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Abstract

Urban river systems are particularly sensitive to precipitation‐driven water tempera-

ture surges and fluctuations. These result from rapid heat transfer from low‐specific

heat capacity surfaces to precipitation, which can cause thermally polluted surface

run‐off to enter urban streams. This can lead to additional ecological stress on these

already precarious ecosystems. Although precipitation is a first‐order driver of hydro-

logical response, water temperature studies rarely characterize rain event dynamics

and typically rely on single gauge data that yield only partial estimates of catchment

precipitation. This paper examines three precipitation measuring methods (a statutory

automatic weather station, citizen science gauges, and radar estimates) and investi-

gates relationships between estimated rainfall inputs and subhourly surges and diurnal

fluctuations in urban river water temperature. Water temperatures were monitored at

12 sites in summer 2016 in the River Rea, in Birmingham, UK. Generalized additive

models were used to model the relationship between subhourly water temperature

surges and precipitation intensity and subsequently the relationship between daily pre-

cipitation totals and standardized mean water temperature. The different precipitation

measurement sources give highly variable precipitation estimates that relate differently

to water temperature fluctuations. The radar catchment‐averaged method produced

the best model fit (generalized cross‐validation score [GCV] = 0.30) and was the only

model to show a significant relationship betweenwater temperature surges and precip-

itation intensity (P < 0.001, R2 = 0.69). With respect to daily metrics, catchment‐

averaged precipitation estimates from citizen science data yielded the best model fit

(GCV score = 0.20). All precipitation measurement and calculation methods success-

fully modelled the relationship between standardized mean water temperature and

daily precipitation (P < 0.001). This research highlights the potential for the use of alter-

native precipitation datasets to enhance understanding of event‐based variability in

water quality studies. We conclude by recommending the use of spatially distributed

precipitation data operating at high spatial (<1 km2) and temporal (<15 min) resolutions

to improve the analysis of event‐based water temperature and water quality studies.
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1 | INTRODUCTION

Urban stream water temperatures are highly variable and subject to

short‐term changes during high‐intensity precipitation events.

Although of short duration, event‐based changes, hereafter referred

to as water temperature “surges,” can affect urban stream ecosystem

health (Anderson, Anderson, Thaxton, & Babyak, 2010; Herb, Janke,

Mohseni, & Stefan, 2008; Hester & Bauman, 2013; Hofmeister,

Cianfrani, & Hession, 2015; Jones, Hunt, & Winston, 2012; Nelson &

Palmer, 2007; Pluhowski & Pecora, 1970; Somers et al., 2013; Somers,

Bernhardt, McGlynn, & Urban, 2016; Thompson, Kim, & Vandermuss,

2008). Water temperature is a controlling factor on a wide range of

abiotic and biotic variables. Hence, sudden changes can have a cas-

cade effect on a multitude of temperature‐driven processes (Webb,

Hannah, Moore, Brown, & Nobilis, 2008) particularly in urban catch-

ments where regular surge effects can contribute to the “urban stream

syndrome” (Walsh et al., 2005). Although water temperature surges

occur over very short time scales (minutes to hours), precipitation also

influences water temperature regimes over longer temporal scales

(Hannah & Garner, 2015). The influence of precipitation on diurnal

urban water temperature dynamics has not been studied extensively.

Precipitation can decouple diurnal temperature from air temperature

influence, leading to a distinct diurnal response in water temperature

dynamics (Constantz, 1998). Resultantly, large precipitation events

may impact river water temperatures change over longer time periods

than previously thought.

Urban environments are vulnerable to water temperature surges

due to rapid heat‐transfer between precipitation and surfaces with a

low specific heat‐capacity, coupled with changes in surface run‐off

processes in urban areas (Fletcher, Andrieu, & Hamel, 2013; Herb

et al., 2008; Nelson & Palmer, 2007; Van Buren, Watt, Marsalek, &

Anderson, 2000). Urban surfaces are typically darker in colour and

have a low specific heat‐capacity; they can heat quickly and reach tem-

peratures that far exceed air temperature on warm days. During pre-

cipitation events, heat can be rapidly transferred from these surfaces

to surface run‐off. As this thermally polluted run‐off enters rivers, rapid

increases in river water temperature can occur (Herb et al., 2008; Van

Buren et al., 2000). Moreover, the high proportion of low‐permeability

surfaces in urban areas reduces infiltration and increases the propor-

tion of precipitation that is conveyed rapidly through the catchment

via direct surface run‐off and through storm drains (Fletcher et al.,

2013; Walsh, Fletcher, & Burns, 2012). Hence, a high proportion of

urban precipitation is routed rapidly into water courses, with the

consequence that thermally polluted run‐off enters rivers in greater

quantities than in natural catchments. Furthermore, due to reduced

infiltration and changes in subsurface flow pathways, urban streams

typically experience reductions in baseflow (Fletcher et al., 2013). This

can further increase the vulnerability of urban rivers to precipitation‐

driven water temperature changes, thereby increasing the influence

of run‐off temperatures on the temperature of receiving streams.

Characterization of urban precipitation patterns requires high spa-

tial and temporal resolution precipitation data (Berne, Delrieu, Creutin,

& Obled, 2004). However, many studies lack high‐density precipita-

tion gauges to quantify urban precipitation accurately (Pedersen,

Jensen, Christensen, & Madsen, 2010; Thorndahl et al., 2017).
Consequently, it may be difficult to infer links between precipitation

and hydrological processes in urban catchments (Berne et al., 2004).

This has implications for a multitude of water quality variables that

are influenced by event rainfall (Sandoval, Torres, Duarte, & Velasco,

2014; Tilburg, Jordan, Carlson, Zeeman, & Yund, 2015).

The analyses of precipitation metrics and water temperature fre-

quently rely on single rainfall gauge data. These are often assumed

to be representative of catchments with multiple water temperature

logger sites (Brown & Hannah, 2007; Hester & Bauman, 2013;

Hofmeister et al., 2015; Lange & Haensler, 2012; Somers et al.,

2013; Somers et al., 2016; Wilby, Johnson, & Toone, 2015). However,

precipitation typically exhibits high spatial variability within catch-

ments at different scales (Dixon & Mote, 2003; Salvadore, Bronders,

& Batelaan, 2015). This is particularly evident in urban catchments

where the combination of the urban heat island effect and changes

in urban wind field alter precipitation patterns (Dixon & Mote, 2003;

Salvadore et al., 2015) leads to variations in rainfall intensity and dura-

tion (Gabriele, Chiaravalloti, & Procopio, 2017; Pedersen et al., 2010;

Thorndahl et al., 2017; Villarini, Mandapaka, Krajewski, & Moore,

2008). Consequently, the precipitation processes that drive water

temperature fluxes during individual events can be difficult to

quantify, particularly when using data from a single rainfall gauge.

Radar and citizen science precipitation datasets may provide a

useful alternative to single rainfall gauges (Buytaert et al., 2014;

Gabriele et al., 2017; Koch & Stisen, 2017; Starkey et al., 2017;

Thorndahl et al., 2017), particularly in urban catchments where high‐

spatial resolution precipitation data are required or where catchments

are poorly gauged (Berne et al., 2004). Citizen science precipitation

databases are increasingly common and can potentially increase the

number of precipitation gauges available for catchment studies (Koch

& Stisen, 2017; Starkey et al., 2017). However, to‐date concerns over

data quality have inhibited their uptake for research purposes (Barthel,

Seidl, Nickel, & Büttner, 2016; Buytaert et al., 2014; Starkey et al.,

2017). Radar precipitation data can also yield high temporal and spatial

resolution precipitation estimates (Biggs & Atkinson, 2011; Gabriele

et al., 2017; Thorndahl et al., 2017; Villarini et al., 2008). For example,

in the United Kingdom, the NIMROD system generates radar‐derived

precipitation estimates at 5‐min temporal and 1‐km2 spatial resolution

(Villarini et al., 2008). These systems can monitor moderate‐ to high‐

intensity precipitation events well, but they are less accurate in low‐

intensity precipitation events (Biggs & Atkinson, 2011; Golding,

2000). Previously, 5‐min temporal resolution radar precipitation has

been found to represent spatial variability of rainfall well in small,

urban catchments, compared with high‐density gauge networks

(Berne et al., 2004; Thorndahl et al., 2017). Although radar estimates

of total precipitation can be variable, the use of radar at a minimum

of 5‐min temporal resolution can provide good precipitation estimates

for urban hydrology applications (Einfalt et al., 2004; Rico‐Ramirez,

Liguori, & Schellart, 2015).

This paper investigates the use of different precipitation data

sources in urban river water temperature studies, motivated by

improving our understanding of water temperature fluxes during rain-

fall events. We aim to establish which type of precipitation estimate

correlates strongest with subhourly and daily water temperature

change with the following objectives:
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1. Quantify how precipitation captured by citizen science and radar

precipitation datasets compare with automatic weather stations

providing point‐based source estimates in the prediction of

river‐water temperature fluctuations over subhourly and daily

timescales.

2. Explore to what extent three precipitation datasets are able to

represent spatial variability in precipitation intensity in relation

to a water temperature surge event
2 | METHODS

2.1 | Study location

The study was undertaken in the catchment of the River Rea in

Birmingham, West Midlands, UK (52.4862° N, 1.8904° W; Figure 1

a). This headwater catchment is located within the second largest

urban conurbation within the United Kingdom (Figure 1b). The 74‐

km2 catchment comprises clay overlying sandstone, with 31% of the

catchment defined as highly permeable bedrock, particularly in the

centre of the catchment (NRFA, 2018). Surface elevations range from

107 to 291 m asl and mean annual precipitation of 781 mm (NRFA,

2018). Precipitation in the catchment exhibits a seasonal pattern, with

the highest precipitation generally occurring from October to

December, with the driest months from February to May (NRFA,

2018). The dominant Lamb weather type within the catchment is anti-

cyclonic, with this the dominant weather type throughout the year,

although cyclonic conditions occur with increased frequency during
IGURE 1 The River Rea catchment, UK. (a) Locations of water temperat
ite names; (b) The contributing area of each citizen science gauge to the
nited Kingdom
the summer months (Zhang, Cai, & Thornes, 2014). The proportion

of the catchment that is urbanized is extremely high (built‐up urban:

70.2%) making it an ideal study catchment for the effects of urbaniza-

tion: The remaining land use mainly comprises urban green space. The

high proportion of storm drains and low‐permeability surfaces in the

catchment leads to a dominance of rapid flow pathways that route

surface run‐off quickly to the river during storm events. The presence

of widespread low specific heat‐capacity surfaces also leads to

warming of land surfaces within the summer months, priming the

catchment for water temperature surge events. As a result of its land

use, the Rea has a flashy flow regime with a mean flow of 0.77 m3/s

and peak flow of 73.8 m3/s during the study period for a gauge

located at the catchment outlet (NRFA, 2018).
2.2 | Data collection

2.2.1 | Water temperature data collection

River water temperatures were monitored using 12 TinyTag aquatic

temperature loggers (Gemini Data Loggers, 2017) installed and cali-

brated using the protocol of Hannah, Malcolm, and Bradley (2009).

The TinyTag loggers have a measurement accuracy of ±0.2°C and

were calibrated using an ice bath set at a starting temperature of

0°C in which they were placed for 48 hr with temperature logged at

15‐min intervals recording in British Summer Time and starting on

the hour, in accordance with the precipitation datasets. The mean

water temperature logged in the ice bath was then determined, and

correction factors were calculated for individual TinyTags which either
ure loggers, automatic weather station, and citizen science gauges, and
Thiessen polygon; (c) The location of the Rea catchment within the
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underestimated or overestimated water temperatures compared with

the mean. Correction factors were applied postmonitoring.

To monitor the water column temperature, TinyTags were

secured to the riverbed in areas of unimpeded perennial flow. The

loggers were placed within white radiation shields to prevent atmo-

spheric radiation directly warming the loggers and placed parallel to

the flow to ensure constant flow through the radiation shield (Hannah

et al., 2009). Loggers were tied to iron bars buried into the stream bed

with wire rope and left free floating in the middle of the river stream,

to prevent debris build‐up impeding flow to the logger. The length of

the wire rope was adjusted to ensure loggers would not be washed

out. Loggers were placed evenly throughout the catchment and at

tributary confluences to ensure a high spatial resolution for water

temperature monitoring in the catchment. This enabled localized

water temperature fluxes to be monitored in line with previous studies

of event‐based water temperature changes (Hofmeister et al., 2015;

Somers et al., 2013, 2016; Wilby et al., 2015). Loggers were installed

with a mean distance between loggers of 2.5 km. Placement of loggers

in some areas was impeded by lack of access to the river and hence a

uniform separation distance between loggers was not feasible. For

example, the Bourn tributary (Figure 1) contained only one logger

(located at the tributary mouth) as the stream is largely culverted

and inaccessible. The loggers were operational during the summer of

2016 (June 1, 2016, to September 15, 2016), with river‐water temper-

atures logged at 15‐min intervals. Loggers were checked once during

the study period to ensure no debris build‐up had occurred around

the loggers which might have potentially affected the temperature

data; however, no debris build‐up occurred during the study period.

One logger was lost during the study period, leaving data from 11

loggers available for subsequent analysis (Figure 1).

2.2.2 | Precipitation data collection

Precipitation data were collected from three available sources. First,

data were obtained from a weather station (elevation 140 m asl)

located near the catchment outlet which was installed prior to the

study. This is a Met Office (the U.K.'s national weather service)

approved station operating at 1‐min temporal resolution and providing

a dataset which is representative of the precipitation data used in

many water temperature studies (Brown & Hannah, 2007; Hofmeister

et al., 2015; Somers et al., 2016). Data were recorded in Greenwich

Mean Time (GMT) and converted to British Summer Time to match

the TinyTag water temperature data logging times. Distances from

the weather station to individual water temperature sites ranged from

1 to 8.5 km. The use of more weather stations would have been

desirable; however, further Met Office sites were too far away from

the study catchment, and the creation of a dense network of gauges

would have been expensive and difficult to maintain, as is the case

for many water temperature studies which are reliant on single gauges

(Brown & Hannah, 2007; Hester & Bauman, 2013; Hofmeister et al.,

2015; Lange & Haensler, 2012; Somers et al., 2013, 2016; Wilby

et al., 2015). Air temperature data used within the study were also

gathered from the Met Office site within the catchment.

Second, citizen science precipitation data were collected from the

Met Office Weather Observation Website (WOW; Met Office, 2018).
The WOW network allows participants to upload data automatically

from personal weather stations which can be downloaded freely. Each

station in the network contains metadata detailing the degree of expo-

sure, rain gauge type, recording hours, and urban climate‐zone of the

station. For this study, we used stations with standard precipitation

gauges, with records over >95% of the study period, the minimum

threshold for inclusion in the study, and at a sampling frequency of

≤15 min. All sites recorded in GMT and were converted to British

Summer Time. All stations recorded at time intervals beginning on

the hour. This provided a pool of five citizen science gauges (ranging

from 2.3–4.2 km from water temperature sites), of which four gauges

were located outside the study catchment (Figure 1). Rainfall gauges

outside a catchment have been successfully used for discharge estima-

tion in ungauged catchments (Samuel, Coulibaly, & Metcalfe, 2011);

hence, the citizen science gauges were considered suitable for use

herein. Of the five gauges, one was located in the west of the

catchment, two to the south, and two to the east. Elevation at the

gauges ranged from 110 to 200 m asl, with a mean of 154 m asl. As

seven of the water temperature loggers are located to the east of

the catchment, the gauges to the east of the catchment have a larger

weighting on precipitation estimates for these loggers. Although

denser networks of citizen science gauges are possible, quality control

(e.g., placement of gauges) remains problematic. It should be

recognized, also, that the WOW database is relatively new and is

not yet comprehensive. As citizen science gauges are reliant on

maintenance and installation by amateurs, data quality is reduced

compared with official sources (Buytaert et al., 2014).

Third, high resolution precipitation data from the U.K.'s NIMROD

radar system were provided by the U.K. Centre for Environmental

Data (Met Office, 2003). Radar data were provided at 5‐min temporal

and 1‐km2 spatial resolution. Data are recorded from the start of the

hour onwards and converted from GMT to British Summer Time.

Radar data from the NIMROD system have been quality checked

and corrected through national scale corrections using gauge data, as

described by Harrison, Scovell, and Kitchen (2009). Quantifying

uncertainty ranges in radar rainfall has proven difficult as uncertainty

propagates from a wide range of sources including, but not limited

to, topography, atmospheric conditions, and distance from radar

source. An extensive list of uncertainties and errors associated with

radar data has been compiled by Villarini and Krajewski (2010). As

the study catchment is in a relatively flat area and is situated within

50 km of the nearest radar site (the Cleft Hill radar), these

uncertainties are reduced for this study.

Point‐based and catchment‐average estimates were derived for

the three precipitation datasets. Point‐based data for each water tem-

perature logger site were taken from the nearest weather station (only

one weather station was used in this study, resulting in the same data

used for each logger site), citizen science gauge, or radar grid cell (at

1‐km2 resolution). For catchment‐average data, nested catchments

for each water temperature logger site were identified from the

catchment topography, and precipitation data were averaged over each

logger catchment to yield an overall catchment‐average precipitation

estimate. Consequently, the catchment data are less variable than

point‐based data, particularly for the nested catchments. Citizen

science gauge precipitation was averaged using the Thiessen method



TABLE 1 List of water temperature surges in the study period

Date Site

Water
Temperature
Surge Storm Type

Weather
Station
Intensity

Radar Point
Intensity

Radar
Catchment
Intensity

Citizen
Point
Intensity

Citizen
Catchment
Intensity

07/06/2016 R2 1.2 A 2.4 9.5 5.2 0 0.2

08/06/2016 R5 2.1 A 0 73.1 34.9 14.2 19

08/06/2016 R6 4.2 A 0 69.4 34.3 31.5 21.1

08/06/2016 BB3 3.8 A 96 107 46.7 31.5 31.5

08/06/2016 R4 4.2 A 96 6.4 33.8 31.5 19

08/06/2016 R7 4.9 A 84 40 36.4 9.1 17.7

08/06/2016 R1 1.1 A 14.4 70.5 20.6 7.1 24.5

08/06/2016 BB1 2.2 A 14.4 50 30.8 3.1 31.5

08/06/2016 B1 1.3 A 14.4 25.8 28.2 7.1 30.1

08/06/2016 R3 3.2 A 9.2 25.8 29.6 5.1 18.6

08/06/2016 R2 2 A 4.8 43.4 22.4 0 21.8

11/06/2016 R7 1.1 A 0 0.8 4.6 0 0

11/06/2016 R4 1.4 A 0 3.6 9.1 22.4 6.4

12/06/2016 R7 1.1 C 4.8 2 1.6 2 2.9

12/06/2016 R5 1.3 C 6.4 32.6 13.6 0 10.2

12/06/2016 R3 1.1 C 12.8 12.3 8.9 0 8.6

13/06/2016 R7 1.2 C 16 23.2 13.7 4 4.5

14/06/2016 R3 1.1 C 24 10.7 4.7 1 2.9

14/06/2016 BB2 1.4 C 0 11.9 6.4 5.1 5.1

14/06/2016 BB3 1.3 C 4.8 6.7 6.7 0 5.1

25/06/2016 R4 1.3 A 0 51.8 17.5 0 0

01/07/2016 BB2 1.1 C 0 1.5 20.6 0 9.1

12/07/2016 BB2 1.5 A 0 1.4 0.7 2 5.1

12/07/2016 R3 2.3 A 0 1.6 0.8 0 1.

28/07/2016 R7 1.8 C 4.8 3 2.9 4.1 2.7

28/07/2016 BB2 1.3 C 6 2.4 1.5 1 4.1

28/07/2016 BB2 1.4 C 2.4 25.3 12 0 0

29/07/2016 R6 1.5 C 0 7.1 4.5 1 2.7

29/07/2016 R7 2.1 C 0 5.6 4.4 1 2.2

19/08/2016 R7 1.4 C 4.8 2.2 2.2 2 2.7

19/08/2016 BB2 1.1 C 2.4 2 2.2 2 4.1

25/08/2016 BB2 1.5 A 4.8 3.8 4.4 5.1 5.1

25/08/2016 BB2 1.3 A 2.4 9.8 9.2 2 5.1

25/08/2016 BB2 1 A 19.2 9.8 9.2 3.1 5.1

27/08/2016 BB3 2.9 A 0 20 17.6 0 4.1

28/08/2016 R7 1.6 C 0 15.8 7.9 0 0

28/08/2016 R5 1 C 0 21.8 12.4 0 0

03/09/2016 BB2 1.6 A 36 11.1 9.8 18.6 18.6

03/09/2016 BB3 1.9 A 36 8.6 10.6 18.6 18.6

10/09/2016 R3 1.3 A 28.8 6.4 13.3 16.4 15.2

13/09/2016 R7 2.2 C 0 21.6 12.8 0 0.4

13/09/2016 BB2 2.8 C 6.4 7.2 21.2 8.1 8.2

13/09/2016 BB3 1.7 C 6.4 16.5 15.6 8.1 8.2

13/09/2016 R2 1.1 C 25.6 11.2 18.8 18.6 11.4

13/09/2016 B1 1.1 C 25.6 8.8 9.1 5 18.6

13/09/2016 R6 1.7 C 19.2 14.2 8.6 9 15.5

13/09/2016 BB1 1.1 C 19.2 13.3 11.3 16.3 4.9

13/09/2016 R1 1.1 C 19.2 13.3 11 16.3 9.4

Note. Site shows the location of the TinyTag logger (Figure 1), Water temperature surge shows the maximum water temperature surge extent for each
event, event type refers to A (A), or Cyclonic (C). Intensity refers to maximum precipitation intensity for each surge as recorded by the different precipita-
tion datasets.

148 CROGHAN ET AL.



FIGURE 2 Time series for site R1 (see Figure 1) showing water
temperature, air temperature, and precipitation as recorded at the
weather station, and discharge as recorded as recorded at the
catchment outlet. The black dot on the discharge graph shows a
particularly large event that peaked at 62 m3/s, outside the limits of
the y‐axis
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(Figure 1c), given its simplicity and widespread use in estimating areal

precipitation (Ball & Luk, 1998). The contributing area of each gauge

was determined, and the contributing percentage of each gauge to

each nested catchment precipitation total was calculated to derive esti-

mates for catchment precipitation for each site. Because the weather

station data featured only a single gauge, catchment‐average precipita-

tion could not be derived for this dataset. For the radar data, the

contribution of each grid cell to each subcatchment were calculated,

and catchment‐average precipitation was then derived for each logger.

2.3 | Statistical analysis

Statistical analysis was undertaken using each of the precipitation

datasets to, first, relate subhourly water temperature changes to

precipitation intensity and, second, daily water temperature changes

to daily precipitation.

2.3.1 | Subhourly analysis

For subhourly water temperature changes, the relationship between

precipitation and water temperature surges was analysed. Here, water

temperature surges were defined as positive change of at least 1°C in

water temperature that occurred after the onset of a precipitation

event. The threshold of a 1°C change within a 30 min time‐window,

measured from theonset ofwater temperature rise,was used to identify

surges, as has been used in previous studies (Somers et al., 2016). This

threshold ensured water temperature changes were caused by the pre-

cipitation event and not by air temperature influence. Forty‐eight tem-

perature surges were identified within the study period (Table 1).

Precipitation metrics linked to water temperature surges (Herb

et al., 2008; Nelson & Palmer, 2007; Somers et al., 2013) were calcu-

lated for each precipitation calculation method: maximum precipitation

intensity prior to the surge, precipitation in the 30 min before the

surge, and the precipitation total for the event prior to the surge.

Exploratory analysis revealed that results for each metric were similar;

hence, only results for maximum precipitation intensity are presented

herein. Precipitation intensity was selected given the importance of

intense events rather than overall rainfall amount in causing water tem-

perature surges identified in previous studies (Nelson & Palmer, 2007).

Initial analyses showed the relationship between water tempera-

ture surge and precipitation intensity to be non‐linear, so general

additive models (GAMs) were chosen for the analysis. GAMs are a

class of generalized linear models and are ideal for semi‐parametric

datasets given there is no assumption of linearity and are flexible in

dealing with differing (non‐normal) statistical distributions of the data

(Murase, Nagashima, Yonezaki, Matsukura, & Kitakado, 2009). Due to

this, GAMs have been particularly useful in modelling environmental

effects on water temperature (Laanaya, St‐Hilaire, & Gloaguen,

2017). All models were created using the “mgcv” package in R (Wood,

2018): The equation for GAMs can be written as follows:

g E yð Þð Þ ¼ β 0þ f1 x1ð Þ þ f2 x2ð Þ þ…fp Xp

� �þ ε

Where g is a link function, E(y) is the response variables expected

value, fi (xi) is the smoothed function, and ε is the error. The link
function is a parametric function that enables the Gaussian error

structure to be applied to an exponential family, thereby linking the

average of the dependent variables to the predictor variables (Laanaya

et al., 2017). The smoothed function defines the regularity of the

application of the regression within the model. This is controlled by

the basis dimension (k) that represents the dimensionality of the spline

basis and controls the maximum degrees of freedom that can be

applied within the model by each term. Higher values of k mean the

smoothing function is applied more regularly.

For this study, a two explanatory variable GAM using a Gaussian

error structure and identity link function was produced for all precipi-

tation datasets. All water temperature surges in the study period were

used for the model (Table 1). The difference between water tempera-

ture and air temperature was used as an additional variable alongside

maximum precipitation intensity, as preliminary analysis for this study

had reflected its importance. This was done to achieve better model

fits and to assess how the relative importance of maximum precipita-

tion intensity to the GAM alters depending on the precipitation

dataset used. The difference between water temperature and dew

point temperature was also calculated; however, this was highly
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correlated with water temperature and air temperature difference so

did not feature in the final model. A smoother term was applied to

the maximum precipitation intensity variable in all models, and the

basis dimension (k value) was chosen based on generalized cross‐

validation (GCV; Wood, 2017). To assess the best model fit for the

GAM's, GCV scores were used. GCV scores show the minimized

GCV score for each GAM, with a lower score indicating a better fitting

model with less predictive error.
TABLE 2 Precipitation (mm) for summer months in 2016 at the weather

June Difference (%) July Difference

Radar average 166 −6.6 17 −23.5

Radar point 194 +8.8 20 −5

Citizen average 120 −47.5 23 +8.7

Citizen point 128 −38.2 26 +19.2

Weather station 177 NA 21 NA

Note. Percentage difference was calculated as percentage difference in precipi
ment: catchment‐average; point: point‐based.

FIGURE 3 Daily precipitation totals for the study catchment. Black bars
different precipitation methods used in the study

TABLE 3 Validated GAM's for maximum precipitation intensity calculate

Radar catchment Radar point

Adjusted R2 0.69 0.62

Deviance explained (%) 72.7 66.7

GCV score 0.30 0.37

Sample size 48 48

Covariate df k P value df k P

Maximum precipitation intensity 1.7 3 <0.001 1.7 3

Starting water/air temperature difference 3.9 5 <0.01 3.9 5 <

Note. Citizen: citizen science data; catchment: catchment‐average; point: point
For an example storm on June 8, 2016, maximum water tempera-

ture surges for each logger site were regressed against maximum

precipitation intensity, with models produced for each type of precip-

itation dataset in the study. The adjusted r2 was then compared to

assess which precipitation dataset had the highest explanatory capa-

bility. The event in June 8 was chosen as it had the largest water tem-

perature surges in the study period, whereas the event on September

13, 2016, did not feature a regression due to low sample size. A lower
station site

(%) August Difference (%) Total Difference (%)

47 −9.1 230 −9.1

39 +0.8 253 +0.8

52 −28.7 195 −28.7

58 −18.3 212 −18.3

53 NA 251 NA

tation relative to weather station site. Citizen: citizen science data; catch-

represent the daily precipitation range. Coloured dots represent the

d by different precipitation sources against water temperature surges

Citizen catchment Citizen point Weather station

0.65 0.60 0.61

69.5 64.5 65.4

0.34 0.39 0.38

48 48 48

value df k P value df k P value df k P value

0.30 1.7 3 0.056 1.4 3 0.36 1.15 3 0.17

0.001 3.9 5 <0.001 3.9 5 <0.001 3.9 5 <0.001

‐based.
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intensity event was also analysed for the September 13, 2016, but did

not feature a regression due to low sample size.

2.3.2 | Daily analysis

For daily water temperature variability, the following temperature

metrics were calculated: daily maximum, daily minimum, daily mean,

and daily range. All metrics and associated precipitation data were

calculated from midnight to midnight across the study period. The

influence of seasonality was removed by subtracting a 10‐day moving

average (5 days either side) for each metric from the corresponding

metric for each day. GAMs, with a Gaussian error structure and iden-

tity link function, were used to link standardized water temperature

metrics to the precipitation total following the same model described

in Section 2.3.1. Only precipitation days >4 mm were included in the

analysis, to include only events that produced enough storm water
FIGURE 4 GAM's of maximum precipitation intensity and water tempera
line shows the fitted line of the GAM, whereas the shaded grey area show
to have a substantial effect on discharge. This threshold was derived

based on a sensitivity analysis of discharge to precipitation, with

4 mm of daily precipitation being the threshold where daily discharge

was consistently twice that of baseflow. As a similar relationship is

shown between all calculated temperature metrics and daily precipita-

tion, only the GAMs for the daily mean temperature metric are

presented here as an example. GCV scores were again used to assess

the model with the best fit.

3 | RESULTS

3.1 | Thermal, meteorological, and hydrological
context

Time series for precipitation, discharge, air temperature, and water

temperature are shown for the study period at site R1 (Figure 1) in
ture surge determined by the different precipitation sources. The black
s the 95% confidence interval
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Figure 2. June was notably the wettest month in the study period, reg-

istering 174 mm of rainfall, whereas July was the driest registering

24 mm. Air temperature during the study ranged from 7°C to 32°C,
FIGURE 5 Temporal development of the event on June 8, 2016, for
temperature surge; red indicate >1° rise in water temperature for that site
colouring in each logger nested catchment with corresponding precipitatio
with a mean of 16.3°C, whereas water temperature ranged from

11.1°C to 21.7°C, with a mean of 15.9°C. Discharge had a minimum

flow of 0.14 m3/s, with a peak flow of 61.8 m3/s.
the different precipitation methods: White circles show no water
. Colours indicate precipitation in mm. Maps created in GIS by
n amount for time period
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3.2 | Comparison of precipitation methods

Monthly (Table 2) and daily (Figure 3) precipitation totals are shown

for June, July, and August for the weather station location. The study

period included months with very high (June), low (July), and mean

(August) rainfall, providing a wide range of event types. Table 2 gives

the percentage difference in estimated precipitation for the different

precipitation methods and the weather station. In the wettest month

(June), high variation was apparent. Both citizen science methods con-

siderably underestimated precipitation in comparison to the weather

station, whereas both radar methods overestimated precipitation but

by a much smaller amount than citizen science methods. In the driest

month (July), all methods measured relatively similar precipitation

totals, although percentage differences are large given the small

precipitation totals. In August, both radar methods underestimated

precipitation in comparison to the weather station, particularly the

radar point‐based data. In August, citizen science data produced

values closest to those of the weather station. The catchment citizen

science data slightly underestimated compared to a slight overestima-

tion for the citizen point‐based data.
3.3 | Subhourly water temperature change

Summaries of the GAM's modelling water temperature surge using the

predictors maximum precipitation intensity and air/water temperature

differences are shown inTable 3. Maximum precipitation intensity was

found to be a significant predictor (P < 0.001) of water temperature

surges only when using radar catchment‐average precipitation data.

In contrast, maximum precipitation intensity was not found to be

significant (P > 0.05) in any of the other GAMs. The deviance

explained varied between models, ranging from 72.7% for the radar

catchment‐average data to 64.5% for the citizen science point‐based

data. Adjusted R2 values ranged from 0.69 for the radar catchment‐

average GAM to 0.60 for the citizen point‐based GAM. GCV score,

which can be used as a means of estimating prediction error in models,

was lowest for the model using radar catchment‐average precipitation

data (0.30) and highest for the model showing the citizen point‐based

precipitation data (0.39).

The GAM featuring radar catchment‐average precipitation

(Figure 4a) shows a non‐linear threshold response, with increased
TABLE 4 Linear regression coefficients and adjusted R2 for maximum pr
June 8

Estimate Standard error

Intercept 2.25 0.50
Weather station 0.15 0.01

Intercept −1.96 1.37
Radar catchment 0.16 0.05

Intercept 3.03 0.90
Radar point 0.00 0.01

Intercept 5.24 1.80
Citizen catchment −0.10 0.07

Intercept 2.12 0.59
Citizen point 0.04 0.02

Note. The sample size for all models is 11.
water temperatures only at the higher maximum precipitation intensi-

ties. A similar non‐linear trend is observed in both the weather station

data (Figure 4e) and citizen point data (Figure 4d). In contrast, a linear

trend is observed within the radar point (Figure 4b) and citizen

catchment (Figure 4c) models.
3.3.1 | High‐intensity example (June 8, 2016)

Spatial and temporal variation in precipitation for an event on June 8,

2016, and the associated water temperature surges are shown in

Figure 5. Timing of precipitation differs substantially between precip-

itation methods. The weather station data provide only one rainfall

value across the catchment with the heaviest rainfall occurring at

16:45 and 17:00. By contrast, both radar datasets show high spatial

and temporal variations in rainfall across the catchment, with peak

rainfall for logger sites varying between 16:15 and 16:45. The timing

of peak rainfall differed markedly for logger sites between the point‐

based and catchment‐average radar methods. Both the citizen science

datasets showed minimal rainfall until 17:00, with both datasets

showing peak rainfall at 17:15 for all logger sites.

The initial water temperatures surges shown at 16:15 and 16:30

appeared to occur without the onset of rainfall when using the

weather station or citizen science datasets; however, both radar

datasets showed rainfall correspond with these surges. Only surges

occurring at 17:00 corresponded with peak rainfall at the weather

station; however, substantial prior precipitation was also shown with

both radar datasets. The final water temperature surges occurred

by 17:15, corresponding with peak rainfall in the citizen science

dataset, compared with minimal rainfall in the weather station and

radar datasets.

Linear regression models show the relationship between maxi-

mum precipitation intensity and water temperature surges for the

different precipitation methods in the event in June 8 (Table 4).

Maximum precipitation intensity was shown to be a significant pre-

dictor only for modelled radar catchment‐average data (P < 0.001,

R2 = 0.54). When using weather station, radar point‐based, and

citizen sciences datasets, maximum precipitation intensity was not

significant with low explanatory capability shown (P > 0.05,

R2 = −0.10 to 0.14).
ecipitation intensity against water temperature surge in the event in

t value P value Adjusted R2

4.49 0.001 0.14
1.63 0.138

−1.43 0.185 0.54
3.56 0.006

3.34 0.008 −0.10
−0.26 0.796

2.90 0.017 0.08
−1.37 0.202

3.55 0.006 0.11
1.49 0.169



FIGURE 6 Temporal development of the event on September 13, 2016, event for the different precipitation methods: White circles show no
water temperature surge; red indicate >1° rise in water temperature for that site. Colours indicate precipitation in mm. Maps created in GIS by

colouring in each logger nested catchment with corresponding precipitation amount for time period
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TABLE 5 Validated GAM's for standardised mean daily water temperature against daily precipitation total as determined by the different pre-
cipitation sources

Radar catchment Radar point Citizen catchment Citizen point Weather station

Adjusted R2 0.18 0.20 0.41 0.41 0.50

Deviance explained (%) 20.7 22.2 42.5 30.2 52.2

GCV score 0.33 0.31 0.20 0.26 0.20

Sample size 127 151 155 150 152

Covariate df k P value df k P value df k P value df k P value df k P value

Precipitation Total 3,2 5 <0.001 3.5 6 <0.001 4.9 6 <0.001 4.7 6 <0.001 4.9 5 <0.001

Note. Citizen: citizen science data; catchment: catchment‐average; point: point‐based.

FIGURE 7 GAM's of daily precipitation and standardized mean daily water temperature determined by the different precipitation sources. All
TinyTag sites are combined for the purposes of these plots. The black line shows the fitted line of the GAM, whereas the shaded grey area
shows the 95% confidence interval

CROGHAN ET AL. 155
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3.3.2 | Low‐intensity example (September 13, 2016)

Spatial and temporal variations in precipitation and water temperature

for a low‐intensity event for September 13, 2016, are shown in

Figure 6. Temporal variation through the event was lower than for

the event in June 8, with all precipitation datasets suggesting that

the majority of precipitation occurred between 16:45 and 17:15.

Again, the weather station provided a single value across the catch-

ment, suggesting almost all precipitation fell between 17:00 and

17:15 (after the first temperature surge event occurred). In contrast,

both radar and citizen science methods indicate substantial rainfall in

the south‐west of the catchment prior to this, although only the radar

methods capture precipitation corresponding to the initial water

temperature surge at 16:30. Both citizen science and radar methods

capture precipitation in the north‐west of the catchment, which is

the location of the subsequent water temperature surge. Large differ-

ences in precipitation estimation are noticeable at 17:00. Both citizen

science methods suggest minimal precipitation at this point; however,

this was the time of peak rainfall within both radar methods and at the

weather station site in the north of the catchment. By contrast, peak

rainfall in the citizen science sites occurred at 17:15. For the citizen

science catchment method, peak rainfall is shown within the south‐

east of the catchment, where no surge events were identified. By

contrast, both radar methods suggest minimal precipitation in this

location. Two further surge events were captured at this point, with

citizen point and radar point suggesting the heaviest precipitation

corresponding with these. By 17:30, all methods show the event to

have ended.

3.4 | Daily water temperature variability

Summaries of the GAM's modelling deviation from mean water

temperature using daily precipitation amount are shown in Table 5.

In all models, daily precipitation was found to be a significant predictor

for standardized daily mean water temperature (P < 0.001). The

explained deviance varied widely between models, ranging from

20.7% for the radar catchment‐average GAM to 52.2% for the

weather station GAM. Adjusted R2 ranged from 0.18 for the radar

catchment‐average GAM to 0.50 for the weather station GAM. GCV

was lowest for the citizen catchment‐average precipitation model

(0.20) and highest for the radar catchment‐average precipitation

model (0.33). A non‐linear response was evident with an initial rise

in standardized mean water temperature with higher precipitation

totals up to a threshold around 20 mm which is followed by a fall in

standardized mean water temperature for the highest daily precipita-

tion totals was shown by all models (Figure 7).
4 | DISCUSSION AND CONCLUSIONS

4.1 | Precipitation estimate differences between
datasets

Differences in precipitation between datasets (weather station, citizen

science, and radar) were more pronounced than the differences
between point‐based and catchment‐average calculation methods,

which reflect precipitation variability over short distances during the

events. Single precipitation gauge data are, therefore, often unrepre-

sentative of multiple water temperature sample sites unless strict con-

sideration is given to catchment size and strategic siting (Gabriele

et al., 2017; Thorndahl et al., 2017; Villarini et al., 2008).

Citizen science estimates of precipitation were highly inaccurate

with respect to percentage difference in total rainfall amount,

compared with estimates at the weather station site location, during

high‐intensity events, possibly resulting from high spatial variability

in precipitation within the catchment that was not adequately

accounted for by the citizen science gauges (Pedersen et al., 2010).

These errors may also propagate from siting issues as meteorological

standards for gauge site siting may be difficult to adhere to for citizens

in urban areas due to lack of unobstructed space, which may lead to

underestimation of precipitation (Muller, Chapman, Grimmond, Young,

& Cai, 2013). Radar data were most accurate in the wettest month

(August) but exhibited substantial discrepancies from the weather

station gauge in the driest month (June), possibly as radar data have

larger uncertainty at lower precipitation intensities as radar data

struggles to identify drizzle (Golding, 2000).
4.2 | Subhourly water temperature changes

The best model fit was achieved using the Radar catchment‐average

precipitation dataset. Catchment‐average precipitation estimates

account for precipitation falling across the catchment so are more spa-

tially representative of “true” precipitation patterns input into the river

system (Fletcher et al., 2013; Walsh et al., 2012). Radar data have pre-

viously also been shown to monitor high‐intensity events accurately

(Biggs & Atkinson, 2011). Consequently, the higher predictive capabil-

ity of the radar catchment‐average model compared with the citizen

catchment‐average model reflects the higher spatial and temporal res-

olution of the radar dataset (Gabriele et al., 2017). As water tempera-

ture surges are more likely to occur where there is rapid surface and

shallow subsurface drainage (Nelson & Palmer, 2007; Somers et al.,

2013), the radar catchment dataset is likely to be more representative

of thermally polluted water in the river than alternative precipitation

datasets. Furthermore, as the process of heat exchange between

low‐heat capacity surfaces and surface run‐off occurs over short dura-

tions (Herb et al., 2008), this effect is likely to be better captured by

the highest temporal resolution datasets. In contrast, point‐based

methods provide inaccurate precipitation estimates as they fail to

account for variations in storm intensity across the catchment, which

may result in high spatial variation in rainfall, particularly in urban areas

(Thorndahl et al., 2017). Point‐based methods are unlikely to be an

adequate proxy of thermally charged surface run‐off, as they fail to

represent the export of heated water from individual subcatchments.

Hence, point‐based methods are particularly ineffective within urban

environments, as they lack the spatial representativeness required to

account for drainage systems that rapidly route water from the entire

subcatchment to the river rapidly (Jones et al., 2012), which in turn

leads to water temperature surges. This is particularly evident during

convective storms which are responsible for most events causing
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water temperature surges (Hofmeister et al., 2015; Nelson & Palmer,

2007; Wilby et al., 2015). Consequently, point‐based methods are

unlikely to be representative; therefore, catchment‐average radar pre-

cipitation datasets are recommended for use in water temperature

studies focusing on high‐intensity events.

In the example water temperature surge events, both point‐based

and catchment‐average radar estimation methods represented the rel-

atively higher accuracy of radar data in spatially and temporally

representing a high‐intensity event. The close temporal proximity of

the onset of high‐intensity precipitation event to the water tempera-

ture surges within urbanized catchments as shown by the radar data

has been observed in previous studies (Anderson et al., 2010;

Hofmeister et al., 2015; Nelson & Palmer, 2007; Somers et al., 2013)

which noted the quick onset of surges after localized precipitation,

with a longer lag time downstream due to dissipation of heat pulses

from upstream (Somers et al., 2013; Wilby et al., 2015). Alternatively,

the transit time of water from the point in the catchment where the

rain fell to the river may also explain the seemingly delayed water tem-

perature surge at the most downstream sites. It is further important to

consider that water temperature dynamics such as water temperature

surges are also controlled by numerous other parameters such as dew

point temperature that are not accounted for by solely using precipita-

tion data (Herb et al., 2008). In contrast, for the low‐intensity event,

both radar methods provided a relatively accurate description of pre-

cipitation associated with water temperature surges, which contrasts

with previous studies suggesting that radar data are less effective at

lower rainfall intensities (Biggs & Atkinson, 2011; Golding, 2000).

Furthermore, both point‐based and catchment‐based radar methods

also gave similar estimates, suggesting lower spatial variability in the

low‐intensity event.

From the weather station data, only constant precipitation across

the catchment could be derived, which misleadingly shows water

temperature surges taking place before any precipitation was

observed in both the high‐intensity event and the low‐intensity event.

The assumption of a constant precipitation value across the catchment

is likely to be highly inaccurate and leads to difficulties quantifying

precipitation‐driven processes (Thorndahl et al., 2017). The degree to

which water temperature surges are controlled by precipitation may

be underestimated or masked entirely when using single gauge data

depending on catchment area, river network properties, storm

direction, and rate of passage through the catchment.

Both citizen science point‐based and catchment‐average methods

suggested that the precipitation peak occurred after the water tem-

perature surge at five of the 10 logger sites within the high‐intensity

event. This represents the influence of gauges to the east of the catch-

ment, with the June 8 storm moving from west to east across the

catchment. As most of the water temperature loggers were located

in the eastern part of the catchment, the precipitation estimate for

them was derived from gauges to the east of the catchment. Because

the rain reached these gauges later, water temperature surges were

already present at these sites before precipitation was measured.

Increased density of citizen gauges in the western part of the catch-

ment would likely help better capture similar surge‐triggering events.

However, without high‐density gauge networks with relatively even

spacing, it appears that using citizen science gauge networks can lead
to substantial underestimation or overestimation in high‐intensity

events making links to water temperature data problematic. However,

for the low‐intensity event, citizen point data corresponded well with

water temperature surges at individual subcatchments and suggested

similar spatial distributions in precipitation as the radar methods. The

citizen science catchment method gave substantially different estima-

tions, with high precipitation estimates in the south‐east region of the

catchment that did not feature any water temperature surges, and

minimal precipitation was estimated by the point citizen science

method and radar methods. This suggests that the density of citizen

science gauges was not high enough to provide reliable interpolations

for the low‐intensity event.
4.3 | Daily water temperature variability

All precipitation calculation methods modelled the relationship

between mean water temperature and total daily precipitation effec-

tively. Strong fits were provided by all models. This is because daily

metrics are less sensitive to issues related to storm timing and dura-

tion (Fletcher et al., 2013; Jacobson, 2011). This may be because the

main process driving the change in daily temperature dynamics after

precipitation is a change in the specific heat‐capacity of the receiving

waters (Hannah, Webb, & Nobilis, 2008). At higher discharges, the

specific heat capacity of the stream is increased, and the river is more

resilient to atmospheric cooling. As only a small subset of overall

events lead to water temperature surges, diurnal temperature fluctua-

tions after precipitation are likely to reflect changes in total discharge.

Hence, although lower spatial and temporal resolution datasets may

be inadequate for analyses of thermally polluted waters immediately

entering rivers, lower spatial and temporal resolution precipitation

datasets can provide a proxy of discharge. Therefore, if the focus of

study is daily temperature metrics, then high spatial and temporal

resolution precipitation data are not necessarily required.

Although citizen science and weather station datasets showed the

strongest model fits, this may be an artefact of the reduced variation

in rainfall in the point‐based datasets which can lead to misleadingly

small error in statistical models. Although radar catchment precipita-

tion showed the worst model fit, the greater spatial variation in precip-

itation patterns accounted for than other methods in turn may lead to

larger errors (Gabriele et al., 2017; Pedersen et al., 2010). As such,

caution is required in interpreting the strength of relationships within

water temperature models where precipitation is a predictor, particu-

larly where only a single gauge is used. Furthermore, some degree of

uncertainty in the analyses were caused by the timing of the events,

and the possibility that precipitation from a single event may extend

over 2 days. All logger sites were included in the analyses, meaning

headwater and downstream sites were also mixed together, which

therefore respond differently to precipitation properties.
4.4 | Implications and future research

This study highlights the value of using radar catchment‐average

rainfall datasets when modelling event‐based water temperature

fluxes at short temporal scales. However, when using traditional gauge
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methods, linking precipitation to water temperature dynamics has

much greater potential for error at subhourly scales, and the role of

precipitation as an important variable driving water temperature

dynamics may currently be underestimated or ignored. The errors that

propagate from the use of single point‐based sources are likely to also

occur for other water quality parameters where precipitation is a pri-

mary driver of water quality dynamics. The use of catchment‐average

radar rainfall data as a means of analysing precipitation‐led fluxes in

water quality variables is therefore encouraged. High spatial and

temporal variability precipitation sources such as catchment‐average

radar are likely to be particularly beneficial within urban water quality

studies, where precipitation is shown to be more localized and where

precipitation linkages to water quality dynamics can often be directly

correlated. The alternative catchment‐average based datasets are

likely to also be advantageous to water quality studies within poorly

gauged catchments.

Further research is required in catchments of different sizes and

land use types. As the study took place in an urban headwater catch-

ment, it would be useful to assess different precipitation datasets in

varying land uses where hydrological and water temperature

responses to precipitations events are likely to differ. To build on

the findings of this study, more systematic examination of the lag time

between precipitation and water temperature surges will further

enhance understanding of the link between precipitation and water

temperature change. Moreover, further water quality parameters

could be analysed to ensure greater transferability of the results of

this study to future water quality studies. Variables with a clear first

flush effect, such as nutrients, organic matter, and heavy metals are

of particular interest for further study given the links between catch-

ment transport of these variables and precipitation intensity.
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