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Adaptive techniques based on rigorous a posteriori error analysis of comrputed solutions
provide an effective mechanism for building approximation spaces and ‘ccelerating con-
vergence of computed solutions. These techniques rely heavily on how .he a,. ~roximation
error is estimated and controlled. One may choose to estimate thr ei or in the global
energy norm and use the associated error indicators to enhance ti.~ computed solution
and drive the energy error estimate to zero. However, in practical app..-ations, simula-
tions often target a specific (e.g., localized) feature of the solv.i.n, c.'led the quantity
of interest and represented using a linear functional of the sc utira. In these cases, the
energy norm may give very little useful information about the s..~ulation error.

Alternative error estimation techniques, such as goal-or ented error estimations, e.g.,
by the dual-weighted residual methods, allow to control the ~rrors n the quantity of inter-
est. While for deterministic PDEs, these error estimati .. tecuuniques and the associated
adaptive algorithms are very well studied (see, e.g., [Ei'H 795, JS95, BR96, PO99, BRO1,
GS02, BR03| for the a posteriori error estimation and MS0? 3ET11, HP16, FPZ16]| for a
rigorous convergence analysis of adaptive algorithms), rela ively little work has been done
for PDEs with parametric or uncertain inputs. For ¢ -am- le, in the framework of (intru-
sive) stochastic Galerkin finite element methods (>*FEMs) (see, e.g., [GS91, LPS14)),
a posteriori error estimation of linear functic. s o1 solutions to PDEs with paramet-
ric uncertainty is addressed in [MLMO7| and, for -onlinear problems, in [BDW11]. In
particular, in [MLMO7|, a rigorous estimato. to u..e error in the quantity of interest is
derived and several adaptive refinement *rate ies are discussed. However, the authors
comment that the proposed estimator lack 1. formation about the structure of the esti-
mated error; in particular, it does not & .~ t¢, assess individual contributions from spatial
and parametric discretizations and to pei~rm anisotropic refinement of the parametric
approximation space (see [MLMO7. nage 113]).

As for nonintrusive methods, “nhe go. l-oriented error estimation techniques and the
associated adaptive algorithms arc nreposed in [AO10| for the stochastic collocation
method (see, e.g., [BNTO7]) ap 1« in {(EMN16] for the multilevel Monte Carlo sampling (see,
e.g., |Gill5]). A posteriori eric - stiriates for quantities of interest derived from generic
surrogate approximations ( -ither u.crusive or nonintrusive) are introduced in [BPW15].
These estimates provide cepas. *e error indicators for spatial and parametric discretiza-
tions. The indicators ar_ .hen used to identify dominant sources of error and guide the
adaptive algorithm for apr roximating the quantity of interest. Various adaptive refine-
ment strategies are d*scussc ! in [BPW15| and tested for model PDE problems with inputs
that depend on a f ute number of uncertain parameters.

Our main aim in .’ raper is to design an adaptive sGFEM algorithm for accurate
approximation ¢t moz ents of a quantity of interest @(u), which is a linear functional
of the solution « to th: following model problem whose coefficient depends linearly on
infinitely mo .y paraineters:

-V, (a(z,y)Veu(z,y)) = f(x), reD,yel,
u(z,y) =0, xredD, yel.

(1)

Here, D C R? is a bounded Lipschitz domain with polygonal boundary 0D, I' =

[I,,_; T is the parameter domain with I', being bounded intervals in R for all m € N,
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f € HY(D), and the parametric coefficient a = a(-,y) is represented as
a(z,y) = ao(x) + Z Ymam(z), €D, y=(y1,y2,.. ' T, (2)
m=1

for a family of functions a,(x) € L>®(D), m € Ny, and with the ~erie. ~onverging uni-
formly in L>°(D) (an example of such a representation is the Ke I mew. Loéve expansion
of a random field with given covariance function and mean ao(z', ser, e..., [GS91, LPS14]).

In this work, we are particularly interested in estimating ana . ~ntrolling the expected
error in the quantity of interest, E[Q(u — uy)|, where 7y is an approximation of u
via SGFEM. This enables us to use the ideas of goal-orie ‘ted a .aptivity, where one is
interested in controlling the error in the goal functions. G(u) .= E[Q(u)] (rather than,
e.g., in the energy norm).

1.1. Goal-oriented error estimation in the ahstract setting. In order to motivate
the design of our adaptive algorithm, let us firet rec~11 Jhe idea of goal-oriented error
estimation. Let V' be a Hilbert space and denote by v its dual space. Let B: VxV — R
be a continuous, elliptic, and symmetric biline. * torm with the associated energy norm
Il - Ill, ie, vl := B(v,v) for all v € V' Givea two continuous linear functionals
F,G € V', our aim is to approximate G(u), where u € V is the unique solution of the
primal problem:

B(u,v) = F(v) torallvelV.

To this end, the standard approach (see, c.~., [EEHJ95, BR01, GS02, BR03|) considers
z € V as the unique solution to the -ral problem:

B(v,.> =C(v) forallvelV.

Let V, be a finite dimensiona’ su';spe se of V. Let u, € V, (resp., z, € V;) be the unique
Galerkin approximation of *ae so: *t.on to the primal (resp., dual) problem, i.e.,

B(us,v,) = F(vy) (vesp., B(vy, 2:) = G(vy)) for all v, € V,.
Then, it follows that
G(u) = Glu)| = [F(u—u,2)[ = [Blu—u,z = z)] < lu—ul |z =2, (3)

where the seconc cquali., holds due to Galerkin orthogonality.
Assume that w, anc (, are reliable estimates for the energy errors |[|u — u, ||| and
Il 2 — 2 |Il, resnecivel s de.,

e = uclll S pe and [z = 2 S ¢ (4)

(hereafte. « _ " means the existence of a generic positive constant C' such that a < Cb,
and a ~ b &' breviates a < b < a). Hence, inequality (3) implies that the product p, (; is
a reliable errcr estimate for the approximation error in the goal functional:

G(u) = Gu)| S i Gu (5)
October 29, 2018 3
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1.2. Main contributions and outline of the paper. In view of estimate (5), a goal-
oriented adaptive algorithm must drive the product of computable energ - error estimates
1y and (, to zero with the best possible rate. Aiming to design suci. an .'vorithm for
the parametric model problem (1), our first step is to find appropric e  posteriori error
estimates p, and (.

There have been several very recent works that addressed a p.<ter.. ~i error estima-
tion of stochastic Galerkin approximations for parametric pre’.. ms, ‘acluding explicit
residual-based a posteriori error estimators in [EGSZ14, EGS™.15] 1ocul equilibration er-
ror estimators in [EM16], and hierarchical estimators in [BPS1., BS16]. In this paper,
we propose a novel a posteriori error estimation techniqu . that can be used to control
the energy errors in the primal and dual Galerkin approx matic s (see (4)). Similarly
to the aforementioned works, we exploit the tensor pro iuct suiucture of the approxima-
tion space to separate the error contributions due to sr .cia. approximations from the
ones that are due to parametric approximations. “hen ' ailding on the hierarchical
framework developed in [BPS14, BS16] and using the 1u as from [MSW98, MS99| (see
also [DLY89, BEK96]| for earlier works in this directicn), v e define a new two-level a pos-
teriori estimate of the energy error and prove that ." is reliable and efficient. One of the
key advantages of this new estimator is that it voius vne solution of linear systems when
estimating the errors coming from spatial approxiu.~tions (while keeping the hierarchical
structure of the estimator) and thus speeds .o 1 .1c computation.

The goal-oriented adaptive algorithm ~velo, ed in this paper draws information from
the error estimates p,, ¢, and performs a ba!~nced adaptive refinement of spatial and
parametric components of the finite-d’” -.2»<ic,nal space V, to reduce the error in approx-
imating the goal functional G(u). Speciu~lly, the marking is performed by employing
and extending the strategy proposed in [FPZ16|, and the refinements are driven by the
estimates of reduction in the prod ict ot nergy errors ||| u —u. ||| ||| 2 — 2« ||| (that provides
an upper bound for the error in the @oa’ functional, see (3)).

Finally, we use three repres nte .ive examples of parametric PDEs posed over square,
L-shaped, and slit domains as Il &, different quantities of interest to demonstrate the
performance and effectiven ss of ou. goal-oriented adaptive strategy.

The rest of the paper is orga.ised as follows. In Section 2 we set the parametric model
problem (1) in weak fc .. and introduce the sGFEM discretization for this problem.
Section 3 concerns a p ste iori error estimation in the energy norm for the model prob-
lem (1). First, we r view -~ hierarchical a posteriori error estimation strategy in §3.1.
Then, in §3.2, a ner, tv o-leel a posteriori error estimate is introduced and proved to be
reliable and efficient. “he goal-oriented adaptive sGFEM algorithm employing two-level
error estimates ‘s pre: ented in Section 4, and the results of numerical experiments are
reported in Sect on 5. Finally, in Section 6, we summarize the results of the paper and
discuss some ussibie extensions.

2. TARAMETRIC MODEL PROBLEM AND ITS DISCRETIZATION

2.1. Wea.  formulation. Consider the parametric model problem (1) with the co-
efficient a = a(z,y) represented as in (2). Without loss of generality (see [SG11,
Lemma 2.20]), we assume that I';,, := [—1,1] for all m € N. In order to ensure con-
vergence of the series in (2) and positivity of a(x,y) for each x € D and y € T, we

October 29, 2018 4
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assume that there exists ™, af®* > 0 such that

0 < af™ < ap(r) <af™ < oo ae. in D (6)
and
1 oo
T = amin ZHCLmHLw(D) < 1. (7)
0 m=1

Let us introduce a measure 7 = mw(y) on (I', B(T")), where B(I") - tF 2 Borel o-algebraon I".
We assume that 7 is the product of symmetric probability r~asw. = 7, on (I'y,, B(I';,)),
with B(T',,) being the Borel o-algebra on Iy, ie., w(y) = [ ;" w(ym), y € T.

Now, we can consider the Bochner space V := L2(T';72(D,), where L2(T") is the
standard Lebesgue space on I' (with respect to the mrasur~ 7) and Hj(D) denotes the
Sobolev space of functions in H!(D) vanishing at the bc - .dar - D in the sense of traces.
For each u,v € V| we define the following symmetric . lincar forms

By(u,v) = / / a0(2)Vu(z,y) - Volz, ) dwdrly),
rJD

B(u,v) := By(u,v) + Z /F /D Ym, G (0, Vu(z,y) - Vo(z,y) de dr(y). (8)

Note that assumptions (6) and (7) ensv-= th ¢t By(:,-) and B(-,-) are continuous and

elliptic on V. Therefore, they induce ncru.- that we denote by ||| - [|lo and || - |,
. . L n;\nin L qmax
respectively. Moreover, with 0 < \ := a7 (141] < 1< A= B (127) < 00, there holds
Al I* < =12 < Affvl* for all v € V; (9)

see, e.g., [SG11, Proposition 2.22
We can now introduce the v cak to.-iulation of (1) that reads as follows: Given f €
HY(D), find u € V such tha’

B(u,v) = F/¢) = /F /D f(x)v(z,y)dedr(y) forallveV. (10)

The Lax—Milgram lem-aa sroves the existence and uniqueness of the solution v € V
to (10).

2.2. Discrete for nu’atir ns. For any finite-dimensional subspace of V| problem (10)
can be discretized hy u. ‘v g the Galerkin projection onto this subspace. The construction
of the finite-din ensioi. Al subspaces of V' relies on the fact that the Bochner space V' =
L2(T; HY(D)) is ‘some rically isomorphic to the tensor product Hilbert space Hj(D) ®
LA(T) (see, ..g., ISG11, Theorem B.17, Remark C.24]). Therefore, we can define the
finite-dimen 'ional ubspace of V as the tensor product of independently constructed
finite-dimensio..... subspaces of H}(D) and L2(T).

Let T . e ¢ conforming triangulation of D into compact simplices, and let N7 denote
the correspc nding set of interior vertices. For the finite-dimensional subspace of H}(D),
we use the space of first-order (P1) finite element functions:

X =8,(T) :={v e Hy(D) : v|ris affine for all T € T }.

October 29, 2018 5
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Let us now introduce the finite-dimensional subspaces of L2(T"). Fer each m € N,

let (P")nen, denote the sequence of univariate polynomials which are ¢ -thonormal with

respect to the inner product (-,-), in L2 (T',,), such that P, is a po.ynown.’al of degree
n € Ny. It is well-known that these polynomials form an orthonorw al hasis of L2 (T,)
and can be constructed using the three-term recurrence formula (sc~ r.g., |Gau04, The-
orem 1.29] and recall that 7, is symmetric)

Bt Blia(Ym) = Ym B (ym) = Bty By (ym) - for all = € No (11)
with initialisation " =1, P"} = 0 and coefficients

1/2

it 5 ([ P = B P ) ) e

In order to construct an orthonormal basis in L2(T"), consi .er the following countable
set of finitely supported multi-indices

J:={v=(r,1n,...) €Ny : #supp(v) < oo} wr.> su p(v):={m € N : v, # 0}.

Throughout the paper, the set J, as well as anv of 1. subsets, will be called the index
set. For each index v € J, we define the tensor . nduct polynomial

PV(Y) = ll l/m ym
n npp(s

The set {Pl, NS TJ} is an orthonormal bas:s or L2(T'); see [SG11, Theorem 2.12|. Since
the Bochner space V' is isometrically iso.-orpuic to L2(T') @ H} (D), each function v € V
can be represented in the form

v(z,y) = Zv,,(m)P \y) v ith unique coefficients v, € Hg (D). (12)
ved

There holds the following imy orts nt, yet elementary, observation.

Lemma 2.1. For allv,w ¢ 'V, the following equality holds:

Z/ ao(x) Vu,(z) - Vw, () dz. (13)

veTJ

In particular,

1/2
o112 =" llas*Vuul22p)- (14)

ved
Proof. Using rej resent. tion (12) for v,w € V', we have that

Bai.w) = Y [ [ a0lo) V(o) V)P Puy) do ()

A,VET
=3 ([ w@vao) vaw i) ([ ronmam).
w,vEeJ D r
This proves (13), since (P,),e5 is an orthonormal basis of L2(T"). Furthermore, selecting
w = v in (13) we obtain (14). O

October 29, 2018 6
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For any finite index set 8 C J, the finite-dimensional subspace of L2(T) is given
by span ( {Pl, S VE ‘,B}) Thus, we can now define the finite-dimensior »1 subspace Vxyp
of V as

Vygp =X @span ({P, : v € P}). (15)
The discrete formulation of (10) then reads as follows: Find uxy < V., ~ such that
B(uxyp, vxyp) = F(uxy) forall vxg € V g (16)
Since Vxs is a tensor product space, the Galerkin solution uxyp& - ¢ can be represented as
uxgp(r,y) = Zuy(x)P,,(y) with unique co fficien s u, € X.
vep

We implicitly assume that B3 always contains the zero- nd-«< b := (0,0, ...). We say that
a parameter y,, is active in the index set P (and her~e, in t+e Galerkin solution wxsy) if

m € supp(P) = U, cqp supp(v).

The approximation provided by uxgq can be impi.ed 'y enriching the subspace V.
There are many ways how one can combine the e..ichments in spatial (finite element)
approximations with the ones in polynomial .. .oauuations on the parameter domain
(see, e.g., [BPS14, EGSZ14, BS16]). Here we follo.- the approach developed in [BS16].

Let us consider a conforming triangulatio. '/ v. D obtained by a uniform refinement
of 7. We choose the enriched finite elemr~t sp ce as

X:=8(T)=Xa@Y, where Y ={ceX :v)=0 forall & € Ny} (17)

Here, the subspace Y C H}(D) is called tu. detail (finite element) space. Note that the
sum in (17) is indeed a direct sum .. X NY = {0}.

In order to enrich the polynom®al spac - on I', we consider a finite index set Q C J such
that P N Q = () and define the enric>e . index set P := P U Q. The subset Q is called
the detail index set.

The enriched finite-dimen -iown. ! sr ospace of V' is then defined as follows:

Tog = Vg @ Vi @ Via,
where
Vygp =Y ®spra ({1 UV E ‘B}) and Vxg := X ® span ({Pl, TV E Q}) .

Note that Vxq @ Vy., i, a cirect sum, whereas the direct sums Vg @ Vxgq and Vyq @ Vxg
are also orthogor i, since PN = (.
Consider now the di crete formulation posed on Vygq: Find txq € Vg such that

B(tixy, Uxyg) = F(xg) for all Txg € V. (18)
Since Vxyp C A’m the Galerkin orthogonality
B(u — Tixy, Oxq) = 0 for all Txyp € Vi
and the symmetry of the bilinear form B(-,-) imply that
e = Ty 1”4 [l Ty — e [P = [l — v I (19)
October 29, 2018 7
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In particular, this yields that ||| u — Uxsyp ||| < ||| v —uxg |||. As in [BS16], we assume that
a stronger property (usually referred to as saturation assumption) holc - There exists a
uniform constant 0 < 5 < 1 such that

e =uxglll < Blllw —uxsp ] (20)

3. A POSTERIORI ERROR ESTIMATION IN THE ENEFRGY ."ORM

Let uxy € Vxg and Uxyg € ‘A/Xgp be two Galerkin approximatio’ s dr dned by (16) and (18),
respectively. It is well known that the two-level error uxy — 7 yq ,rovides a reliable and
efficient estimate for the error v — uxyp in the energy nor n. In'eed, on the one hand,
(19) implies the efficiency, i.e.,

| xqp — uxp | < [l —up !, (21)

and, on the other hand, it follows from (19) and elemc ~tar, calculations that the satura-
tion assumption (20) is equivalent to the reliabilitv. i.e.,

e —wxg Il < Clldxp —uxp ll - ith o= (1= 57712 (22)

However, this error estimate bears the compu.~tional cost associated with finding the
enhanced solution uyq € Vxyp. In addition “~ that, .he evaluation of the norm ||| uxyp —
Uxy ||| is expensive, due to its dependence ¢ che coefficients a,, corresponding to all
active parameters y,, in the index set 3, .~e (). Therefore, our aim is to derive lower
and upper bounds for ||| Zxqp — uxy ||| in terms of another error estimate that avoids the
computation of Uxy and is inexpensiv. v ¢ aluate. Two approaches to this task are
discussed in the next two subsections.

3.1. Hierarchical error estimators. One way to avoid the computation of uxgy is
to use a standard hierarchical ~ppic~cl to a posteriori error estimation that goes back
to [BW85]| (see also [Ban96, OCJ]). In the context of parametric operator equations
(and, in particular, for the nai.. net ic model problem (1)), this approach was pursued
in [BPS14, BS16|. Let us I efly recall the construction of the error estimators proposed
in |[BS16].

Let exyp € VX(;; be th . wi ique solution to the problem

Bo(gxs‘ ,/U\XQ3; = F(@\Xﬁp) — B(qug,@\qu) for all @\qu c qug. (23)

It follows from (23) b &t B,(€xsyp, Uxyp) = B(Uxqg — uxsyp, Uxyp) for any vxg € ‘A/qu. Hence,
selecting Uxyp = Cxq alo Uxyp = Uxyp — Uxy, the variational formulation (23) and the
equivalence bet reen ||| - ||| and ||| - [[|o (see (9)) prove that

Ml e 115 < M ey — vesp [I1* < A1 e 13- (24)
Now, let e 2y © Vyp @ Vygp =: V)?‘B be the unique solution to
y(egy Vgqp) = F(ugy) — Bluxg, vgy)  for all vgy € Vi, (25)
and, for each v € Q, let egl& € X ®span (P,) be the unique solution to
Bo(e¥)h, uxB,) = F(uxP,) — B(uxy, vxP,) for all vx € X. (26)
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Note that all subspaces X ® span (P,) (v € Q) are pairwise orthogonal with respect to
By(+,+). Moreover, since P N Q = (), the subspace Vg 18 By(,-)-or’ nogonal to X ®
span (P,) for each v € . Therefore, the following decomposition holas
Exp =gyt Y ckh with [ Exy I} = Il e 15+ D e b 113 (27)
ven L9

Replacing e g, in (27) with the hierarchical error estimator eye < Vygq satisfying

Bo(eym, Uysp) = F(nyp) — B(UX‘B7 Uysp) for all coa € qug, (28)
[BS16| introduces the following a posteriori error estimate
ep = llews 15+ D el e (29)
veEN

We refer to eyq and eg?))a as the spatial and parame. ic ciror estimators, respectively.
Note that the parameter-free By(-,-)-norm is usec in (29 for efficient evaluation of the
error estimators of both types.

Under the saturation assumption (20), it has been . hown in [BS16, Theorem 4.1] that
Nxg provides an efficient and reliable estimate .>r the energy norm of the discretization
error. In particular, the following inequalitis ~ hold

VA
. x5,
\//l — B2 \/1 — 2
where A, A are the constants in (9), 5 10, 1) is the saturation constant in (20), and
v € [0,1) is the smallest constant in the strengthened Cauchy—Schwarz inequality for the
finite element subspaces X and Y (see, =.g., [AO00, equation (5.26)]), i.e.,
| (aOVu, VU)LQ(D) ‘
v = Sp —

S .
u€ £, v€ ||(é/2VU||L2(D) ||CL(1)/2VU||L2(D)

Vxgp < [Ju—uxg ), =

Note that in order to cor., mte the spatial error estimator ey and the parametric error
estimators egl(’z) (v € Q). one neuds to solve the linear systems associated with discrete
formulations (28) and /26). respectively. In the following section, we propose a two-level
error estimation techniq. - that avoids the solution of the linear system for the spatial

error estimator.

3.2. Two-level ~ pos! - iori error estimation in the energy norm. Recall that T
denotes a unifo: m refl. ement of the triangulation 7. Let Nz denote the set of interior

vertices of 7 and .~ se that NANT = {&, ..., &} For each new vertex &; € N=\N7r,

let ¢; € X be th corresponding hat function, i.e., ¢;(§;) = 1 and ¢;(&§) = 0 for all
£ € N7\ {¢Y. Tlen, the set B := {¢1,...,9,} is a basis of the detail finite element
space Y 1 fned i (17). Moreover, there exists a constant K > 1 such that

#{(,0]- eB: interior(supp(goj) N T) + (Z)} <K forallTeT. (30)

Turning now to the detail index set Q C J, we follow the construction suggested
in [BS16]. Let (™ := (™ ™ ) (m € N) denote the Kronecker delta index such
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that e™ = 8,1, for all k € N. For a fixed M € N, define
Q:={pei\P: p=v=+e™ for some v € P and some m = 1,.. i, + M}, (31

where My € N is the number of active parameters in the index set s, hat is

Mo {o it =100,...)},
L max { max(supp(v)) : v € B\ {(0,0,...)}} ol-rwi

Thus, for a given P C J, the index set Q defined by (31) cont. s only those “neighbors”
of all indices in ‘P that have up to My + M active parameter , chat . M parameters more
than currently activated in the index set P (we refer to L¢ mma 4 3 and Corollary 4.1 in
[BS16]| for theoretical underpinnings of this construction)

Having fixed the detail space Y and the detail ind :x ¢ . ©Q, we can now define the
following estimate of the energy error ||| u — uxsy |||, whicl avo’ds the computation of e gy
from (25):

|F 80 (uxm D+ v
Hp r=ZZ : 1/2 2 a +Z||| ©IE, (32)

veP j=1 \% ]||"‘:*‘ ven
where eg?}):z are defined in (26) for each v € 9
The following theorem is the main result ¢" t'.as section.

Theorem 3.1. Let uw € V be the soluticn ‘o problem (10), and let uxy € Vxg and
Uxy € Vxyp be two Galerkin approzime ':~m< stisfying (16) and (18), respectively. Then,
there exists a constant Ciy,ym > 1, which dep -nds only on the shape reqularity of T and T,

the (local) mesh-refinement rule, ar” *he mean field ag, such that the error estimate f1xq
defined by (32) satisfies

A .
§u§(c < Muxgp — uxyp I1” < ACim M%(q:;a (33)

where \, A\ are the constant in () und K is the constant in (30).
Furthermore, under the sul>ration assumption (20), there holds

N AC
2 2 thm 2
i < M= g I < T2 s (34)

where 8 € [0,1) is t!e ssturution constant in (20).

Remark 3.2. On tr. or: hand, Theorem 3.1 shows that pxq provides a reliable and
efficient estimat @ for *he energy norm of the error (see (34)). On the other hand, recall
that ||| uxqg —ux - ||| is -he error reduction (in the energy norm) that would be achieved if

the enhanced sulution uxsy € Vg were to be computed (see (19)). Hence, inequalities (33)
show that i~ als  provides an estimate for this error reduction. Moreover, note that
Theorem 3.1 1. for any finite detail index set Q C I\P and any conforming refinement
T of T (anc w.e corresponding detail space Y ). Finally, we stress that our proof of
Theorem 3.. holds for any spatial dimension, while we restrict the proof to 2D to ease the
presentation.

Remark 3.3. For the implementation of juxq, note that the spatial contributions include:
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e in the numerator, the entries of the algebraic residual of uxy, where the Galerkin
data are computed with respect to the enrichment Vyy;

e in the denominator, the diagonal elements of the spatial stifness matriz with
respect to the detail space Y .

Moreover, the denominator can be easily simplified. Suppose thatT 7 and p; € B with
supp(yp;) C patch(T"). With hy being the diameter of T, there hola.

1/2 _
lag >V o;l132(p) = hr? ;][22 (p) = 1

where the equivalence constants depend only on the shaps requlai ity of 7A‘, the (local)
mesh-refinement rule, and the mean field ag.

In order to prove Theorem 3.1, let us collect some ar xuiarv results.
Lemma 3.4. Letv =73} 0> " vj B, € Vyg with i, < spon (). Then,
1/2
il < ZZHG P2V0; Mz < Cloell 0 I3, (35)
veB j=1

where the constant Cye > 0 depends only on the ~hape regularity of '7', the (local) mesh-
refinement rule, and the mean field aqg.

Proof. The proof consists of three steps.
Step 1. Let '€ T and w; € span (¢;) 1ot ' j =1,...,n. Observe that

n 1/2
1/2 1/2 1/2
o9 Sy, < S Pt < VF (Sl Pl )
j=1

Hence, summing over all 7' € T, ..~ obt: in

1/2VZ

Step 2. To prove the conve e estimate, let T € T and w; € span (p,) for all j =

Vﬂ‘—\ 1/2

< [() LH@

1/2
ij||2L2(T K Z“a / ij”%Q(D)

L2(D)

1,...,n. Note that Ha}/'\/ vy ||2¢ry = 0 for wy € Y implies that wy|r = 0, since wy |
would be a constant wi.> “ sy (&p) = 0 for all & € N7-NT. Thus, using the representation
wy = Z?:1 w; with inicue v; € span (yp;) for all j = 1,...,n, the quantities

[ 2 2 QL2
\z ,||”“0/ ij”%%ir)) and / \ E :wj
=1

define two n-..ias on Y|y := {wy|T D wy € Y}. Due to equivalence of norms on finite
dimensional spaces we use the standard scaling argument to obtain

D llag ™V iz = 1/2V2wa
j=1

where the equivalence constants depend on ag and the shape regularity of 7\', as well as
on the type of the mesh-refinement strategy (that affects the configuration of the local

L2(T)

for all w; € span (¢;), j=1,...,n, (36)

L*(T)
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space Y|r). Summing the upper bounds in (36) over all ' € T, we prove that

" 2
1/2v 12 < ‘ 1/2v '
E lag ijL2(D)N Qg ;Zl:wj 12(D)

Step 3. Using Lemma 2.1, the estimates proved in Step 1 and Ste, 2 imply that

ollF Y e WVZW ~ZZ||a”?m 2y

veP vep j=1

This concludes the proof. U

for all w; € span (p;), j =1, .., n.

Lemma 3.5. Let Py be the nodal mterpolation opemtor 0. *0 S'(T). For any function
Vg = Zue‘n v, P, € Vim with v, € X define vxq = Pr,)P, € Vxg. Then, we
have the representation

\
_Jz/f,.)\

Uggp — Uxyp = Z ZU]'VPV € Vg with v, € span (y;), (37)
veP j=1
and there holds
v — vxplllo < G M vgg lllo, (38)
where the constant Cgy, > 0 depends only on "h . shape regqularity of ’?, the (local) mesh-
refinement rule, and the mean field ay.

Proof. The proof consists of two steps

Step 1. Let vg € X. Then, vy := Prug € X = S§(T). Since X=XavY,
there exist unique wy € X and w-- = Y such that vg —vx = wyx + wy. Observe that
(vg —ux)(&r) = 0 = wy(&r) fro ever vertex & € Ny, Hence wx(é7) = 0 for all
&7 € N and hence wy =0, i.e. vy -v . €Y. Moreover, a scaling argument proves that

lag”*V (Pr o  llag*Vog ey for all T € T,

where the hidden constant 'epends only on ay and the shape regularity of 7\', as well as
on the type of the mesh-1efinen. ~nt strategy (that affects the configuration of the local
space Y|r). Summing t'as stimate over all T € T, we see that

lag*7 (- 20) 2y S llag* Vg llray for all vg € X. (39)

Step 2. Recall ha’ Vs — Uxyp = Zy@p(vy — P79,)P,. According to Step 1, v, —
P79, € Y and he" e v, P79, =3 7 vj, with some vj, € span (;). This proves (37).
Moreover, Lemriia 2.1 -ields that

(14 1/2¢ /2o~ (14)
lloxslls =" > llag*V (P 9,) I72(o) lea PV = llogs 5.
ve vep
The tria: <.. ‘~equality then proves (38). O

To state v e following lemma, we need some further notation. Let Gxq : V — Vxy be
the orthogonal projection onto Vg with respect to By(-, -), i.e., for all w € V,

BO(QX‘BU]7 UX&B) — B0<u)7 U}Qp) for all Vxy € erp.
October 29, 2018 12
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Furthermore, for v € P and ¢; € B (i.e., for j € {1,...,n}), let G;, : V. — span (¢;F,)
be the orthogonal projection onto span (¢;P,) with respect to By(+,),i ». for allw € V,

By(Gj,w,vP,) = By(w,vP,) for all v € span (¢,
Lemma 3.6. For any Uy € V)?‘B’ the following estimates hold
Cy M llvga 15 < M Gxmpogg 5+ D D I Ginvgg IS < “K [ vy I3 (40)
veR j=1

where the constant Cy > 1 depends only on the shape regu'arity of 7A', the (local) mesh-
refinement rule, and the mean field ag. Moreover, the v per hound holds with constant K
(instead of 2K ), if Gxyvgy = 0.

Proof. The proof consists of two steps.
Step 1. Let us prove the lower bound in (40). 1¢ “his nd, let Uy € ng and choose
vxyp € Vxg as in Lemma 3.5. Then we have that

(37)
|||U)?q3|”0 BO(UXmavxm +ZZBO vqu —

veP j=1
n
= Bo(Gxqpvzq, Uxp) + Z y Bo(C vy vjn Do)
veP j=1
2 Vn‘ C A 2\ /2 2 - 2\ /2
< (I Gy I+ i v I13) (o 113+ D0 D" s P l13)
vep =1 vep j=1

First, note that

(38)
lroxss fllo < lllox Mo + T vgg = vxglllo = (1 + Coww) [l vz llo-

Second, we use the upp :r I bund in (35) to obtain that

ZZ\HW [E LZ\|a”2mH%2<D>

veB j=1 ve j=1
\} va 2

Combining 1he forr going three estimates, we conclude that

e

2 (37)
Cloc | Ugp — Uxp |H0 = C'locC b |l Ugyp 13-

oz I < Oy (Il Gxmvgy I+ 32D~ N Gy IR),

veP j=1
where Cy = (1 + Cip)? + ClocC2y > 1

October 29, 2018 13



O©CoO~NOUIAWNER

Step 2. Let us now prove the upper bound in (40). One has

It GxpUgy I + Z Z If G 3 = BO(gX‘BUXfpa UX&B + Z Z By(Gjuv, 3 UX&]B‘)

veR j=1 ue‘ﬁj 1
— Bo(Ganvgy + 300 Gy viy) < || sy + ZZ” sy ||, Mo o
veP j=1

First, note that

|| gxmvss + Z Z Grvvgss || < V2 (Il Gxwss I

Second, let Qj,,v;m = vj,,P,,. Then, v;, € span (p;) and

n n
(P> P
vep j=1 vep j=1

)1/2

2 (

1/2 2
. < “‘\ ZHG VUJ'VHB(D)

Y Z Il Givoges 2.

vep j=1

Combining the foregoing three inequalities, ‘e ¢ ,..in the estimate

n : 1/2
(I Gy I3+ DD MG zall) < VK oy llo

veP j=

which yields the desired upper bound in (a2). U

Proof of Theorem 3.1. The proof onsi.‘s of two steps.
Step 1. Recall the definition ~f eg, € Vg given in (25). Since Vxgp C Vg, we
deduce from (16) and (25) tha’

BO(quJ vxs) =0 forall vxp € Vxp.

Hence, Gxypeg fp = = 0 and t'.c. ~fore Lemma 3.6 proves that

n
Cytileglls <D0 N Guegy I < K ey I3

veP j=1
Since Cy, K > 1, w: us 2 decomposition (27) to obtain
n
Oy 1 exg 2 <3S I Grvegg 13+ D Mleln IR < K [l Exy I3 (41)
veP j=1 veN

Step 2. Tae orthogonal projection onto the one-dimensional space span (¢; P, ) satisfies

BO(Ua(P‘PV)
Giyv=—-"12"20p.P, forallvelV.
’ ;P Al ™
Hence,
@) [F(p;P) — Bluxy, 9 B)| a9 [F(g;P) — Bluxy, ¢;P)|
I gjl/e)?‘;e llo = TN - 1/2 :
@il llo HCL V@jHLQ(D)
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Using the definition of p1xq given in (32), estimate (41) thus implies that

A, W N , Y , (29 N , (1) )
kxS Allexpllo = [y —uxpll® < Allexplllo = A Cy kg

This proves (33) with Ciym = Cy. Estimate (34) then immediat ly ‘ollows from (21)
and (22). O

4. GOAL-ORIENTED ADAPTIVITY FOR PARAMETT.IC ’ KU 3LEMS

4.1. Goal-oriented error estimation in the parametr’_ setv.’ng. First, let us for-
mulate the abstract result on goal-oriented error estimation (see §1 1) in the context of the
sGFEM discretization for the parametric model problem (1, Tetu €V = L?T(F; H}(D))
be the unique primal solution satisfying (10) Then, gi en “wction g € H1(D), let us
consider the quantity of interest Q(u =/ b 9(®)u o, y) . Then, introducing the
goal functional G € V' defined by

:/Q(v(-,y // Ao, )V Aedr(y) forallveV,  (42)

we are interested in approximating G(u)—the .~ean value of the quantity of interest.
Let z € V be the unique dual solution satisfving

B(v,z) =G(v) “rallvelV. (43)

Considering the same finite-dimensional scbs,ace Vyq C V as used for the (primal)
Galerkin approximation uxp € Vyg oo '7) and (16)), let zxy € Vxgy be the dual
Galerkin solution satisfying

B(UX‘IMZX&F\ = (;/qug) for all Uxsyp € VXf_p. (44)

Recall that pixq defined by (32" prc -id s a reliable and efficient estimate for the energy
error in the Galerkin approxir.ati.n of the primal solution u. Let us denote by (xq the
corresponding estimate for the ~aery error in the Galerkin approximation of the dual
solution z (recall that the b tinear torm B(-, ) is symmetric). It follows from Theorem 3.1
that

llo —cxpll Spxp and [z —2xg | S Cxyp-
From the abstract resui. n §1.1 (see (3)—(5)), we therefore conclude that the error in
approximating G(u' ca. be controlled by the product of the two error estimates pxy

and Cxy, i.e., [G(u) - F(vagp)| S pxp Cxp-
Let us now dig” wss son. 2 important ingredients of the goal-oriented adaptive algorithm.

FIGURE 4.1. k finement pattern of 2D longest edge bisection: Coarse-mesh triangles (top row) are
refined (bottom row) by bisection of the edges (at least the longest edge) that are marked
for refinement (top row). The new nodes are the edge midpoints.
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4.2. Longest edge bisection. In what follows, we restrict ourselves to +he mesh-refine-
ments performed by 2D longest edge bisection; see Figure 4.1. Let &7 b the set of edges
of T. For any set M C &7, the call T := Refine(7T, M) returns the coarses. ~onforming
refinement of 7 such that all edges E € M are bisected. In parti ule -, we obtain the
uniform refinement 7 = Refine(7", £) from T by three bisections per 2 n element T € T

Let ' C &r be the set of interior edges, i.e., E € EX if a. 1 oy if there exist
two elements T, 7" € T such that £ = T NT’. Then, the abor ¢ (hoice of T guarantees
the existence of a one-to-one map between the set N+\N7 ¢ ne v interior vertices and
the set £ of interior edges. In other words, for any E € £ ‘here exists a unique
J € {1,...,n} such that & € Nz\N7 is the midpoint of <. In ‘his case, we denote by
g the corresponding hat function (over 7’), ie., pgp = w; & B where ; (j=1,...,n)
are defined in §3.2.

4.3. Local error indicators in the energy noriw. Consider the primal Galerkin
solution uxy € Vygq and the associated energy e.vor est mate pxyp given by (32). We
write (32) as follows:

W = Mg + Hxg = Z row(E) + Z Hxa(v) (45)
Ee veQ

i

with the local contributions

F P,)) — Bluxg, ¢, Fo)|? y
() = SOIEEEE) = Bl 0l g o) = el (40)
vePp ||a0 VQOEHB(,J;

(recall that, for each v € Q, e(fjg € X ® span(P,) is defined by (26)). In explicit
terms, fiysp (resp., fixq) is the gichal tv o-level spatial error estimate (resp., the global
parametric error estimate), py s(E) de.otes the local (spatial) error indicator associated
with the edge E € £ and , ~+ ) enotes the individual (parametric) error indicator
associated with the index v € Q.

A decomposition simila 1o (45) holds for the error estimate (yq associated with the
dual Galerkin solution z _ -: in tuis case, we denote the corresponding spatial and para-
metric estimates by (y ; ar d (xq, respectively; the definitions of the local contributions
Cyqp(E) and (xq(v) ere a. alogous to those of puyq(E) and pxq(v) in (46).

4.4. Marking stra.- gy. In order to compute a more accurate Galerkin solution (and,
hence, to reduce wne error in the quantity of interest), an enriched approximation space
needs to be con 'tructe l. In the algorithm presented below, the approximation space is
enriched at e~~h 1, .don of the adaptive loop either by performing local refinement of
the underly ag tricngulation 7 or by adding new indices into the index set . In the
former case, “he rdnement is guided by the set M C &P of marked edges, whereas in
the latte . -~ a set 9 C Q of marked indices is added to the index set .

Let us fo » s on the case of marking edges of triangulation. We start by using the Dorfler
marking crite-ion [Dor96] for the sets {uyp(E) : E € EX} and {¢yp(FE) : E € &Rt}
of (spatial) error indicators (see (46)) in order to identify two sets of marked edges,
independently for the primal and for the dual Galerkin solutions. Specifically, for a given
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0 < fx <1, we define
M := Dérfler ({yg(E) : E € EP'},0x) and M” := Dérfler ({Gyq(E, . 7 € EX'},0x)

as the subsets of ' of minimal cardinality (possibly up to a fixed r wli ‘plicative factor)

such that
Ox Z M?/qs(E) < Z MZYQ;;:(E) and  Ox Z C%/fp(E\ < : g}%m(E),

Ecept Eem: Begint LME

respectively.

There exist several strategies of “combining” the two s ts M and M? into a single
marking set that is used for refinement in the goal-oriented a ' antix ¢ algorithm; see [MS09,
BET11, HP16, FPZ16|. For goal-oriented adaptivity in .he ¢~*erministic setting, [FPZ16|
proves that the strategies of [MS09, BET11, FPZ16| .-« to convergence with optimal
algebraic rates, while the strategy from [HP16| might n.* 7 i.e marking strategy proposed
in [FPZ16] is a modification of the strategy in [MS09|. i has been empirically proved
that the strategy in [FPZ16] is more effective th n ti.~ ~.iginal strategy in [MS09] with
respect to the overall computational cost. We emp.~v the following marking strategy
adopted from [FPZ16]. Comparing the cardina..*v of M" and that of M?* we define

My :=M" and M*:= nvi if #M™ < #M?*,
M, =M?* and M* = MY otherwise.

The set M C M, UM* C Si}lt is then Jefine’ as the union of M, and those #M, edges
of M* that have the largest error indicat.-s. 'T'his set M of marked edges is the one that
is used to guide the local mesh-refinement in our goal-oriented adaptive algorithm.

In order to identify the set 9t C £ o marked indices to be added to the current index
set P, we follow the same markiw, orocedure as described above by replacing M, £t
E, pyp(E), Cyp(E), and Ox w.th M, Q, v, pxa(v), (xa(v), and Oy, respectively (here,
0 < 6y < 1is a given Dorfler .~a-xin‘, parameter).

int

4.5. Mesh-refinement .n polynomial enrichment. Let M C &P be a set of
marked interior edges a-.' 7 = Refine(7T, M). We denote by R C EM the set of all
edges that are bisected dur.ng this refinement, i.e., R = £\ 5;3.“3 oM.

Since the polynorial 5, ace over the parameter domain is fully determined by the
associated index se., t'.e enrichment of the polynomial space is performed simply by
adding all marked 1. icec v € M C  Q to the current index set P, ie., by setting
L= P UIM.

An important ‘eatur: of the adaptive algorithm presented in the next section is that it is
driven by the _.timaoes of the error reductions associated with local mesh-refinement and
enrichment Hf the ‘olynomial space on I". Suppose that the enriched finite-dimensional

space is given . " 5 = )?@Span <{P,, TV E ‘Ii}), where X := S&(%) Let Ugg € V)?q?
be the cor.esonding Galerkin solution. We note that Theorem 3.1 applies to uwxq — uxy
as well as t. Ugg — UXp- Furthermore, it is important to observe that longest edge

bisection ensures that for £ € R, the associated hat function g is the same in X and
X. This observation together with the Pythagoras theorem (19) applied to uxy € Vg
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and u 5 € V‘7q~3 yield the following estimate of the error reduction

(19) (33)
lu—uxg P = v —uggll* = Wugg—uxg P = Y miq(E)+ D) o). (47)
EeR S

Remark 4.1. We note that the estimate (47) of the error reduction | “1ges on the mesh-
refinement strategy in the sense that the additional hat functions .~ for E € R must
coincide in X and X. As mentioned, this property holds for (o1 rest edge bisection as
well as for newest vertex bisection [Ste08, KPP13|, but fails, -~ a , for the red-green-blue
refinement [Ver13|.

4.6. Goal-oriented adaptive algorithm. Let us now p1-sent & goal-oriented adaptive
algorithm for numerical approximation of G(u), where » &V 1 the weak solution to the
parametric model problem (1) and G is the goal funct on-. d¢‘ined by (42).

In the rest of the paper, ¢ € Ny denotes the iter. +ion ~~.unter in the adaptive algo-
rithm and we use the subscript ¢ for triangulations, inde. sets, Galerkin solutions, error
estimates, etc., associated with the /-th iteration ¢ the adaptive loop. In particular,
Vi i= Vx,p, = X, @ span ({Py TV E mg}) denotes he finite-dimensional subspace of V',
ug € Vp and 2z, € V; are the primal and dual C i .au solutions satisfying (16) and (44),
respectively, and i := px,q, and ¢, := (x,q, are e associated (global) error estimates
(see, e.g., (32)).

Algorithm 4.2. Goal-oriented adaptiv » s“ochastic Galerkin FEM.

INPUT: data a, f, g; initial (coarse) .- angulation Ty, initial indezx set Po; marking
parameters 0 < Ox, 0y < 1; tolerance tol.
for t=0,1,2,..., do:
(i) SOLVE: compute ug, z; <. Vy,
(ii) ESTIMATE: compute our sets of error indicators (see (46))
{yp(E) : E € EF Y Ap.~(v 1 v e Qo}, {Grp(E) - E € &}, {Cxa(v) : v € Qi}
and two (global) er ~r estimates p, and ¢, (see (45));
(iii) if pe ¢ < tol then vreak, ndif
(iv) MARK: use the prccedure described in §4.4 to find the set M, C Eiﬁt of marked
edges and the sc* ¢, C Q, of marked indices.
(v) REFINE:

(v-a) Compr e t oo €. ror reduction estimates:

2o (z <3m<E>> e (z u@m<E>> | (450)

EeR, EeR,
Py = 1 (Z Cia(@) + ¢ (Z /@(Q(V)> : (48b)
veM, veMy,

ohere Ry C E%}t is the set of all edges to be bisected if Ty is refined (see §4.5).

(v-b) 1" pxe > pye then
define Tpr1 = Refine(Ty, My) and Por1 = Pe (i-e., refine the spatial
triangulation Ty, and keep the index set B, );
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else
define Tor1 = To and Py = PoUMy (i.e., keep the spe al triangulation
Te and enlarge the index set B,).

endif

endfor
OUTPUT: sequences of nested triangulations {T;}, increasing in 'c. sets *B,}, primal and

dual Galerkin solutions {ug, z¢}, the corresponding energy er or «stu.ates {ue, ¢}, and
the estimates {pe (o} of the error in approzimating G(u).

Let us give a motivation behind Step (v) in Algori’un 4.z. This relies on the fact
that the algorithm employs the product of energy erro.~ ' u— wy ||| ||| 2 — 2¢ ||| in order to
control the error in approximating G(u); see (3).

Let ‘7@ D Vp be an enrichment of V; (e.g., V; = X4 ® span ({P,, UV E ‘,Bg}) or ‘7@ =

X, ® span ({Pl, v E %Hl})). Let uy, 2z, € ‘74 1enc.~ che enhanced primal and dual
Galerkin solutions. One has (see (19))

=l =l —uell* = Mue =G lI* and < -Z =l 2=z [I* = [l 2 — Z |II”
Hence,

Ml e =T 12 = Ze 1 = 1l = e 12 02 = il + e — T (Il 20 — Ze I
(49)
— (=™ ze = Ze I1* + Mwe — T I Il = = 2 %) -

Equality (49) shows that the quar ity
Il = e I 2 = = A 4l e — e I 112 = 2 [I1° (50)

provides a good approximation . “ the reduction in the product of energy errors that would
be achieved due to enrichir mt of tne approximation space. In fact, the true reduction in
the product of energy errors a. ~ includes the term —||| uy — g |||?[l] ze — Z2 |||* (see (49)).
This term (in absolute v aiv ) is normally much smaller compared to the sum in (50) and
may thus be neglected.

Now recall that " heorc.~ 3.1 provides computable estimates of the energy errors
(see (33)) and of te caerry error reductions (see (47)). Using these results to bound
each term in (50). we ctrm the estimate of reduction in the product of energy errors. In
particular, the r .ducti. n due to mesh-refinement (by bisection of all edges in Ry, see §4.5)
is estimated by , 2 , de ined in (48a), i.e.,

e =l ze = Ze I + I 2 — 2 117 [l we — Te ll|* = P

1

Similarly -~ reduction due to polynomial enrichment (by adding the set 9%, of marked in-
dices) is es.i"aated by p , defined in (48b). Thus, by comparing these two estimates (px.¢
and pyp ), the adaptive algorithm chooses the enrichment of V; (either mesh-refinement
or polynomial enrichment) that corresponds to a larger estimate of the associated error
reduction (see step (v-b) in Algorithm 4.2).
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5. NUMERICAL EXPERIMENTS

In this section, we report the results of some numerical experiments the . « monstrate the
performance of the goal-oriented adaptive algorithm described in Sec**on 4 tor paramet-
ric model problems. All experiments were performed using the oren <ource MATLAB
toolbox Stochastic T-IFISS [BR18b| on a desktop computer equipnea ~ith an Intel Core
CPU i5-4590@3.30GHz and 8.00GB RAM.

5.1. Outline of the experiments. Staying within the fra. e ,ork of the parametric
model problem (1) and the goal functional (42), we use tb_ -epre.>ntations of f and g
as introduced in [MS09| (see also [FPZ16, Section 4]) to ¢ >fine t. e corresponding right-
hand side functionals F(v) and G(v) in (10) and (43). Iu*mf Jdvely.  Specifically, let
fi,gi € L*(D) (1 =0,1,2) and set f = flan) and g = (g1 ,.\. Define

//fo v(z,y) de dr(y //f Vol v)dzdr(y) forallveV (51)

//go z,y)dzxdn(y //g(ub -Vou(z,y)dxdn(y) forallveV. (52)

The motivation behind these representations ‘s .o introduce different non-geometric sin-
gularities in the primal and dual solutio. . In the context of goal-oriented adaptivity,
this emphasizes the need for separate mark'ng to resolve singularities in both solutions
in different regions of the computatione’ aou.uin.

In all experiments, we run Algorithm 4.2 sith the initial index set

PBo :=1{(0,0,9,...), (1,0,0,...)}

and collect the following outpuv ., data.

the number of iteratio. ~ ~ = .(tol) needed to reach the prescribed tolerance tol;
the final goal-orient' d erro. cstimate pr(r;

the overall computatic 2l time t;

the overall comp-.. tional “cost”

L
Niotar := Y _ dim(V}),

£=0

which ref _ s the total amount of work in the adaptive process;
e the final numbe - of degrees of freedom

N :=dim(Vy) = dim (X1) #B. = #NL #9815,

wherc N7 <enotes the set of interior vertices of 77;

e t! . mber of elements #7;, and the number of interior vertices #N7, of the final
tria» julation Tz;

e the ccrdinality of the final index set ¥, and the number of active parameters
in B, denoted by Mactive;

e the evolution of the index set, i.e., {B, : £ =0,1,...,L}.
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In order to test the effectiveness of our goal-oriented error estimation, we compare the
product ¢, with the reference error |G(urws) — G(ug)|, where uper € Vigr 1= Xpor ®
span ({Pl, TveE ‘Bref}) is an accurate primal solution. In order to compute u, - we employ
quadratic (P2) finite element approximations over a fine triangulatio. /, ¢ and use a large
index set Pier (Trer and Prer are to be specified in each experiment). TFen, the effectivity
indices are computed as follows:

fe Ge
|G (trer) — G(ug)|’

O == (=0,... L. (53)

5.2. Experiment 1. In the first experiment, we demonst -ate th: performance of Algo-
rithm 4.2 for the parametric model problem (1) posed on *he s, - .we domain D = (—1,1)2.
Suppose that the coefficient a(x,y) in (1) is a parametr ¢ re yre sentation of a second-order
random field with prescribed mean E[a] and covarian-e runction Cov[a]. We assume that
Covla] is the separable exponential covariance function .'ven by

Ty — Ty Iy — T
Covla)(z,2") = 0% exp B eV Bk | ,
[ lo
where = (z1,29) € D, 2/ = (2, 2}) € D, o de..~tes the standard deviation, and Iy, [
are correlation lengths. In this case, a(z,y) au ' - oxpressed using the Karhunen—Loeve
expansion

a(z,y) =Ela](@) + ¢ 3 Y VA om(2), (54)

where {( A, ¢m)}o_; are the eigenpairs of the integral operator [, Covla)(x,z)¢(a’)dx’,
Ym are the images of pairwise uncc.rela,d mean-zero random variables, and the constant
¢ > 0 is chosen such that Var(cy,,' = 1 for all m € N. Note that analytical expressions
for A\, and ¢, exist in the ¢ ie-dime.sional case (see, e.g., [GS91, pages 28-29|); as
a consequence, the formulas “or rec’angular domains follow by tensorization. In this
experiment, we assume that ;,, arc “’ie images of independent mean-zero random variables

on I';, = [—1,1] that have a "nncated” Gaussian density:
-1
p(ym) = (@0 ) —1)7! (\/ 27r> exp (—yz,/2) for all m € N, (55)

FIGURE 5.1. The mean fields of primal (left) and dual (right) Galerkin solutions in Experiment 1.
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#7p =128 #T19 = 2600 (primal) #T19 = 2600 (dual) #7715 = 2872 (goal-oriented)

0.5

-0.5 |

T -0.5 0 05 1

FIGURE 5.2. Experiment 1: Initial triangulation 7y with shaded tri mgles .7« and T} (left plot); trian-
gulations generated by the standard adaptive sGFEM lgoritl n with spatial refinements
driven either by the error estimates py or by the ..or eswunates ¢, (two middle plots);
triangulation generated by the goal-oriented adap e - .go ithm (right plot).

where ®(-) is the Gaussian cumulative distribution func ion (in this case, ¢ ~ 1.8534
in (54)). Thus, in order to construct a polynomia. =nsce on I' we employ the set of
orthonormal polynomials generated by the probabiliv, density function (55) and satisfying
the three-term recurrence (11). These polyno.. 'als are known as Rys polynomials; see,
e.g., |Gau04, Example 1.11].

We test the performance of Algorithm 4.2 by counsidering a parametric version of Ex-
ample 7.3 in [MS09]. Specifically, let fo = a9 = 0, f = (Xr;,0), and g = (X7,,0), where

X7, and X7, denote the characteristic funci’on. of the triangles

Ty := conv{(—1,—1),(0,—-1),(—=1,u,} and T, :=conv{(1,1),(0,1),(1,0)},
respectively (see Figure 5.2 (left)) 1..-m, the functionals F' and G in (51)—(52) read as

F<v>=—/ 9 (2, y)dzdie(y), f(v):—// O (o y) dudr(y) forall ve V.
rJ1; 01, rJz, ory

Setting 0 = 0.15, Iy = ', = 2°, and E[a](z) = 2 for all z € D, we compare the
performance of Algorithn 4.” for different input values of the marking parameter 6y
as well as the parameter M in (31). More precisely, we consider two sets of marking
parameters: (i) Ox = 1.5, Ip = 0.9; (ii) Ox = 0.25, 0y = 0.9. In each case, we run
Algorithm 4.2 with M = _ and M = 2. The same stopping tolerance is set to tol = 7e-6
in all four computa‘.on-.

Figure 5.1 (left) s ws the mean field of the primal Galerkin solution exhibiting a
singularity along cne Jine connecting the points (—1,0) and (0, —1). Similarly, the mean
field of the dua. Galer in solution in Figure 5.1 (right) exhibits a singularity along the
line connectir~ the , umts (1,0) and (0, 1).

x
[

Figure 5.7 (left »lot) shows the initial triangulation 7y used in this experiment. The
two middle . ~ts iv. Figure 5.2 depict the refined triangulations generated by an adaptive
sGFEM [ -~ithm with spatial refinements driven either solely by the estimates p, for
the error i1 *ne primal Galerkin solution or solely by the estimates (, for the error in the
dual Galerkii. solution. The right plot in Figure 5.2 shows the triangulation produced by
Algorithm 4.2. As expected, this triangulation simultaneously captures spatial features
of primal and dual solutions.
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case (i): 0x = 0.5, 63 = 0.9

case (ii): 0x =0.25, 0 = 0.

M=1 M =2 M=1 M =2
L 27 25 43 42
pLiL 5.7152e-06 6.6884e-06 6.4015e-06 6.440 Je-U
t (sec) 307 312 323 68
Niotal 2,825, 160 3,201,507 3,433,577 5 702,. 9
Ng 710,467 786,390 552, 442 9,. 017
#TL 75,568 53,044 50, 808 =0, 7Y
#N1, 37,393 26,213 25,111 RSRIL!
#PBL 19 30 22 39
Mactive 8 15 10 17

TABLE 5.1. The outputs obtained by running Algorithm 4.2 with .\'x = 0. , 83 = 0.9 (case (i)) and

Ox =0.25, Oy = 0.9 (case (ii)) in Experiment 1.

case (i): 0x = 0.5, 63y = 0.9

S
I

M

2

(001)

(
(
(

(00001)

("f00v"1)
11000wv,

(L"00C001)
(10v”

(0L"00001)
(10001000)

(000000001)
(011000000)
(10000001 0)
(100000100)
(100001000)

N = O
o OO
o = O
==

J00)

.
)

(
(

0
0

(
(

0
0
0
0

(0
(1

0)
0)
1)
0)
0
1

oo = O

)
)

1

0
(0000001
(0000010
(1010000
(2000000

(00000000 1)
(0000000 10)
(110000000)

(0000000000 1)
(000000000 10)
(0110000000 0)
(1000010000 0)
(1000100000 0)
(1001000000 0)

(0000000000001)
(0000000000010)
(0020000000000)
(020000000000 0)
( )
( )

)
)
)
)

1000000100000
1000001000000

(000000000000001)
(000000000000010)
(010100000000000)
(100000000100000)
(100000001000000)

TABLE 5.2. 1he evolt :ion of the index set obtained by running Algorithm 4.2 with 6x = 0.5, 0 = 0.9

(cas.

In Table 5.1, we collect the final outputs of computations in cases (i) and (ii) for M=1
and M = 2, whereas Table 5.2 shows the index set enrichments in case (i). Recall that
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case (i): Ox = 0.5, O = 0.9 case (ii): fx =0.25, 9 = 0.9

[ [
| —e— 4B (M
B 20 |- ‘A*M;Ctivc(
-~ - #P (M

N 10 - N Mfctive(

0 10 20 30 40
iteration, £ iteration, £

FI1GURE 5.3. Characteristics of the index sets 3y in Experir=nt [ at - ach iteration of Algorithm 4.2.

choosing a larger M in (31) leads to a larger detail 1 'ex set, and hence, a larger set of
marked indices, at each iteration. As a result, mc e random variables are activated in the
final index set and the total number of iter ."*~ns is reduced (compare the values of L,
#% 1, and Mi<tve in Table 5.1). This can be 1+ o observed by looking at Figure 5.3 that
visualizes the evolution of the index set in es ') and (ii). Furthermore, in case (ii), due
to a smaller marking parameter fx, the al orichm produces less refined triangulations
but takes more iterations to reach the t'~rauce than it does in case (i) (see the values of
#7Tr, and L in Table 5.1).

Figure 5.4 shows the convergenc . nis ory of three error estimates (pg, (7, and uy(y) and
the reference error |G/(uye) — G(w.) in cise (i) for both M =1 and M = 2 (see the end
of this subsection for details or now ..~ reference solution s is computed). We observe
that the estimates of the error in “.pproximating G(u) (i.e., the products p,(,) decay with
an overall rate of about O(7, 7% f,r both M = 1 and M = 2. We notice that choosing
M = 2 has a “smoothing” 1. ~t on the decay of ¢, (see Figure 5.4 (right)); this is due
to larger index set enrichents 11 this case compared to those in the case of M =1 (see
the evolution of B, in ".abl: 5.2).

In Figure 5.5, we nlot aree error estimates as well as the reference error in the goal
functional in case (i"). V/e observe that p,(, decay with about the same overall rate as in
case (i), i.e., O(N— .. Ca the other hand, the “smoothing” effect due to a larger M is
less evident in ¢ se (ii), compared to case (i). This is likely due to a smaller value of the
(spatial) markir o para neter fx in case (ii), which provides a more balanced refinement
of spatial and nai.~ Ctric components of the generated Galerkin approximations (note
that the (pe ramet.’c) marking parameter fy is the same in both cases).

Finally, fo. all ¢ .ses considered in this experiment, we compute the effectivity indices
as explai .. in §5.1; see (53). Here, we employ a reference Galerkin solution computed
using the .~ angulation T obtained by a uniform refinement of 77 from case (i) with
M =1 and a 'arge index set P,f which includes all indices generated in this experiment.
The effectivity indices are plotted in Figure 5.6. Overall, they oscillate within the interval
(7.0, 14.0) in all cases.
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case (i) | M =1 iy| D=2

10_1 E\T\TH T T T T T T Ty T T T T T ITrrg E E E
1072 ¢ E 8 E

° 1073 E E ° 10-3 E E
é - 1 é - 1
1074 & 4 £107%k 5
o E B o E B
= B B = B B
2 s | 1 £ 5| i
= 107° R = = 107° =
o 10 F —0— e (primal & g 10 F E
10-6 | Ge (dual) | 1076 |- ¢ (dual, J

F o e G t Lok G ]

-7 L —A— |G (Urer) — G (ue)] O(N; %) -7 — G (trer) — Glur)] O(N, %%V
S Lol Ll Ll NIRRT om0l Lol Lol Ll g

10? 102 104 10° 108 103 104 10° 108
degree of freedom, Ny degree of freedom, Ny

FIGURE 5.4. Error estimates g, (o, e (e and the reference error |G(uyer) — G(ug)| at each iteration
of Algorithm 4.2 with 0x = 0.5, O = 0.9 (~ase 1)) in Experiment 1 (here, G(ure) =
—3.180377e-03).

case (i) | M =1 case (ii) | M =2
101 101 ETTTT L L] L] B R L) B AL
1072 | é 1072 E
5 L 1 s L B
g 1077 F ERR I E
o = 3 < = 3
£ i 1 £ i |
%107 = 4 107t E
) E El 5} E El
s-< = ] o i :
o) H - IS) H -
51075 F » 4 F10° . E
¢ E - 1 ° - —0— e (primal ]
oo | G (dual) %g, -~ 1 oo | G (dual) 1
o e Ge \é F—o— e Ge t
I |G (trer) — Gug O(N; )7 R |G (uret) — G(ur)| O(N, )]
Bl 1 vl Ll Ll Ll S ELiiil Lol il Lol vl 4
102 103 10 105 106 102 103 104 105 106
degree t frer fom, Ny degree of freedom, Ny

FIGURE 5.5. Error est'mat s s, o, e (e and the reference error |G(uret) — G(ug)| at each iteration
of Algori.»» 4.2 with 6x = 0.25, 6 = 0.9 (case (ii)) in Experiment 1 (here, G(uyet) =
—3.180°7Te-..)

5.3. Experi..ent z. In this experiment, we consider the parametric model problem (1)
posed on tl > L-sh. ped domain D = (—1,1)?\ (—1,0]* and we choose the parametric
coefficient a(. ¥ as the one introduced in [EGSZ14, Section 11.1]. Let o > 1 and
0 <A< /g ., where ¢ denotes the Riemann zeta function. For every z = (21, x2) € D,
we fix ag(x) = 1 and choose the coeflicients a,,(z) in (2) to represent planar Fourier modes
of increasing .otal order:

U () 1= v, c08(2mB1(m) 1) cos(2mPa(m) x9)  for all m € N, (56)
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case (i): x = 0.5, 63 = 0.9

case (ii): Ox = 0.25 O =0.9

14 |+ == - 14 == N
—=-M=1 —=-M=1
~ ~
®F 12 9 12
" %
<] [
e e
= A
2z 10 » 10
= Z
E g
& =]
o (&)
7 7
1 Ll Ll Lol L 1 L 111l Ll Ll )
10? 103 104 105 102 03 104 10°

degree of freedom, Ny aegree of freedom, Ny

FIGURE 5.6. The effectivity indices for the goal-oriented error ~stimates "1 Experiment 1 at each iteration
of Algorithm 4.2.

where «,,, := Am~7 are the amplitudes of the coefficxe ~ts and 3, §o are defined as
Bi(m) :==m — k(m)(k(m) +1)/° and Jy(m) := k(m) — B1(m),

with k(m) := |—=1/2 + /1/4 + 2m| for "' m < N. Note that under these assumptions,
both conditions (6) and (7) are satisfied with 2y ™ = a** = 1 and 7 = A((0), respectively.
We assume that the parameters y,, . (“ are the images of uniformly distributed
independent mean-zero random variables < I';;, = [—1,1], so that dm,, = dy,,/2 for
all m € N. Then, the orthonorma' . ~lynomial basis in L2 (T',,) is comprised of scaled
Legendre polynomials. Note that che sa11e parametric coefficient as described above was
also used in numerical experiments .- [".GSZ15, BS16, EM16, EPS17, BR18a].

In this experiment, we choc se t1e cuantity of interest that involves the average value
of a directional derivative ot ' e p.imal solution over a small region of the domain
away from the reentrant ¢ ner. wlore precisely, we set fo = 1, f = (0,0), go = 0,
and g = (Xg,,0), where X7, « notes the characteristic function of the triangle T, :=

-0.5

4 05 0 0.5 1 T4 05 0 0.5 1

FIGURE 5.7. Initial triangulation 7 with the shaded triangle T, (left) and the triangulation generated
by the goal-oriented adaptive algorithm for an intermediate tolerance (right).
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FI1GURE 5.8. Error estimates g ¢ at each iteration of Algorithm ' 2 tor different sets of marking param-
eters in Experiment 2. Filled markers indicat ~ iteratio 1s at which parametric enrichments
occur.

conv{(1/2,—1),(1,—1),(1,—1/2)} (see Figure 5.7 (left)), so that the functionals in (51)—
(52) read as

F(v) = /F/Dv(x,y) dedn(y), G(v)= | @(x,y) dxdr(y) forallveV.

i STy Oy

Note that in this example, the prima! and dual solutions both exhibit a geometric
singularity at the reentrant corner (see the lett plots in Figures 5.9 and 5.10). In addition,
the dual solution exhibits also a si".gula. 'ty along the line connecting the points (1/2, —1)
and (1,—1/2) (see the left plot .. Figrce 5.10); the latter singularity is due to a low
regularity of the goal functions. G(v).

Our first aim in this expc-iw nt .s to show the advantages of using adaptivity in
both components of Galerk'n app.-ximations. To this end, we consider the expansion
coefficients in (56) with slc # (- = 2) decay of the amplitudes «,, (fixing 7 = A{(c) = 0.9,
this results in A ~ 0.57) and we choose M = 1 in (31). Starting with the coarse
triangulation 7y depict «d ir. Figure 5.7 (left) and setting the tolerance to tol = 1e-05, we
run Algorithm 4.2 for six . fferent sets of marking parameters and plot the error estimates
1o ¢ computed at e .ch ceration; see Figure 5.8.

In the cases whei. on) one component of the Galerkin approximation is enriched
(i.e., either fx = 0 or vy = 0 as in the first two sets of parameters in Figure 5.8),
the error estim:tes py ,, quickly stagnate as iterations progress, and the set tolerance
cannot be re~~heu. .if both components are enriched but no adaptivity is used (i.e.,
Ox = Oy = 1, see the third set of parameters in Figure 5.8), then the error estimates
decay throughout all iterations. However, in this case, the overall decay rate is slow
and ever ... " deteriorates due to the number of degrees of freedom growing very fast,
in particui>r, during the iterations with parametric enrichments (see the filled circle
markers in F.jure 5.8). The deterioration of the decay rate is also observed for the fourth
set of marking parameters in Figure 5.8 (fx = 0.6, 63 = 1), where adaptivity is only
used for enhancing the spatial component of approximations. If adaptivity is only used
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0.2+

FIGURE 5.9. The mean field (left) and the variance (right) of the pi. ~al “.alerkin solution in Experi-
ment 2.

FIGURE 5.10. The mean field (left) and the variance (right) of the dual Galerkin solution in Experi-
ment 2.

for enriching the parametric ccmponeu.. (e.g., 0x = 1 and 6y = 0.6 as in the fifth set in
Figure 5.8), then the error est: ma’es ¢ :cay throughout all iterations without deterioration
of the rate. However, the d cay 1.*  in this case is slower than the one for the sixth set
of marking parameters x = C 2, 6y = 0.8, where adaptivity is used for both components
of Galerkin approximati~~s. Thus, we conclude, that for the same level of accuracy,
adaptive enrichment ir bo 2 components provides more balanced approximations with
less degrees of freedem «d leads to a faster convergence rate than in all other cases
considered in this e .per.ment.

Let us now run ..' ori’am 4.2 with the following two sets of marking parameters:
(i) 0x = 0.3, 0p - .8 (1) Ox = 0.15, O = 0.95. In each case, we consider the expansion
coefficients in (. 6) wit | slow (0 = 2) and fast (¢ = 4) decay of the amplitudes «,, (in
the latter case fixl-; 7 = A((0) = 0.9 results in A ~ 0.832). In all computations, we
choose M = 1 in (1) and set the tolerance to tol = le-05.

Figure 5.7 (~ight depicts an adaptively refined triangulation produced by Algorithm 4.2
in case ({° 7~ the problem with slow decay of the amplitude coefficients (similar triangu-
lations we1 » bbtained in other cases). Observe that the triangulation effectively captures
spatial featu. »s of primal and dual solutions. Indeed, it is refined in the vicinity of the
reentrant corner and, similarly to Experiment 1, in the vicinity of points (1/2,—1) and

(1,-1/2).
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case (i): x = 0.3, O =0.8 case (ii): x =0.15, 8y =0.95
oc=2 o=4 o=2 o=4
L 37 37 62 2
nrCr 8.8378e-06 9.4638e-06 9.6811e-06 9.1013e-06
t (sec) 372 345 604 602
Niotal 3,507, 551 2,960, 897 6,617, 365 ‘ 4,289,136
Ny, 725,800 458,568 789,670 I 552,857
#TL 73,393 77,249 55,183 65,800
#NL, 36, 290 38,214 27, 230 I 32,521
#PBL 20 12 29 17
Dpetive 6 3 6 [ 4
Evolution of the index set
B, | ¢=0 (0 0) (=0 (0 0) (=0 (0 0) (=0 (0 0)
(10) (10) (10) (10
(=12 (01) (=8 (2 0) (=14 o (=10 0
(2 0) (9.0)
=19 (001) (=15  (30) 0 =26 01 1) (=21 (01)
(110) (1.0) (30)
w0 0)
=23 (000 1) (=20  (01) ¢=37 (0001) (=32 (11)
(1010) (4 0) (0200) (4 0)
(2100) (1010)
(300 0) 0 =26 (11) (2100) £ =40 (001)
(5 0) (4000) (210)
£=30 (00001) : (50 0)
(02000) = 46 (00001)
(10010) | £=30 (21 | (01100) | £=51  (101)
(201 00) 6 (12000) (310)
(31000) (20100) (6 0 0)
« (31000)
¢=34  (000001) | £=35 (Lo. | £=53 (000001) | £=60 (0001)
(01100 0) (31 9) (0100 10) (201 0)
(10001 0) (010100) (4100)
(12000 0) (10000 1) (7000)
(40000 0) (10001 0)
(11100 0)
(200100)
(22000 0)
(301000)
(410000)
. (500000)

TABLE 5.3. The outputs obtained b, -un’ing Algorithm 4.2 in Experiment 2 with 0x = 0.3, 6 = 0.8
(case (1)) and Ox = 0.15, B = 0.95 (case (ii)) for both slow (¢ = 2) and fast (¢ = 4) decay
of the amplitude .oeti. ~uts.

Table 5.3 collects .* @ o’.tputs of all computations. On the one hand, we observe that
in case (i), for “oth slow and fast decay of the amplitude coefficients, the algorithm
took fewer itere tions ¢ ompared to case (ii) (37 versus 62 for o = 2 and 37 versus 63
for 0 = 4) a»1 1c. lLied the tolerance faster (see the final times ¢ in Table 5.3). On
the other h md, a e to a larger fx in case (i), the algorithm produced more refined
triangulation. (see che values of #7;, in Table 5.3). Also, we observe that final index sets
generate = [~ the problem with slow decay (o = 2) are larger than those for the problem
with fast C=cay (0 = 4) (20 indices versus 12 in case (i) and 29 indices versus 17 in
case (ii)). Fu.thermore, the algorithm tends to activate more parameters and to generate
polynomial approximations of lower degree for the problem with slow decay (e.g., in case
(i), polynomials of total degree 4 in 6 parameters for o = 2 versus polynomials of total
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case (i) | o =2 case (i) | 0 =4
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FIGURE 5.11. Error estimates pg, (o, fte ¢ and the referen. ~ error |G(urer) — G(ug)| at each iteration
of Algorithm 4.2 in Experiment 2 with 6x = U.., Oy = 0.8 (case (1)) for o = 2 (left)
and o = 4 (right) (here, G(uyef) = 1.789774e-2 "~r 0 = 2 and G(uyer) = 1.855648e-2 for
o =4).

case (ii) | 0 =2 case (ii) | o =4
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FIGURE 5.12. Error e cim’ ces g, (o, fte ¢ and the reference error |G(urer) — G(ug)| at each iteration
of Algori.. m 4 2 in Experiment 2 with 0x = 0.15, 6 = 0.95 (case (ii)) for o = 2 (left)
and s =4 (right) (here, G(uyer) = 1.789774e-2 for o = 2 and G(uyer) = 1.855648e-2 for
o= 4).

degree 6 in ¢ parawn sters for 0 = 4). Note that this behavior has been previously observed
in numerical - xper’ments for parametric problems on the square domain; see, e.g., [BS16].

Figure 2. (resp., Figure 5.12) shows the convergence history of three error estimates
(e, Coy anc. 74Cp) and the reference error in the goal functional in case (i) (resp., case (ii))
of marking p. rameters. Firstly, we can see that the estimates py(, converge with a faster
rate for the problem with ¢ = 4 than for the problem with ¢ = 2. This is true in
both cases of marking parameters. In particular, the overall convergence rate is about
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slow decay (o = 2) fast decay (o = 4)
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FIGURE 5.13. The effectivity indices for the goal-oriented err~r estimat :s in Experiment 2 at each iter-
ation of Algorithm 4.2.

O(N—3/%) when ¢ = 4 and about O(N~2/3) ~hen ¢ = 2. Secondly, we observe an
improved convergence rate during mesh refirement . teps in case (ii) (i.e., for smaller 0
and larger fy). For both problems, i.e., for 0 = - and o = 4, this rate is about O(N %)
(see Figure 5.12), i.e., very close to the o, ‘‘mai 2ne.

We conclude this experiment by testing -he -ffectivity of the goal-oriented error esti-
mation at each iteration of Algorithm o -. 7> his end, we compute the effectivity indices
©y (see (53)) by employing reference Gale. "in solutions to problems with slow (o = 2)
and fast (0 = 4) decay of the amp'... 1e coefficients. Specifically, for both problems we
employ the same reference trian: ulatior T (obtained by a uniform refinement of the
final triangulation 77, generated in c.e 1) for the problem with slow decay), but use two
reference index sets (namely, .or s = 2, we set Prer := P, where P is generated for
the problem with slow deca 1. ~as~ (ii) and for o = 4, we set Per := Pr U M with
the corresponding B, and M generated for the problem with fast decay in case (ii)).
The effectivity indices are plov.~d in Figure 5.13. As iterations progress, they tend to
concentrate within the “ate val (3.5, 5.0) in all cases.

For the parametric .~o.el problem considered in this experiment, we conclude that
Algorithm 4.2 perfor.ns bev.or if the (spatial) marking threshold 6y is sufficiently small
and the (parametr'-) "aarl ing threshold 6y < 1 is sufficiently large (see the results of
experiments in ceee (1) In fact, in case (ii), the estimates p,(, converge with nearly
optimal rates di ring s, atial refinement steps for problems with slow and fast decay of the
amplitude coeffic’ents Furthermore, in this case, the algorithm generates richer index
sets, which ] aas to more accurate parametric approximations.

5.4. Expc«~'ment 3. In the final experiment, we test the performance of Algorithm 4.2
for the paran =tric model problem (1) posed on the slit domain D = (—1,1)%\ ([-1,0] x
{0}). The boundary of this domain is non-Lipschitz; however, the problem on D can be
seen as a limit case of the problem on the Lipschitz domain Ds = (—1,1)?\ T; as § — 0,
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0.5

-0.5

-1 -0.5 0 0.5 1

FIGURE 5.14. Initial triangulation Ty (left) as well as the mean fielc (midd’:) and the variance (right)
of the primal Galerkin solution in Experiment 3.

where T5 = conv{(0,0), (=1,0), (=1, —0)} (cf. [SFO8, 1. 25y;).} In fact, all computations
in this experiment were performed for the domain D = D with 6 = 0.005.

Following [EMN16|, we consider a modificatic ~ o1 ‘»_ parametric coefficient used in
Experiment 2. For all m € N and = € D, let a..(z, be the coefficients defined in (56)
with ay, := Am~7 for some ¢ > 1 and 0 < A -~ 1/((0), where ( is the Riemann zeta
function. Then, given two constants ¢, € > " e deune

a(x, Y> = ‘ (2‘ Y. am(x> + i | + €, (57)

Qmin ——1

where o, = A((0) and the parameters v, are the images of uniformly distributed
independent mean-zero random var~’.“les on [—1, 1].

It is easy to see that a(z,y) € [e,2c +¢| for all x € D and y € I". Note that (57)
can be written in the form (2) vith . (2 ) = ¢+ ¢ and the expansion coefficients given by
(¢ am())/min. Furthermore, oncitions (6) and (7) are satisfied with af™™ = > = c+e
and 7 = ¢/(c+ €), respectively.

It is known that solution ‘ to proolem (1) in this example exhibits a singularity induced
by the slit in the domain. Ou ~im in this experiment is to approximate the value of u
at some fixed point zy < ) away from the slit. To that end (and to stay within the
framework of the boui.'ec goal functional G in (52)), we fix a sufficiently small r > 0
and define gy as the nollijic - (see [PO99]):

2

Cexp <_7“2—||;——$0||§> if ||27 — .CL’()HQ <r,

(58)
0 otherwise.

go(T: = ge(2, o, 7“) =

Here, ||-||2 draotes the fo-norm and the constant C'is chosen such that

/Dgo(:c)d:c = 1.

We refer to [Gri92, Section 2.7, p. 83] for a discussion about the well-posedness of the standard

weak formulation for the deterministic Poisson problem on the slit domain, in particular, in the case of
homogeneous Dirichlet boundary conditions.
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r=0.15, #T53 = 5701 r = 0.3, #T3 = 3839 r =04, #7T;5 = 3537 r=0.5, #T; = 2791

\

FIGURE 5.15. Adaptively refined triangulations (top row.
tions (bottom row) computed using '~ molufier gg in (58) with » = 0.15,0.3,0.4,0.5
(Experiment 3).

and the mean fields of dual Galerkin solu-

Note that the value of the constant C' . 1.2~ =ndent of the location of xy € D, provided
that r is chosen sufficiently small such th.* supp(go(x;zo,7)) C D. In this case, C' ~
2.1436 772 (see, e.g., [PO99]).

Setting fo =1, f = (0,0) and . = (0,)), the functionals in (51)—(52) read as

F(v):/r/Dv(x,y)da:dwfv), va):/F/Dgo(:p)v(:p,y)dxdﬁ(y) for all v € V.

Note that if u(x,y) is con’nu s in the spatial neighborhood of ¢, then G(u) converges
to the mean value E[u(x,, ~)] as r tends to zero.

We fix c=10"", ¢ -5 1073, 0 =2, A = 0.6 and set 2y = (0.4,—0.5) € D. In all
computations perforrmed .- this experiment, we use the coarse triangulation 7y depicted
in Figure 5.14 (left plo*). Figure 5.14 also shows the mean field (middle plot) and the
variance (right plot) - th primal Galerkin solution.

First, we fix tu1 = 7e-J3 and run Algorithm 4.2 to compute dual Galerkin solutions
for different val. es of ridius r in (58). Figure 5.15 shows the refined triangulations (top
row) and the ~~rre., unding mean fields of dual Galerkin solutions (bottom row) for r =
0.15,0.3,0.4 0.5. . s observed in previous experiments, the triangulations generated by
the algorithn. simr taneously capture spatial features of primal and dual solutions. In this
experime .., “he triangulations are refined in the vicinity of each corner, with particularly
strong refi. <.ment near the origin, where the primal solution exhibits a singularity; in
addition to ivhat, for smaller values of r (r = 0.15, 0.3), the triangulation is strongly
refined in a neighborhood of xg due to sharp gradients in the corresponding dual solutions
(note that the refinements in the neighborhood of zy become coarser as r increases).
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FIGURE 5.16. Error estimates pg, (¢, e (o and the reference ~rror | 7(uwer) — G(ug)| at each iteration of
Algorithm 4.2 with 6x = 0.3, Oy = 0.8 (cas. (i), 1uc) and Ox = 0.15, O = 0.8 (case (ii),
right) in Experiment 3 (here, G(uyer) = 0.14444.+01).

2.6

o
w

effectivity index, ©p
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—-o—-0x = 0.3, 033 =0.8
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FIGURE 5.17. The effectivity indices or the goal-oriented error estimates in Experiment 3 at each iter-
ation of Algr rith n 4.2.

Let us now fix r -= 0..5 (which gives C' ~ 95.271 in (58)) and run Algorithm 4.2 with
two sets of marking , - caw oters: (i) Ox = 0.3, 6y = 0.8; (ii) fx = 0.15, O = 0.8. In both
computations wr cnocse M = 1 in (31) and set the tolerance to tol = 6.0e-04.

In Table 5.4, we co lect the outputs of computations in both cases. In agreement
with results of pre.’_us experiments, we see that running the algorithm with a smaller
value of x (i.e., .1 case (ii)) requires more iterations to reach the tolerance (see the
values of L i.. bott columns in Table 5.4). We also observe that, for a fixed fy, choosing
a smalle: " naturally results in a less refined final triangulation (#7;, = 54,819 in
case (ii) verous #7, = 67,955 in case (i)); interestingly, this under-refinement in the
spatial appro simation is balanced by a more accurate polynomial approximation on the
parameter domain (i.e., a larger final index set #J3, is generated: 28 indices with 7 active
parameters in case (ii) versus 21 indices with 6 active parameters in case (i)).
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case (i): x = 0.3, 6y = 0.8 | case (ii): x =0.15, Op = 0.8
L 33 56
wrdL 5.5663e-04 5.9495e-04
t (sec) 434 659
Niotal 3,006,114 4,890,073
Np, 706, 398 759,136
#TL 67,955 54,819
#NL, 33,638 27,112
#PL 21 28
Mzctive 6 7
Evolution of the index set
LBe| =0 (00) (=0 (00)
(10) (10)
=11 (01) (=13 (U1
(20) v 0)
=17 (001) £=25 (co1)
(110) L 10)
(300) (300)
¢ =23 (0001) {=." (0001)
(1010) (1010)
(2100) (2100)
=29 (00001) v =45 (00001)
(1001 0) | (1001 0)
(20100) (20100)
(40000) | (40000)
=31 (0oo00C ™ ¢ =49 (000001)
(01100 | (011000)
(020000) (020000)
(1or .:™ (100010)
(2001 .7 (200100)
(301000, (301000)
(R10000) (310000)
=56 (0000001)
(0101000)
(1000010
(1110000)
(1200000)
(4100000)
(5000000)

TABLE 5.4. The outputs obt~ined by .unning Algorithm 4.2 in Experiment 3 with 8x = 0.3, 6 = 0.8
(case (1)) and ' x = 0.15, O = 0.8 (case (ii)).

By looking now a. ‘igice 5.16 we observe that the energy error estimates p, and (,
decay with the r.me rate of about O(N~93%) for both sets of marking parameters; this
yields an overal, rate o about O(N~%?3) for p,(, in both cases. However, we can see that
in case (ii), th~ esu__.tes py(; decay with a nearly optimal rate of O(N~%?) during mesh
refinement s seps. .'his is due to a smaller value of the marking parameter fx in this case
and consiste.* wit'. what we observed in Experiment 2.

Finall: .~ ~ompute the effectivity indices O, at each iteration of the algorithm. Here,
we employ  reference Galerkin solution computed using the triangulation 7y (obtained
by a uniform refinement of 7, produced in case (i)) and the reference index set Pier :=
P UM, where P, and M, are the index sets generated in case (ii). The effectivity
indices are plotted in Figure 5.17. This plot shows that j,(, provide sufficiently accurate
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estimates of the error in approximating G(u), as the effectivity indices tend to vary in a
range between 2.0 to 2.6 for both sets of marking parameters.

The results of this experiment show that Algorithm 4.2 with appropri.*e choice of
marking parameters generates effective approximations to the mea . ¢ the quantity of
interest associated with point values of the spatially singular solut.~n .o the considered
parametric model problem. In agreement with results of Experime.+ 2, , = conclude that
smaller values of the spatial marking parameter fx (such as 6, = 0.5 as in case (ii))
are, in general, preferable, as they yield nearly optimal conve . ger ce .ates (for the error
in the goal functional) during spatial refinement steps.

6. CONCLUDING REMAF £S

The design and analysis of effective algorithms for the nume 1cal solution of parametric
PDEs is of fundamental importance when dealing witi. mathematical models with in-
herent uncertainties. In this context, adaptivity 1. a cru ial ingredient to mitigate the
so-called curse of dimensionality—a deterioration . ~onvergence rates and an exponential
growth of the computational cost as the dimer~*- _ 'he parameter space increases.

In this paper, we developed a goal-oriented ac ntive algorithm for the accurate ap-
proximation of a quantity of interest, whic ., = “near functional of the solution to a
parametric elliptic PDE. The algorithm is basc ~ on an sSGFEM discretization of the PDE
and is driven by a novel a posteriori estit. «.~ 0. the energy errors in Galerkin approxi-
mations of the primal and dual soluticns 1.e proposed error estimate, which is proved
to be efficient and reliable (Theorem 3..) consists of two components: a two-level es-
timate accounting for the error in the spatial discretization and a hierarchical estimate
accounting for the error in the pa-ameu.ic discretization.

We highlight two important fea.'res « f our approach. On the one hand, using a two-
level error estimate, the algor chr docs not require the solution of any linear system
for the estimation of the errc = 7,isir g from spatial discretizations. When compared to
the hierarchical error estination 1= [BPS14, BS16, BR18al, this approach leads to an
undeniable benefit in terr.s ¢ the overall computational cost. On the other hand, the
components of the error » *imates for primal and dual solutions are used not only to guide
the adaptive enhancer ent of the discrete space, but also to assess the error reduction
in the product of these . “imates (see Step (v-a) of Algorithm 4.2), which is a reliable
estimate for the apr rox 'mation error in the quantity of interest. This information about
the error reduction 15 “ 1en eamployed to choose between spatial refinement and parametric
enrichment at es cn iteravion of the algorithm (see Step (v-b)).

While we foc 'sed tl > presentation on the two-dimensional case, the results hold for
arbitrary spatial G._.cnsion, i.e., for D C R? with d > 1. Possible extensions of the
work includ : the v se of other compatible types of mesh-refinement (e.g., newest vertex
bisection or 1 ref.nement, instead of longest edge bisection) and the treatment of other
elliptic ¢ ...~*ars, different boundary conditions as well as parameter-dependent right-
hand sides ” in (1) and parameter-dependent functions g in the definition (42) of the
goal functiorxl. Moreover, the focus of a future publication [BPRR18| will be on the
mathematical justification of the proposed adaptive algorithm via a rigorous convergence
analysis.
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We conclude by emphasizing that the software implementing the propos=d goal-oriented
adaptive algorithm is available online (see [BR18b|) and can be used » reproduce the
presented numerical results.
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