parameters describing marginal, temporal and spatial
aspects that might change in a different climate modified
by change factors? Are the simulated change factors rep-
resentative of the location (as in MOS, the simulated area
average climate change signal might not be representa-
tive of the climate change signal at the target scale)?

A key issue is that the evaluation of regional climate
simulations has to address GCM performance, in particular
regarding the credibility of future projections of the predic-
tors (either directly in the GCM, or after dynamical down-
scaling). Such an assessment should rest upon two pillars:
first it should be assessed whether observed and simulated
predictor trends in present climate are consistent, that is,
indistinguishable apart from internal variability (Bhend and
Whetton, 2013); and second, it should be assessed whether
the processes controlling changes in the predictors are realis-
tically simulated (Maraun et al., 2017).

All these issues are relevant for the construction of
regional ensemble projections based on statistical downscal-
ing: first, GCMs should be selected that simulate realistic
and credible predictors for PP, representative and credible
predictors for MOS, or representative and credible change
factors for weather generators. In case the predictors or
change factors are not representative, one should consider

dynamical downscaling. Second, one should only select well
performing statistical downscaling methods that are designed
for the purpose of interest—both in terms of including all
relevant predictors or change factors, and in terms of having
an appropriate model structure.

Regional climate change projections are often developed
and provided in the context climate change impact model-
ling and decision making. Surveys such as that conducted
within VALUE (Roessler et al., 2017) revealed that users
often have rather unrealistic data demands far exceeding
what is currently feasible and defensible. Here a close com-
munication, knowledge exchange and negotiations of what
can and what cannot be provided: climate modellers have to
understand user needs, and provide sensible—possibly
alternative—options. Users have to understand model limita-
tions and develop approaches that can cope with these limi-
tations. Roessler et al. (2017) discuss knowledge gaps,
communication gaps, and structural gaps hampering this
process. As key issues they call for sensible guidelines
describing model limitations and uncertainties in an honest
and transparent way; face-to-face communication between
modellers and users; and mechanisms to finance the collabo-
ration between modellers and users throughout the process
of knowledge production.
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