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ABSTRACT  11 

The poor solubility of curcumin (CURC) in aqueous media leads to a low bioavailability, which 12 

prevents its application in pharmaceutical formulations. In this work, the Supercritical Antisolvent 13 

process (SAS) was used to produce coprecipitates of CURC and poly (vinyl pyrrolidone) (PVP) from 14 

mixtures of ethanol and acetone. The effects of operating parameters: pressure, temperature, solution 15 

concentration, drug/polymer mass ratio and solution flow rate were analysed for a 70-30 (v/v) 16 

acetone-ethanol mixture. It was found that the composition of acetone in the solvent mixture is the 17 

parameter that affects particle size and curcumin recovery the most. The thermal behaviour, 18 

crystallinity, molecular interactions, apparent solubility, release profile of the coprecipitates and 19 

possible degradation of curcumin were investigated. The results showed that the SAS process is 20 

effective in preparing amorphous formulations of CURC/PVP with an apparent solubility of more 21 

than 600 times higher than that of the physical mixture of the raw compounds. 22 

Keywords: coprecipitation; curcumin; PVP; supercritical antisolvent process; dissolution 23 

1. Introduction 24 

Curcumin (CURC) is a polyphenolic hydrophobic compound extracted from the roots of Curcuma 25 

longa and traditionally used as a spice and food additive. It has been demonstrated that curcumin has 26 
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a wide range of therapeutic properties such as anticancer, antioxidant, antimicrobial and anti-27 

inflammatory [1,2]. However, the use of curcumin in drug formulations is still not approved by the 28 

Food and Drug Administration (FDA), limited by several reasons including its low oral bioavailability 29 

caused by its poor solubility in aqueous media, low absorption and fast intestinal metabolism. In 30 

addition, curcumin undergoes degradation under light, heat and alkaline pH [3,4].  31 

In recent decades, several curcumin formulations have been developed to address these issues 32 

including nanoparticles, liposomes, polymeric micelles, dendrimers and hydrogels [5–7]. The 33 

coprecipitation of active pharmaceutical ingredients (API) with hydrophilic polymers is advantageous 34 

because it can improve the API dissolution properties while protecting it against degradation. 35 

Poly(vinyl pyrrolidone) (PVP) was selected in this work because it is a biodegradable polymer 36 

approved as an inactive ingredient by the FDA and hence widely used in pharmaceutical applications. 37 

Several studies have demonstrated its ability in modifying the crystallisation kinetics of poorly water-38 

soluble compounds by producing amorphous formulations with improved dissolution profile [8–10]. 39 

PVP is also expected to inhibit drug recrystallisation in the gastro-intestinal tract after oral 40 

administration [11,12], giving time for drug molecules to be absorbed into the systemic circulation, 41 

thus increasing its bioavailability [13].  42 

The preparation of solid dispersions of curcumin and PVP with different molecular weights has been 43 

reported using conventional micronization techniques, such as spray drying [14] and solvent 44 

evaporation [15–17]. These methods have disadvantages such as the use of high temperature, which 45 

causes the degradation of thermo-sensitive compounds, low yields and high residual solvent content 46 

in the formulation, often requiring an extra processing step. Moreover, the control of particle 47 

morphology, particle size and size distribution is difficult [18–20]. In smaller quantities, PVP has 48 

been used as a stabilizer for curcumin nanoparticles prepared via liquid antisolvent methods followed 49 

by freeze drying [21–23].   50 

Supercritical fluids (SCFs) are attractive for particle precipitation as they combine liquid-like 51 

properties, such as high solvation power, and gas-like properties, including high diffusivity and 52 

compressibility. SCF-based micronization has demonstrated advantages over conventional techniques 53 
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since particle size can be controlled through the manipulation of the operating parameters, the use of  54 

relatively low temperatures and formulations with low or no residual solvent can be obtained [24,25]. 55 

Carbon dioxide is a usual choice for SCF-based micronization processes since it is inexpensive, non-56 

toxic, non-flammable, environmentally benign and it has a relatively low critical pressure (7.39 MPa) 57 

and critical temperature (31.1°C). Depending on the role played by the supercritical carbon dioxide 58 

(sc-CO2) in relation to the solute, it can act as solvent, co-solute, antisolvent, dispersing agent, 59 

plasticizer or reaction medium.  60 

In the Supercritical Antisolvent (SAS) process, the solute is typically dissolved in an organic solvent 61 

and then sprayed into a high pressure vessel through which sc-CO2 is passed continuously. The 62 

instantaneous diffusion of sc-CO2 into the liquid solution and, in minor extent, the evaporation of the 63 

liquid to the supercritical phase leads to the supersaturation of the liquid solution and precipitation of 64 

the solute, which is collected on a filter. Solvent and antisolvent are then separated via simple 65 

depressurization in a separator located downstream the precipitation vessel [26]. Although studied for 66 

many years, the SAS process is still not widely used in the pharmaceutical industry. A deeper 67 

understanding of the phenomena involved in each step is required to allow the selection of the most 68 

appropriate operating conditions and enable process control. Extensive use of SAS at industrial scale 69 

to process pharmaceutical and food ingredients is believed likely in the future, especially due to the 70 

need of finding more environmentally friendly technologies as recently discussed [27]. A key feature 71 

of SAS is its ability to process a wide variety of compounds to obtain several morphologies and sizes 72 

including crystals, nanoparticles, microparticles and expanded microparticles [28–30]. However, the 73 

use of SAS to produce coprecipitates has not always been successful. In some works, irregular and 74 

coalescing particles with wide particle size distribution [31] and low encapsulation efficiency [32] 75 

were obtained and the demonstration of an effective coprecipitation through the improvement of the 76 

drug dissolution properties is hardly reported [33].  77 

In our recent work, curcumin was simultaneously precipitated and coated on the surface of lactose 78 

particles by the integration of the SAS process with a fluidized bed under pressure (SAS-FB) to 79 

improve the flow properties of the formulation [25]. In this work, the aim is to improve also the 80 



4 
 

dissolution properties of curcumin through its coprecipitation with PVP by SAS, which is a suitable 81 

technique to treat thermo- and light-sensitive compounds, since low temperatures can be used and the 82 

experiments are carried out away from light.  83 

Other SCF-assisted processes have been used to produce CURC/PVP coprecipitates. Adami et al. [34] 84 

obtained spherical and collapsed particles with mean size ranging from 220 - 380 nm by the 85 

supercritical assisted atomization (SAA), using ethanol as solvent. The issue here is the use of high 86 

temperature (80 °C) since curcumin degradation is known to be  intensified above 60˚C [4,35]. The 87 

quantification of product recovery and possible degradation of curcumin were not presented by the 88 

authors. The atomized rapid injection solvent extraction (ARISE) method has also been applied for 89 

the coprecipitation of curcumin in ternary composites with PVP and cyclodextrins, with very few 90 

experiments being carried out with the binary CURC/PVP. As the intended application was 91 

pulmonary delivery, microparticles were produced and in some of the images presented it was 92 

possible to distinguish curcumin crystals in a porous structure, which indicate that the materials 93 

precipitated separately [36–38]. Although there are similarities between the SAS and ARISE 94 

processes in terms of the role of sc-CO2, differences between the mixing mechanism can lead to 95 

different results. The use of SAS process to produce CURC/PVP coprecipitates for pharmaceutical 96 

application has been reported once by Chhouk et al. [39]. They used a micro-swirl mixer, a patented 97 

device, to process curcumin and PVP from a 90-10 acetone-ethanol mixture. Highly coalescing 98 

nanoparticles (25 - 342 nm) were obtained while very relevant information such as total product 99 

recovery, curcumin recovery and drug dissolution kinetics was not presented. Only samples with low 100 

curcumin content (3-9%) were produced and no explanation was given for the selection of the solvent 101 

mixture used.  102 

Therefore, it is clear that a deeper study and understanding of the coprecipitation of curcumin and 103 

PVP by SAS is necessary, which is the aim of this work. We also want to test if it is possible to obtain 104 

non-coalescing nanoparticles of the composite material, with high curcumin content (up to 25%) and 105 

improved dissolution properties, without the aid of a complex mixing device, as reported in the 106 

aforementioned work [39]. For the first time, different organic solvent mixtures were studied to 107 
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understand how adjusting the solvent properties (solvation power) can modulate particle size and 108 

recovery of CURC/PVP coprecipitates. The effects of operating parameters, pressure, temperature, 109 

initial solution concentration, drug/polymer ratio and solution flow rate, were also investigated.  110 

2. Experimental 111 

2.1. Materials 112 

Curcumin (CURC, purity ≥ 90%) was purchased from Cayman Chemical and poly (vinyl pyrrolidone) 113 

(PVP, Mw = 10 kg/mol), sodium dodecyl sulphate (SDS) and acetic acid (glacial class 8, purity ≥  114 

99%) were purchased from Sigma Aldrich, UK and Ireland. Ethanol (EtOH, purity = 99.97%) and 115 

carbon dioxide (purity ≥ 99.8%) were purchased from VWR Chemicals and BOC, UK, respectively. 116 

Acetone (Ac, purity = 99.99%) and acetonitrile (purity = 99.99%) were purchased from Fisher 117 

Chemical, UK. All materials were used as-received. 118 

2.2. SAS equipment 119 

Fig. 1 shows the diagram of the SAS process. CO2 is delivered to the precipitator or high pressure 120 

vessel (HPV) by an air driven pump (PowerStar 4; Model: P464, Sprague). Before entering the pump, 121 

the CO2 line passes through a cold bath (Grant C1G) operated below 0°C to promote the condensation 122 

of CO2 and avoid pump cavitation. After the pump, the CO2 is heated in a hot water bath (Tecam open 123 

bath TECAM1 + Grant Type ZA Grant bridge control unit) to achieve the desired operating 124 

temperature and then it enters the precipitation vessel via a tube of 1/4 inch OD. The solvent/solution 125 

is delivered by an HPLC pump (Waters M-6000). Detail of the precipitation vessel and injection 126 

device can be seen in the supplementary material. A stainless steel capillary with internal diameter of 127 

100 µm, external diameter of 1/32 in and 20 cm in length (Thames Restek UK), placed concentric 128 

with the CO2 delivery tube, is used as a nozzle to promote the atomization of the solvent/solution,. 129 

The nozzle end, where the solution is sprayed out, is placed 2.4 mm lower than the end of CO2 inlet 130 

tube to avoid the partial blockage of the CO2 tube with polymer as observed in some preliminary 131 

experiments.  132 
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The high pressure vessel (HPV) used as precipitator is a 500 ml cylindrical jacketed autoclave 133 

(Baskerville Scientific, UK) containing three saphire windows. Hot water is continuously supplied to 134 

the heating jacket to keep the HPV at the desired operating temperature by the same heat exchanger 135 

used to heat up the CO2 line. The precise reading of the temperature and pressure inside the vessel is 136 

enabled by a thermocouple (RS PRO Type K) and pressure transducer (GE Druck PTX 1400) 137 

displayed in a digital process indicator (GE Druck DPI 282). The HPV is protected against 138 

overpressure by a safety valve (Swagelok SS-4R3A). Precipitated particles are collected by a 139 

cellulose thimble (43 mm x 123 mm, Whatman) installed inside the HPV, allowing the flow of CO2 + 140 

organic solvent mixture. The chamber pressure is controlled by a pressure regulator (Tescom 26-141 

1752-24) located in the by-pass of the CO2 pump. A middle pressure vessel (MPV) of approximately 142 

300 ml (Swagelok double-ended sample cylinder, 316L-HDF4-300-PD) is connected to the 143 

precipitator through a micrommetric valve (MMV) (Hoke 1335G4Y), which enables the manual 144 

control of the CO2 flow rate, which is displyed by a mass flow transmitter (Rheonik RHE08) placed in 145 

the CO2 inlet to the HPV. The MPV pressure is controlled by a pressure reducing regulator (GO BP3-146 

1A11I5J114) at around 1 MPa. It is also protected against overpressure by a safety valve (Swagelok 147 

SS-4R3A). Due to the pressure drop, the MPV enables the separation of the phases: the organic 148 

solution is condensed and collected in bottom of the vessel, while gaseous CO2 flows out from the 149 

top. The CO2 then passes through the pressure reducing regulator, decreases its pressure to ambient, 150 

enters a cyclone to remove fine droplets of solution possibly entrained in the gas phase and is finally 151 

directed to vent. A third heat exchanger and pump (Tecam circulator C-400) supply hot water through 152 

a flexible pipe which surrounds the MMV and MPV to avoid their freezing due to depressurization. 153 

Additional manometers (Budenberg 966GP) are placed in the outlet of the CO2 cylinder, outlet of the 154 

CO2 pump, inlet of the precipitation vessel and inlet of the MPV. 155 
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 156 

Fig. 1. SAS experimental setup. 157 

 158 

2.3. SAS experimental procedure 159 

Firstly, the precipitator is pressurized with CO2 until the desired pressure is achieved. At this point, 160 

the outlet micrometric valve (MMV) is opened to give a constant flow of sc-CO2 (40 g/min for all 161 

experiments), whilst maintaining pressure (Fig. 1).  162 

Solvent is then pumped into the precipitator through the 100 µm capillary nozzle for enough time to 163 

reach quasi-steady state composition of solvent and CO2, before the pump is switched to a solution of 164 

curcumin, PVP or curcumin and PVP. As the precipitation happens inside of the cellulose thimble and 165 

glass connector (dimensions shown in the supplementary material), rather than in the whole volume of 166 

the vessel, the mean residence time of the materials varies between 2 and 5 minutes, being close to 3 167 

minutes at 40°C and 9.0 MPa. Assuming the behaviour of an ideal stirred tank, at least three residence 168 
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times of CO2 and solvent were allowed to flow before the drug solution was injected so the 169 

CO2/solvent ratio in the vessel was at least 95% of the inlet composition. 170 

After the desired amount of curcumin and/or PVP has been injected into the precipitator (usually 400 171 

mg of solute in 40 ml of solution), the pump is reverted to solvent to purge the line (10 ml) and assure 172 

all the solution inside the dead volume has been delivered. Then the solvent pump is stopped and 173 

fresh CO2 runs through the system to remove any residual solvent. Finally, the pressure is gradually 174 

decreased to ambient, the thimble is removed from inside the high pressure vessel and then the 175 

powder is collected with a spatula. Some material remains entrapped in the pores of the thimble and 176 

therefore most, but not all, precipitated powder can be collected. No powder is found outside the 177 

thimble or inside the vessel, however possible loss of nanoparticles might occur in the first minutes of 178 

particle generation but it should stop as soon as the particles build up a filter cake. 179 

2.4. Preparation of the physical mixture 180 

Physical mixtures (PM) of curcumin (CURC) and PVP, obtained by shaking the powders in sealed 181 

vials for 5 minutes, were prepared with mass ratios of 1:3 and 1:10 CURC/PVP for comparison with 182 

equivalent SAS coprecipitated samples. 183 

2.5. Analyses 184 

2.5.1. Scanning electron microscopy (SEM) 185 

Scanning Electron Microscopy (SEM - model Philips XL-30 FEG) was used to observe the 186 

morphology and particle size of raw materials and coprecipitates at 10 kV and 10 mA. Samples were 187 

initially fixed on a double-sided adhesive carbon tape and sputter coated (Polaron SC 7640) with gold 188 

for 3 min at 25 mA. Image J analysis software was used to measure particle size and size distribution. 189 

Usually 500 particles of each sample in SEM images with different magnifications were accounted. 190 

The results are presented as mean diameter ± arithmetic standard deviation. 191 
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2.5.2. Total product recovery 192 

The total product recovery (Rec.) is an important parameter to assess the efficiency of a process. It 193 

was defined as the percentage ratio of the final mass of precipitates collected to the initial mass 194 

delivered to the precipitator, as shown below: 195 

𝑅𝑒𝑐. =  
𝑚𝑎𝑠𝑠 (𝐶𝑈𝑅𝐶 +  𝑃𝑉𝑃) 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑

𝑚𝑎𝑠𝑠 (𝐶𝑈𝑅𝐶 +  𝑃𝑉𝑃)𝑓𝑒𝑒𝑑
 × 100% 

2.5.3. Curcumin content and recovery 196 

Accurately weighed samples were dissolved in 50% v/v water-acetone solution and curcumin 197 

concentration was determined using an ultraviolet (UV)–visible spectrophotometer (Thermo Scientific 198 

Orion AquaMate) to measure the solution absorbance at λ = 425 nm. At this wavelength the 199 

absorbance of PVP is negligible (as reported in the supplementary material), while that of curcumin is 200 

proportional to its concentration (R
2
 = 0.999). All the measurements were taken within few minutes of 201 

sample dissolution so the effect of curcumin degradation in contact with water can be considered 202 

negligible. Each sample was analysed 3-5 times and the mean values are reported. Curcumin content 203 

(Cont.) was obtained by dividing the mass of curcumin in the analysed sample by the total sample 204 

mass, as follows: 205 

𝐶𝑜𝑛𝑡. =
𝐶𝑈𝑅𝐶 𝑚𝑎𝑠𝑠 𝑖𝑛 𝑠𝑎𝑚𝑝𝑙𝑒

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑚𝑎𝑠𝑠
× 100% 

Curcumin recovery (CURC Rec.) was calculated as shown below: 206 

𝐶𝑈𝑅𝐶 𝑅𝑒𝑐. =
𝑅𝑒𝑐.× 𝐶𝑜𝑛𝑡.

𝐶𝑈𝑅𝐶 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑖𝑛 𝑓𝑒𝑒𝑑
 

The use of the cellulose thimble described here very conveniently facilitates the recovery of the 207 

powder without requiring the precipitator to be completely disassembled from the rig and cleaned 208 

after each run. The amount of curcumin retained in the pores of the cellulose thimble (filter) was 209 

quantified by washing each filter with a known volume of 50% v/v water-acetone and analysing the 210 

solution by (UV)–visible spectrophotometer.  211 
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2.5.4. High Performance Liquid Chromatography (HPLC) 212 

Raw curcumin and processed samples were analysed by HPLC to investigate possible degradation of 213 

curcumin after processing. A gradient elution was employed using an Accucore C18 column (30 mm 214 

x 2.1 mm, 2.6 µm, Thermo Scientific) starting with a mobile phase containing acetonitrile and 2% 215 

acetic acid initially at 10:90 (v/v). The proportion of the materials was gradually changed to 50:50 by 216 

10 minutes with each run lasting 16 minutes in total.  A flow rate of 0.85 mL/min, a column 217 

temperature of 30°C, a detection wavelength of 425 nm and an injection volume of 20 μL were 218 

employed [40]. Sample solutions were prepared in 50:50 acetonitrile-2% acetic acid and filtered with 219 

a 0.22 µm PTFE syringe filter prior to analyses. 220 

2.5.5. X-ray diffraction (XRD) 221 

Raw materials and coprecipitates were analysed by X-ray diffraction (XRD, Bruker D8, UK) at 40 kV 222 

and 30 mA to determine the degree of crystallinity before and after processing. Patterns were obtained 223 

with a beam angle varying from 5° to 40° and a step size of 0.023°. 224 

2.5.6. Differential Scanning Calorimetry (DSC) 225 

The thermal behaviour of the samples and unprocessed compounds were assessed by Differential 226 

Scanning Calorimetry (Discovery DSC 25, TA Instruments) working with a nitrogen purge of 50 227 

ml/min. A heat-cool-heat cycle  was employed to eliminate possible interference of moisture and 228 

relieve stress allowing a proper determination of the glass transition temperature (Tg) of the materials 229 

[41–43]. First, the samples were placed in aluminium pans and accurately weighed. A hole was made 230 

on each lid, allowing the removal of moisture with the purge gas. They were then heated from 50°C to 231 

160°C (above the glass transition of PVP and below the melting point of curcumin) at 20°C/min and 232 

after that quench cooled (100°C/min) to the initial temperature. Finally, they were heated to 250°C at 233 

20°C/min. The results presented correspond to the final heating stage in which the glass transition 234 

temperature, melting point and enthalpy of fusion were measured. TA Instruments Universal Analysis 235 

Software was used to estimate the glass transition temperature (Tg, midpoint of the change in heat 236 

capacity) and melting point (Tm, onset temperature) of the samples. 237 
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2.5.7. Fourier transform infrared spectroscopy (FTIR)  238 

Fourier transform infrared spectroscopy (FTIR, Jasco-6300) equipped with an attenuated total 239 

reflectance (ATR) accessory was used to analyse the chemical structure of coprecipitates and possible 240 

molecular interactions generated after processing. 64 scans were taken in a range of 800-4000 cm
-1

 241 

with a resolution of 4 cm
-1

 [44,45].  242 

2.5.8. Drug apparent solubility 243 

The apparent solubility of the materials was analysed by adding excess sample to 2 ml of distilled 244 

water and then sonicating the suspension at 25°C for 15 minutes. Then the suspension was filtered 245 

with a 0.22 µm PTFE syringe filter. Curcumin concentration was determined via UV–visible 246 

spectrophotometer. Experiments were performed in triplicates and the mean values are shown. 247 

2.5.9. In vitro dissolution studies 248 

In vitro dissolution studies were performed using a USP 2 dissolution apparatus (rotating paddles). 249 

Samples were accurately weighed with equivalent amount of curcumin (5 ppm) and incubated at 37 ± 250 

0.5°C in 200 mL of water and 0.25% w/v sodium dodecyl sulphate (SDS). The rotation of the paddles 251 

was set to 100 rpm.  2 mL of the solution was withdrawn at different time intervals and replaced with 252 

the same volume of fresh medium. Curcumin concentration was then analysed by UV–visible 253 

spectrophotometer. Curcumin release was calculated as follows: 254 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 (%) =  
𝑚𝑡

𝑚100%
× 100% 

where mt represents the mass of curcumin released at time t and m100% is the mass of curcumin at 255 

complete dissolution. The tests were performed in triplicates and the mean values are reported. 256 

3. Results and discussion 257 

In the SAS process, the selection of the operational conditions is crucial in the success of the 258 

precipitation [46,47]. Knowledge of thermodynamics, jet hydrodynamics, mass transfer and 259 

crystallization kinetics is required to properly understand the results. Supersaturation is the driving 260 

force for precipitation and can be defined as the ratio between the solute concentration in the solvent-261 
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CO2 system and the equilibrium concentration (solubility). Particle size is dependent on the degree of 262 

solution supersaturation achieved. High initial solution concentration and low equilibrium 263 

concentration of the solute in the fluid phase leads to high supersaturation. Additionally, the 264 

supersaturation can be affected by the flow rate of the materials used, responsible for the turbulence 265 

and mixing between the phases. The yield of precipitation is especially influenced by the 266 

concentration of solute present in the effluent solution [48–50]. 267 

For most experiments, pressure, temperature and CO2 flow rate were kept constant at 40°C, 9.0 MPa 268 

and 40 g/min, giving a CO2 molar fraction (XCO2) between 0.98 - 0.99. According to the literature 269 

[51], these conditions would ensure that the precipitation happens in the supercritical region of the 270 

mixed solvent-CO2. 271 

3.1. Precipitation of single compounds 272 

Prior to coprecipitation experiments, the compounds were processed separately to compare with their 273 

precipitation behaviour (morphology and size) when processed at the same conditions of the 274 

coprecipitates. This information is useful to evaluate the success of the coprecipitation and any 275 

possible changes in morphology that can occur when the two compounds are processed 276 

simultaneously.  277 

PVP is a biocompatible polymer commonly used in drug delivery applications and has been 278 

previously precipitated by SAS [24,52,53]. In this work, the experiments were carried out initially 279 

using ethanol as solvent, solution concentration of 10 mg/ml and solution flow rate of 1 ml/min, 280 

resulting in a CO2 molar ratio of XCO2 = 0.98.  281 

Table 1 summarises the operational conditions and the results obtained. In run #1 a negligible amount 282 

of powder was recovered. Since PVP is highly soluble in ethanol [24], the concentration used might 283 

have not been high enough to achieve the minimum supersaturation required for particle generation. 284 

In an attempt to increase the supersaturation, in run #2, the solution concentration was increased to 20 285 

mg/ml and the other parameters were kept constant; however this concentration was still not enough 286 

and the precipitation was again unsuccessful.  287 
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Another way to affect the supersaturation, while keeping the initial solution concentration constant, is 288 

by changing the solubility (equilibrium concentration) of the solute in the fluid phase. As the 289 

solubility of PVP in ethanol is much higher than in acetone (315 mg/ml versus 7 mg/ml), solvent 290 

mixtures of acetone-ethanol (Ac-EtOH) were used. As a consequence of the addition of a poor solvent 291 

to PVP (acetone), higher supersaturation levels can be achieved and a higher proportion of the solute 292 

precipitates, increasing product recovery. In fact, the addition of acetone into ethanol to produce a 293 

50% v/v mixture allowed a successful precipitation in run #3 and the increase in acetone content to 294 

90% v/v further improved PVP recovery in run #4 from 2.0 to 87.0% (Table 1). These results 295 

demonstrate the significant impact of changing the solute solubility in the fluid phase by the 296 

manipulation of the solvent power of the organic solution. Pure acetone was not used to process PVP 297 

since PVP solubility in acetone is below 10 mg/ml (approximately 7 mg/ml). 298 

The precipitation of PVP from acetone-ethanol mixtures has been previously investigated. However, 299 

contrary to what has been demonstrated here, De Marco et al. [24] reported a process yield of around 300 

90% for experiments with several acetone-ethanol mixture compositions, while Rossmann et al. [52] 301 

did not discuss product recovery. Fig. 2a,b shows the comparison between raw and processed PVP 302 

obtained from run #4. It is clear that there is a decrease in particle size and a narrowing of the particle 303 

size distribution after SAS processing.  304 

Curcumin was then processed at the same conditions used for PVP. The solubility of curcumin in 305 

acetone was estimated to be around 58 mg/ml, while in ethanol it was below 5 mg/ml. In the 306 

experiment with pure ethanol (run #5), a concentration of 2 mg/ml was used; however no powder 307 

could be recovered. When curcumin was processed by a 50-50 Ac-EtOH solution (run #6) and by 308 

pure acetone (run #7) at 10 mg/ml, product recovery was 23.4% and 34.8%.  Despite the higher initial 309 

saturation of the ethanol solution in comparison to the acetone solution, when CO2 is present in the 310 

system a co-solvent effect seems to be taking place with ethanol, as already observed for other 311 

systems [54,55]. This explains the lower product recovery when ethanol was used.  The lower 312 

recovery of curcumin produced by similar processes from alcoholic solutions compared to acetone 313 

have also been observed elsewhere [56]. The authors explained that the higher volume expansion and 314 
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consequently more efficient reduction in solvent power are achieved in the case of acetone possibly 315 

leading to higher recovery. In runs #5, #6 and #7, the amount of curcumin retained in the filter 316 

decreased from 56.4% to 48.2% and 33.0%, respectively (Table 1). Fig. 2c shows rod-like crystals of 317 

raw curcumin with a wide size distribution, while curcumin processed by a 50% Ac-EtOH (Fig. 2d, 318 

run #6) and by pure acetone (Fig. 2e, run #7) has an irregular morphology with smaller dimensions. In 319 

Fig. 2 it is also possible to see that PVP and curcumin precipitate in completely different 320 

morphologies when processed at the same conditions. This underlines the complexity of the SAS 321 

process and its compound-dependent characteristic. 322 

# 
p 

(MPa) 
T (°C) 

f 

(ml/min) 

CTOT 

(mg/ml) 
Solvent 

Solvent 
volumetric 

composition 

Ac-EtOH 

drug/polyme

r mass ratio 

Total 
product 

recovery 

(%) 

Curcumin 

recovery 
(%) 

Curcumin 
retained in 

the filter 

(%) 

m.d. (nm) s.d. (nm) Morphology 

1 9.0 40 1 10 EtOH 0-100 pure PVP ≈ 0 - - - - - 

2 9.0 40 1 20 EtOH 0-100 pure PVP ≈ 0 - - - - - 

3 9.0 40 1 10 Ac-EtOH 50-50 pure PVP 2.0 - - - - - 

4 9.0 40 1 10 Ac-EtOH 90-10 pure PVP 87.0 - - 123 27 SMP 

5 9.0 40 1 2 EtOH 0-100 
pure 

curcumin 
≈ 0 ≈ 0 56.4 - - - 

6 9.0 40 1 10 Ac-EtOH 50-50 
pure 

curcumin 
23.4 23.4 48.2 - - - 

7 9.0 40 1 10 Acetone 100-0 
pure 

curcumin 
34.8 34.8 33.0 - - Irregular 

8 9.0 40 1 10 EtOH 0-100 1:3 43.1 45.5 41.4 - - Irregular 

9 12.0 40 1 10 EtOH 0-100 1:3 63.1 68.1 25.5 - - Irregular 

10 9.0 40 1 10 Ac-EtOH 10-90 1:3 58.0 65.3 29.3 327 102 SMP 

11 9.0 40 1 10 Ac-EtOH 30-70 1:3 74.3 76.6 10.2 177 57 SMP 

12 9.0 40 1 10 Ac-EtOH 50-50 1:3 77.6 78.6 6.7 135 36 SMP 

13 9.0 40 1 10 Ac-EtOH 70-30 1:3 87.1 89.0 2.5 96 25 NP 

14 9.0 40 1 10 Ac-EtOH 90-10 1:3 90.0 89.2 0.8 51 12 NP 

15 8.0 40 1 10 Ac-EtOH 70-30 1:3 56.4 59.6 20.8 181 48 SMP 

16 12.0 40 1 10 Ac-EtOH 70-30 1:3 79.1 88.1 6.7 67 17 NP 

17 9.0 35 1 10 Ac-EtOH 70-30 1:3 89.5 94.9 5.0 72 20 NP 

18 9.0 50 1 10 Ac-EtOH 70-30 1:3 76.9 83.7 9.9 176 56 SMP 

19 9.0 40 1 5 Ac-EtOH 70-30 1:3 80.7 88.9 5.6 65 14 NP 

20 9.0 40 1 20 Ac-EtOH 70-30 1:3 80.2 90.5 6.2 117 30 SMP 

21 9.0 40 1 10 Ac-EtOH 50-50 1:10 60.7 60.2 26.3 - - CM 

22 9.0 40 1 10 Ac-EtOH 70-30 1:10 79.7 79.9 5.5 173 76 SMP 

23 9.0 40 1 10 Ac-EtOH 70-30 1:20 69.2 67.9 9.6 205 49 SMP 

24 9.0 40 0.5 10 EtOH 0-100 1:10 34.3 36.1 48.7 - - CM 

25 9.0 40 0.5 10 Ac-EtOH 10-90 1:10 47.6 50.8 24.9 - - CM 

26 9.0 40 0.5 10 Ac-EtOH 70-30 1:10 79.7 82.3 4.0 220 85 SMP 

 323 

Table 1. Experimental conditions and results (p = pressure; f = solution flow rate; CTOT = total solute 324 
concentration; m.d.: mean diameter; s.d.: standard deviation; SMP: sub-microparticles; NP: 325 
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nanoparticles; CM: coalescing material). Experiments performed at 40°C and CO2 flow rate of 40 326 
g/min. 327 

 328 

 329 

Fig. 2. SEM images of: a) raw PVP; b) PVP processed by SAS (run #4); c) raw curcumin; d) 330 
curcumin processed by SAS from 50% Ac-EtOH (run #6); e) curcumin processed by SAS from 331 
acetone (run #7). 332 

3.2. Coprecipitation of CURC/PVP 333 

It has been demonstrated elsewhere that PVP can interfere in the crystallisation kinetics of some 334 

compounds by inhibiting the association of drug molecules to form crystal nuclei during the solvent 335 

removal from a drug-PVP solution [10,12,57,58]. 336 
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In the second phase of this work, the SAS process was used to produce coprecipitates of curcumin and 337 

PVP and the effect of adjusting the solvation power of the organic solvent, pressure, temperature, 338 

initial solution concentration, mass ratio between drug and polymer and solution flow rate were 339 

explored. Five experiments were run in triplicates and the relative standard deviation of total product 340 

recovery and curcumin recovery was typically below 5%, showing that the conditions were well 341 

controlled. The results shown correspond to the mean values. 342 

3.2.1. Effect of solvent mixture composition 343 

Knowing that the relative composition of acetone in the solvent mixture affects the recovery of PVP 344 

particles, mixtures of acetone-ethanol with increasing acetone volume fraction from 0 to 90% were 345 

used for the coprecipitation experiments (#8-14). Tests were carried out at the same conditions used 346 

for the precipitation of the single compounds (40°C, 9.0 MPa, XCO2 = 0.98 and 10 mg/ml overall 347 

solution concentration) with drug/polymer mass ratio of 1:3. 100% acetone was not used because a 348 

clear solution containing both compounds could not be obtained at the specified concentration. The 349 

effect of adjusting the solution supersaturation through the manipulation of the solvent power, while 350 

keeping the overall solution concentration constant, is demonstrated in this section. Similarities in the 351 

vapour-liquid equilibria of the systems CO2-ethanol and CO2-acetone can be seen in the 352 

supplementary material. 353 

The first interesting result can be seen by comparing run #1 (PVP alone), run #5 (curcumin alone) and 354 

run #8 (coprecipitation) performed at the same conditions with ethanol as solvent. For the single 355 

compounds no powder was obtained, while in the coprecipitation the total product recovery was 356 

43.1%. Similarly, in run #3 (PVP alone) and run #6 (curcumin alone) product recovery was 2% and 357 

23.4%, respectively, increasing to 77.6% in run #12 when the materials were coprecipitated from a 358 

50-50 Ac-EtOH solution (Table 1). These results suggest a synergistic effect in improving the 359 

supersaturation of the solution when both compounds are present and how the presence of two 360 

different solutes can affect the high pressure equilibrium of the system solvent/antisolvent, leading to 361 

different results at the same process conditions. Fig. 3a reveals that two different morphologies, 362 

crystals (curcumin) and irregular particles (PVP), were obtained when pure ethanol was used (run #8), 363 
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indicating that coprecipitation was unsuccessful since the compounds precipitated separately. Particle 364 

size could not be measured. It was considered that this behaviour may be indicative of precipitation 365 

outside of the supercritical region caused by the solutes elevating the critical pressure of the mixture. 366 

To test this, an experiment was performed at 12.0 MPa (run #9), far beyond the critical point of the 367 

system CO2-ethanol (8.16 MPa [51]), to ensure supercritical conditions. Curcumin crystals could still 368 

be seen, as shown in Fig. 3b, suggesting that the separate precipitation is related to something other 369 

than effects on the CO2-ethanol vapour-liquid equilibrium. As the solubility in ethanol of curcumin 370 

and PVP is approximately 5 mg/ml and 315 mg/ml, respectively, the difference in the supersaturation 371 

ratio (initial concentration/solubility) of the two compounds might be so high that simultaneous 372 

precipitation would not be achieved. On the other hand, higher pressure increased product recovery 373 

from 43.1% (run #8) to 63.1% (run #9), suggesting a decrease in the solute solubility in the fluid 374 

phase.  375 

In run #10, the addition of 10% acetone resulted in a successful coprecipitation, as shown in Fig. 3c. 376 

Spherical, largely uniform particles were produced and curcumin rod/filament morphology could no 377 

longer be detected indicating that curcumin is well dispersed in the polymer matrix. A possible reason 378 

for this behaviour may be  that addition of acetone to ethanol simultaneously decreases the solubility 379 

of PVP and increases the solubility of curcumin (as it does at room temperature), leading to more 380 

similar supersaturation ratios of the two solutes when mixed with CO2. The composite material 381 

retained the morphology of the polymer as previously observed in several studies with PVP-drug [33], 382 

demonstrating that the precipitation behaviour is now dominated by PVP. In Fig. 4a it is interesting to 383 

observe the gradual increase in the total product recovery (from 43.1 to 90.0%) and decrease in the 384 

mean particle size of coprecipitates (from 327 to 51 nm) by increasing the acetone content from 0 to 385 

90%. SEM images shown in Fig. 3c,d,e,f,g clearly demonstrates this tendency. The size range 386 

changed from sub-microparticles to nanoparticles and the particle size distribution narrowed (Fig. 4b). 387 

De Marco et al. [24] explained that the variation of the solvent mixture composition can affect the 388 

SAS process in two different ways: by changing the solvation power of the solvent (ability of the 389 

solvent to dissolve the solute at fixed conditions) and/or the mixing behaviour of the injected solution 390 
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with CO2 (large or sharp pressure transition range from two-phase to one-phase mixing). In terms of 391 

mixing regimes, ethanol and acetone have been shown to have similar behaviour (sharp transition 392 

pressure range) [24], therefore the decrease in the mean particle size can be explained by the decrease 393 

in the solvation power as acetone is added to the solvent mixture. Other authors have suggested that 394 

acetone repels the polymer molecules which then tend to be arranged in a more compact 395 

configuration, consequently decreasing particle size [24,53]. The amount of curcumin retained in the 396 

filter gradually decreased from 41.1 to 0.8% as the acetone content increased from 0 to 90% (Table 397 

1). It is not clear why different amounts of material gets trapped in the filter walls at different 398 

operating conditions, hence further investigations will be carried out in future work. Possibly, when 399 

more acetone is present in the system, higher supersaturation can be achieved and the material 400 

precipitates in the first centimetres of the precipitator. The concentration of the fluid phase decreases 401 

and less curcumin is left to nucleate within the thimble walls when passing through it. A decrease in 402 

the degree of particle coalescence was also observed with the addition of acetone, explained by the 403 

fact that acetone experiences a higher volume expansion than alcohols when in contact with sc-CO2 404 

[59,60], being more efficiently removed from the precipitating particles. 405 
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 406 
 407 

Fig. 3. SEM images of CURC/PVP processed from pure ethanol at 40°C, 1.0 ml/min, 1:3 CURC/PVP 408 
ratio and different pressures: a) 9.0 MPa (run #8); b) 12.0 MPa (run #); and samples processed at 9.0 409 
MPa, 40°C, 1.0 ml/min, 1:3 CURC/PVP ratio from different Ac-EtOH compositions: c) 10-90 (run 410 
#10); d) 30-70 (run #11); e) 50-50 (run #12); f) 70-30 (run #13); g) 90-10 (run #14). 411 
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 412 

 413 

 Fig. 4. Results for coprecipitates obtained from solutions with different acetone (Ac) contents at 9.0 414 
MPa and 40°C (run #8, #10-14, Table 1): a) mean diameter and total product recovery; b) particle 415 
size distribution. 416 

 417 

Fig. 5a shows the comparison between curcumin content in the processed samples and in the feed 418 

solutions. For all experiments, the contents before and after processing are similar; therefore the 419 

values of curcumin recovery are close to the respective values of the total product recovery, gradually 420 

increasing from 45.5 (run #8) to 89.2% (run #14) with increasing acetone content. This demonstrates 421 

that the conditions selected are appropriate to precipitate both compounds in the designed proportion 422 

since their proportion was kept almost the same in the feed solution and in the coprecipitated powder. 423 

It is also interesting to observe in Fig. 5b that no degradation of curcumin occurred after SAS 424 

processing. Curcumin retention time (highest peak) was around 7.6 minutes with impurities being 425 

detected slightly before (small peak). By comparing the area of the peaks, curcumin concentration 426 

was determined to be around 90% in all samples (raw curcumin, #6 and #13). As it is not the aim of 427 

this work, the nature of the impurities was not determined, however curcumin is known to be found 428 

with other two curcuminoids (demethoxycurcumin, and bis-demethoxycurcumin) in turmeric extracts 429 

which have been analysed in many works elsewhere [40,61–63].  430 
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 431 

 432 

Fig. 5. a) Curcumin content as fraction of the total solute in the feed solutions and SAS-processed 433 
samples analysed by UV-visible spectrophotometer; b) HPLC measurements of raw curcumin and 434 
processed samples. Experiment conditions are shown in Table 1. 435 
 436 
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The effect of solvent can also be analysed in runs #21-22 (Fig. 6a,b) performed at 1:10 CURC/PVP 437 

ratio and runs #24-26 (Fig. 6d,e,f) performed at 1:10 CURC/PVP ratio and 0.5 ml/min. Similar trends 438 

as runs #10-14 were observed in terms of total product recovery, curcumin recovery (Table 1) and 439 

particle size (Fig. 6), supporting the discussion previously presented. As curcumin recovery did not 440 

increase for acetone content higher than 70% (Table 1), a 70-30 Ac-EtOH solution was selected in 441 

order to analyse the effect of other operational parameters on particle size and recovery. Moreover, 442 

30% of ethanol gives flexibility to work with large amounts of PVP. Therefore, the next experiments 443 

will be compared with run #13, analysing the effect of pressure, temperature and initial solution 444 

concentration. 445 

 446 
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Fig. 6. SEM images of CURC/PVP processed at 40°C, 9.0 MPa, 1.0 ml/min from different Ac-EtOH 447 
compositions and CURC/PVP ratios: a) 50-50, 1:10 (run #21); b) 70-30, 1:10  (run #22); c) 70-30, 448 
1:20  (run #23); and processed at 0.5 ml/min: d) pure EtOH, 1:10 (run #24); e) 10-90, 1:10 (run #25) 449 
f) 70-30, 1:10 (run #26).     450 

 451 

 452 

Fig. 7. Values of a) mean particle diameter and b) curcumin recovery as a function of the variation of 453 
different operational parameters in comparison with run #13 (centre point). 454 

 455 

3.2.2. Effect of pressure 456 

The effect of pressure was analysed by keeping the operational conditions the same as in run #13 457 

(40°C, 1 ml/min, XCO2 = 0.98, 1:3 CURC/PVP ratio and 10 mg/ml overall solution concentration in a 458 

70-30 Ac-EtOH solution) and changing the pressure from 9.0 MPa to 8.0 MPa (#15) and 12.0 MPa 459 

(#16).  460 

As the critical pressures of the CO2-ethanol and CO2-acetone systems are approximately 8 MPa at 461 

40°C, the operational point in run #15 might be located in the biphasic region. The density of CO2 462 

under these conditions (277.9 kg/m
3 

[64]) is around 43% lower than at 9.0 MPa (485.5 kg/m
3 

[64]). 463 

This lowers the power of CO2 to solubilise the organic solvents and leads to a less effective 464 

supersaturation, which might explain the large increase in particle size from 96 nm (#13) to 181 nm 465 

(run #15, Fig. 8a) and decrease in curcumin recovery from 89.0 (#13) to 59.6% (#15). A high 466 
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proportion (around 21%) of the curcumin injected was retained in the cellulose thimble probably due 467 

to the presence of liquid in the precipitator (operating point in the biphasic region). When the pressure 468 

was increased to 12.0 MPa (#16, Fig. 8b), the CO2 density increased by 48% and the opposite effect 469 

was observed for particle size which decreased to 67 nm. While product recovery (curcumin + PVP, 470 

79.1%) was lower than at 9.0 MPa, curcumin recovery was not much affected, indicating that at 471 

higher pressure the precipitation of PVP is less favourable. Fig. 7 illustrates how the mean particle 472 

diameter of coprecipitates and curcumin recovery varies from the central experiment (#13) as a 473 

function of the variation in the CO2 density with pressure and other operational parameters, which 474 

will be discussed in the following sections. 475 
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 476 

Fig. 8. SEM images of CURC/PVP processed at different conditions: a) run #15 (8.0 MPa); b) run 477 
#16 (12.0 MPa); c) run #17 (35°C); d) run #18 (50°C); e) run #19 (5 mg/ml); f) run #20 (20 mg/ml). 478 
The complete set of operational conditions is shown in Table 1. 479 

 480 

3.2.3. Effect of temperature 481 

The effect of temperature was analysed by keeping the operational conditions the same as in run #13, 482 

(9.0 MPa, 1 ml/min, XCO2 = 0.98, 1:3 CURC/PVP ratio and 10 mg/ml overall solution concentration 483 
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in a 70-30 Ac-EtOH solution) which was performed at 40°C, and changing the temperature to 35°C 484 

(#17) and 50°C (#18).  485 

Fig. 8c,d shows the particles obtained at 35°C (#17) and 50°C (#18) measuring 72 and 176 nm, 486 

respectively. At 35°C the density of CO2 is 662.1 kg/m
3
 (36% higher than 485.5 kg/m

3 
at 40°C[64]) 487 

while at 50°C it is equal to 285.0 kg/m
3 

(41% lower than at 40°C). It is interesting to observe in Fig. 488 

7a that similar CO2 density variations from the central experiment (run #13) caused by temperature 489 

and pressure lead to the production of coprecipitates with similar particle sizes. Experiments 490 

performed at high CO2 density (low temperature or high pressure) yielded smaller particles due to the 491 

improved solvation power of CO2, while the opposite happened with a decrease in CO2 density (high 492 

temperature or low pressure). These results demonstrate the relevance of the fluid density in designing 493 

SAS experiments but it is also important to be aware that other parameters such as fluid viscosity and 494 

solute vapour pressure might play a role in determining particle size as the temperature is changed.   495 

Although similar particle sizes were obtained in runs #15 and #18 (low density) and runs #16 and #17 496 

(high density), both changes in pressure had a negative effect on curcumin recovery (Fig. 7b). In 497 

contrast, at 35°C almost all curcumin was recovered, possibly because the vapour pressure and 498 

solubility of curcumin in the fluid phase decreased.  499 

3.2.4. Effect of solution concentration 500 

The effect of concentration was analysed by keeping the operational conditions the same as in run #13 501 

(9.0 MPa, 40°C, 1 ml/min, XCO2 = 0.98, 1:3 CURC/PVP ratio and 70-30 Ac-EtOH solution) and 502 

changing the overall concentration from 10 mg/ml (run #13) to 5 mg/ml (run #19) and 20 mg/ml (run 503 

#20). The same amount of material was delivered to the precipitator but the solution volume was 504 

adjusted (doubled or halved) to obtain the desired concentration.  505 

A low impact on precipitation was observed. In fact, curcumin recovery changed less than 2% as the 506 

concentration was increased or decreased (Fig. 7b). Particle size decreased to 65 nm at lower 507 

concentration (Fig. 8e) and increased to 117 nm at higher concentration (Fig. 8f), also demonstrating 508 

a small influence of concentration (Fig. 7a). Although higher supersaturation occurs in more 509 
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concentrated solutions, particle growth by condensation is also intensified [50], explaining the results 510 

obtained here. 511 

3.2.5. Effect of drug/polymer mass ratio 512 

The effect of CURC/PVP mass ratio was studied by decreasing the ratio from 1:3 (run #13) to 1:10 513 

(run #22) and 1:20 (run #23). All other operating conditions were kept the same as run #13 (9.0 MPa, 514 

40°C, 1 ml/min, XCO2 = 0.98, 10 mg/ml overall solution concentration in a 70-30 Ac-EtOH solution). 515 

In order to keep the overall concentration constant, the decrease in CURC/PVP ratio was achieved by 516 

simultaneously decreasing the concentration of curcumin and increasing the concentration of PVP. 517 

The morphologies of the particles produced at 1:3, 1:10 and 1:20 CURC/PVP ratios are shown in Fig. 518 

3f and Fig. 6b,c, respectively. The results in Table 1 demonstrate a gradual decrease in total product 519 

recovery from 87.1% to 79.7% and 69.2% as CURC/PVP ratio decreased. Similarly, curcumin 520 

recovery decreased (Fig. 7b) since the curcumin content in the processed sample and feed solution 521 

were almost unchanged (Fig. 5a) (the ratio between the drug and polymer remained the same in the 522 

precipitated powder). On the other hand, particle size increased from 96 nm to 173 nm and further to 523 

205 nm in these experiments (Fig. 7a). This behaviour has been reported before for the coprecipitation 524 

of PVP with other APIs [8,9]. Although the overall concentration was kept constant, the increase in 525 

the concentration of the polymer (from 7.5 mg/ml at 1:3 ratio to 9.5 mg/ml at 1:20 ratio) might have 526 

increased the viscosity of the solution, which decreases the nucleation rate and lead to the formation 527 

of larger and more coalescing particles [48,65,66]. It is also important to highlight that an increase in 528 

the concentration of PVP can additionally affect the particle-fluid interfacial tension. This parameter 529 

might significantly influence particle size, as demonstrated by Erriguible et al. [67]. 530 

Runs #12 (Fig. 3e) and #21 (Fig. 6a) performed with 50% Ac-EtOH solution can also be used to 531 

analyse the effect of decreasing the drug/polymer ratio from 1:3 to 1:10. Once again, the same trend 532 

was observed: a decrease in total product recovery and curcumin recovery and increase in particle 533 

size. It was also noticed that at higher PVP concentration more acetone is needed in the solvent 534 

mixture to generate non-coalescing particles. For coprecipitates with 1:3 CURC/PVP ratio, particles 535 

become discrete with 30% acetone (Fig. 3d). However, highly coalescing material is still obtained at 536 
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1:10 ratio (Fig. 6a) when the acetone content was 50% (run #21), which prevented the measurement 537 

of the particle size. The reason for this behaviour might be that by increasing PVP concentration in 538 

the solution, the viscosity of the liquid phase increases, decreasing the supersaturation and nucleation 539 

rate and leading to a less efficient mixing and solvent removal from the particles, as previously 540 

explained. Therefore, the addition of acetone, which is less viscous and poorer solvent to PVP than 541 

ethanol, favours the formation of discrete particles. 542 

3.2.6. Effect of solution flow rate 543 

The effect of solution flow rate was analysed by keeping the operational conditions unchanged (40°C, 544 

9.0 MPa and 10 mg/ml overall solute concentration) and decreasing the solution flow rate to 0.5 545 

ml/min (XCO2 = 0.99) for a 70-30 Ac-EtOH solution and 1:10 CURC/PVP ratio. This CURC/PVP 546 

ratio was selected because the effect of particle coalescence was more pronounce at 1:10 than at 1:3 547 

and therefore we wanted to investigate the possibility of producing discrete particles with higher PVP 548 

content. Run #26 (0.5 ml/min) can be compared to run #22 (1.0 ml/min) as all other operating 549 

conditions were not changed. The SEM image presented in Fig. 6f (run #26) shows the formation of 550 

discrete sub-microparticles compared to the less discrete particles of run #22 (Fig. 6b).  551 

Solution flow rate is supposed to have a minor impact on particle size [50,68,67] since it may cause 552 

two opposite effects in relation to the supersaturation. For instance, a decrease in the solution flow 553 

rate can lead to a less efficient mixing (which decreases the local supersaturation) and it can also 554 

decrease the solvent composition in the fluid phase which decreases the solute solubility and hence 555 

increases the maximum attainable supersaturation. Therefore, lower impact is expected comparing to 556 

other parameters which affect the vapour-liquid phase equilibrium (pressure and temperature) [50]. As 557 

particle size, morphology and product recovery are affected in different extent by these phenomena, it 558 

was observed a small increase in particle size from 173 nm (run #22) to 220 nm (run #26), while 559 

product recovery was not significantly affected, with values close to 80% (Table 1). Particle coalesce 560 

was reduced at lower flow rates possibly due to the fact that there is more time for the precipitating 561 

particles to dry before they collide with each other, as explained by Gokhale et al. [53]. Similar effects 562 
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of the solution flow rate on particle size have been reported elsewhere for the precipitation of PVP 563 

alone by SAS [53].  564 

3.3. X-Ray Diffraction (XRD) 565 

The degree of crystallinity of the samples was analysed by XRD. Fig. 9 shows that curcumin alone 566 

processed by SAS (SAS-CURC, run #7) is less crystalline than raw curcumin (CURC) as the intensity 567 

of the peaks decreased. The physical mixture (PM 1:3) kept all the curcumin characteristic peaks but 568 

with lower heights than raw CURC due to the presence of PVP, which is an amorphous polymer. The 569 

comparison of the PM (1:3) with the coprecipitates shows that amorphous formulations were formed 570 

in all coprecipitates (runs #11, #13, #14).  571 

 572 
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 573 

Fig. 9.  XRD patterns of raw materials and processed samples. Experiment conditions are shown in  574 

Table 1. 575 

3.4. Differential Scanning Calorimetry (DSC) 576 

Differential Scanning Calorimetry (DSC) was used to access the degree of crystallinity of the samples 577 

and possible interactions between curcumin and PVP after processing. Fig. 10 shows a sharp 578 
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endothermic peak corresponding to the melting point of raw curcumin at Tm = 182°C and enthalpy of 579 

fusion of ∆Hf = 130.9 J/g, indicating the crystallinity of the compound. Other works have reported 580 

similar values for the melting point of unprocessed curcumin but fusion enthalpy varying from 93 – 581 

121 J/g [14,16,56,69,70], which can be explained by differences in the purity of the sample, not 582 

always specified, and differences in the crystal form. PVP, on the other hand, does not show any 583 

melting point peak, demonstrating its amorphous structure and glass transition at Tg = 150°C 584 

(midpoint of the change in heat capacity). In the physical mixture (PM 1:3) the curcumin 585 

characteristic peak was slightly shifted to lower temperature. This behaviour has been observed by 586 

other researchers and may be attributable to a solvent effect of PVP [14,16]. For the SAS 587 

coprecipitate obtained in run #13, no endothermic peak could be detected in the region of curcumin 588 

melting point which indicates that amorphous curcumin was obtained after SAS processing with PVP, 589 

confirming the XRD results (section 3.3). The presence of a single Tg supports the hypothesis of a 590 

single phase and the decrease in Tg compared to the one of PVP is attributed to the plasticizing effect 591 

of the drug molecularly dispersed in the polymeric matrix [13,71].  592 

 593 
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Fig. 10. DSC thermograms of raw materials and coprecipitate (#13). Experiment conditions are 594 
shown in Table 1. 595 

 596 

3.5. Fourier Transform Infrared Spectroscopy (FTIR) 597 

The infrared spectra of the compounds before and after processing were analysed in order to identify 598 

possible interactions between curcumin and PVP. Fig. 11 shows the results obtained. Raw curcumin 599 

(CURC) presents an absorption band at 3504 cm
-1

 corresponding to O-H stretching vibration. Other 600 

peaks can be identified at 1626 cm
-1

 (C=O, C=C), 1601 cm
-1

 (C=C aromatic), 1427 cm
-1

 (C-O 601 

phenol), 1025 cm
-1

 (C-O-C), 960 cm
-1

 (benzoate trans-CH) and 855 cm
-1

  (C-H aromatic) [39,72]. The 602 

FTIR spectrum of PVP shows a peak at 3466 cm
-1

 assigned to the stretching vibration of O-H and 603 

other peaks at 2883, 1651 and 1284 cm
-1

, corresponding to C-H, C=O and C-N, respectively [10,39]. 604 

 605 
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Fig. 11.  IR spectra of raw materials and processed samples. Experiment conditions are shown in 606 
Table 1. 607 

The spectrum of the physical mixture (PM 1:3) is similar to the addition of the individual spectra of 608 

curcumin and PVP, which indicates that no interaction between them has occurred. On the other hand, 609 

for the samples of CURC/PVP processed by SAS (#10, #13, #22, #23), the O-H characteristic peak 610 

(3504 cm
-1

) from curcumin has disappeared. This can be ascribed to an intermolecular interaction, 611 

such as hydrogen bonding, between the O-H of curcumin and the C=O of PVP [16]. This behaviour is 612 

compatible with the observations of other researchers [16,39,73,74] and might explain the change in 613 

the structure of curcumin from crystalline to amorphous (sections 3.3 and 3.4) and the improvement in 614 

the aqueous apparent solubility (section 3.6) and dissolution properties of curcumin formulations 615 

(section 3.7). 616 

3.6. Drug apparent solubility 617 

The apparent solubility of raw curcumin (CURC), SAS-processed curcumin (SAS-CURC, #7), 618 

CURC/PVP physical mixtures (PM) and SAS coprecipitates was determined in water at 25°C. 619 

Unprocessed curcumin has not shown any absorbance at these conditions, while other authors have 620 

measured 0.006 µg/ml after dissolution for 12h in water [39] and 0.5 µg/ml after dissolved in saline 621 

solution and centrifuged at 12,000 rpm for 10 min (25 °C) [36]. The different conditions and method 622 

used explain the different results obtained. The low water solubility of curcumin is one of the main 623 

causes of its low bioavailability [3].  624 

The apparent solubility of curcumin processed by SAS alone was equal to 0.06 µg/ml, which is still 625 

very low. The addition of PVP was found to improve curcumin apparent solubility in the physical 626 

mixtures. 0.3 µg/ml was measured in the mixture at 1:3 CURC/PVP, while 4.4 µg/ml was obtained at 627 

1:10 ratio. This might be explained by a possible decrease in the surface tension of water in the 628 

presence of PVP, which enhances the wetting of the curcumin crystal surface [11,65].  629 

CURC/PVP coprecipitates were produced in an attempt to further increase curcumin apparent 630 

solubility. The apparent solubility of raw CURC, physical mixtures and curcumin formulations are 631 

presented in Fig. 12a. In runs #11 and #13 the apparent solubility increased around 100 times 632 



34 
 

compared with the physical mixture (1:3), while in run #14 an increase of more than 600 times was 633 

obtained.  By decreasing CURC/PVP ratio, this effect was even more remarkable (Fig. 12a). In runs 634 

#22 and #26 the measured values were 369 µg/ml and 474 µg/ml, respectively. Other authors have 635 

also reported an improvement in drug apparent solubility as PVP content increases [74]. This was 636 

attributed to the formation of a water-soluble complex between drug and PVP, which was confirmed 637 

by FTIR test (section 3.5). Chhouk et al. [39] reported a curcumin apparent solubility of 2.34 µg/ml in 638 

a formulation with PVP while Kurniawansyah et al. [37]  obtained the highest value equal to 77.6 639 

µg/ml for a ternary system containing curcumin, PVP and methyl-β-cyclodextrin in a ratio of 1:4:4 at 640 

pH 4.5.  641 

 642 

Fig. 12. a) Apparent solubility and b) dissolution profile of raw curcumin (CURC), physical mixtures 643 
(PM) and processed samples. Experiment conditions are shown in Table 1. 644 

 645 

3.7. In vitro dissolution studies 646 

The dissolution profile of coprecipitates (#13, #23, #26), raw curcumin (CURC), physical mixture 647 

(PM 1:3) and curcumin processed by SAS alone (SAS-CURC, #7) was investigated in water + 0.25% 648 

w/v SDS. The surfactant SDS was added to allow for a shorter dissolution study and minimise the 649 

impact of curcumin degradation in the results. Moreover, when no SDS was used, there was no 650 

discrimination among the release profiles of the raw CURC, PM (1:3) and SAS-CURC (#7) due to 651 
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their absorbance values being too close to the minimum detection limit of the UV-visible 652 

spectrophotometer used (results not shown).  653 

Fig. 12b shows the dissolution profiles for the various samples in water + 0.25% w/v SDS. PM (1:3) 654 

releases faster than raw CURC, which is due to the improvement in curcumin wetting and solubility in 655 

the presence of PVP, as discussed in section 3.6. The release of SAS-CURC (#7) is faster than the 656 

physical mixture (1:3), despite having lower apparent solubility in water (section 3.6), as a result of 657 

the smaller size of the curcumin crystals (Fig. 2c,d). All the coprecipitates analysed dissolved 658 

significantly faster than raw CURC and PM (1:3), with complete release being obtained in the first 10 659 

minutes. In the same period of time, raw CURC, PM (1:3) and SAS-CURC (#7) released only 3.2%, 660 

7.5% and 12.8% of curcumin, respectively. These results, in conjunction with the observations of 661 

particle morphology, thermal behaviour and measurements of curcumin recovery, demonstrate that 662 

coprecipitates with high curcumin content and improved dissolution properties were successfully 663 

produced by SAS. The enhancement in the curcumin dissolution profile can be attributed to the 664 

formation of smaller particles with increased apparent solubility (section 3.6) and reduced crystallinity 665 

compared to raw CURC (section 3.3).  666 

Two mechanisms are suggested to for the precipitation of composite materials: homogeneous 667 

nucleation, which produces a solid mixture in which each particle if formed by only one component; 668 

and heterogeneous nucleation, which generates particles composed of both materials (coprecipitates) 669 

[33]. By the results presented in this work, it is believed that heterogeneous nucleation happened, 670 

leading to the formation of composite particles. In any case, the aim of the work was successfully 671 

achieved, as the dissolution properties of curcumin were significantly improved. 672 

4. Conclusions 673 

In this work, the coprecipitation of curcumin and PVP by SAS was successfully achieved from 674 

different solvent mixtures of acetone and ethanol. The results showed that the composition of the 675 

solvent mixture plays a major role in determining particle size, particle size distribution and curcumin 676 

recovery. Particle size varied from sub-microparticles (327 – 135 nm) to nanoparticles (96 - 51 nm) 677 

and the curcumin recovery increased from 45.5 to 89.2% as the relative composition of acetone in the 678 
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ethanol-acetone mixture was increased. The highest curcumin recovery (95%) was obtained at low 679 

temperature (35°C) for a 70-30 Ac-EtOH solution. It was also observed an improvement in curcumin 680 

apparent solubility of around 600 times compared with the physical mixture and, consequently, a 681 

much faster release. These results are explained by the solid state analyses which have demonstrated 682 

the formation of amorphous curcumin-PVP coprecipitates. 683 
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