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GOAL-ORIENTED ERROR ESTIMATION AND ADAPTIVITY
FOR ELLIPTIC PDES WITH PARAMETRIC OR

UNCERTAIN INPUTS

ALEX BESPALOV, DIRK PRAETORIUS, LEONARDO ROCCHI, AND MICHELE RUGGERI

Abstract. We use the ideas of goal-oriented error estimation and adaptivity to de-
sign and implement an efficient adaptive algorithm for approximating linear quantities
of interest derived from solutions to elliptic partial differential equations (PDEs) with
parametric or uncertain inputs. In the algorithm, the stochastic Galerkin finite element
method (sGFEM) is used to approximate the solutions to primal and dual problems
that depend on a countably infinite number of uncertain parameters. Adaptive refine-
ment is guided by an innovative strategy that combines the error reduction indicators
computed for spatial and parametric components of the primal and dual solutions. The
key theoretical ingredient is a novel two-level a posteriori estimate of the energy error in
sGFEM approximations. We prove that this error estimate is reliable and efficient. The
effectiveness of the goal-oriented error estimation strategy and the performance of the
goal-oriented adaptive algorithm are tested numerically for three representative model
problems with parametric coefficients and for three quantities of interest (including the
approximation of pointwise values).

1. Introduction

Partial differential equations (PDEs) with parametric uncertainty are ubiquitous in math-
ematical models of physical phenomena and in engineering applications. The efficient
numerical solution of such PDE problems presents a number of theoretical and practical
challenges. A particularly challenging class of problems is represented by PDEs whose
inputs and outputs depend on infinitely many uncertain parameters. For this class of
problems, numerical algorithms are sought that are able to identify a finite set of most
important parameters to be incorporated into the basis of the approximation space, such
that the solution to the underlying PDE, or the quantity of interest derived from the solu-
tion, can be approximated to a prescribed accuracy (engineering tolerance) with minimal
computational work.
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Adaptive techniques based on rigorous a posteriori error analysis of computed solutions
provide an effective mechanism for building approximation spaces and accelerating con-
vergence of computed solutions. These techniques rely heavily on how the approximation
error is estimated and controlled. One may choose to estimate the error in the global
energy norm and use the associated error indicators to enhance the computed solution
and drive the energy error estimate to zero. However, in practical applications, simula-
tions often target a specific (e.g., localized) feature of the solution, called the quantity
of interest and represented using a linear functional of the solution. In these cases, the
energy norm may give very little useful information about the simulation error.

Alternative error estimation techniques, such as goal-oriented error estimations, e.g.,
by the dual-weighted residual methods, allow to control the errors in the quantity of inter-
est. While for deterministic PDEs, these error estimation techniques and the associated
adaptive algorithms are very well studied (see, e.g., [EEHJ95, JS95, BR96, PO99, BR01,
GS02, BR03] for the a posteriori error estimation and [MS09, BET11, HP16, FPZ16] for a
rigorous convergence analysis of adaptive algorithms), relatively little work has been done
for PDEs with parametric or uncertain inputs. For example, in the framework of (intru-
sive) stochastic Galerkin finite element methods (sGFEMs) (see, e.g., [GS91, LPS14]),
a posteriori error estimation of linear functionals of solutions to PDEs with paramet-
ric uncertainty is addressed in [MLM07] and, for nonlinear problems, in [BDW11]. In
particular, in [MLM07], a rigorous estimator for the error in the quantity of interest is
derived and several adaptive refinement strategies are discussed. However, the authors
comment that the proposed estimator lacks information about the structure of the esti-
mated error; in particular, it does not allow to assess individual contributions from spatial
and parametric discretizations and to perform anisotropic refinement of the parametric
approximation space (see [MLM07, page 113]).

As for nonintrusive methods, the goal-oriented error estimation techniques and the
associated adaptive algorithms are proposed in [AO10] for the stochastic collocation
method (see, e.g., [BNT07]) and in [EMN16] for the multilevel Monte Carlo sampling (see,
e.g., [Gil15]). A posteriori error estimates for quantities of interest derived from generic
surrogate approximations (either intrusive or nonintrusive) are introduced in [BPW15].
These estimates provide separate error indicators for spatial and parametric discretiza-
tions. The indicators are then used to identify dominant sources of error and guide the
adaptive algorithm for approximating the quantity of interest. Various adaptive refine-
ment strategies are discussed in [BPW15] and tested for model PDE problems with inputs
that depend on a finite number of uncertain parameters.

Our main aim in this paper is to design an adaptive sGFEM algorithm for accurate
approximation of moments of a quantity of interest Q(u), which is a linear functional
of the solution u to the following model problem whose coefficient depends linearly on
infinitely many parameters:

−∇x · (a(x,y)∇xu(x,y)) = f(x), x ∈ D, y ∈ Γ,

u(x,y) = 0, x ∈ ∂D, y ∈ Γ.
(1)

Here, D ⊂ R2 is a bounded Lipschitz domain with polygonal boundary ∂D, Γ :=∏∞
m=1 Γm is the parameter domain with Γm being bounded intervals in R for all m ∈ N,
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f ∈ H−1(D), and the parametric coefficient a = a(·,y) is represented as

a(x,y) = a0(x) +
∞∑

m=1

ymam(x), x ∈ D, y = (y1, y2, . . .) ∈ Γ, (2)

for a family of functions am(x) ∈ L∞(D), m ∈ N0, and with the series converging uni-
formly in L∞(D) (an example of such a representation is the Karhunen–Loève expansion
of a random field with given covariance function and mean a0(x); see, e.g., [GS91, LPS14]).

In this work, we are particularly interested in estimating and controlling the expected
error in the quantity of interest, E[Q(u − uN)], where uN is an approximation of u
via sGFEM. This enables us to use the ideas of goal-oriented adaptivity, where one is
interested in controlling the error in the goal functional G(u) := E[Q(u)] (rather than,
e.g., in the energy norm).

1.1. Goal-oriented error estimation in the abstract setting. In order to motivate
the design of our adaptive algorithm, let us first recall the idea of goal-oriented error
estimation. Let V be a Hilbert space and denote by V ′ its dual space. Let B : V ×V → R
be a continuous, elliptic, and symmetric bilinear form with the associated energy norm
|‖ · ‖|, i.e., |‖ v ‖|2 := B(v, v) for all v ∈ V . Given two continuous linear functionals
F,G ∈ V ′, our aim is to approximate G(u), where u ∈ V is the unique solution of the
primal problem:

B(u, v) = F (v) for all v ∈ V.
To this end, the standard approach (see, e.g., [EEHJ95, BR01, GS02, BR03]) considers
z ∈ V as the unique solution to the dual problem:

B(v, z) = G(v) for all v ∈ V .

Let V? be a finite dimensional subspace of V . Let u? ∈ V? (resp., z? ∈ V?) be the unique
Galerkin approximation of the solution to the primal (resp., dual) problem, i.e.,

B(u?, v?) = F (v?) (resp., B(v?, z?) = G(v?)) for all v? ∈ V?.

Then, it follows that

|G(u)−G(u?)| = |B(u− u?, z)| = |B(u− u?, z − z?)| ≤ |‖u− u? ‖| |‖ z − z? ‖|, (3)

where the second equality holds due to Galerkin orthogonality.
Assume that µ? and ζ? are reliable estimates for the energy errors |‖u − u? ‖| and
|‖ z − z? ‖|, respectively, i.e.,

|‖u− u? ‖| . µ? and |‖ z − z? ‖| . ζ? (4)

(hereafter, a . b means the existence of a generic positive constant C such that a ≤ Cb,
and a ' b abbreviates a . b . a). Hence, inequality (3) implies that the product µ? ζ? is
a reliable error estimate for the approximation error in the goal functional:

|G(u)−G(u?)| . µ? ζ?. (5)
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1.2. Main contributions and outline of the paper. In view of estimate (5), a goal-
oriented adaptive algorithm must drive the product of computable energy error estimates
µ? and ζ? to zero with the best possible rate. Aiming to design such an algorithm for
the parametric model problem (1), our first step is to find appropriate a posteriori error
estimates µ? and ζ?.

There have been several very recent works that addressed a posteriori error estima-
tion of stochastic Galerkin approximations for parametric problems, including explicit
residual-based a posteriori error estimators in [EGSZ14, EGSZ15], local equilibration er-
ror estimators in [EM16], and hierarchical estimators in [BPS14, BS16]. In this paper,
we propose a novel a posteriori error estimation technique that can be used to control
the energy errors in the primal and dual Galerkin approximations (see (4)). Similarly
to the aforementioned works, we exploit the tensor product structure of the approxima-
tion space to separate the error contributions due to spatial approximations from the
ones that are due to parametric approximations. Then, building on the hierarchical
framework developed in [BPS14, BS16] and using the ideas from [MSW98, MS99] (see
also [DLY89, BEK96] for earlier works in this direction), we define a new two-level a pos-
teriori estimate of the energy error and prove that it is reliable and efficient. One of the
key advantages of this new estimator is that it avoids the solution of linear systems when
estimating the errors coming from spatial approximations (while keeping the hierarchical
structure of the estimator) and thus speeds up the computation.

The goal-oriented adaptive algorithm developed in this paper draws information from
the error estimates µ?, ζ? and performs a balanced adaptive refinement of spatial and
parametric components of the finite-dimensional space V? to reduce the error in approx-
imating the goal functional G(u). Specifically, the marking is performed by employing
and extending the strategy proposed in [FPZ16], and the refinements are driven by the
estimates of reduction in the product of energy errors |‖u−u? ‖| |‖ z−z? ‖| (that provides
an upper bound for the error in the goal functional, see (3)).

Finally, we use three representative examples of parametric PDEs posed over square,
L-shaped, and slit domains as well as different quantities of interest to demonstrate the
performance and effectiveness of our goal-oriented adaptive strategy.

The rest of the paper is organised as follows. In Section 2 we set the parametric model
problem (1) in weak form and introduce the sGFEM discretization for this problem.
Section 3 concerns a posteriori error estimation in the energy norm for the model prob-
lem (1). First, we review a hierarchical a posteriori error estimation strategy in §3.1.
Then, in §3.2, a new two-level a posteriori error estimate is introduced and proved to be
reliable and efficient. The goal-oriented adaptive sGFEM algorithm employing two-level
error estimates is presented in Section 4, and the results of numerical experiments are
reported in Section 5. Finally, in Section 6, we summarize the results of the paper and
discuss some possible extensions.

2. Parametric model problem and its discretization

2.1. Weak formulation. Consider the parametric model problem (1) with the co-
efficient a = a(x,y) represented as in (2). Without loss of generality (see [SG11,
Lemma 2.20]), we assume that Γm := [−1, 1] for all m ∈ N. In order to ensure con-
vergence of the series in (2) and positivity of a(x,y) for each x ∈ D and y ∈ Γ, we
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assume that there exists amin
0 , amax

0 > 0 such that

0 < amin
0 ≤ a0(x) ≤ amax

0 <∞ a.e. in D (6)

and

τ :=
1

amin
0

∞∑

m=1

‖am‖L∞(D) < 1. (7)

Let us introduce a measure π = π(y) on (Γ,B(Γ)), where B(Γ) is the Borel σ-algebra on Γ.
We assume that π is the product of symmetric probability measures πm on (Γm,B(Γm)),
with B(Γm) being the Borel σ-algebra on Γm, i.e., π(y) =

∏∞
m=1 πm(ym), y ∈ Γ.

Now, we can consider the Bochner space V := L2
π(Γ;H1

0 (D)), where L2
π(Γ) is the

standard Lebesgue space on Γ (with respect to the measure π) and H1
0 (D) denotes the

Sobolev space of functions in H1(D) vanishing at the boundary ∂D in the sense of traces.
For each u, v ∈ V , we define the following symmetric bilinear forms

B0(u, v) :=

∫

Γ

∫

D

a0(x)∇u(x,y) · ∇v(x,y) dx dπ(y),

B(u, v) := B0(u, v) +
∞∑

m=1

∫

Γ

∫

D

ym am(x)∇u(x,y) · ∇v(x,y) dx dπ(y). (8)

Note that assumptions (6) and (7) ensure that B0(·, ·) and B(·, ·) are continuous and
elliptic on V . Therefore, they induce norms that we denote by |‖ · ‖|0 and |‖ · ‖|,
respectively. Moreover, with 0 < λ :=

amin
0

amax
0 (1+τ)

< 1 < Λ :=
amax
0

amin
0 (1−τ)

<∞, there holds

λ |‖ v ‖|2 ≤ |‖ v ‖|20 ≤ Λ |‖ v ‖|2 for all v ∈ V ; (9)

see, e.g., [SG11, Proposition 2.22].
We can now introduce the weak formulation of (1) that reads as follows: Given f ∈

H−1(D), find u ∈ V such that

B(u, v) = F (v) :=

∫

Γ

∫

D

f(x)v(x,y) dx dπ(y) for all v ∈ V . (10)

The Lax–Milgram lemma proves the existence and uniqueness of the solution u ∈ V
to (10).

2.2. Discrete formulations. For any finite-dimensional subspace of V , problem (10)
can be discretized by using the Galerkin projection onto this subspace. The construction
of the finite-dimensional subspaces of V relies on the fact that the Bochner space V =
L2
π(Γ;H1

0 (D)) is isometrically isomorphic to the tensor product Hilbert space H1
0 (D) ⊗

L2
π(Γ) (see, e.g., [SG11, Theorem B.17, Remark C.24]). Therefore, we can define the

finite-dimensional subspace of V as the tensor product of independently constructed
finite-dimensional subspaces of H1

0 (D) and L2
π(Γ).

Let T be a conforming triangulation of D into compact simplices, and let NT denote
the corresponding set of interior vertices. For the finite-dimensional subspace of H1

0 (D),
we use the space of first-order (P1) finite element functions:

X = S1
0 (T ) :=

{
v ∈ H1

0 (D) : v|T is affine for all T ∈ T
}
.
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Let us now introduce the finite-dimensional subspaces of L2
π(Γ). For each m ∈ N,

let (Pm
n )n∈N0 denote the sequence of univariate polynomials which are orthonormal with

respect to the inner product 〈·, ·〉πm in L2
πm(Γm), such that Pm

n is a polynomial of degree
n ∈ N0. It is well-known that these polynomials form an orthonormal basis of L2

πm(Γm)
and can be constructed using the three-term recurrence formula (see, e.g., [Gau04, The-
orem 1.29] and recall that πm is symmetric)

βmn P
m
n+1(ym) = ym P

m
n (ym)− βmn−1 P

m
n−1(ym) for all n ∈ N0 (11)

with initialisation Pm
0 ≡ 1, Pm

−1 ≡ 0 and coefficients

βm−1 := 1, βmn :=

(∫

Γm

(
ym P

m
n (ym)− βmn−1 P

m
n−1(ym)

)2
dπm(ym)

)1/2

for n ∈ N0.

In order to construct an orthonormal basis in L2
π(Γ), consider the following countable

set of finitely supported multi-indices

I :=
{
ν = (ν1, ν2, . . . ) ∈ NN

0 : #supp(ν) <∞
}
with supp(ν) :=

{
m ∈ N : νm 6= 0

}
.

Throughout the paper, the set I, as well as any of its subsets, will be called the index
set. For each index ν ∈ I, we define the tensor product polynomial

Pν(y) :=
∏

m∈supp(ν)

Pm
νm(ym).

The set
{
Pν : ν ∈ I

}
is an orthonormal basis of L2

π(Γ); see [SG11, Theorem 2.12]. Since
the Bochner space V is isometrically isomorphic to L2

π(Γ)⊗H1
0 (D), each function v ∈ V

can be represented in the form

v(x,y) =
∑

ν∈I
vν(x)Pν(y) with unique coefficients vν ∈ H1

0 (D). (12)

There holds the following important, yet elementary, observation.

Lemma 2.1. For all v, w ∈ V , the following equality holds:

B0(v, w) =
∑

ν∈I

∫

D

a0(x)∇vν(x) · ∇wν(x) dx. (13)

In particular,
|‖ v ‖|20 =

∑

ν∈I
‖a1/2

0 ∇vν‖2
L2(D). (14)

Proof. Using representation (12) for v, w ∈ V , we have that

B0(v, w) =
∑

µ,ν∈I

∫

Γ

∫

D

a0(x)∇vν(x) · ∇wµ(x)Pν(y)Pµ(y) dx dπ(y)

=
∑

µ,ν∈I

(∫

D

a0(x)∇vν(x) · ∇wµ(x) dx

)(∫

Γ

Pν(y)Pµ(y) dπ(y)

)
.

This proves (13), since (Pν)ν∈I is an orthonormal basis of L2
π(Γ). Furthermore, selecting

w = v in (13) we obtain (14). �
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For any finite index set P ⊂ I, the finite-dimensional subspace of L2
π(Γ) is given

by span
({
Pν : ν ∈ P

})
. Thus, we can now define the finite-dimensional subspace VXP

of V as
VXP := X ⊗ span

({
Pν : ν ∈ P

})
. (15)

The discrete formulation of (10) then reads as follows: Find uXP ∈ VXP such that

B(uXP, vXP) = F (vXP) for all vXP ∈ VXP. (16)

Since VXP is a tensor product space, the Galerkin solution uXP∈VXP can be represented as

uXP(x,y) =
∑

ν∈P
uν(x)Pν(y) with unique coefficients uν ∈ X.

We implicitly assume that P always contains the zero-index 0 := (0, 0, . . . ). We say that
a parameter ym is active in the index set P (and hence, in the Galerkin solution uXP) if
m ∈ supp(P) :=

⋃
ν∈P supp(ν).

The approximation provided by uXP can be improved by enriching the subspace VXP.
There are many ways how one can combine the enrichments in spatial (finite element)
approximations with the ones in polynomial approximations on the parameter domain
(see, e.g., [BPS14, EGSZ14, BS16]). Here we follow the approach developed in [BS16].

Let us consider a conforming triangulation T̂ of D obtained by a uniform refinement
of T . We choose the enriched finite element space as

X̂ := S1
0 (T̂ ) = X ⊕ Y, where Y :=

{
v ∈ X̂ : v(ξT ) = 0 for all ξT ∈ NT

}
. (17)

Here, the subspace Y ⊂ H1
0 (D) is called the detail (finite element) space. Note that the

sum in (17) is indeed a direct sum, i.e., X ∩ Y = {0}.
In order to enrich the polynomial space on Γ, we consider a finite index set Q ⊂ I such

that P ∩Q = ∅ and define the enriched index set P̂ := P ∪Q. The subset Q is called
the detail index set.

The enriched finite-dimensional subspace of V is then defined as follows:

V̂XP := VXP ⊕ VYP ⊕ VXQ,

where

VYP := Y ⊗ span
({
Pν : ν ∈ P

})
and VXQ := X ⊗ span

({
Pν : ν ∈ Q

})
.

Note that VXP⊕VYP is a direct sum, whereas the direct sums VXP⊕VXQ and VYP⊕VXQ

are also orthogonal, since P ∩Q = ∅.
Consider now the discrete formulation posed on V̂XP: Find ûXP ∈ V̂XP such that

B(ûXP, v̂XP) = F (v̂XP) for all v̂XP ∈ V̂XP. (18)

Since VXP ⊂ V̂XP, the Galerkin orthogonality

B(u− ûXP, v̂XP) = 0 for all v̂XP ∈ V̂XP

and the symmetry of the bilinear form B(·, ·) imply that

|‖u− ûXP ‖|2 + |‖ ûXP − uXP ‖|2 = |‖u− uXP ‖|2. (19)
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In particular, this yields that |‖u− ûXP ‖| ≤ |‖u− uXP ‖|. As in [BS16], we assume that
a stronger property (usually referred to as saturation assumption) holds: There exists a
uniform constant 0 < β < 1 such that

|‖u− ûXP ‖| ≤ β |‖u− uXP ‖|. (20)

3. A POSTERIORI error estimation in the energy norm

Let uXP ∈ VXP and ûXP ∈ V̂XP be two Galerkin approximations defined by (16) and (18),
respectively. It is well known that the two-level error uXP − ûXP provides a reliable and
efficient estimate for the error u − uXP in the energy norm. Indeed, on the one hand,
(19) implies the efficiency, i.e.,

|‖ ûXP − uXP ‖| ≤ |‖u− uXP ‖|, (21)

and, on the other hand, it follows from (19) and elementary calculations that the satura-
tion assumption (20) is equivalent to the reliability, i.e.,

|‖u− uXP ‖| ≤ C |‖ ûXP − uXP ‖| with C := (1− β2)−1/2. (22)

However, this error estimate bears the computational cost associated with finding the
enhanced solution ûXP ∈ V̂XP. In addition to that, the evaluation of the norm |‖uXP −
ûXP ‖| is expensive, due to its dependence on the coefficients am corresponding to all
active parameters ym in the index set P; see (8). Therefore, our aim is to derive lower
and upper bounds for |‖ ûXP − uXP ‖| in terms of another error estimate that avoids the
computation of ûXP and is inexpensive to evaluate. Two approaches to this task are
discussed in the next two subsections.

3.1. Hierarchical error estimators. One way to avoid the computation of ûXP is
to use a standard hierarchical approach to a posteriori error estimation that goes back
to [BW85] (see also [Ban96, AO00]). In the context of parametric operator equations
(and, in particular, for the parametric model problem (1)), this approach was pursued
in [BPS14, BS16]. Let us briefly recall the construction of the error estimators proposed
in [BS16].

Let êXP ∈ V̂XP be the unique solution to the problem

B0(êXP, v̂XP) = F (v̂XP)−B(uXP, v̂XP) for all v̂XP ∈ V̂XP. (23)

It follows from (23) that B0(êXP, v̂XP) = B(ûXP−uXP, v̂XP) for any v̂XP ∈ V̂XP. Hence,
selecting v̂XP = êXP and v̂XP = ûXP − uXP, the variational formulation (23) and the
equivalence between |‖ · ‖| and |‖ · ‖|0 (see (9)) prove that

λ |‖ êXP ‖|20 ≤ |‖ ûXP − uXP ‖|2 ≤ Λ |‖ êXP ‖|20. (24)

Now, let eX̂P ∈ VXP ⊕ VYP =: VX̂P be the unique solution to

B0(eX̂P, vX̂P) = F (vX̂P)−B(uXP, vX̂P) for all vX̂P ∈ VX̂P, (25)

and, for each ν ∈ Q, let e(ν)
XQ ∈ X ⊗ span (Pν) be the unique solution to

B0(e
(ν)
XQ, vXPν) = F (vXPν)−B(uXP, vXPν) for all vX ∈ X. (26)
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Note that all subspaces X ⊗ span (Pν) (ν ∈ Q) are pairwise orthogonal with respect to
B0(·, ·). Moreover, since P ∩ Q = ∅, the subspace VX̂P is B0(·, ·)-orthogonal to X ⊗
span (Pν) for each ν ∈ Q. Therefore, the following decomposition holds

êXP = eX̂P +
∑

ν∈Q
e

(ν)
XQ with |‖ êXP ‖|20 = |‖ eX̂P ‖|20 +

∑

ν∈Q
|‖ e(ν)

XQ ‖|20. (27)

Replacing eX̂P in (27) with the hierarchical error estimator eYP ∈ VYP satisfying

B0(eYP, vYP) = F (vYP)−B(uXP, vYP) for all vYP ∈ VYP, (28)

[BS16] introduces the following a posteriori error estimate

η2
XP := |‖ eYP ‖|20 +

∑

ν∈Q
|‖ e(ν)

XQ ‖|20. (29)

We refer to eYP and e
(ν)
XQ as the spatial and parametric error estimators, respectively.

Note that the parameter-free B0(·, ·)-norm is used in (29) for efficient evaluation of the
error estimators of both types.

Under the saturation assumption (20), it has been shown in [BS16, Theorem 4.1] that
ηXP provides an efficient and reliable estimate for the energy norm of the discretization
error. In particular, the following inequalities hold

√
λ ηXP ≤ |‖u− uXP ‖| ≤

√
Λ√

1− β2
√

1− γ2
ηXP,

where λ,Λ are the constants in (9), β ∈ [0, 1) is the saturation constant in (20), and
γ ∈ [0, 1) is the smallest constant in the strengthened Cauchy–Schwarz inequality for the
finite element subspaces X and Y (see, e.g., [AO00, equation (5.26)]), i.e.,

γ = sup
u∈X, v∈Y

∣∣(a0∇u,∇v)L2(D)

∣∣
‖a1/2

0 ∇u‖L2(D) ‖a1/2
0 ∇v‖L2(D)

.

Note that in order to compute the spatial error estimator eYP and the parametric error
estimators e(ν)

XQ (ν ∈ Q), one needs to solve the linear systems associated with discrete
formulations (28) and (26), respectively. In the following section, we propose a two-level
error estimation technique that avoids the solution of the linear system for the spatial
error estimator.

3.2. Two-level a posteriori error estimation in the energy norm. Recall that T̂
denotes a uniform refinement of the triangulation T . Let NT̂ denote the set of interior
vertices of T̂ and suppose that NT̂ \NT = {ξ1, . . . , ξn}. For each new vertex ξj ∈ NT̂ \NT ,
let ϕj ∈ X̂ be the corresponding hat function, i.e., ϕj(ξj) = 1 and ϕj(ξ) = 0 for all
ξ ∈ NT̂ \ {ξj}. Then, the set B := {ϕ1, . . . , ϕn} is a basis of the detail finite element
space Y defined in (17). Moreover, there exists a constant K ≥ 1 such that

#
{
ϕj ∈ B : interior

(
supp(ϕj) ∩ T

)
6= ∅
}
≤ K for all T ∈ T . (30)

Turning now to the detail index set Q ⊂ I, we follow the construction suggested
in [BS16]. Let ε(m) := (ε

(m)
1 , ε

(m)
2 , . . . ) (m ∈ N) denote the Kronecker delta index such
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that ε(m)
k = δmk, for all k ∈ N. For a fixed M ∈ N, define

Q :=
{
µ ∈ I \P : µ = ν ± ε(m) for some ν ∈ P and some m = 1, . . . ,MP +M

}
, (31)

where MP ∈ N is the number of active parameters in the index set P, that is

MP :=

{
0 if P = {(0, 0, . . . )},
max

{
max(supp(ν)) : ν ∈ P \ {(0, 0, . . . )}

}
otherwise.

Thus, for a given P ⊂ I, the index set Q defined by (31) contains only those “neighbors”
of all indices in P that have up toMP+M active parameters, that isM parameters more
than currently activated in the index set P (we refer to Lemma 4.3 and Corollary 4.1 in
[BS16] for theoretical underpinnings of this construction).

Having fixed the detail space Y and the detail index set Q, we can now define the
following estimate of the energy error |‖u−uXP ‖|, which avoids the computation of eX̂P

from (25):

µ2
XP :=

∑

ν∈P

n∑

j=1

|F (ϕjPν)−B(uXP, ϕjPν)|2

‖a1/2
0 ∇ϕj‖2

L2(D)

+
∑

ν∈Q
|‖ e(ν)

XQ ‖|20, (32)

where e(ν)
XQ are defined in (26) for each ν ∈ Q.

The following theorem is the main result of this section.

Theorem 3.1. Let u ∈ V be the solution to problem (10), and let uXP ∈ VXP and
ûXP ∈ V̂XP be two Galerkin approximations satisfying (16) and (18), respectively. Then,
there exists a constant Cthm ≥ 1, which depends only on the shape regularity of T and T̂ ,
the (local) mesh-refinement rule, and the mean field a0, such that the error estimate µXP

defined by (32) satisfies
λ

K
µ2
XP ≤ |‖ ûXP − uXP ‖|2 ≤ ΛCthm µ

2
XP, (33)

where λ,Λ are the constants in (9) and K is the constant in (30).
Furthermore, under the saturation assumption (20), there holds

λ

K
µ2
XP ≤ |‖u− uXP ‖|2 ≤

ΛCthm

1− β2
µ2
XP, (34)

where β ∈ [0, 1) is the saturation constant in (20).

Remark 3.2. On the one hand, Theorem 3.1 shows that µXP provides a reliable and
efficient estimate for the energy norm of the error (see (34)). On the other hand, recall
that |‖ ûXP− uXP ‖| is the error reduction (in the energy norm) that would be achieved if
the enhanced solution ûXP ∈ V̂XP were to be computed (see (19)). Hence, inequalities (33)
show that µXP also provides an estimate for this error reduction. Moreover, note that
Theorem 3.1 holds for any finite detail index set Q ⊂ I\P and any conforming refinement
T̂ of T (and the corresponding detail space Y ). Finally, we stress that our proof of
Theorem 3.1 holds for any spatial dimension, while we restrict the proof to 2D to ease the
presentation.

Remark 3.3. For the implementation of µXP, note that the spatial contributions include:
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• in the numerator, the entries of the algebraic residual of uXP, where the Galerkin
data are computed with respect to the enrichment VYP;
• in the denominator, the diagonal elements of the spatial stiffness matrix with
respect to the detail space Y .

Moreover, the denominator can be easily simplified. Suppose that T ∈ T and ϕj ∈ B with
supp(ϕj) ⊆ patch(T ). With hT being the diameter of T , there holds

‖a1/2
0 ∇ϕj‖2

L2(D) ' h−2
T ‖ϕj‖2

L2(D) ' 1,

where the equivalence constants depend only on the shape regularity of T̂ , the (local)
mesh-refinement rule, and the mean field a0.

In order to prove Theorem 3.1, let us collect some auxiliary results.

Lemma 3.4. Let v =
∑

ν∈P
∑n

j=1 vjνPν ∈ VYP with vjν ∈ span (ϕj). Then,

K−1 |‖ v ‖|20 ≤
∑

ν∈P

n∑

j=1

‖a1/2
0 ∇vjν‖2

L2(D) ≤ Cloc |‖ v ‖|20, (35)

where the constant Cloc > 0 depends only on the shape regularity of T̂ , the (local) mesh-
refinement rule, and the mean field a0.

Proof. The proof consists of three steps.
Step 1. Let T ∈ T and wj ∈ span (ϕj) for all j = 1, . . . , n. Observe that

∥∥∥a1/2
0 ∇

n∑

j=1

wj

∥∥∥
L2(T )

≤
n∑

j=1

‖a1/2
0 ∇wj‖L2(T ) ≤

√
K

( n∑

j=1

‖a1/2
0 ∇wj‖2

L2(T )

)1/2

.

Hence, summing over all T ∈ T , we obtain
∥∥∥a1/2

0 ∇
n∑

j=1

wj

∥∥∥
2

L2(D)
≤ K

∑

T∈T

n∑

j=1

‖a1/2
0 ∇wj‖2

L2(T ) = K
n∑

j=1

‖a1/2
0 ∇wj‖2

L2(D).

Step 2. To prove the converse estimate, let T ∈ T and wj ∈ span (ϕj) for all j =

1, . . . , n. Note that ‖a1/2
0 ∇wY ‖L2(T ) = 0 for wY ∈ Y implies that wY |T = 0, since wY |T

would be a constant with wY (ξT ) = 0 for all ξT ∈ NT ∩T . Thus, using the representation
wY =

∑n
j=1wj with unique wj ∈ span (ϕj) for all j = 1, . . . , n, the quantities

( n∑

j=1

‖a1/2
0 ∇wj‖2

L2(T )

)1/2

and
∥∥∥∥a

1/2
0 ∇

n∑

j=1

wj

∥∥∥∥
L2(T )

define two norms on Y |T :=
{
wY |T : wY ∈ Y

}
. Due to equivalence of norms on finite

dimensional spaces, we use the standard scaling argument to obtain
n∑

j=1

∥∥a1/2
0 ∇wj

∥∥2

L2(T )
'
∥∥∥∥a

1/2
0 ∇

n∑

j=1

wj

∥∥∥∥
2

L2(T )

for all wj ∈ span (ϕj) , j = 1, . . . , n, (36)

where the equivalence constants depend on a0 and the shape regularity of T̂ , as well as
on the type of the mesh-refinement strategy (that affects the configuration of the local
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space Y |T ). Summing the upper bounds in (36) over all T ∈ T , we prove that
n∑

j=1

‖a1/2
0 ∇wj‖2

L2(D) .
∥∥∥a1/2

0 ∇
n∑

j=1

wj

∥∥∥
2

L2(D)
for all wj ∈ span (ϕj), j = 1, . . . , n.

Step 3. Using Lemma 2.1, the estimates proved in Step 1 and Step 2 imply that

|‖ v ‖|20
(14)
=
∑

ν∈P

∥∥∥a1/2
0 ∇

n∑

j=1

vjν

∥∥∥
2

L2(D)
'
∑

ν∈P

n∑

j=1

‖a1/2
0 ∇vjν‖2

L2(D).

This concludes the proof. �
Lemma 3.5. Let PT be the nodal interpolation operator onto S1(T ). For any function
vX̂P =

∑
ν∈P v̂νPν ∈ VX̂P with v̂ν ∈ X̂, define vXP =

∑
ν∈P(PT v̂ν)Pν ∈ VXP. Then, we

have the representation

vX̂P − vXP =
∑

ν∈P

n∑

j=1

vjνPν ∈ VYP with vjν ∈ span (ϕj) , (37)

and there holds
|‖ vX̂P − vXP ‖|0 ≤ Cstb |‖ vX̂P ‖|0, (38)

where the constant Cstb > 0 depends only on the shape regularity of T̂ , the (local) mesh-
refinement rule, and the mean field a0.

Proof. The proof consists of two steps.
Step 1. Let vX̂ ∈ X̂. Then, vX := PT vX̂ ∈ X = S1

0 (T ). Since X̂ = X ⊕ Y ,
there exist unique wX ∈ X and wY ∈ Y such that vX̂ − vX = wX + wY . Observe that
(vX̂ − vX)(ξT ) = 0 = wY (ξT ) for every vertex ξT ∈ NT . Hence wX(ξT ) = 0 for all
ξT ∈ NT and hence wX = 0, i.e., vX̂ −vX ∈ Y . Moreover, a scaling argument proves that

‖a1/2
0 ∇(PT vX̂)‖L2(T ) . ‖a1/2

0 ∇vX̂‖L2(T ) for all T ∈ T ,
where the hidden constant depends only on a0 and the shape regularity of T̂ , as well as
on the type of the mesh-refinement strategy (that affects the configuration of the local
space Y |T ). Summing this estimate over all T ∈ T , we see that

‖a1/2
0 ∇(PT vX̂)‖L2(D) . ‖a1/2

0 ∇vX̂‖L2(D) for all vX̂ ∈ X̂. (39)

Step 2. Recall that vX̂P − vXP =
∑

ν∈P(v̂ν − PT v̂ν)Pν . According to Step 1, v̂ν −
PT v̂ν ∈ Y and hence v̂ν −PT v̂ν =

∑n
j=1 vjν with some vjν ∈ span (ϕj). This proves (37).

Moreover, Lemma 2.1 yields that

|‖ vXP ‖|20
(14)
=
∑

ν∈P
‖a1/2

0 ∇(PT v̂ν)‖2
L2(D)

(39)
.
∑

ν∈P
‖a1/2

0 ∇v̂ν‖2
L2(D)

(14)
= |‖ vX̂P ‖|20.

The triangle inequality then proves (38). �
To state the following lemma, we need some further notation. Let GXP : V → VXP be

the orthogonal projection onto VXP with respect to B0(·, ·), i.e., for all w ∈ V ,

B0(GXPw, vXP) = B0(w, vXP) for all vXP ∈ VXP.
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Furthermore, for ν ∈ P and ϕj ∈ B (i.e., for j ∈ {1, . . . , n}), let Gjν : V → span (ϕjPν)
be the orthogonal projection onto span (ϕjPν) with respect to B0(·, ·), i.e., for all w ∈ V ,

B0(Gjνw, vPν) = B0(w, vPν) for all v ∈ span (ϕj) .

Lemma 3.6. For any vX̂P ∈ VX̂P, the following estimates hold

C−1
Y |‖ vX̂P ‖|20 ≤ |‖ GXPvX̂P ‖|20 +

∑

ν∈P

n∑

j=1

|‖ GjνvX̂P ‖|20 ≤ 2K |‖ vX̂P ‖|20, (40)

where the constant CY ≥ 1 depends only on the shape regularity of T̂ , the (local) mesh-
refinement rule, and the mean field a0. Moreover, the upper bound holds with constant K
(instead of 2K), if GXPvX̂P = 0.

Proof. The proof consists of two steps.
Step 1. Let us prove the lower bound in (40). To this end, let vX̂P ∈ VX̂P and choose

vXP ∈ VXP as in Lemma 3.5. Then we have that

|‖ vX̂P ‖|20
(37)
=B0(vX̂P, vXP) +

∑

ν∈P

n∑

j=1

B0(vX̂P, vjνPν)

=B0(GXPvX̂P, vXP) +
∑

ν∈P

n∑

j=1

B0(GjνvX̂P, vjνPν)

≤
(
|‖ GXPvX̂P ‖|20 +

∑

ν∈P

n∑

j=1

|‖ GjνvX̂P ‖|20
)1/2(

|‖ vXP ‖|20 +
∑

ν∈P

n∑

j=1

|‖ vjνPν ‖|20
)1/2

.

First, note that

|‖ vXP ‖|0 ≤ |‖ vX̂P ‖|0 + |‖ vX̂P − vXP ‖|0
(38)
≤ (1 + Cstb) |‖ vX̂P ‖|0.

Second, we use the upper bound in (35) to obtain that

∑

ν∈P

n∑

j=1

|‖ vjνPν ‖|20
(14)
=
∑

ν∈P

n∑

j=1

‖a1/2
0 ∇vjν‖2

L2(D)

(35)
≤ Cloc

∣∣∣
∥∥∥
∑

ν∈P

n∑

j=1

vjνPν

∥∥∥
∣∣∣
2

0

(37)
= Cloc |‖ vX̂P − vXP ‖|20

(38)
≤ ClocC

2
stb |‖ vX̂P ‖|20.

Combining the foregoing three estimates, we conclude that

|‖ vX̂P ‖|20 ≤ CY

(
|‖ GXPvX̂P ‖|20 +

∑

ν∈P

n∑

j=1

|‖ GjνvX̂P ‖|20
)
,

where CY = (1 + Cstb)2 + ClocC
2
stb ≥ 1.
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Step 2. Let us now prove the upper bound in (40). One has

|‖ GXPvX̂P ‖|20 +
∑

ν∈P

n∑

j=1

|‖ GjνvX̂P ‖|20 = B0(GXPvX̂P, vX̂P) +
∑

ν∈P

n∑

j=1

B0(GjνvX̂P, vX̂P)

= B0

(
GXPvX̂P +

∑

ν∈P

n∑

j=1

GjνvX̂P, vX̂P

)
≤
∣∣∣
∥∥∥GXPvX̂P +

∑

ν∈P

n∑

j=1

GjνvX̂P

∥∥∥
∣∣∣
0
|‖ vX̂P ‖|0.

First, note that
∣∣∣
∥∥∥GXPvX̂P +

∑

ν∈P

n∑

j=1

GjνvX̂P

∥∥∥
∣∣∣
0
≤
√

2
(
|‖ GXPvX̂P ‖|20 +

∣∣∣
∥∥∥
∑

ν∈P

n∑

j=1

GjνvX̂P

∥∥∥
∣∣∣
2

0

)1/2

.

Second, let GjνvX̂P = vjνPν . Then, vjν ∈ span (ϕj) and
∣∣∣
∥∥∥
∑

ν∈P

n∑

j=1

GjνvX̂P

∥∥∥
∣∣∣
2

0
=
∣∣∣
∥∥∥
∑

ν∈P

n∑

j=1

vjνPν

∥∥∥
∣∣∣
2

0

(35)
≤ K

∑

ν∈P

n∑

j=1

‖a1/2
0 ∇vjν‖2

L2(D)

(14)
= K

∑

ν∈P

n∑

j=1

|‖ GjνvX̂P ‖|20.

Combining the foregoing three inequalities, we obtain the estimate
(
|‖ GXPvX̂P ‖|20 +

∑

ν∈P

n∑

j=1

|‖ GjνvX̂P ‖|20
)1/2

≤
√

2K |‖ vX̂P ‖|0,

which yields the desired upper bound in (40). �
Proof of Theorem 3.1. The proof consists of two steps.
Step 1. Recall the definition of eX̂P ∈ VX̂P given in (25). Since VXP ⊂ VX̂P, we

deduce from (16) and (25) that

B0(eX̂P, vXP) = 0 for all vXP ∈ VXP.

Hence, GXPeX̂P = 0 and therefore Lemma 3.6 proves that

C−1
Y |‖ eX̂P ‖|20 ≤

∑

ν∈P

n∑

j=1

|‖ GjνeX̂P ‖|20 ≤ K |‖ eX̂P ‖|20.

Since CY , K ≥ 1, we use decomposition (27) to obtain

C−1
Y |‖ êXP ‖|20 ≤

∑

ν∈P

n∑

j=1

|‖ GjνeX̂P ‖|20 +
∑

ν∈Q
|‖ e(ν)

XQ ‖|20 ≤ K |‖ êXP ‖|20. (41)

Step 2. The orthogonal projection onto the one-dimensional space span (ϕjPν) satisfies

Gjνv =
B0(v, ϕjPν)

|‖ϕjPν ‖|20
ϕjPν for all v ∈ V.

Hence,

|‖ GjνeX̂P ‖|0
(25)
=
|F (ϕjPν)−B(uXP, ϕjPν)|

|‖ϕjPν ‖|0
(14)
=
|F (ϕjPν)−B(uXP, ϕjPν)|

‖a1/2
0 ∇ϕj‖L2(D)

.
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Using the definition of µXP given in (32), estimate (41) thus implies that

λ

K
µ2
XP

(41)
≤ λ |‖ êXP ‖|20

(24)
≤ |‖ ûXP − uXP ‖|2

(24)
≤ Λ |‖ êXP ‖|20

(41)
≤ ΛCY µ

2
XP.

This proves (33) with Cthm = CY . Estimate (34) then immediately follows from (21)
and (22). �

4. Goal-oriented adaptivity for parametric problems

4.1. Goal-oriented error estimation in the parametric setting. First, let us for-
mulate the abstract result on goal-oriented error estimation (see §1.1) in the context of the
sGFEM discretization for the parametric model problem (1). Let u ∈ V = L2

π(Γ;H1
0 (D))

be the unique primal solution satisfying (10). Then, given a function g ∈ H−1(D), let us
consider the quantity of interest Q(u(·,y)) :=

∫
D
g(x)u(x,y) dx. Then, introducing the

goal functional G ∈ V ′ defined by

G(v) :=

∫

Γ

Q(v(·,y)) dπ(y) =

∫

Γ

∫

D

g(x)v(x,y) dx dπ(y) for all v ∈ V , (42)

we are interested in approximating G(u)—the mean value of the quantity of interest.
Let z ∈ V be the unique dual solution satisfying

B(v, z) = G(v) for all v ∈ V . (43)

Considering the same finite-dimensional subspace VXP ⊂ V as used for the (primal)
Galerkin approximation uXP ∈ VXP (see (15) and (16)), let zXP ∈ VXP be the dual
Galerkin solution satisfying

B(vXP, zXP) = G(vXP) for all vXP ∈ VXP. (44)

Recall that µXP defined by (32) provides a reliable and efficient estimate for the energy
error in the Galerkin approximation of the primal solution u. Let us denote by ζXP the
corresponding estimate for the energy error in the Galerkin approximation of the dual
solution z (recall that the bilinear form B(·, ·) is symmetric). It follows from Theorem 3.1
that

|‖u− uXP ‖| . µXP and |‖ z − zXP ‖| . ζXP.

From the abstract result in §1.1 (see (3)–(5)), we therefore conclude that the error in
approximating G(u) can be controlled by the product of the two error estimates µXP

and ζXP, i.e., |G(u)−G(uXP)| . µXP ζXP.
Let us now discuss some important ingredients of the goal-oriented adaptive algorithm.

Figure 4.1. Refinement pattern of 2D longest edge bisection: Coarse-mesh triangles (top row) are
refined (bottom row) by bisection of the edges (at least the longest edge) that are marked
for refinement (top row). The new nodes are the edge midpoints.
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4.2. Longest edge bisection. In what follows, we restrict ourselves to the mesh-refine-
ments performed by 2D longest edge bisection; see Figure 4.1. Let ET be the set of edges
of T . For any setM ⊆ ET , the call T̃ := Refine(T ,M) returns the coarsest conforming
refinement of T such that all edges E ∈ M are bisected. In particular, we obtain the
uniform refinement T̂ = Refine(T , ET ) from T by three bisections per each element T ∈ T .

Let E int
T ⊂ ET be the set of interior edges, i.e., E ∈ E int

T if and only if there exist
two elements T, T ′ ∈ T such that E = T ∩ T ′. Then, the above choice of T̂ guarantees
the existence of a one-to-one map between the set NT̂ \NT of new interior vertices and
the set E int

T of interior edges. In other words, for any E ∈ E int
T , there exists a unique

j ∈ {1, . . . , n} such that ξj ∈ NT̂ \NT is the midpoint of E. In this case, we denote by
ϕE the corresponding hat function (over T̂ ), i.e., ϕE := ϕj ∈ B, where ϕj (j = 1, . . . , n)
are defined in §3.2.

4.3. Local error indicators in the energy norm. Consider the primal Galerkin
solution uXP ∈ VXP and the associated energy error estimate µXP given by (32). We
write (32) as follows:

µ2
XP = µ2

YP + µ2
XQ =

∑

E∈E intT

µ2
YP(E) +

∑

ν∈Q
µ2
XQ(ν) (45)

with the local contributions

µ2
YP(E) :=

∑

ν∈P

|F (ϕEPν)−B(uXP, ϕEPν)|2

‖a1/2
0 ∇ϕE‖2

L2(D)

and µXQ(ν) := |‖ e(ν)
XQ ‖|0 (46)

(recall that, for each ν ∈ Q, e(ν)
XQ ∈ X ⊗ span (Pν) is defined by (26)). In explicit

terms, µYP (resp., µXQ) is the global two-level spatial error estimate (resp., the global
parametric error estimate), µYP(E) denotes the local (spatial) error indicator associated
with the edge E ∈ E int

T , and µXQ(ν) denotes the individual (parametric) error indicator
associated with the index ν ∈ Q.

A decomposition similar to (45) holds for the error estimate ζXP associated with the
dual Galerkin solution zXP; in this case, we denote the corresponding spatial and para-
metric estimates by ζYP and ζXQ, respectively; the definitions of the local contributions
ζYP(E) and ζXQ(ν) are analogous to those of µYP(E) and µXQ(ν) in (46).

4.4. Marking strategy. In order to compute a more accurate Galerkin solution (and,
hence, to reduce the error in the quantity of interest), an enriched approximation space
needs to be constructed. In the algorithm presented below, the approximation space is
enriched at each iteration of the adaptive loop either by performing local refinement of
the underlying triangulation T or by adding new indices into the index set P. In the
former case, the refinement is guided by the set M ⊆ E int

T of marked edges, whereas in
the latter case, a set M ⊆ Q of marked indices is added to the index set P.

Let us focus on the case of marking edges of triangulation. We start by using the Dörfler
marking criterion [Dör96] for the sets {µYP(E) : E ∈ E int

T } and {ζYP(E) : E ∈ E int
T }

of (spatial) error indicators (see (46)) in order to identify two sets of marked edges,
independently for the primal and for the dual Galerkin solutions. Specifically, for a given
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0 < θX ≤ 1, we define

Mu := Dörfler
(
{µYP(E) : E ∈ E int

T }, θX
)
andMz := Dörfler

(
{ζYP(E) : E ∈ E int

T }, θX
)

as the subsets of E int
T of minimal cardinality (possibly up to a fixed multiplicative factor)

such that

θX
∑

E∈E intT

µ2
YP(E) ≤

∑

E∈Mu

µ2
YP(E) and θX

∑

E∈E intT

ζ2
YP(E) ≤

∑

E∈Mz

ζ2
YP(E),

respectively.
There exist several strategies of “combining” the two sets Mu and Mz into a single

marking set that is used for refinement in the goal-oriented adaptive algorithm; see [MS09,
BET11, HP16, FPZ16]. For goal-oriented adaptivity in the deterministic setting, [FPZ16]
proves that the strategies of [MS09, BET11, FPZ16] lead to convergence with optimal
algebraic rates, while the strategy from [HP16] might not. The marking strategy proposed
in [FPZ16] is a modification of the strategy in [MS09]. It has been empirically proved
that the strategy in [FPZ16] is more effective than the original strategy in [MS09] with
respect to the overall computational cost. We employ the following marking strategy
adopted from [FPZ16]. Comparing the cardinality ofMu and that ofMz we define

M? :=Mu and M? :=Mz if #Mu ≤ #Mz,

M? :=Mz and M? :=Mu otherwise.

The setM⊆M? ∪M? ⊆ E int
T is then defined as the union ofM? and those #M? edges

ofM? that have the largest error indicators. This setM of marked edges is the one that
is used to guide the local mesh-refinement in our goal-oriented adaptive algorithm.

In order to identify the set M ⊆ Q of marked indices to be added to the current index
set P, we follow the same marking procedure as described above by replacing M, E int

T ,
E, µYP(E), ζYP(E), and θX with M, Q, ν, µXQ(ν), ζXQ(ν), and θP, respectively (here,
0 < θP ≤ 1 is a given Dörfler marking parameter).

4.5. Mesh-refinement and polynomial enrichment. Let M ⊆ E int
T be a set of

marked interior edges and T̃ = Refine(T ,M). We denote by R ⊆ E int
T the set of all

edges that are bisected during this refinement, i.e., R = E int
T \ E int

T̃ ⊇M.
Since the polynomial space over the parameter domain is fully determined by the

associated index set, the enrichment of the polynomial space is performed simply by
adding all marked indices ν ∈ M ⊆ Q to the current index set P, i.e., by setting
P̃ := P ∪M.

An important feature of the adaptive algorithm presented in the next section is that it is
driven by the estimates of the error reductions associated with local mesh-refinement and
enrichment of the polynomial space on Γ. Suppose that the enriched finite-dimensional
space is given by VX̃P̃ := X̃⊗span

({
Pν : ν ∈ P̃

})
, where X̃ := S1

0 (T̃ ). Let uX̃P̃ ∈ VX̃P̃

be the corresponding Galerkin solution. We note that Theorem 3.1 applies to ûXP−uXP

as well as to uX̃P̃ − uXP. Furthermore, it is important to observe that longest edge
bisection ensures that for E ∈ R, the associated hat function ϕE is the same in X̃ and
X̂. This observation together with the Pythagoras theorem (19) applied to uXP ∈ VXP
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and uX̃P̃ ∈ VṼ P̃ yield the following estimate of the error reduction

|‖u− uXP ‖|2 − |‖u− uX̃P̃ ‖|2
(19)
= |‖uX̃P̃ − uXP ‖|2

(33)'
∑

E∈R
µ2
YP(E) +

∑

ν∈M
µ2
XQ(ν). (47)

Remark 4.1. We note that the estimate (47) of the error reduction hinges on the mesh-
refinement strategy in the sense that the additional hat functions ϕE for E ∈ R must
coincide in X̃ and X̂. As mentioned, this property holds for longest edge bisection as
well as for newest vertex bisection [Ste08, KPP13], but fails, e.g., for the red-green-blue
refinement [Ver13].

4.6. Goal-oriented adaptive algorithm. Let us now present a goal-oriented adaptive
algorithm for numerical approximation of G(u), where u ∈ V is the weak solution to the
parametric model problem (1) and G is the goal functional defined by (42).

In the rest of the paper, ` ∈ N0 denotes the iteration counter in the adaptive algo-
rithm and we use the subscript ` for triangulations, index sets, Galerkin solutions, error
estimates, etc., associated with the `-th iteration of the adaptive loop. In particular,
V` := VX`P`

= X` ⊗ span
({
Pν : ν ∈ P`

})
denotes the finite-dimensional subspace of V ,

u` ∈ V` and z` ∈ V` are the primal and dual Galerkin solutions satisfying (16) and (44),
respectively, and µ` := µX`P`

and ζ` := ζX`P`
are the associated (global) error estimates

(see, e.g., (32)).

Algorithm 4.2. Goal-oriented adaptive stochastic Galerkin FEM.

INPUT: data a, f , g; initial (coarse) triangulation T0, initial index set P0; marking
parameters 0 < θX , θP ≤ 1; tolerance tol.

for ` = 0, 1, 2, . . . , do:
(i) SOLVE: compute u`, z` ∈ V`;
(ii) ESTIMATE: compute four sets of error indicators (see (46))
{µYP(E) : E ∈ E int

T` }, {µXQ(ν) : ν ∈ Q`}, {ζYP(E) : E ∈ E int
T` }, {ζXQ(ν) : ν ∈ Q`}

and two (global) error estimates µ` and ζ` (see (45));
(iii) if µ` ζ` ≤ tol then break; endif
(iv) MARK: use the procedure described in §4.4 to find the set M` ⊆ E int

T` of marked
edges and the set M` ⊆ Q` of marked indices.

(v) REFINE:
(v-a) Compute two error reduction estimates:

ρ2
X,` := µ2

`

(∑

E∈R`

ζ2
YP(E)

)
+ ζ2

`

(∑

E∈R`

µ2
YP(E)

)
, (48a)

ρ2
P,` := µ2

`

(∑

ν∈M`

ζ2
XQ(ν)

)
+ ζ2

`

(∑

ν∈M`

µ2
XQ(ν)

)
, (48b)

where R` ⊆ E int
T` is the set of all edges to be bisected if T` is refined (see §4.5).

(v-b) if ρX,` ≥ ρP,` then
define T`+1 = Refine(T`,M`) and P`+1 = P` (i.e., refine the spatial
triangulation T` and keep the index set P`);
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else
define T`+1 = T` and P`+1 = P`∪M` (i.e., keep the spatial triangulation
T` and enlarge the index set P`).

endif

endfor

OUTPUT: sequences of nested triangulations {T`}, increasing index sets {P`}, primal and
dual Galerkin solutions {u`, z`}, the corresponding energy error estimates {µ`, ζ`}, and
the estimates {µ` ζ`} of the error in approximating G(u).

Let us give a motivation behind Step (v) in Algorithm 4.2. This relies on the fact
that the algorithm employs the product of energy errors |‖u− u` ‖| |‖ z− z` ‖| in order to
control the error in approximating G(u); see (3).

Let Ṽ` ⊃ V` be an enrichment of V` (e.g., Ṽ` = X`+1 ⊗ span
({
Pν : ν ∈ P`

})
or Ṽ` =

X` ⊗ span
({
Pν : ν ∈ P`+1

})
). Let ũ`, z̃` ∈ Ṽ` denote the enhanced primal and dual

Galerkin solutions. One has (see (19))

|‖u− ũ` ‖|2 = |‖u− u` ‖|2 − |‖u` − ũ` ‖|2 and |‖ z − z̃` ‖|2 = |‖ z − z` ‖|2 − |‖ z` − z̃` ‖|2.

Hence,

|‖u− ũ` ‖|2 |‖ z − z̃` ‖|2 = |‖u− u` ‖|2 |‖ z − z` ‖|2 + |‖u` − ũ` ‖|2|‖ z` − z̃` ‖|2

−
(
|‖u− u` ‖|2 |‖ z` − z̃` ‖|2 + |‖u` − ũ` ‖|2 |‖ z − z` ‖|2

)
.

(49)

Equality (49) shows that the quantity

|‖u− u` ‖|2 |‖ z` − z̃` ‖|2 + |‖u` − ũ` ‖|2 |‖ z − z` ‖|2 (50)

provides a good approximation of the reduction in the product of energy errors that would
be achieved due to enrichment of the approximation space. In fact, the true reduction in
the product of energy errors also includes the term −|‖u` − ũ` ‖|2|‖ z` − z̃` ‖|2 (see (49)).
This term (in absolute value) is normally much smaller compared to the sum in (50) and
may thus be neglected.

Now recall that Theorem 3.1 provides computable estimates of the energy errors
(see (33)) and of the energy error reductions (see (47)). Using these results to bound
each term in (50), we obtain the estimate of reduction in the product of energy errors. In
particular, the reduction due to mesh-refinement (by bisection of all edges in R`, see §4.5)
is estimated by ρ2

X,` defined in (48a), i.e.,

|‖u− u` ‖|2 |‖ z` − z̃` ‖|2 + |‖ z − z` ‖|2 |‖u` − ũ` ‖|2 ' ρ2
X,`.

Similarly, the reduction due to polynomial enrichment (by adding the setM` of marked in-
dices) is estimated by ρ2

P,` defined in (48b). Thus, by comparing these two estimates (ρX,`
and ρP,`), the adaptive algorithm chooses the enrichment of V` (either mesh-refinement
or polynomial enrichment) that corresponds to a larger estimate of the associated error
reduction (see step (v-b) in Algorithm 4.2).
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5. Numerical experiments

In this section, we report the results of some numerical experiments that demonstrate the
performance of the goal-oriented adaptive algorithm described in Section 4 for paramet-
ric model problems. All experiments were performed using the open source MATLAB
toolbox Stochastic T-IFISS [BR18b] on a desktop computer equipped with an Intel Core
CPU i5-4590@3.30GHz and 8.00GB RAM.

5.1. Outline of the experiments. Staying within the framework of the parametric
model problem (1) and the goal functional (42), we use the representations of f and g
as introduced in [MS09] (see also [FPZ16, Section 4]) to define the corresponding right-
hand side functionals F (v) and G(v) in (10) and (43), respectively. Specifically, let
fi, gi ∈ L2(D) (i = 0, 1, 2) and set f = (f1, f2) and g = (g1, g2). Define

F (v) =

∫

Γ

∫

D

f0(x)v(x,y) dx dπ(y)−
∫

Γ

∫

D

f(x) ·∇v(x,y) dx dπ(y) for all v ∈ V (51)

and

G(v) =

∫

Γ

∫

D

g0(x)v(x,y) dx dπ(y)−
∫

Γ

∫

D

g(x) ·∇v(x,y) dx dπ(y) for all v ∈ V . (52)

The motivation behind these representations is to introduce different non-geometric sin-
gularities in the primal and dual solutions. In the context of goal-oriented adaptivity,
this emphasizes the need for separate marking to resolve singularities in both solutions
in different regions of the computational domain.

In all experiments, we run Algorithm 4.2 with the initial index set

P0 := {(0, 0, 0, . . . ), (1, 0, 0, . . . )}
and collect the following output data:

• the number of iterations L = L(tol) needed to reach the prescribed tolerance tol;
• the final goal-oriented error estimate µLζL;
• the overall computational time t;
• the overall computational “cost”

Ntotal :=
L∑

`=0

dim(V`),

which reflects the total amount of work in the adaptive process;
• the final number of degrees of freedom

NL := dim(VL) = dim (XL) #PL = #NL #PL,

where NL denotes the set of interior vertices of TL;
• the number of elements #TL and the number of interior vertices #NL of the final
triangulation TL;
• the cardinality of the final index set PL and the number of active parameters
in PL, denoted by Mactive

L ;
• the evolution of the index set, i.e., {P` : ` = 0, 1, . . . , L}.
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In order to test the effectiveness of our goal-oriented error estimation, we compare the
product µ`ζ` with the reference error |G(uref) − G(u`)|, where uref ∈ Vref := Xref ⊗
span

({
Pν : ν ∈ Pref

})
is an accurate primal solution. In order to compute uref we employ

quadratic (P2) finite element approximations over a fine triangulation Tref and use a large
index set Pref (Tref and Pref are to be specified in each experiment). Then, the effectivity
indices are computed as follows:

Θ` :=
µ` ζ`

|G(uref)−G(u`)|
, ` = 0, . . . , L. (53)

5.2. Experiment 1. In the first experiment, we demonstrate the performance of Algo-
rithm 4.2 for the parametric model problem (1) posed on the square domainD = (−1, 1)2.
Suppose that the coefficient a(x,y) in (1) is a parametric representation of a second-order
random field with prescribed mean E[a] and covariance function Cov[a]. We assume that
Cov[a] is the separable exponential covariance function given by

Cov[a](x, x′) = σ2 exp

(
−|x1 − x′1|

l1
− |x2 − x′2|

l2

)
,

where x = (x1, x2) ∈ D, x′ = (x′1, x
′
2) ∈ D, σ denotes the standard deviation, and l1, l2

are correlation lengths. In this case, a(x,y) can be expressed using the Karhunen–Lòeve
expansion

a(x,y) = E[a](x) + c σ
∞∑

m=1

ym
√
λm ϕm(x), (54)

where {(λm, ϕm)}∞m=1 are the eigenpairs of the integral operator
∫
D

Cov[a](x, x′)ϕ(x′)dx′,
ym are the images of pairwise uncorrelated mean-zero random variables, and the constant
c > 0 is chosen such that Var(c ym) = 1 for all m ∈ N. Note that analytical expressions
for λm and ϕm exist in the one-dimensional case (see, e.g., [GS91, pages 28–29]); as
a consequence, the formulas for rectangular domains follow by tensorization. In this
experiment, we assume that ym are the images of independent mean-zero random variables
on Γm = [−1, 1] that have a “truncated” Gaussian density:

ρ(ym) = (2Φ(1)− 1)−1
(√

2π
)−1

exp
(
−y2

m/2
)

for all m ∈ N, (55)
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Figure 5.1. The mean fields of primal (left) and dual (right) Galerkin solutions in Experiment 1.
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#T0 = 128 #T19 = 2600 (primal) #T19 = 2600 (dual) #T15 = 2872 (goal-oriented)

Figure 5.2. Experiment 1: Initial triangulation T0 with shaded triangles Tf and Tg (left plot); trian-
gulations generated by the standard adaptive sGFEM algorithm with spatial refinements
driven either by the error estimates µ` or by the error estimates ζ` (two middle plots);
triangulation generated by the goal-oriented adaptive algorithm (right plot).

where Φ(·) is the Gaussian cumulative distribution function (in this case, c ≈ 1.8534
in (54)). Thus, in order to construct a polynomial space on Γ we employ the set of
orthonormal polynomials generated by the probability density function (55) and satisfying
the three-term recurrence (11). These polynomials are known as Rys polynomials; see,
e.g., [Gau04, Example 1.11].

We test the performance of Algorithm 4.2 by considering a parametric version of Ex-
ample 7.3 in [MS09]. Specifically, let f0 = g0 = 0, f = (χTf , 0), and g = (χTg , 0), where
χ
Tf and χTg denote the characteristic functions of the triangles

Tf := conv{(−1,−1), (0,−1), (−1, 0)} and Tg := conv{(1, 1), (0, 1), (1, 0)},
respectively (see Figure 5.2 (left)). Then, the functionals F and G in (51)–(52) read as

F (v) = −
∫

Γ

∫

Tf

∂v

∂x1

(x,y) dx dπ(y), G(v) = −
∫

Γ

∫

Tg

∂v

∂x1

(x,y) dx dπ(y) for all v ∈ V.

Setting σ = 0.15, l1 = l2 = 2.0, and E[a](x) = 2 for all x ∈ D, we compare the
performance of Algorithm 4.2 for different input values of the marking parameter θX
as well as the parameter M in (31). More precisely, we consider two sets of marking
parameters: (i) θX = 0.5, θP = 0.9; (ii) θX = 0.25, θP = 0.9. In each case, we run
Algorithm 4.2 with M = 1 and M = 2. The same stopping tolerance is set to tol = 7e-6
in all four computations.

Figure 5.1 (left) shows the mean field of the primal Galerkin solution exhibiting a
singularity along the line connecting the points (−1, 0) and (0,−1). Similarly, the mean
field of the dual Galerkin solution in Figure 5.1 (right) exhibits a singularity along the
line connecting the points (1, 0) and (0, 1).

Figure 5.2 (left plot) shows the initial triangulation T0 used in this experiment. The
two middle plots in Figure 5.2 depict the refined triangulations generated by an adaptive
sGFEM algorithm with spatial refinements driven either solely by the estimates µ` for
the error in the primal Galerkin solution or solely by the estimates ζ` for the error in the
dual Galerkin solution. The right plot in Figure 5.2 shows the triangulation produced by
Algorithm 4.2. As expected, this triangulation simultaneously captures spatial features
of primal and dual solutions.
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case (i): θX = 0.5, θP = 0.9 case (ii): θX = 0.25, θP = 0.9

M = 1 M = 2 M = 1 M = 2

L 27 25 43 42

µLζL 5.7152e-06 6.6884e-06 6.4015e-06 6.4406e-06

t (sec) 307 312 323 468

Ntotal 2, 825, 160 3, 201, 507 3, 433, 577 5, 702, 589

NL 710, 467 786, 390 552, 442 979, 017

#TL 75, 568 53, 044 50, 808 50, 792

#NL 37, 393 26, 213 25, 111 25, 103

#PL 19 30 22 39

Mactive
L 8 15 10 17

Table 5.1. The outputs obtained by running Algorithm 4.2 with θX = 0.5, θP = 0.9 (case (i)) and
θX = 0.25, θP = 0.9 (case (ii)) in Experiment 1.

case (i): θX = 0.5, θP = 0.9

M = 1 M = 2

P` ` = 0 (0 0) ` = 0 (0 0)
(1 0) (1 0)

` = 11 (0 1) ` = 10 (0 0 1)
(0 1 0)

` = 12 (0 0 1) ` = 15 (0 0 0 0 1)
(0 0 0 1 0)

` = 17 (0 0 0 1) ` = 17 (0 0 0 0 0 0 1)
(1 0 1 0) (0 0 0 0 0 1 0)
(2 0 0 0) (1 0 1 0 0 0 0)

(2 0 0 0 0 0 0)

` = 18 (0 0 0 0 1) ` = 20 (0 0 0 0 0 0 0 0 1)
(0 0 0 0 0 0 0 1 0)
(1 1 0 0 0 0 0 0 0)

` = 22 (0 0 0 0 0 1) ` = 22 (0 0 0 0 0 0 0 0 0 0 1)
(1 1 0 0 0 0) (0 0 0 0 0 0 0 0 0 1 0)

(0 1 1 0 0 0 0 0 0 0 0)
` = 23 (0 0 0 0 0 0 1) (1 0 0 0 0 1 0 0 0 0 0)

(1 0 0 1 0 0 0) (1 0 0 0 1 0 0 0 0 0 0)
(1 0 0 1 0 0 0 0 0 0 0)

` = 24 (0 0 0 0 0 0 0 1) ` = 24 (0 0 0 0 0 0 0 0 0 0 0 0 1)
(1 0 0 0 1 0 0 0) (0 0 0 0 0 0 0 0 0 0 0 1 0)

(0 0 2 0 0 0 0 0 0 0 0 0 0)
` = 26 (0 0 0 0 0 0 0 0 1) (0 2 0 0 0 0 0 0 0 0 0 0 0)

(0 1 1 0 0 0 0 0 0) (1 0 0 0 0 0 0 1 0 0 0 0 0)
(1 0 0 0 0 0 0 1 0) (1 0 0 0 0 0 1 0 0 0 0 0 0)
(1 0 0 0 0 0 1 0 0)
(1 0 0 0 0 1 0 0 0) ` = 25 (0 0 0 0 0 0 0 0 0 0 0 0 0 0 1)

(0 0 0 0 0 0 0 0 0 0 0 0 0 1 0)
(0 1 0 1 0 0 0 0 0 0 0 0 0 0 0)
(1 0 0 0 0 0 0 0 0 1 0 0 0 0 0)
(1 0 0 0 0 0 0 0 1 0 0 0 0 0 0)

Table 5.2. The evolution of the index set obtained by running Algorithm 4.2 with θX = 0.5, θP = 0.9
(case (i)) in Experiment 1.

In Table 5.1, we collect the final outputs of computations in cases (i) and (ii) forM = 1
and M = 2, whereas Table 5.2 shows the index set enrichments in case (i). Recall that
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#P` (M = 1)
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` (M = 1)
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Mactive
` (M = 2)

Figure 5.3. Characteristics of the index sets P` in Experiment 1 at each iteration of Algorithm 4.2.

choosing a larger M in (31) leads to a larger detail index set, and hence, a larger set of
marked indices, at each iteration. As a result, more random variables are activated in the
final index set and the total number of iterations is reduced (compare the values of L,
#PL, and Mactive

L in Table 5.1). This can be also observed by looking at Figure 5.3 that
visualizes the evolution of the index set in cases (i) and (ii). Furthermore, in case (ii), due
to a smaller marking parameter θX , the algorithm produces less refined triangulations
but takes more iterations to reach the tolerance than it does in case (i) (see the values of
#TL and L in Table 5.1).

Figure 5.4 shows the convergence history of three error estimates (µ`, ζ`, and µ`ζ`) and
the reference error |G(uref)−G(u`)| in case (i) for both M = 1 and M = 2 (see the end
of this subsection for details on how the reference solution uref is computed). We observe
that the estimates of the error in approximating G(u) (i.e., the products µ`ζ`) decay with
an overall rate of about O(N−0.55) for both M = 1 and M = 2. We notice that choosing
M = 2 has a “smoothing” effect on the decay of µ`ζ` (see Figure 5.4 (right)); this is due
to larger index set enrichments in this case compared to those in the case of M = 1 (see
the evolution of P` in Table 5.2).

In Figure 5.5, we plot three error estimates as well as the reference error in the goal
functional in case (ii). We observe that µ`ζ` decay with about the same overall rate as in
case (i), i.e., O(N−0.55). On the other hand, the “smoothing” effect due to a larger M is
less evident in case (ii), compared to case (i). This is likely due to a smaller value of the
(spatial) marking parameter θX in case (ii), which provides a more balanced refinement
of spatial and parametric components of the generated Galerkin approximations (note
that the (parametric) marking parameter θP is the same in both cases).

Finally, for all cases considered in this experiment, we compute the effectivity indices
as explained in §5.1; see (53). Here, we employ a reference Galerkin solution computed
using the triangulation Tref obtained by a uniform refinement of TL from case (i) with
M = 1 and a large index set Pref which includes all indices generated in this experiment.
The effectivity indices are plotted in Figure 5.6. Overall, they oscillate within the interval
(7.0, 14.0) in all cases.
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Figure 5.4. Error estimates µ`, ζ`, µ` ζ` and the reference error |G(uref) − G(u`)| at each iteration
of Algorithm 4.2 with θX = 0.5, θP = 0.9 (case (i)) in Experiment 1 (here, G(uref) =
−3.180377e-03).
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case (ii) | M = 2

µ` (primal)
ζ` (dual)
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Figure 5.5. Error estimates µ`, ζ`, µ` ζ` and the reference error |G(uref) − G(u`)| at each iteration
of Algorithm 4.2 with θX = 0.25, θP = 0.9 (case (ii)) in Experiment 1 (here, G(uref) =
−3.180377e-03).

5.3. Experiment 2. In this experiment, we consider the parametric model problem (1)
posed on the L-shaped domain D = (−1, 1)2 \ (−1, 0]2 and we choose the parametric
coefficient a(x,y) as the one introduced in [EGSZ14, Section 11.1]. Let σ > 1 and
0 < A < 1/ζ(σ), where ζ denotes the Riemann zeta function. For every x = (x1, x2) ∈ D,
we fix a0(x) := 1 and choose the coefficients am(x) in (2) to represent planar Fourier modes
of increasing total order:

am(x) := αm cos(2πβ1(m)x1) cos(2πβ2(m)x2) for all m ∈ N, (56)
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Figure 5.6. The effectivity indices for the goal-oriented error estimates in Experiment 1 at each iteration
of Algorithm 4.2.

where αm := Am−σ are the amplitudes of the coefficients and β1, β2 are defined as

β1(m) := m− k(m)(k(m) + 1)/2 and β2(m) := k(m)− β1(m),

with k(m) := b−1/2 +
√

1/4 + 2mc for all m ∈ N. Note that under these assumptions,
both conditions (6) and (7) are satisfied with amin

0 = amax
0 = 1 and τ = Aζ(σ), respectively.

We assume that the parameters ym in (2) are the images of uniformly distributed
independent mean-zero random variables on Γm = [−1, 1], so that dπm = dym/2 for
all m ∈ N. Then, the orthonormal polynomial basis in L2

πm(Γm) is comprised of scaled
Legendre polynomials. Note that the same parametric coefficient as described above was
also used in numerical experiments in [EGSZ15, BS16, EM16, EPS17, BR18a].

In this experiment, we choose the quantity of interest that involves the average value
of a directional derivative of the primal solution over a small region of the domain
away from the reentrant corner. More precisely, we set f0 = 1, f = (0, 0), g0 = 0,
and g = (χTg , 0), where χTg denotes the characteristic function of the triangle Tg :=

-1 -0.5 0 0.5 1
-1
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-1 -0.5 0 0.5 1
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Figure 5.7. Initial triangulation T0 with the shaded triangle Tg (left) and the triangulation generated
by the goal-oriented adaptive algorithm for an intermediate tolerance (right).
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Figure 5.8. Error estimates µ` ζ` at each iteration of Algorithm 4.2 for different sets of marking param-
eters in Experiment 2. Filled markers indicate iterations at which parametric enrichments
occur.

conv{(1/2,−1), (1,−1), (1,−1/2)} (see Figure 5.7 (left)), so that the functionals in (51)–
(52) read as

F (v) =

∫

Γ

∫

D

v(x,y) dx dπ(y), G(v) = −
∫

Γ

∫

Tg

∂v

∂x1

(x,y) dx dπ(y) for all v ∈ V.

Note that in this example, the primal and dual solutions both exhibit a geometric
singularity at the reentrant corner (see the left plots in Figures 5.9 and 5.10). In addition,
the dual solution exhibits also a singularity along the line connecting the points (1/2,−1)
and (1,−1/2) (see the left plot in Figure 5.10); the latter singularity is due to a low
regularity of the goal functional G(v).

Our first aim in this experiment is to show the advantages of using adaptivity in
both components of Galerkin approximations. To this end, we consider the expansion
coefficients in (56) with slow (σ = 2) decay of the amplitudes αm (fixing τ = Aζ(σ) = 0.9,
this results in A ≈ 0.547) and we choose M = 1 in (31). Starting with the coarse
triangulation T0 depicted in Figure 5.7 (left) and setting the tolerance to tol = 1e-05, we
run Algorithm 4.2 for six different sets of marking parameters and plot the error estimates
µ` ζ` computed at each iteration; see Figure 5.8.

In the cases where only one component of the Galerkin approximation is enriched
(i.e., either θX = 0 or θP = 0 as in the first two sets of parameters in Figure 5.8),
the error estimates µ` ζ` quickly stagnate as iterations progress, and the set tolerance
cannot be reached. If both components are enriched but no adaptivity is used (i.e.,
θX = θP = 1, see the third set of parameters in Figure 5.8), then the error estimates
decay throughout all iterations. However, in this case, the overall decay rate is slow
and eventually deteriorates due to the number of degrees of freedom growing very fast,
in particular, during the iterations with parametric enrichments (see the filled circle
markers in Figure 5.8). The deterioration of the decay rate is also observed for the fourth
set of marking parameters in Figure 5.8 (θX = 0.6, θP = 1), where adaptivity is only
used for enhancing the spatial component of approximations. If adaptivity is only used
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Figure 5.9. The mean field (left) and the variance (right) of the primal Galerkin solution in Experi-
ment 2.
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Figure 5.10. The mean field (left) and the variance (right) of the dual Galerkin solution in Experi-
ment 2.

for enriching the parametric component (e.g., θX = 1 and θP = 0.6 as in the fifth set in
Figure 5.8), then the error estimates decay throughout all iterations without deterioration
of the rate. However, the decay rate in this case is slower than the one for the sixth set
of marking parameters θX = 0.2, θP = 0.8, where adaptivity is used for both components
of Galerkin approximations. Thus, we conclude, that for the same level of accuracy,
adaptive enrichment in both components provides more balanced approximations with
less degrees of freedom and leads to a faster convergence rate than in all other cases
considered in this experiment.

Let us now run Algorithm 4.2 with the following two sets of marking parameters:
(i) θX = 0.3, θP = 0.8; (ii) θX = 0.15, θP = 0.95. In each case, we consider the expansion
coefficients in (56) with slow (σ = 2) and fast (σ = 4) decay of the amplitudes αm (in
the latter case, fixing τ = Aζ(σ) = 0.9 results in A ≈ 0.832). In all computations, we
choose M = 1 in (31) and set the tolerance to tol = 1e-05.

Figure 5.7 (right) depicts an adaptively refined triangulation produced by Algorithm 4.2
in case (i) for the problem with slow decay of the amplitude coefficients (similar triangu-
lations were obtained in other cases). Observe that the triangulation effectively captures
spatial features of primal and dual solutions. Indeed, it is refined in the vicinity of the
reentrant corner and, similarly to Experiment 1, in the vicinity of points (1/2,−1) and
(1,−1/2).
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case (i): θX = 0.3, θP = 0.8 case (ii): θX = 0.15, θP = 0.95

σ = 2 σ = 4 σ = 2 σ = 4

L 37 37 62 63
µLζL 8.8378e-06 9.4638e-06 9.6811e-06 9.1013e-06
t (sec) 372 345 604 602
Ntotal 3, 507, 551 2, 260, 897 6, 617, 365 4, 289, 136
NL 725, 800 458, 568 789, 670 552, 857

#TL 73, 393 77, 249 55, 183 65, 800
#NL 36, 290 38, 214 27, 230 32, 521
#PL 20 12 29 17

Mactive
L 6 3 6 4

Evolution of the index set

P` ` = 0 (0 0) ` = 0 (0 0) ` = 0 (0 0) ` = 0 (0 0)
(1 0) (1 0) (1 0) (1 0)

` = 12 (0 1) ` = 8 (2 0) ` = 14 (0 1) ` = 10 (2 0)
(2 0) (2 0)

` = 19 (0 0 1) ` = 15 (3 0) ` = 26 (0 0 1) ` = 21 (0 1)
(1 1 0) (1 1 0) (3 0)

(3 0 0)

` = 23 (0 0 0 1) ` = 20 (0 1) ` = 37 (0 0 0 1) ` = 32 (1 1)
(1 0 1 0) (4 0) (0 2 0 0) (4 0)
(2 1 0 0) (1 0 1 0)
(3 0 0 0) ` = 26 (1 1) (2 1 0 0) ` = 40 (0 0 1)

(5 0) (4 0 0 0) (2 1 0)
` = 30 (0 0 0 0 1) (5 0 0)

(0 2 0 0 0) ` = 46 (0 0 0 0 1)
(1 0 0 1 0) ` = 30 (2 1) (0 1 1 0 0) ` = 51 (1 0 1)
(2 0 1 0 0) (6 0) (1 2 0 0 0) (3 1 0)
(3 1 0 0 0) (2 0 1 0 0) (6 0 0)

(3 1 0 0 0)

` = 34 (0 0 0 0 0 1) ` = 35 (0 0 1) ` = 53 (0 0 0 0 0 1) ` = 60 (0 0 0 1)
(0 1 1 0 0 0) (3 1 0) (0 1 0 0 1 0) (2 0 1 0)
(1 0 0 0 1 0) (0 1 0 1 0 0) (4 1 0 0)
(1 2 0 0 0 0) (1 0 0 0 0 1) (7 0 0 0)
(4 0 0 0 0 0) (1 0 0 0 1 0)

(1 1 1 0 0 0)
(2 0 0 1 0 0)
(2 2 0 0 0 0)
(3 0 1 0 0 0)
(4 1 0 0 0 0)
(5 0 0 0 0 0)

Table 5.3. The outputs obtained by running Algorithm 4.2 in Experiment 2 with θX = 0.3, θP = 0.8
(case (i)) and θX = 0.15, θP = 0.95 (case (ii)) for both slow (σ = 2) and fast (σ = 4) decay
of the amplitude coefficients.

Table 5.3 collects the outputs of all computations. On the one hand, we observe that
in case (i), for both slow and fast decay of the amplitude coefficients, the algorithm
took fewer iterations compared to case (ii) (37 versus 62 for σ = 2 and 37 versus 63
for σ = 4) and reached the tolerance faster (see the final times t in Table 5.3). On
the other hand, due to a larger θX in case (i), the algorithm produced more refined
triangulations (see the values of #TL in Table 5.3). Also, we observe that final index sets
generated for the problem with slow decay (σ = 2) are larger than those for the problem
with fast decay (σ = 4) (20 indices versus 12 in case (i) and 29 indices versus 17 in
case (ii)). Furthermore, the algorithm tends to activate more parameters and to generate
polynomial approximations of lower degree for the problem with slow decay (e.g., in case
(i), polynomials of total degree 4 in 6 parameters for σ = 2 versus polynomials of total
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case (i) | σ = 4

µ` (primal)
ζ` (dual)
µ` ζ`

|G(uref)−G(u`)|

Figure 5.11. Error estimates µ`, ζ`, µ` ζ` and the reference error |G(uref) − G(u`)| at each iteration
of Algorithm 4.2 in Experiment 2 with θX = 0.3, θP = 0.8 (case (i)) for σ = 2 (left)
and σ = 4 (right) (here, G(uref) = 1.789774e-2 for σ = 2 and G(uref) = 1.855648e-2 for
σ = 4).
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case (ii) | σ = 2
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ζ` (dual)
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case (ii) | σ = 4

µ` (primal)
ζ` (dual)
µ` ζ`

|G(uref)−G(u`)|

Figure 5.12. Error estimates µ`, ζ`, µ` ζ` and the reference error |G(uref) − G(u`)| at each iteration
of Algorithm 4.2 in Experiment 2 with θX = 0.15, θP = 0.95 (case (ii)) for σ = 2 (left)
and σ = 4 (right) (here, G(uref) = 1.789774e-2 for σ = 2 and G(uref) = 1.855648e-2 for
σ = 4).

degree 6 in 3 parameters for σ = 4). Note that this behavior has been previously observed
in numerical experiments for parametric problems on the square domain; see, e.g., [BS16].

Figure 5.11 (resp., Figure 5.12) shows the convergence history of three error estimates
(µ`, ζ`, and µ`ζ`) and the reference error in the goal functional in case (i) (resp., case (ii))
of marking parameters. Firstly, we can see that the estimates µ`ζ` converge with a faster
rate for the problem with σ = 4 than for the problem with σ = 2. This is true in
both cases of marking parameters. In particular, the overall convergence rate is about
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Figure 5.13. The effectivity indices for the goal-oriented error estimates in Experiment 2 at each iter-
ation of Algorithm 4.2.

O(N−3/4) when σ = 4 and about O(N−2/3) when σ = 2. Secondly, we observe an
improved convergence rate during mesh refinement steps in case (ii) (i.e., for smaller θX
and larger θP). For both problems, i.e., for σ = 2 and σ = 4, this rate is about O(N−0.9)
(see Figure 5.12), i.e., very close to the optimal one.

We conclude this experiment by testing the effectivity of the goal-oriented error esti-
mation at each iteration of Algorithm 4.2. To this end, we compute the effectivity indices
Θ` (see (53)) by employing reference Galerkin solutions to problems with slow (σ = 2)
and fast (σ = 4) decay of the amplitude coefficients. Specifically, for both problems we
employ the same reference triangulation Tref (obtained by a uniform refinement of the
final triangulation TL generated in case (i) for the problem with slow decay), but use two
reference index sets (namely, for σ = 2, we set Pref := PL, where PL is generated for
the problem with slow decay in case (ii) and for σ = 4, we set Pref := PL ∪ML with
the corresponding PL and ML generated for the problem with fast decay in case (ii)).
The effectivity indices are plotted in Figure 5.13. As iterations progress, they tend to
concentrate within the interval (3.5, 5.0) in all cases.

For the parametric model problem considered in this experiment, we conclude that
Algorithm 4.2 performs better if the (spatial) marking threshold θX is sufficiently small
and the (parametric) marking threshold θP < 1 is sufficiently large (see the results of
experiments in case (ii)). In fact, in case (ii), the estimates µ`ζ` converge with nearly
optimal rates during spatial refinement steps for problems with slow and fast decay of the
amplitude coefficients. Furthermore, in this case, the algorithm generates richer index
sets, which leads to more accurate parametric approximations.

5.4. Experiment 3. In the final experiment, we test the performance of Algorithm 4.2
for the parametric model problem (1) posed on the slit domain D = (−1, 1)2 \ ([−1, 0] ×
{0}). The boundary of this domain is non-Lipschitz; however, the problem on D can be
seen as a limit case of the problem on the Lipschitz domain Dδ = (−1, 1)2 \ T δ as δ → 0,
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Figure 5.14. Initial triangulation T0 (left) as well as the mean field (middle) and the variance (right)
of the primal Galerkin solution in Experiment 3.

where Tδ = conv{(0, 0), (−1, δ), (−1,−δ)} (cf. [SF08, p. 259]).1 In fact, all computations
in this experiment were performed for the domain D = Dδ with δ = 0.005.

Following [EMN16], we consider a modification of the parametric coefficient used in
Experiment 2. For all m ∈ N and x ∈ D, let am(x) be the coefficients defined in (56)
with αm := Am−σ for some σ > 1 and 0 < A < 1/ζ(σ), where ζ is the Riemann zeta
function. Then, given two constants c, ε > 0, we define

a(x,y) :=
c

αmin

( ∞∑

m=1

ymam(x) + αmin

)
+ ε, (57)

where αmin := Aζ(σ) and the parameters ym are the images of uniformly distributed
independent mean-zero random variables on [−1, 1].

It is easy to see that a(x,y) ∈ [ε, 2c + ε] for all x ∈ D and y ∈ Γ. Note that (57)
can be written in the form (2) with a0(x) = c+ ε and the expansion coefficients given by
(c am(x))/αmin. Furthermore, conditions (6) and (7) are satisfied with amin

0 = amax
0 = c+ε

and τ = c/(c+ ε), respectively.
It is known that solution u to problem (1) in this example exhibits a singularity induced

by the slit in the domain. Our aim in this experiment is to approximate the value of u
at some fixed point x0 ∈ D away from the slit. To that end (and to stay within the
framework of the bounded goal functional G in (52)), we fix a sufficiently small r > 0
and define g0 as the mollifier (see [PO99]):

g0(x) = g0(x;x0, r) :=

{
C exp

(
− r2

r2−‖x−x0‖22

)
if ‖x− x0‖2 < r,

0 otherwise.
(58)

Here, ‖·‖2 denotes the `2-norm and the constant C is chosen such that
∫

D

g0(x)dx = 1.

1We refer to [Gri92, Section 2.7, p. 83] for a discussion about the well-posedness of the standard
weak formulation for the deterministic Poisson problem on the slit domain, in particular, in the case of
homogeneous Dirichlet boundary conditions.
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Figure 5.15. Adaptively refined triangulations (top row) and the mean fields of dual Galerkin solu-
tions (bottom row) computed using the mollifier g0 in (58) with r = 0.15, 0.3, 0.4, 0.5
(Experiment 3).

Note that the value of the constant C is independent of the location of x0 ∈ D, provided
that r is chosen sufficiently small such that supp(g0(x;x0, r)) ⊂ D. In this case, C ≈
2.1436 r−2 (see, e.g., [PO99]).

Setting f0 = 1, f = (0, 0) and g = (0, 0), the functionals in (51)–(52) read as

F (v) =

∫

Γ

∫

D

v(x,y) dx dπ(y), G(v) =

∫

Γ

∫

D

g0(x)v(x,y) dx dπ(y) for all v ∈ V.

Note that if u(x,y) is continuous in the spatial neighborhood of x0, then G(u) converges
to the mean value E[u(x0,y)] as r tends to zero.

We fix c = 10−1, ε = 5 · 10−3, σ = 2, A = 0.6 and set x0 = (0.4,−0.5) ∈ D. In all
computations performed in this experiment, we use the coarse triangulation T0 depicted
in Figure 5.14 (left plot). Figure 5.14 also shows the mean field (middle plot) and the
variance (right plot) of the primal Galerkin solution.

First, we fix tol = 7e-03 and run Algorithm 4.2 to compute dual Galerkin solutions
for different values of radius r in (58). Figure 5.15 shows the refined triangulations (top
row) and the corresponding mean fields of dual Galerkin solutions (bottom row) for r =
0.15, 0.3, 0.4, 0.5. As observed in previous experiments, the triangulations generated by
the algorithm simultaneously capture spatial features of primal and dual solutions. In this
experiment, the triangulations are refined in the vicinity of each corner, with particularly
strong refinement near the origin, where the primal solution exhibits a singularity; in
addition to that, for smaller values of r (r = 0.15, 0.3), the triangulation is strongly
refined in a neighborhood of x0 due to sharp gradients in the corresponding dual solutions
(note that the refinements in the neighborhood of x0 become coarser as r increases).
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Figure 5.16. Error estimates µ`, ζ`, µ` ζ` and the reference error |G(uref)−G(u`)| at each iteration of
Algorithm 4.2 with θX = 0.3, θP = 0.8 (case (i), left) and θX = 0.15, θP = 0.8 (case (ii),
right) in Experiment 3 (here, G(uref) = 0.144497e+01).
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Figure 5.17. The effectivity indices for the goal-oriented error estimates in Experiment 3 at each iter-
ation of Algorithm 4.2.

Let us now fix r = 0.15 (which gives C ≈ 95.271 in (58)) and run Algorithm 4.2 with
two sets of marking parameters: (i) θX = 0.3, θP = 0.8; (ii) θX = 0.15, θP = 0.8. In both
computations we choose M = 1 in (31) and set the tolerance to tol = 6.0e-04.

In Table 5.4, we collect the outputs of computations in both cases. In agreement
with results of previous experiments, we see that running the algorithm with a smaller
value of θX (i.e., in case (ii)) requires more iterations to reach the tolerance (see the
values of L in both columns in Table 5.4). We also observe that, for a fixed θP, choosing
a smaller θX naturally results in a less refined final triangulation (#TL = 54, 819 in
case (ii) versus #TL = 67, 955 in case (i)); interestingly, this under-refinement in the
spatial approximation is balanced by a more accurate polynomial approximation on the
parameter domain (i.e., a larger final index set #PL is generated: 28 indices with 7 active
parameters in case (ii) versus 21 indices with 6 active parameters in case (i)).
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case (i): θX = 0.3, θP = 0.8 case (ii): θX = 0.15, θP = 0.8

L 33 56

µLζL 5.5663e-04 5.9495e-04

t (sec) 434 659

Ntotal 3, 006, 114 4, 890, 073

NL 706, 398 759, 136

#TL 67, 955 54, 819

#NL 33, 638 27, 112

#PL 21 28

Mactive
L 6 7

Evolution of the index set

P` ` = 0 (0 0) ` = 0 (0 0)
(1 0) (1 0)

` = 11 (0 1) ` = 13 (0 1)
(2 0) (2 0)

` = 17 (0 0 1) ` = 25 (0 0 1)
(1 1 0) (1 1 0)
(3 0 0) (3 0 0)

` = 23 (0 0 0 1) ` = 36 (0 0 0 1)
(1 0 1 0) (1 0 1 0)
(2 1 0 0) (2 1 0 0)

` = 29 (0 0 0 0 1) ` = 45 (0 0 0 0 1)
(1 0 0 1 0) (1 0 0 1 0)
(2 0 1 0 0) (2 0 1 0 0)
(4 0 0 0 0) (4 0 0 0 0)

` = 31 (0 0 0 0 0 1) ` = 49 (0 0 0 0 0 1)
(0 1 1 0 0 0) (0 1 1 0 0 0)
(0 2 0 0 0 0) (0 2 0 0 0 0)
(1 0 0 0 1 0) (1 0 0 0 1 0)
(2 0 0 1 0 0) (2 0 0 1 0 0)
(3 0 1 0 0 0) (3 0 1 0 0 0)
(3 1 0 0 0 0) (3 1 0 0 0 0)

` = 56 (0 0 0 0 0 0 1)
(0 1 0 1 0 0 0)
(1 0 0 0 0 1 0)
(1 1 1 0 0 0 0)
(1 2 0 0 0 0 0)
(4 1 0 0 0 0 0)
(5 0 0 0 0 0 0)

Table 5.4. The outputs obtained by running Algorithm 4.2 in Experiment 3 with θX = 0.3, θP = 0.8
(case (i)) and θX = 0.15, θP = 0.8 (case (ii)).

By looking now at Figure 5.16 we observe that the energy error estimates µ` and ζ`
decay with the same rate of about O(N−0.35) for both sets of marking parameters; this
yields an overall rate of about O(N−2/3) for µ`ζ` in both cases. However, we can see that
in case (ii), the estimates µ`ζ` decay with a nearly optimal rate of O(N−0.9) during mesh
refinement steps. This is due to a smaller value of the marking parameter θX in this case
and consistent with what we observed in Experiment 2.

Finally, we compute the effectivity indices Θ` at each iteration of the algorithm. Here,
we employ a reference Galerkin solution computed using the triangulation Tref (obtained
by a uniform refinement of TL produced in case (i)) and the reference index set Pref :=
PL ∪ML, where PL and ML are the index sets generated in case (ii). The effectivity
indices are plotted in Figure 5.17. This plot shows that µ`ζ` provide sufficiently accurate
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estimates of the error in approximating G(u), as the effectivity indices tend to vary in a
range between 2.0 to 2.6 for both sets of marking parameters.

The results of this experiment show that Algorithm 4.2 with appropriate choice of
marking parameters generates effective approximations to the mean of the quantity of
interest associated with point values of the spatially singular solution to the considered
parametric model problem. In agreement with results of Experiment 2, we conclude that
smaller values of the spatial marking parameter θX (such as θX = 0.15 as in case (ii))
are, in general, preferable, as they yield nearly optimal convergence rates (for the error
in the goal functional) during spatial refinement steps.

6. Concluding remarks

The design and analysis of effective algorithms for the numerical solution of parametric
PDEs is of fundamental importance when dealing with mathematical models with in-
herent uncertainties. In this context, adaptivity is a crucial ingredient to mitigate the
so-called curse of dimensionality—a deterioration of convergence rates and an exponential
growth of the computational cost as the dimension of the parameter space increases.

In this paper, we developed a goal-oriented adaptive algorithm for the accurate ap-
proximation of a quantity of interest, which is a linear functional of the solution to a
parametric elliptic PDE. The algorithm is based on an sGFEM discretization of the PDE
and is driven by a novel a posteriori estimate of the energy errors in Galerkin approxi-
mations of the primal and dual solutions. The proposed error estimate, which is proved
to be efficient and reliable (Theorem 3.1), consists of two components: a two-level es-
timate accounting for the error in the spatial discretization and a hierarchical estimate
accounting for the error in the parametric discretization.

We highlight two important features of our approach. On the one hand, using a two-
level error estimate, the algorithm does not require the solution of any linear system
for the estimation of the errors arising from spatial discretizations. When compared to
the hierarchical error estimation in [BPS14, BS16, BR18a], this approach leads to an
undeniable benefit in terms of the overall computational cost. On the other hand, the
components of the error estimates for primal and dual solutions are used not only to guide
the adaptive enhancement of the discrete space, but also to assess the error reduction
in the product of these estimates (see Step (v-a) of Algorithm 4.2), which is a reliable
estimate for the approximation error in the quantity of interest. This information about
the error reduction is then employed to choose between spatial refinement and parametric
enrichment at each iteration of the algorithm (see Step (v-b)).

While we focused the presentation on the two-dimensional case, the results hold for
arbitrary spatial dimension, i.e., for D ⊂ Rd with d ≥ 1. Possible extensions of the
work include the use of other compatible types of mesh-refinement (e.g., newest vertex
bisection or red refinement, instead of longest edge bisection) and the treatment of other
elliptic operators, different boundary conditions as well as parameter-dependent right-
hand sides f in (1) and parameter-dependent functions g in the definition (42) of the
goal functional. Moreover, the focus of a future publication [BPRR18] will be on the
mathematical justification of the proposed adaptive algorithm via a rigorous convergence
analysis.
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We conclude by emphasizing that the software implementing the proposed goal-oriented
adaptive algorithm is available online (see [BR18b]) and can be used to reproduce the
presented numerical results.
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