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ABSTRACT 

Diesel engine emissions are by far the largest source of nanoparticles in many urban atmospheres, in 

which they dominate the particle number count, and may present a significant threat to public health.  

This paper reviews knowledge of the composition and atmospheric properties of diesel exhaust 

particles, and exemplifies research in this field through a description of the FASTER project 

(Fundamental Studies of the Sources, Properties and Environmental Behaviour of Exhaust 

Nanoparticles from Road Vehicles) which studied the size distribution — and, in unprecedented 

detail, the chemical composition — of nanoparticles sampled from diesel engine exhaust.  This 

information has been systematised and used to inform the development of computational modules 

that simulate the behaviour of the largely semi-volatile content of the nucleation mode particles, 

including consequent effects on the particle size distribution, under typical atmospheric conditions. 

Large-eddy model studies have informed a simpler characterisation of flow around the urban built 

environment, and include aerosol processes. This modelling and engine-lab work has been 

complemented by laboratory measurements of vapour pressures, and the execution of two field 

measurement campaigns in London.  The result is a more robust description of the dynamical 

behaviour on the sub-km scale of diesel exhaust nanoparticles and their importance as an urban air 

pollutant.      

 

Keywords:  Diesel exhaust; Particulate matter; Evaporation; Hydrocarbons; Aerosol dynamics  
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INTRODUCTION 

Airborne particulate matter is the pollutant currently believed, on the basis of epidemiological 

research, to have the greatest impact upon public health.  In the latest analysis of data from the Global 

Burden of Diseases Study, ambient particulate matter pollution ranked fifth as an avoidable cause of 

death and sixth as a contributor to disability-adjusted life years lost [1].  In 2015, exposure to 

particulate matter expressed as PM2.5 caused 4.2 million deaths and 103.1 million disability-adjusted 

life years (DALYs) lost, representing 7.6% of total global deaths and 4.2% of global DALYs.  This 

was an increase in both relative to 1990.  Although most of the quantitative information on health 

effects is based on the PM2.5 metric, which describes the mass concentrations of particles of 2.5 

micrometres or smaller in the air, the airborne particles extend over a much wider size range.  Particles 

newly formed from gas-to-particle conversion processes are around 1 nanometre in diameter while 

the largest particles with a significant lifetime in the atmosphere are of the order of 100 micrometres 

diameter [2].  Thus, airborne particles cover five orders of magnitude in size (and fifteen orders of 

magnitude in mass) but are also hugely diverse chemically.  Although it might reasonably be expected 

that particle toxicity would be profoundly influenced by particle size and chemical composition 

(which would be expected to determine individual particle toxicity), there is no clear consensus upon 

which size fractions or chemical components present the greatest toxicity, and the literature 

surrounding this issue does not paint a consistent picture [3,4]. 

 

Ultrafine particles (UFP, with particle diameter Dp < 100 nm) are emitted into outdoor urban air 

predominantly by road traffic, particularly diesel exhaust [5, 6]. UFP from traffic are often released 

close to members of the public, and research has accumulated pointing to the toxicity and potentially 

harmful effects of UFP on human health [7].  The other main source of nanoparticles in the 

atmosphere is regional nucleation in which new particles form from oxidation of gases.  This is less 

important than direct particle emissions in urban areas of northern Europe [8,9]. 
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Research on airborne particulate matter involves many aspects (see Figure 1), from particle emissions, 

through near-field dispersion, chemical and physical transformations in the atmosphere, 

characterisation of airborne particles, measurement and modelling of personal exposure, and the study 

of effects on human health.  This article uses one specific project which has involved an in-depth 

study of the size distribution and chemical composition of particles emitted by diesel engines and the 

measurement and modelling of their behaviour in the atmosphere to illustrate the latest research 

conducted in this field.  Diesel particles well exemplify the challenges of studying semi-volatile 

airborne particles.  Their sizes run from a few nanometres to a few hundred nanometres and their 

composition varies with size, as indicated in the following.  The particles smaller than around 30 

nanometres diameter comprise predominantly high molecular weight hydrocarbons which derive 

from unburnt fuel and lubricating oil [10].  These are formed as the exhaust gases mix with cooler 

ambient air [11], and condensation appears to take place on nanometre-sized nuclei of metallic ash 

or sulphuric acid [12, 13].  The larger particles comprise mainly graphitic elemental carbon in loose 

chain aggregates onto which are condensed high molecular weight hydrocarbons [14].  The 

hydrocarbon compounds, which comprise a substantial proportion of particle mass [15] and range 

from around C12 to > C36 are semi-volatile, which means that they partition between the condensed 

phase and the vapour phase in a way which is affected by their vapour pressure, the ambient 

temperature, the particle composition and size, and the concentration of the vapour phase surrounding 

the particle.  The effect of temperature is seen in seasonal effects upon particle number [16] and size 

distributions [17] in urban air.  The introduction of diesel particle filters (DPF) is changing the nature 

of diesel particles, but there have been few detailed measurements to date, and emissions from pre-

DPF vehicles probably dominate atmospheric diesel particles.  
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Dynamics of Airborne Particles 

Airborne particles are subject to a number of dynamical processes which influence both their size 

distribution and airborne concentration, and size distributions downwind of a busy road show 

complex behaviour [18, 19, 20].  Relevant processes include the following: 

 

Coagulation.  As particles move through the air, they are subject to collisions which generally lead 

to coalescence, referred to as coagulation.  This is a process which is strongly dependent on the 

number concentration of particles and leads to a decrease in particle number concentration, but an 

increase in average size.  It is not generally a very rapid process in the atmosphere as the number 

concentrations of particles are not sufficiently high, but does cause a ~ 5% reduction in diesel UFP 

numbers dispersed throughout a street canyon [21]. 

 

Deposition.  Particles are removed from the atmosphere by deposition to surfaces.  Those of larger 

size, greater than about 5 µm diameter, have significant gravitational settling velocities and this, 

together with scavenging by clouds and rain, are the main removal mechanisms.  Smaller particles, 

and especially those below 100 nm diameter, are subject to Brownian diffusion and tend to be subject 

to diffusive deposition to surfaces.  We find a ~ 3% effect on diesel UFP emissions from deposition 

dispersed throughout a street canyon [21]. 

 

Condensational growth.  The atmosphere is an oxidising environment and there is a constant 

conversion of vapour phase molecules to more oxidised forms which unless fragmented have a strong 

tendency to condense.  Under most circumstances it is energetically most favourable for them to 

condense onto existing particle surfaces hence causing a growth of particles without a change in 

number concentration. Gas-to-particle mass exchange is always in principle two-way, responding to 

the difference between the ambient partial pressure of a gas and its saturation vapour pressure in the 

particle phase [22].  
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Evaporation.  Particles comprised of semi-volatile materials are those with saturation vapour 

pressures equivalent to concentrations between approximately 10-1 to 104 µg m-3 and are liable to 

evaporate in circumstances where the vapour phase concentrations fall below equilibrium saturation 

vapour pressures for individual compounds in the mixture [23].  This leads to particle shrinkage and 

a change in particle composition for multi-component particles, but not a change in number 

concentration [24, 25], unless particles evaporate fully.  Heating diesel particles shows a substantial 

volatile fraction [26, 27, 28]. 

 

Chemical reaction.  Most particles comprising organic matter contain some potentially reactive 

molecules.  In most cases, reactions in the condensed phase are relatively slow due to the need for 

transfer of oxidant species from the gas phase into the particle.  Exceptions include compounds such 

as oleic acid which contain an olefinic double bond which reacts with ozone, an oxidant present in 

the atmosphere at much higher concentrations than most other oxidant species [29].  Theoretical 

considerations indicate that for most semi-volatile molecules, reactions of the vapour phase 

component tend to dominate over condensed phase reaction processes [30].  This adds considerable 

complications in predicting the behaviour and atmospheric lifetime of these compounds.  Research 

in London has shown that diesel-related hydrocarbons can dominate gas phase reactive carbon [31] 

and that the intermediate-volatility organic compounds (approx. C12-C22) emitted largely by diesels 

can contribute ~30% of the annual average secondary organic aerosol around London [32].  This is, 

however, likely to change with an increased penetration of vehicles with aftertreatment [33]. 

 

The FASTER Project of Diesel Particles Emissions and their Atmospheric Behaviour 

Figure 2 exemplifies the processes of how semi-volatile diesel particles form as hot exhaust cools on 

mixing with ambient air [10, 11] and how the particles can subsequently evaporate as they are diluted 

on moving away from source.  It also includes an important process in which the vapours are then 
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oxidised forming secondary particles of greater mass, a paradigm proposed by Robinson et al. [34, 

35, 36, 37, 38]. 

 

The FASTER project (Fundamental Studies of the Sources, Properties and Environmental Behaviour 

of Exhaust Nanoparticles from Road Vehicles) comprises four main science topics shown in Figure 

3.  These topics will be described in turn and illustrated with examples of some of the key findings.  

Figure 3 also shows the intermediate objectives which summarise the underlying rationale for the 

science topics, and the final objectives which have both scientific and policy relevance. 

 

Science Topic 1:  Characterisation of Emissions 

Most studies of diesel particle emissions depend upon use of a vehicle run on a chassis dynamometer 

[39, 40], on the road [41, 42] or an engine alone operated on an engine dynamometer  [27].  In the 

FASTER project, diesel particle emissions were sampled from test engines run under typical 

operating conditions on an engine dynamometer in the laboratory, and the emitted particles were 

diluted with clean air before collection so as to simulate atmospheric dilution.  Details of the engine 

testing system and sampling system are given by Alam et al. [43], and a schematic of the engine test 

cell appears in Figure S1.  This allowed sampling of engine-out exhaust, and exhaust after passing 

through a diesel oxidation catalyst (DOC), and a DOC and diesel particulate filter (DPF) in series.  It 

was important to make measurements both on raw exhaust and after the control devices, as the current 

European diesel vehicle fleet contains vehicles both with and without DPF [44], and in many 

countries DPF cannot be used due to an inadequate fuel quality [45].  Dilution of the emissions is 

important, as firstly it prevents condensation of water as the cooling exhaust gases supersaturate, and 

secondly, it controls the particle size distribution by determining whether semi-volatile vapours 

condense upon larger carbonaceous particles or upon smaller nuclei of sulphuric acid or trace metals 

causing them to grow [10].  Consequently, it can also affect the mass of particles emitted [46, 47, 48]. 
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The particles were size-fractionated during collection and transferred to the analytical laboratory 

where their composition was determined by the advanced technique of 2-dimensional gas 

chromatography with detection by time-of-flight mass spectrometry GCxGC-ToFMS [49].  The use 

of an advanced separation technique is essential as traditional 1-dimensional gas chromatography will 

only separate around 10% of the mass of the volatile component of the particles whereas the 2-

dimensional technique can give a virtually complete separation of thousands of individual 

compounds. 

 

In two-dimensional gas chromatography, compounds are first separated in a conventional manner on 

a chromatographic column according to their volatility.  Column effluent is condensed, and every few 

seconds is re-evaporated and passed through a short second chromatographic column which separates 

on the basis of polarity.  Hence, a two-dimensional chromatogram is developed, as shown in Figure 

S2.  This gives excellent separation of individual compounds which can be characterised on the basis 

of their mass spectra.  The groups of compounds which were analysed in diesel exhaust (particulate 

and gaseous), diesel fuel, engine lubricating oil and ambient air appear in Table 1.  During the course 

of the work, a modification to the mass spectrometer was installed which allowed electron ionisation 

at energies as low as 10eV, as well as the conventional 70eV to be used during detection.  This lower 

ionisation energy allowed the observation of molecular ions and much larger fragment ions than are 

typically seen in the 70eV mass spectra, allowing the identification of a much wider range of 

compounds [49, 50]. By this method, about 90% mass closure can be achieved [51]. 

 

A typical profile of n- and iso-alkane concentrations in diesel engine exhaust is shown for the vapour 

phase and condensed (particulate) phase in Figure 4.  This shows a peak abundance of particle-phase 

alkanes at C25, which is fairly typical of diesel exhaust.  As anticipated, the vapour form dominates 

the alkanes at lower molecular weights, with the particle phase dominant above around C20.  Separate 

analyses of diesel fuel and lubricating oil suggest that unburnt fuel is largely responsible for the 



9 
 

alkanes <C20, and lubricating oil for those >C20.  Generic speciation of compounds in diesel exhaust, 

diesel fuel and lubricating oil provides the basis for such a conclusion [51, 52].  Other such 

apportionment estimates have been reported [28, 53, 54,], and between diesel and gasoline emissions 

[37]. 

 

Particle number size distributions were also measured in the diluted engine exhaust and are 

exemplified by Figure 5 for low engine load.  This shows a mode in the diluted raw exhaust (before 

DOC) at around 40 nm, with a shoulder seen just below 20 nm.  The relative sizes of these modes are 

mainly sensitive to the engine operating conditions and dilution ratio, and the size distributions 

measured in roadside air (see later) give the greater emphasis to a mode at 20-30 nm which is 

responsible for the shoulder close to 20 nm in Figure 5.  The mode at 40 nm, which is less prominent 

in the roadside data, is attributed to solid graphitic carbon-based “soot” particles, while the smaller 

mode comprises particles predominantly composed of condensed hydrocarbons [14, 55].  Figure 5 

also shows the small effect of the DOC on the particle concentration and size distribution.  The effect 

of the DOC is to remove some of the hydrocarbon vapour component of the exhaust aerosol, leading 

to evaporation of some of the SVOC content from the condensed phase material, hence effecting a 

reduction primarily in the smaller particles which have a higher SVOC content.  Particle 

concentrations after the DPF are reduced to almost zero  (filtration efficiency >99.95%) under steady 

state operating conditions, although other research has shown increased particle emissions during 

transient operating cycles [56, 57], and especially during DPF regeneration cycles [58, 59]. 

Science Topic 2: Laboratory Studies 

In order to model the atmospheric behaviour of the semi-volatile hydrocarbons, it is necessary to 

specify their chemical composition, determined above in the analytical studies, their phase 

partitioning and the size distribution of the particulate fraction, determined in the engine laboratory, 

and the vapour pressures of the constituent molecules. A search of the literature revealed many past 

studies of the vapour pressures of the n-alkanes and it is also possible to calculate vapour pressures 
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based upon structure-activity relationships using the US EPA programme EPISUITE [as in 60] or the 

University of Manchester UManSysProp online tool [61].  The literature values of vapour pressure 

were mainly estimated from extrapolation of vapour pressures measured at higher temperatures, and 

although divergences were relatively small for the lower molecular weight compounds, literature 

values for the higher molecular weight compounds could vary by more than five orders of magnitude 

for a single compound. With such a wide range of values, the evaporative behaviour of the particles 

could vary greatly in rate according to which set of vapour pressures was adopted. Consequently, it 

was important to make new measurements of vapour pressures at close to ambient temperatures. 

Individual pure SVOC compounds were coated onto glass beads; microscopy revealed the liquid 

coating to be present as a super-cooled liquid (which has higher saturation vapour pressure than the 

more thermodynamically stable, but presumably kinetically hindered, crystalline solid). The coated 

beads were then packed into a temperature-controlled U-tube through which a gentle flow of nitrogen 

was passed, following the method of Verevkin et al. [62].  The nitrogen flow was set such that contact 

time with the coated beads was long enough to allow the vapour to equilibrate with the pure liquid 

phase, after which the saturated vapour was stripped out of the nitrogen gas flow in an adsorption 

tube and analysed using the GCxGC-ToFMS system. This technique gave repeatable measurements 

and vapour pressures intermediate between the highest and lowest values available from the literature, 

suggesting that the literature data were subject to random error, exacerbated by the large temperature 

extrapolation, rather than systematic bias.   

 

Science Topic 3: Field Measurements 

In parallel with the studies in the engine laboratory, measurements were made in central London (UK) 

of particles emitted on busy Marylebone Road (daily traffic flow ~ 80,000-90,000 vehicles) and 

transported subsequently by the wind into adjacent Regent’s Park.  Multi-site measurement 

campaigns were used to quantify the rate at which the particles change in size and composition during 

advection (horizontal transport) from the highway to the cleaner environment of the park [63]. 
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Measurements of particle size distributions were made using scanning mobility particle sizers 

(SMPS) at five sites in all. Three sites were established especially for this project: Westminster 

University, sited on the roof overlooking the ground level Marylebone Road monitoring station; 

Regents University, on the roof of a building within Regents Park and 380 metres north of the 

Westminster University site; aloft at 160 metres above ground level on the BT Tower at a distance of 

380 metres from the Marylebone Road site (see Figure S3). Data from these sampling sites was 

supplemented with data collected as part of a small national measurement network using two 

sampling sites: Marylebone Road, a kerbside site within a busy street canyon on the south of the 

highway directly below the Westminster University sampling site; and North Kensington, which is a 

central London background location without substantial local traffic activity located 4 km from the 

Marylebone Road site. Also located at the sampling stations were condensation particle counters 

which measure the total number of airborne particles above a lower cut point of around 3 nanometers 

diameter, and aethalometers which measure the black (elemental) carbon content of airborne 

particles, which in London is an excellent tracer of diesel exhaust. Additionally at the elevated 

locations, measurements of atmospheric wind and turbulence were made using three sonic 

anemometers. The SMPS instruments measure particle number concentrations size fractionated over 

the range from 17 to 600 nanometers diameter in 105 size bins (51 bins at North Kensington and 

Marylebone Road), and at the Regents University site this was supplemented by an additional SMPS 

with a nano-differential mobility analyser, measuring particle diameters down to 5 nanometers. 

Examples of the measured size distributions appear in Figure 6 which shows campaign-average 

particle number size distributions at Marylebone Road and Regents University and Figure S4 which 

shows weekday-weekend differences in particle size distributions at these sites.  From Figure 6 it is 

seen that overall number concentrations (areas under the curves) diminish substantially from the 

roadside Marylebone Road site to the background Regent’s University site in the park.  However, one 

feature of the park site data not seen at other ground-level sampling sites is a loss of the large mode 
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at 20-30 nm seen in the Marylebone Road data and attributed primarily to the semi-volatile diesel 

particles, as well as an increase in the relative abundance of the <20 nm particles, consistent with 

evaporative shrinkage.  As the Regent’s University site was downwind of Marylebone Road for the 

vast majority of the campaign period, the influence of advected traffic particles is expected, and 

appears clearly in the data.  Both the diurnal pattern of traffic flows and the vehicle mix change on 

Marylebone Road between weekdays and the weekend, and this is reflected in the average size 

distributions seen in Figure S4 for the Marylebone Road site.  The main feature is the much lower 

magnitude of the 20-30 nm mode at weekends, which disappears almost entirely at the Regent’s 

University site.    

 

The particle size distributions (Figures 6 and S4) can be considered as the sum of a number (usually 

three) of log-normal modes, which can be fitted by an iterative algorithm to find for each mode an 

optimal mode diameter, first derivative of particle number (dN/dlogDp) at the mode size, and mode 

width.  Fitting in this manner reveals a nucleation mode at the Marylebone Road site centred on 20-

25 nm diameter, which has reduced in size at Regent’s University to be within the range of <20 nm.  

Earlier work using a site in the centre of Regent’s Park, which is further than the current site from 

Marylebone Road, has shown shrinkage of this mode to below 10 nm [64].  The campaign data were 

used to calculate apparent particle shrinkage rates, using adjusted wind speed data from Heathrow 

airport to estimate travel times between the Marylebone Road and Regent’s University sites.  

Oxidation of biogenic organic compounds can lead to new particle formation [65], but our earlier data 

analyses [64] discount this as affecting the particle size distributions.  The average condensation sink 

for the Regent’s Park aerosol (defined as a timescale for sulphuric acid vapour condensation) is 5.8 x 

10-3 s-1, implying a lifetime for the molecule of a few minutes.  In contrast, the lifetimes of small 

particles with respect to scavenging by other particles are much longer, by a factor of almost 200 for 

10 nm particles and over 2,000 for 40 nm particles. 
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The SVOC evaporation rate, and hence the particle shrinkage rate, is sensitive to the difference 

between the saturation vapour pressure at the particle surface for each particular SVOC and the partial 

pressure in the ambient air surrounding the particle.  Consequently, air samples were collected using 

a filter to collect condensed phase material and an adsorption tube for vapour (see Supplementary 

Information), taking care to minimise post-collection particle to vapour phase transfer, with 

subsequent analysis of hydrocarbons using the GCxGC-ToFMS instrument.  These measurements 

were made at the Westminster University and Regent’s University sites, and additionally at 

Marylebone Road and Eltham, a background site in suburban south London.  The latter sites measure 

C2-C10 vapour phase hydrocarbons routinely as part of a small national network of hydrocarbon 

measurements, allowing creation of an almost continuous dataset of simultaneously measured 

concentrations from C2 to C35.  Figure 7 shows vapour and condensed phase concentrations of n- and 

iso-alkanes from C12 to C35 at the Eltham site, clearly exemplifying the large change in partitioning 

from vapour domination at C12 to an almost wholly particulate composition at C35.  The broad 

similarity of the distributions seen at Eltham (Figure 7) to those in the diesel exhaust samples (Figure 

4) strongly suggest that diesel emissions dominate the hydrocarbon composition of UK urban air in 

this molecular weight range. 

 
 
 
 
 
 

Science Topic 4: Street canyon and urban modelling 

The final component of this work is the construction of numerical models which simulate the 

behaviour of the semi-volatile particles between their emission and their sampling within a few 

kilometres of source. Kumar and coworkers [66] consider the scales and relevant factors for 

modelling nanoparticles from road traffic in the urban atmosphere, considering condensation, but not 

evaporation processes.  Toenges-Schuller et al. [44] and Karl et al. [67] have both modelled traffic-

generated particles in the urban areas, but include different processes in their models. Zhang and 
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Wexler [68] and Zhang et al. [69, 70] have established a theoretical framework for describing the 

behaviour of vehicle-emitted particles, developing a model which divides into separate “tailpipe to 

road” and “road to ambient” components. Both theoretical [71, 72] and experimental [73, 74] studies 

have sought to describe the “tailpipe to road”, or initial few seconds of dilution.  Wang and Zhang 

[75] and Wang et al. [76] have developed simulations of the “road to ambient” processes using a UFP 

model implemented in a CFD model with the RANS turbulence scheme.  Our models use measured 

emission factors for particles and simulate the “road to ambient” processes up to neighbourhood scale 

(~ 1 km).  We have utilised both a fluid-dynamically simple but microphysically complicated box 

model, which simulates the mean properties of particles in a street canyon and the evolution of the 

particles in a box of air as it moves away from the traffic, and a more fluid-dynamically complex 

Eulerian large-eddy simulation model with simpler microphysics, in which dominating turbulent 

eddies and their effects on mixing in the urban boundary layer are explicitly simulated within a 3-

dimensional grid of boxes placed over central London.  Such a combination of models allows us to 

investigate aerosol or turbulent mixing processes independently as well as together. We have also 

developed a model which simulates the effects of mixing upon the particle size distribution in a two-

compartment street canyon [77], providing a framework for understanding how canyon geometry, 

street trees and furniture, and architectural features interact with the large-scale atmospheric flow to 

determine the properties of SVOC particles in street canyons. 

 

A detailed description of the street canyon-neighbourhood CiTTyStreet-UFP model is given in 

Nikolova et al. [21]. The UFP aerosol module takes into account the multicomponent nature of the 

particles and can incorporate the relevant aerosol dynamic processes such as condensation/ 

evaporation, deposition and coagulation. The driving force for condensation/evaporation is the 

difference between the partial pressure of each representative Semi-Volatile Organic Compound 

(SVOC) and its saturation vapour pressure above the mixture.  The condensation/evaporation rate is 

estimated from the relevant set of physical equations listed in the Supplementary Information. The 
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physical processes differ between larger particles (Dp ≫ mean free path, ) and smaller particles (DP 

≤ ), with a transition regime between them described by the Fuchs-Sutugin correction term (see 

Supplementary Information).  The fomulation used in this work derived from the former, continuum 

regime, although there is an alternative formulation based upon the physics of the latter, kinetic 

regime [78]. 

 

In our model configuration, we use surrogate n-alkanes in the range C16H34-C32H66 to represent 17 

SVOC components with progressively lower volatilities; additionally, one component represents an 

involatile core. The use of surrogate n-alkanes allows us to use real physico-chemical data for vapour 

pressure, surface tension, and molecular volume. The full complexity of the diesel emissions and 

atmospheric measurements (Figure S2) are collapsed onto the surrogate n-alkanes by projecting the 

2D chromatogram onto the volatility axis [60]. Nucleation and Aitken modes consist of 1% and 90% 

involatile core, respectively, based upon published data for the size of the involatile core [12, 13, 26]. 

While the difference between extremely low volatility SVOC and carbon/metal solid cores is not 

relevant in the modelling framework for the selected timescale (30 min), the human inflammatory 

response to organic or solid carbonaceous cores could be significant and has to be borne in mind [79, 

80]. The model contains a gas phase chemistry module [81] but this was not extended to SVOC in 

the present work because the constituent residence times are much shorter than the e-folding times 

for reaction of even the most reactive SVOC with hydroxyl radical under ambient conditions [60].   

 

Gas-phase SVOC concentrations are based on observational data next to a traffic site [82] and were 

used in the study of Nikolova et al. [21]. Saturation vapour pressure follows Compernolle et al. [83] 

as calculated by the UManSysProp online tool [61] which approximate well to our measured values, 

and accommodation coefficients followed Julin et al [84]. Table S1 presents the initial parameters 

related to particle composition, saturation vapour pressure, and partial pressures in the street canyon 

and above roof-top/background. The CiTTyStreet-UFP was run to steady state taking into account 

https://en.wikipedia.org/wiki/Much-greater-than_sign
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emissions, exchange of UFP number and mass concentrations between the street canyon and the roof-

top, mixing with background particulates, and condensation/evaporation. After a steady state is 

achieved, a further model simulation allows the roof-top particles to evolve subject to 

condensation/evaporation, using an ‘ultrafine particle following’ (Lagrangian) microphysics scheme 

for a timescale relevant for UFP transport in the neighbourhood scale (less than 1 km).  

 

Figure 8 presents how the nucleation mode peak diameter Dpg,nuc (= 23 nm) evolves with advection, 

from 0 seconds at the roof-top above the street canyon to 30 minutes downwind. From time t=0s to 

t=30 min, the initial Dpg,nuc reduces by about 6 nm. The effective rate of diameter reduction is 

estimated following  (Dpg,nuc,initial -Dpg,nuc,final )/t, where Dpg,nuc,initial is the initial diameter at time t=0s 

and Dpg,nuc,final is the final diameter corresponding to time t [85].  We assume that as the particles 

with the peak diameter evaporate during the Lagrangian advection, the property of “peak diameter” 

is retained in the size distribution, i.e. the property is not shifted to other particles. Figure 9 shows 

that after 1 min of the advection, the particles lose about 45% of their original total mass of SVOC, 

i.e. 𝑀𝑝𝑔,𝑛𝑢𝑐,1𝑚𝑖𝑛/𝑀𝑝𝑔,𝑛𝑢𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≈ 0.55. Considering that at the initial stage, nucleation and Aitken 

modes consist of 1% and 90% involatile core (IC), and this leads to about 20% of involatile core 

near the peak diameter. By including involatile core, the evaporation after 1 min yields a mass ratio 

of 𝑅𝑀,1𝑚𝑖𝑛 = (𝑀𝑝𝑔,𝑛𝑢𝑐,1𝑚𝑖𝑛 +𝑀𝑝𝑔,𝑛𝑢𝑐,𝐼𝐶)/(𝑀𝑝𝑔,𝑛𝑢𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +𝑀𝑝𝑔,𝑛𝑢𝑐,𝐼𝐶) ≈ 0.64.  This mass ratio 

gives the diameter at 1 min of 𝐷𝑝𝑔,𝑛𝑢𝑐,1𝑚𝑖𝑛 = 𝐷𝑝𝑔,𝑛𝑢𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙(𝑅𝑀,1𝑚𝑖𝑛)
1/3

 because of the ratio of 

diameter is one-third power of the mass ratio. Noticing that 𝐷𝑝𝑔,𝑛𝑢𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≈ 23.1 nm, we will have 

𝐷𝑝𝑔,𝑛𝑢𝑐,1𝑚𝑖𝑛 ≈ 20 nm, which is about the value shown in Figure 8. By applying the same principle 

to 𝑡 = 30 min, 𝑀𝑝𝑔,𝑛𝑢𝑐,30𝑚𝑖𝑛/𝑀𝑝𝑔,𝑛𝑢𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≈ 0.31 and 𝑅𝑀,30𝑚𝑖𝑛 ≈ 0.446, which yields 

𝐷𝑝𝑔,𝑛𝑢𝑐,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ≈ 17.6 nm, compared well with the value in Figure 8.  The rapid decrease of the 

nucleation mode particles in the first 1 min is due to the evaporation of SVOC in the range C16H34-

C24H52 as shown in Figure 9 where the overall mass per SVOC falls below 0.1 ng m-3. The decrease 

in Dpg,nuc after 1 min is promoted by the loss of mass from the higher molecular weight compounds 
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in the range of C25H52-C29H60. Marginal mass decreases of 0.34, 0.26 and 0.19 ng m-3 are simulated 

for C30H62, C31H64 and C32H66, respectively, demonstrating that these components are effectively 

involatile over the modelled period.   

 

Coagulation and deposition are found in our study to have a minor (1-5%) effect on the street-canyon 

UFP size distributions [21], although earlier work has attached more importance to these processes, 

albeit on greater distance scales [86]. Vapour pressure parameterisations have a very significant 

impact on particle size and composition [60], as do factors affecting the dispersion of air through a 

street canyon [77]. The UFP aerosol module is incorporated into the three-dimensional Large Eddy 

Simulation (LES) based on the Weather Research and Forecasting model (WRF) [87] to simulate the 

dispersion and evolution of nanoparticles at a neighbourhood-scale over central London. The WRF-

LES model is a powerful atmospheric modelling system with large eddies explicitly calculated and 

small eddies parameterised by sub-grid scale turbulence schemes. The WRF-LES model handles the 

advection and diffusion of size-resolved multicomponent UFP tracers at the neighbourhood scale, 

while the UFP aerosol module solves microphysics (e.g. condensation/ evaporation processes) of 

multicomponent UFP.  

 

The input sounding of WRF-LES can be derived based on the neighbourhood meteorological data 

(e.g. mixing layer height, temperature, and wind conditions). Traffic-induced UFP emissions from a 

gridded neighbourhood-scale street network over central London are incorporated into the WRF-LES 

model. An instantaneous snapshot of total UFP number concentration over central London under a 

southerly wind condition is shown in Figure 10 as an illustration. Traffic-generated UFPs vented out 

from an urban street network are transported by wind towards the north while they undergo the 

neighbourhood scale dispersion. This coupled WRF-LES-UFP model system can capture the 

behaviour of neighbourhood-scale UFP dispersion. 
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CONCLUSIONS 

This project was conceived following an unexpected observation of shrinkage of particles sampled in 

Regent’s Park [64].  From a conceptual viewpoint, such shrinkage of diesel particles was to be 

expected but it had not been considered previously and such phenomena were not accounted for in 

the small number of available numerical models of traffic-related urban aerosol.  This led to detailed 

studies in the engine laboratory to sample diesel exhaust particles under controlled conditions of 

engine operation, fuel and lubricant.  Initially, the measurements were made on raw engine exhaust 

without any emissions abatement devices, but it was subsequently recognised that emissions 

abatement devices were becoming a major feature of the diesel vehicle fleet and their efficacy needed 

to be assessed.  Consequently, the final measurement dataset incorporates not only the engine-out 

exhaust measurements but also evaluates the effect of a diesel oxidation catalyst and a diesel 

particulate filter.  The inclusion of all three levels of technology is important because in many parts 

of the world the advanced control devices cannot be used because of an inadequate quality of fuel.  

Our results show clearly the inclusion of both unburnt diesel fuel and lubricating oil within the emitted 

particles and demonstrated that lubricant formulation significantly affected particle composition. 

 

The complexity of the diesel samples created major challenges for the analytical laboratory but the 

availability of two-dimensional gas chromatography interfaced with Time-of-Flight Mass 

Spectrometry made a huge difference and allowed separation, characterisation and quantification of 

many hundreds of compounds.  As the work progressed, we were able to modify the instrumentation 

to allow electron ionisation at lower energies hence leading to much lesser fragmentation of the ions 

allowing more confident characterisation of the compounds when used alongside the traditional 70 

eV mass spectra.  In this context, the work has provided information on both the condensed phase 

and vapour phase emissions from a diesel engine in previously unparalleled detail. 
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The field experiments threw up many challenges.  Some of these were practical issues such as moving 

a major piece of equipment onto the roofs of buildings in central London with very limited access.  

However, the instruments, in the main, ran well and provided us with a very detailed dataset which 

upon analysis confirmed our earlier observations of particle shrinkage between Marylebone Road and 

the sampling site in Regent’s Park.  From this, we were able to calculate evaporation rates.  We 

wanted to compare such rates with theoretical predictions but this required accurate knowledge of 

saturation vapour pressures of individual compounds which we had assumed would be available from 

the literature.  However, although there were many datasets available in the literature, they differed 

for individual n-alkanes over a range of several orders of magnitude, necessitating the collection of 

new definitive data upon saturation vapour pressures.  These were used to predict the rates of 

evaporation of hydrocarbons from complex mixtures and hence the rates of particle shrinkage.   

 

All of the knowledge acquired in the engine laboratory, analytical laboratory, physico-chemical 

property studies and fieldwork were incorporated into numerical models using different descriptions 

of the atmosphere to simulate particle transport, mixing and evaporation on a spatial scale relevant to 

our observations in central London.  This has led to a suite of numerical models which are able to 

take account of detailed particle microphysical processes in generating realistic information on 

particle numbers and size distributions at locations within central London. 

 

Diesel particles are of considerable importance because of their dominance of the particle number in 

most urban atmospheres and their large contribution to a pollutant (particulate matter) with high 

human toxicity.  However, when advected away from source into areas of lower vapour 

concentrations, so the semi-volatile constituents within the particles will have a strong tendency to 

evaporate, and this provides hydrocarbon vapour which will oxidise to form a larger mass of 

secondary organic aerosol which also contributes to the airborne concentration of toxic particulate 

matter.  This has not been the subject of this research, but the data generated in terms of emission 
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factors, particle composition and physico-chemical properties are a valuable resource to numerical 

modellers wishing to simulate the formation of secondary organic aerosol within the atmosphere.   
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TABLE LEGENDS 

 

Table 1: Groups of compounds analysed in the exhaust and atmospheric samples. 

 

 

FIGURE LEGENDS 
 

Figure 1: Inter-connection of the main areas of research on airborne particulate matter. 

 

Figure 2: Major processes affecting semi-volatile components of engine exhaust. 

 

Figure 3: Science topics and objectives of the FASTER project. 

 

Figure 4: A typical profile of n- + iso-alkane concentrations in the particulate and vapour 

   phases from diesel engine exhaust emissions. Data from the test bed shown in Figure 

   S1, running with ultra-low sulphur diesel fuel and fully synthetic motor oil.  The 

   sample was collected before DOC at low engine speed (1000 RPM) and low engine 

   load (1.4 bar brake mean effective pressure). 

 

Figure 5: Particle size distribution per kg of the fuel consumed before the diesel oxidation 

catalyst (DOC), after DOC and after the diesel particulate filter (DPF) at 1.4 bar 

brake mean effective pressure (BMEP) and 1800 revolutions per minute (RPM). 

 

Figure 6: Overall mean particle size distribution at (a) Marylebone Road and (b) Regent’s 

University using 2017 campaign data between 27th January and 16th February. 

Shaded area shows the standard deviation. 

 

Figure 7: A typical profile of n- + iso-alkane concentration in the particulate and vapour phase 

   from London Eltham.  

 

Figure 8: Nucleation mode peak diameter evolution due to evaporation during advection from 

   the roof-top for a timescale of 30 min. 

 

Figure 9: Evolution of nucleation mode peak mass Mpg,nuc per (ng m-3) per alkane from C16 

to C32, presented for time 0 (initial), 1 and 30 min.  

 

Figure 10: An instantaneous snapshot in the neighbourhood-scale dispersion of total UFP 

   number concentration (# cm-3; right hand scale) over central London with a southerly 

   wind derived from the WRF-LES model. 
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Table 1:  Groups of compounds analysed in the exhaust and atmospheric samples. 

 

Linear and branched Alkanes (C12 – C35) 

Monocyclic Alkanes (C12 – C33)  

Bicyclic Alkanes (C12 – C33) 

Tricyclic Alkanes (C12 – C33) 

Monocyclic Aromatics (C12 – C33) 

Bicyclic Aromatics (C12 – C33) 

Aldehydes+Ketones (C9 – C30)  

16 PAHs 

Alkyl naphthalenes (C11 – C16) 

Biphenyls (Alkyl chain length C1 – C3) 

Alkyl FLU/ANT/PHE (alkyl chain length C1 – C3) 
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Figure 1:  Inter-connection of the main areas of research on airborne particulate matter. 
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Figure 2:  Major processes affecting semi-volatile components of engine exhaust.  

  



34 
 

 

 

Figure 3:  Science topics and objectives of the FASTER project. 
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Figure 4:  A typical profile of n- + iso-alkane concentrations in the particulate and vapour phases 

from diesel engine exhaust emissions. Data from the test bed shown in Figure S1, running with 

ultra-low sulphur diesel fuel and fully synthetic motor oil.  The sample was collected before DOC at 

low engine speed (1000 RPM) and low engine load (1.4 bar brake mean effective pressure). 
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Figure 5:  Particle size distribution per kg of the fuel consumed before the diesel oxidation catalyst 

(DOC), after DOC and after the diesel particulate filter (DPF) at 1.4 bar brake mean effective 

pressure (BMEP) and 1800 revolutions per minute (RPM). 
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Figure 6:  Overall mean particle size distribution at (a) Marylebone Road and (b) Regent’s University 

using 2017 campaign data between 27th January to 16th February. Shaded area shows the standard 

deviation.  
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Figure 7:  A typical profile of n- + iso-alkane concentration in the particulate and vapour phase 

from London Eltham.  
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Figure 8:  Nucleation mode peak diameter evolution due to evaporation during advection from the 

roof-top for a timescale of 30 min. 
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Figure 9:   Evolution of nucleation mode peak mass Mpg,nuc per (ng m-3) per alkane from C16 to 

C32, presented for time 0 (initial), 1 and 30 min. 
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Figure 10:   An instantaneous snapshot in the neighbourhood-scale dispersion of total UFP number 

concentration (# cm-3; right hand scale) over central London with a southerly wind derived from the 

WRF-LES model. 

 

 

 

 

  

 


