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Highlights 10 

• PGPR was used to stabilise internal water droplet interface 11 
• Starch and pea protein isolate were used to stabilise w1/o droplet interface 12 
• Low energy membrane emulsification process generated stable w1/o/w2 emulsions 13 
• Variation of shear stress and injection rate produced drops between 35 and 320 µm 14 
• Complex food emulsifiers delayed release of Mg2+ ions for up to 2 weeks 15 

 16 

Abstract 17 

This study has for the first time shown that complex food emulsifiers such as starch and protein can 18 

be applied to produce stable w/o/w emulsions with the membrane emulsification technology. Using 19 

a microporous metal membrane with a 20 µm pore size, 2% of polyoxyethylene (20) sorbitan 20 

monolaurate (Tween 20), 4% of octenyl succinic anhydride (OSA) starch or 1.5% of pea protein isolate 21 

(PPI) in the external water phase respectively was the minimum concentration necessary to stabilise 22 

the w/o/w droplets. Uniform with a span as low as 0.45 and for at least 13-day stable w/o/w 23 
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emulsions of droplets between 35 and 320µm were obtained. The release of a magnesium tracer 24 

from the internal water phase of xanthan gum-thickened w/o/w emulsions, when OSA starch and PPI 25 

were used, was found to be limited to around 3% after 13-day storage. However, w/o/w emulsions 26 

stabilised with Tween 20 were less stable with magnesium showing a release of 27% on day 13.  27 

 28 

Keywords: membrane emulsification; w/o/w emulsion; food; OSA starch; pea protein; delayed 29 

magnesium release. 30 

1  Introduction 31 

Water-in-oil-in-water (w/o/w) emulsions are aqueous emulsions where the included oil droplet 32 

phase contains small water droplets in a water-in-oil emulsion. Such emulsion microstructure offers 33 

the opportunity to entrap in a food systems materials for targeted release in the internal aqueous 34 

phase, for example, micronutrients such as metal supplements, flavours and vitamins  during 35 

consumption (Herzi and Essafi, 2018, Manickam et al., 2018). The release profiles of those 36 

components will depend on the oils and surfactants used as well as the droplet size of the w/o/w 37 

emulsion (Leadi Cole and L. Whateley, 1997, Oppermann et al., 2018, Schuch et al., 2014, Schuch et 38 

al., 2013). Lower encapsulation efficiency of the inner water phase in w/o/w emulsions stabilised 39 

with polyglycerol polyricinoleate (PGPR) and egg yolk powder were found to correlate with smaller  40 

double emulsion droplet size independent of two emulsification methods (Schuch et al., 2014). On 41 

the contrary, Oppermann et al. (2018) showed that greater encapsulation efficiency of the inner 42 

water phase in w/o/w emulsions was correlated to smaller double emulsion droplet size. Tween 20, 43 

sodium caseinate and Whey protein isolate were used as stabilizers of the external water phase. 44 

Consequently, it is appropriate to seek a tool to control the droplet size of w/o/w emulsions 45 

independent of the hydrophilic emulsifier type and to investigate the impact of the hydrophilic 46 

emulsifier alone on encapsulation efficiency.  47 
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w/o/w emulsions are usually manufactured using a conventional two-step emulsification method 48 

based on high-pressure or high shear.  However, these conventional methods rely on high energy 49 

input to disrupt the dispersed phase and form droplets (Schubert et al., 2003). The mechanical stress 50 

during processing tends to disrupt the emulsion droplets leading to a reduction in the encapsulation 51 

efficiency of the w/o/w emulsions (Kim et al., 2017). In contrast to this top-down processing 52 

approach, bottom-up processing technologies such as membrane emulsification and microchannel 53 

emulsification have been described in the literature as ways of obtaining a controllable droplet size 54 

while processing  at much lower mechanical stress input (Schröder et al., 1998, Walstra and 55 

Smulders, 1998, Joscelyne and Tragardh, 2000, Schubert and Ax, 2003, Spyropoulos et al., 2014). 56 

Others often cited the advantages of bottom-up or mild emulsification processes to include 57 

increased energy efficiency as less energy is lost as frictional energy (Walstra, 1993, Joscelyne and 58 

Tragardh, 2000) and prevention of degradation or loss of functionality of heat and shear sensitive 59 

ingredients used to stabilise the emulsions, for example starch and protein (van der Graaf et al., 60 

2005). In this research membrane emulsification, specifically stirred cell membrane emulsification 61 

(Kosvintsev et al., 2005, Dragosavac et al., 2008), was investigated as a process to generate similarly 62 

sized w/o/w emulsions of narrow droplet size distribution stabilised with different food emulsifiers.  63 

PGPR, oil soluble surfactant, is commonly used in the oil phase of w1/o/w2 emulsions to stabilize the 64 

internal water phase (w1) via top-down processing (Silva et al., 2018, Chen et al., 2018). The primary 65 

emulsion (w1/o) is then applied to further top-down or alternatively bottom-up processing to create 66 

the final w/o/w emulsion where water soluble surfactant (most commonly Tween 20) must be 67 

present in the outer water phase (w2). Another group recently reported on Tween 20 applied in the 68 

external aqueous emulsion phase to successfully stabilise w/o/w emulsions with encapsulated garlic 69 

extract via stirred cell membrane emulsification (Ilić et al., 2017, Nikolovski et al., 2018). Tween 20 is a 70 

small molecular weight surfactant with higher mobility compared to the macromolecules octenyl succinic 71 

anhydride starch (OSA) and pea protein isolate (PPI). OSA starch is native starch, often of the waxy type, 72 
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i.e., majorly consisting of amylopectin, that has been chemically modified to contain the anionic and 73 

nonpolar group – octenyl succinic anhydride. PPI mainly contains two globular proteins, legumin and 74 

vicilin (O' Kane et al., 2005). Globular proteins are rigid molecules and rearrange at the interface slowly 75 

(Stauffer, 1999). The starch and protein sorb slower at the droplet surface compared to Tween 20 but 76 

develop a thick and viscoelastic layer and stabilise the droplets through steric and electrostatic repulsion 77 

(Bhosale and Singhal, 2006, Dickinson, 2010). Therefore, comparison of drop stabilisation and 78 

encapsulation/release properties of starch, protein and Tween 20 would be beneficial.  79 

However, to the best of our knowledge, there are no publications on the use of complex food 80 

emulsifiers such as starches and proteins to stabilise w/o/w emulsions via membrane emulsification. 81 

We were particularly interested in designing process conditions that would impart a comparable and 82 

narrow droplet size spectrum for both types of hydrophilic emulsifier, to then independently assess 83 

the release of magnesium encapsulated in the internal water phase. Magnesium was selected for 84 

convenient detection of release following previously published method (Bonnet et al., 2009). The 85 

emulsions, generated by stirred cell membrane emulsification, were thickened with the hydrophilic 86 

food hydrocolloid xanthan gum post emulsification to alleviate the impact of creaming on the results 87 

of the release measurement. Based on predictive modelling (Dragosavac et al., 2012), a formulation 88 

and processing protocol enabling the independent study of the impact of the choice of hydrophilic 89 

emulsifier on the release properties of a w/o/w emulsion, applicable to a broader choice of 90 

encapsulates than just magnesium, provided they will not alter the physico-chemical properties of 91 

the emulsion system, is introduced.  92 

 93 

2 Materials and methods 94 

2.1 Materials and emulsion phases 95 
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All used materials were food grade and were used without modifications. To match the osmotic 96 

pressure NaCl (Fisher Scientific, Loughborough, UK) was used both in the internal (w1) and the 97 

external water phase (w2) of w1/o/w2 emulsions. NaCl was selected as it enhances the adsorption of 98 

PGPR at the oil-water interface thus providing superior stability (Pawlik et al., 2010). NaCI, within the 99 

internal water phase (w1), was replaced with MgCI2·6H2O (Sigma Aldrich, Dorset, UK) for easier and 100 

accurate detection of encapsulation efficiency or release. Internal water droplets (w1) were 101 

stabilised in the oil phase (sunflower oil, purchased from local supermarket) with PGPR (PGPR 90; 102 

DuPont Danisco, Kettering, UK). Tween 20 (Sigma Aldrich, Dorset, UK), octenyl succinic anhydride 103 

(OSA) starch (N-creamer 46, Univar, Widnes, UK) and pea protein isolate (PPI) (MyProtein, 104 

Northwich, UK) were applied as a hydrophilic emulsifier. Xanthan gum (CP Kelco, San Diego, USA) 105 

was used as a thickening agent. Deionized (DI) water, produced on site, was used throughout this 106 

study, and sodium azide (Sigma Aldrich, Dorset, UK) was added to all aqueous phases to suppress 107 

microbial spoilage. Acetone (Sigma Aldrich, Dorset, UK) was used as a solvent for a membrane 108 

wetting agent (Micropore Technologies Ltd., Redcar, UK). All concentrations are provided on a 109 

weight by weight basis, unless stated otherwise. 110 

The external water phases (w2) were prepared by mixing the appropriate amount of hydrophilic 111 

emulsifier with 0.1M NaCl solution. For investigating the impact of emulsifier concentration on 112 

stirred cell membrane emulsification 0.5%, 1%, 2% and 4% Tween 20; 2% and 4% OSA starch; and 113 

0.5%, 1.5%, 3% and 6% PPI were applied.   114 

For encapsulation efficiency and release measurement, 1600 ppm Mg2+ (MgCI2·6H2O, vacuum-dried 115 

overnight at 95°C to remove free moisture), was dissolved in water to constitute the internal 116 

aqueous phase (w1) of the w1/o/w2 emulsions instead of 0.1 M NaCI. The outer water phase (w2) 117 

consisted of 0.5% xanthan gum and 2% Tween 20, 4% OSA starch or 1.5% PPI. To maintain the 118 
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osmotic pressure balance between two aqueous phases of the w/o/w emulsions, Mg2+ 119 

concentration was calculated according to Equation 1: 120 

CMg2+ + 2CCI- = CNa+ + CCI- = 2CNaCI = 3CMgCI2
 = 0.2 M                                   Eq.1 121 

where CMg2+, CCI-, CNa+, CNaCI and CMgCI2
 are molar concentrations of Mg2+, CI-, Na+ ions, NaCI and MgCI2 122 

present in w1. It was checked that the addition of MgCI2 to the w/o/w emulsions instead of NaCI had 123 

no influence on the microstructure and droplet size distribution. The oil phase contained 4% PGPR 124 

and was prepared by stirring for at least 30 min on a magnetic stirrer at room temperature.  125 

The w1/o emulsions, as the internal emulsion phase of the w/o/w emulsions, were produced by slow 126 

addition of internal water phase (w1) into the oil phase containing 4% PGPR under high shear mixing 127 

(Ultra Turrax, model T25, IKA Works, Staufen, Germany) operating at 24000 rpm for 5 min. 128 

Emulsification was performed in an ice bath to avoid overheating. These process conditions have 129 

previously been reported to generate a droplet size of around 0.5 µm (Vladisavljevic and Schubert, 130 

2003). Final concentration of internal water phase (w1) within the oil phase was 40%. 131 

 132 

2.2 Stirred cell membrane emulsification 133 

For the preparation of the w1/o/w2 emulsions stirred cell membrane emulsification was used. A 134 

hydrophilic nickel membrane with 4 cm diameter (Micropore Technologies Ltd., Redcar, UK), 135 

containing uniform straight through 20 µm cylindrical pores with 200 µm pore spacing, was used 136 

(see Figure A1 in the Appendix). Based on these two parameters, the porosity of the membrane 137 

(Dragosavac et al., 2008) was calculated to be 0.91%. To increase the hydrophilicity of the 138 

membrane and to avoid the spreading of the dispersed phase (w/o emulsions) over the membrane 139 

surface, the membrane was pre-soaked for 30 min in 2% wetting agent (Micropore Technologies Ltd., 140 
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Redcar, UK). For a set-up the membrane was placed in the base of the Dispersion Cell (Micropore 141 

Technologies Ltd., Redcar, UK) filled with continuous phase.  142 

After preparation of the base, a cylinder glass cell (125 cm3 volume) was fitted over the membrane 143 

and filled with continuous phase (outer water phase (w2)). A two-blade paddle stirrer, driven by a 144 

24V DC motor and power supply (INSTEK Model PR 3060, UK), was fixed on the top of the cell. 145 

Maximum shear stress was controlled by rotational speed and ranged between 200 and 1500 rpm 146 

corresponding to a maximum shear stress at the membrane surface between 1 and 51 Pa depending 147 

on a continuous phase used. The dispersion phases (primary w1/o emulsions) were injected through 148 

the microporous membrane surface using a syringe pump (AL-1000, World Precision Instrument, 149 

Hitchin, UK) fitted with a glass syringe of 29 mm inner diameter at constant injection rate in the 150 

range of 1 to 15 ml min-1 corresponding to a transmembrane flux between 70 and 1150 L h-1 m-2. The 151 

experiments were continued until the dispersed phase volume fraction reached 10 or 30 vol.%. Once 152 

the desired amount of the w1/o emulsion had passed through the membrane, the pump and the 153 

stirrer were switched off followed by transferring the w/o/w emulsion into a glass beaker (100 ml of 154 

w/o/w emulsion was prepared). Finally, 1 ml aqueous sodium azide solution was added to w/o/w 155 

emulsions to obtain a final sodium azide concentration of 0.02% to prevent microbial spoilage. The 156 

beaker was then covered with cling film and stored at room temperature (21 ± 5 °C) until further 157 

analysis. 158 

After each use, the membrane was cleaned for 1 min with detergent solution in an ultrasonic bath 159 

followed by cleaning with acetone and DI water before drying using compressed air. 160 

Injection speed and maximum shear stress applied to the membrane surface was varied depending 161 

whether the impact of formulation (type and concentration of hydrophilic emulsifier) or processing 162 

parameters on emulsion characteristics was evaluated.  Emulsions were also produced to assess 163 
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their microstructure stability and encapsulation or release properties. Parameter settings are 164 

evident from the presentation of the results.  165 

 166 

2.3 Methods for acquisition of parameters required for the droplet diameter predictive model 167 

To predict the droplet diameter (x) produced with the Dispersion Cell, a conventional shear force 168 

model (Kosvintsev et al., 2005, Dragosavac et al. 2008) based on the balance between the capillary 169 

force (function of equilibrium interfacial tension (γ) and pore size (rp)) and the drag force (function of 170 

a maximum shear stress (τmax) and the droplet size (x)) acting on a strongly deformed droplet at a 171 

single membrane pore was applied. The droplet diameter can be estimated according to Equation 2. 172 

x = 
�18𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

2𝑟𝑟𝑝𝑝
2+2�81𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚

4𝑟𝑟𝑝𝑝
4+4𝑟𝑟𝑝𝑝

2𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
2𝛾𝛾2

3𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚
                                                Eq.2 173 

Thus, to calculate the predicted droplet diameter, the interfacial tension between the w1/o phase 174 

and w2 phases, the viscosity and the density of w2 were measured as follows. All samples for these 175 

analyses were prepared in triplicate and analysed once. 176 

Equilibrium interfacial tension (γ) data at the interface between all the external aqueous emulsion 177 

phases and the w1/o emulsion was measured with a force tensiometer (DB2KS, White Electric 178 

Instrument, Malvern, UK) using the Du Nouy ring method at room temperature (21 ± 5 °C). The 179 

viscosity (20oC) of all the external aqueous emulsion phases was measured using a rotational 180 

rheometer (MCR 301, Anton Paar, Graz, Austria) fitted with a concentric cylinder double gap 181 

geometry (DG26.7/T200). Shear rate was stepped up at 5 points/decade between 0.1 and 1000 s-1 182 

and a total number of 21 points were acquired every 5 s. The density of external aqueous emulsion 183 

phases was measured using a density meter (DMA 5000, Anton Paar, Graz, Austria). 184 

 185 
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2.4 Analysis of emulsion characteristics 186 

The visual microstructure appearance and droplet size distribution of the produced emulsions were 187 

analysed up to 13 days after processing (immediately after production; on day 1, 2, 6 and 13) to gain 188 

insight into their microstructure stability.  189 

The microstructure of the w/o/w emulsions was visualised using an epifluorescence microscope 190 

(L3201LED, GT Vision Ltd., Suffolk, UK) operated in bright field illumination mode. Slides were 191 

prepared by pipetting a few drops of the continuous phase (w2) first, to reduce the influence of the 192 

surface tension on drops, and then a few drops of emulsion onto a glass slide followed by carefully 193 

sliding over a glass cover slip. At least three randomly selected areas of each slide were imaged at a 194 

lower and a higher magnification (x4 and x20 objective) and three slides were prepared for each 195 

emulsion.  196 

The droplet size distributions were analysed with a laser diffraction particle size analyser (Malvern 197 

Mastersizer 2000, Malvern Panalytical Ltd, Malvern, UK). The Dispersion cell was filled with 198 

deionized water as the dispersing medium. Measurement set up and analysis was controlled by the 199 

instrument’s software package. The refractive index of the dispersion medium (water) and the 200 

dispersed phase (oil) was set to 1.33 and 1.47, respectively. The absorption value of the dispersed 201 

phase was set to zero. Once the emulsion was dispersed in the water, three measurements were 202 

taken, and the raw data was fitted with a general model. Measurement was carried out in triplicate.  203 

 204 

2.5 Preparation of xanthan gum thickened emulsions 205 

To prevent creaming during encapsulation or release measurements, xanthan gum was added to the 206 

emulsion after manufacturing. 1% xanthan gum solution was prepared by dispersing the xanthan 207 

gum powder into water pre-heated to 80°C, while mixing at 1500 rpm with an overhead mixer 208 
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(RW20 fitted with a 4-bladed propeller stirrer, IKA, Staufen, Germany) for 1 h. The solution was left 209 

overnight to cool down to room temperature (21 ± 5 °C) and to reach complete hydration before use. 210 

70 g of xanthan gum solution was added to 100 g of emulsion and mixed at 600 rpm on a magnetic 211 

stirrer for 30 min obtaining a final xanthan gum concentration in the external aqueous phase of the 212 

w/o/w emulsions of 0.5%. Using the particle sized analyser and microscope, it was confirmed that 213 

the droplet size and their distribution of the w/o/w emulsions did not change due to these mixing 214 

conditions.  215 

 216 

2.6 Assessing magnesium (Mg2+) encapsulation and release 217 

An Atomic Absorption Spectrophotometer (Spectra AA-200 Varian, UK), operating at the wavelength 218 

of 285.2 nm, was used to detect Mg2+ concentration during the encapsulation and release study. 219 

Standard calibration curves with the Mg2+ concentration as a function of the measurement signal 220 

(absorbance) for different w2 solutions are shown in Figure A2 in the Appendix. The absorption 221 

obtained from the spectroscopy increased with increasing magnesium concentration. The 222 

relationships were linear and repeatable.  223 

To assess w2 for leakage of w1 and magnesium into w2, the concentration of magnesium in w2 was 224 

calculated based on the standard calibration curve. Magnesium release percentage was calculated 225 

as follows (Bonnet et al. 2009): 226 

 Mg (%) = (CMg · ϕw2
) / (Ct · ϕw1

)) * 100                                                                  Eq.3 227 

where CMg is the magnesium concentration in w2, which was calculated from the corresponding 228 

calibration curves, made for each release media used. ϕw2
 is the volume fraction of w2 in final 229 

w1/o/w2 emulsion (0.8),  ϕw1
 is the volume fraction of w1 in w1/o emulsion (0.4) and Ct is the total 230 
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Mg2+ concentration initially added in the internal water phase (1600 ppm). From the amount of Mg2+ 231 

released in the w2 phase immediately after production (Figure 5; day 0) it is also possible to estimate 232 

Magnesium encapsulation efficiency (EE) EE (%) = 100 – (CMg/ Ct) ·(1 – ϕw2
)/ ϕw1

·ϕw2
 (Dragosavac et 233 

al., 2012). 234 

To prepare the samples for release analysis, a w1/o/w2 emulsion was centrifuged for 30 min at 3500 235 

rpm (Heraeus Labofuge 400R, Thermo Scientific, Germany). The bottom layer was then carefully 236 

taken out by pipette and centrifuged again at the same conditions to ensure that w2 was void of oil 237 

droplets.  Via microscopic observation and droplet size analysis of the creamed emulsion droplets it 238 

was verified that the chosen centrifugation conditions had not changed the droplet size distribution. 239 

All measurements were taken over 13 days at the same days as emulsion droplet appearance was 240 

checked.  241 

 242 

3 Results and discussion 243 

3.1 Effect of emulsifier concentration  244 

The effect of the surfactant concentration (Tween 20, OSA starch and PPI) and maximum shear 245 

stress on the w/o/w emulsions droplet size and span have been jointly reported in Figure 1. Having 246 

in mind that the model used to predict the droplet size using the Eq. 1 does not take into 247 

consideration the injection rate, the experimental data are shown for the injection rate of 1 ml min-1 248 

corresponding to the lowest meaningful injection rate applicable in the experimental set-up. 249 

Increasing emulsifier concentration led to a decrease in droplet size for the larger molecular weight 250 

emulsifiers PPI and OSA starch, but not for Tween 20. At the same time, droplet size decreased 251 

considerably when the maximum shear stress was stepped up from a low level (1 Pa) to a mid and 252 

high level (6 and 20 Pa), where the droplet size was comparable. These findings were independent of 253 
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emulsifier type. In the case of the Tween 20 stabilised w/o/w emulsions (Figure 1A), the increase in 254 

emulsifier concentration from 0.5% to 4% had little impact on the droplet size, as could be expected 255 

based on the much lower literature value for this emulsifier’s CMC reported in Table 2. On the other 256 

hand, the increase in Tween 20 concentration led to an improvement in the span for the 257 

intermediate maximum shear stress (6 Pa). This could be due to the presence of excess emulsifier 258 

molecules in the continuous emulsion phase protecting the formed droplets against coalescence. In 259 

literature, 2% Tween 20 is often reported for the production of uniform and stable w/o/w emulsions 260 

(Pawlik and Norton 2012, Dragosavac et al., 2012 and Pradhan et al., 2014), and was therefore 261 

chosen as a constant in the investigation of the other processing parameters on emulsion 262 

microstructure. For OSA starch stabilised w/o/w emulsions (Figure 1B), the droplet size decreased 263 

when increasing OSA starch concentration from 2% to 4%. This was accompanied with  a span 264 

reduction to 0.53 for maximum shear stress of 51 Pa. Further increase in starch concentration did 265 

not allow the formation of uniformly sized w/o/w emulsions, potentially due to the associated large 266 

increase in external phase viscosity. Therefore 4% OSA starch was used in further experiments. For 267 

PPI stabilised w/o/w emulsions (Figure 1C), a decrease in the droplet size was observed with 268 

increasing PPI concentration from 0.5% to 1.5%. Once the PPI concentration was above 1.5%, no 269 

further decrease of the droplet size, while span increased, was observed. Thus, 1.5% PPI was 270 

selected further on.  271 

It is worth noting that the Tween 20 stabilised w/o/w emulsions had a smaller droplet size and 272 

slightly better emulsion uniformity (lower span) compared to the OSA starch and PPI stabilised 273 

emulsions. This can be explained by the higher surface activity of this low molecular weight 274 

emulsifier, as reported in Table 2, and the faster adsorption rate at the interface compared to  the 275 

complex emulsifiers starch and protein (Bos and van Vliet, 2001, Kralova and Sjöblom, 2009). 276 

Nevertheless, values of span never exceeded 1 when complex food emulsifiers were used. 277 
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 278 

3.2 Effect of maximum shear stress and injection rate 279 

Both injection rate (1-15 ml min-1) and maximum shear stress (1-51 Pa) have been proven in 280 

literature to influence the mean droplet size and uniformity of w/o/w emulsions. Therefore, their 281 

joint influence was studied experimentally within the Dispersion cell. Concentration of emulsifiers 282 

was optimised and 2% Tween 20, 4% OSA starch and 1.5% PPI was used to evaluate the maximum 283 

shear stress and injection rate influence. Produced emulsions showed the characteristic appearance 284 

of a w/o/w emulsion, namely dark appearance of the dispersed droplets. For illustration, one 285 

representative image of one emulsion each stabilised with Tween 20, OSA starch and PPI at the 286 

lowest and the highest maximum shear stress is shown in Figure 2. 287 

Mean droplet size and span of the emulsions are presented in Figure 3 along with the model 288 

predictions for droplet size (Equation 1).  The experimental droplet sizes were larger than the 289 

predicted data but followed the same decreasing trend with increasing maximum shear stress.  As 290 

expected, experimental data was closest to the model prediction at the lowest injection rate of 1 ml 291 

min-1, and findings agree with literature (Vladisavljevic and Schubert, 2003, Dragosavac et al., 2012, 292 

Holdich et al., 2010).  293 

When 2% Tween 20 was used as emulsifier, drops between 50 and 250 µm were produced with a 294 

span below 0.7. At the low maximum shear stress (1 Pa), d4,3 was larger than 200 µm, which is larger 295 

than the spacing between the pores. This could mean that the newly formed emulsion droplets built 296 

up at the membrane surface rather than immediately detached. Possibly, the small shear force 297 

applied with the paddle led to the formation of a droplet layer on the membrane surface, which then 298 

slowly dispersed into the bulk (Pawlik and Norton, 2012). Besides, it could be that not all of the 299 

membrane pores were used to produce droplets during emulsification, providing more space for 300 

droplets to grow on the membrane (Vladisavljevic and Schubert, 2002). When the lowest injection 301 
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rate of 1 ml min-1 was applied, uniform emulsion droplets with a span between 0.4 and 0.6 could be 302 

obtained. This also suggests that not all membrane pores were active. If all membrane pores were 303 

active to produce droplets, two neighbouring droplets would limit the droplet growth to interpore 304 

distance leading to a lower span due to the additional push off force (Kosvintsev et al. 2005). The 305 

lowest span for the Tween 20 stabilised system was 0.49 and recorded for 1 ml min-1 injection rate 306 

and 10 Pa maximum shear stress. The highest span of approximately 0.65 was found when the 307 

highest injection rate of 15 ml min-1 and the extreme cases of the low (1 Pa) and high (20 Pa) end of 308 

the shear stress range was applied, which suggests fewer uniform droplets. This could be due to 309 

some large droplets being broken up by the paddle stirrer at the  high maximum shear stress and 310 

droplets creaming at the low maximum shear stress or the highest injection rate (Dragosavac et al., 311 

2012, Thompson et al., 2011).  312 

When PPI was used to stabilise the w/o/w emulsions (Figure 3B) drops between 300 and 60 µm were 313 

produced with spans below 0.85. For the OSA starch as emulsifier (Figure 3C) drops between 350 and 314 

65 µm were produced with spans below 1. The viscosity of the OSA starch solution was roughly 10x 315 

greater compared to the viscosity of the Tween and PPI solutions.  Therefore, the greater span and 316 

larger droplet size of the emulsions stabilised with starch can be explained with the lower diffusivity 317 

of the molecules and longer time for drop stabilisation leading eventually to coalescence. As found 318 

for the Tween 20 stabilised system, when the lowest injection rate of 1 ml min-1 was applied, narrow 319 

droplet size distributions were generally produced with spans around 0.6 for the OSA starch and PPI 320 

stabilised systems. The lowest span for the OSA starch stabilised system was 0.4 when processed at 321 

1ml min-1 injection rate and 5 Pa maximum shear stress. The lowest span for the PPI stabilised 322 

emulsions was 0.4 when processed at 10 ml min-1 injection rate and 1 Pa maximum shear stress.  323 

The predicted droplet diameter decreased with increasing maximum shear stress for all emulsifiers 324 

(model line within Figure 3). As expected based on the interfacial tension values (see Table 2), the 325 
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smallest droplet diameter was predicted for the Tween 20 (Figure 3A) stabilised emulsion, followed 326 

by PPI (Figure 3B) and then OSA starch (Figure 3C) stabilised systems, at all maximum shear stress 327 

values. The maximum shear stress range was extended to higher values for the OSA starch stabilised 328 

w/o/w emulsion due to its around tenfold higher viscosity of the continuous emulsion phase 329 

compared to the other two systems (see Table 2). The maximum shear stress range of the predicted 330 

droplet diameter curve for the Tween 20 and the PPI stabilised systems were very similar.   331 

A relatively high maximum shear stress in the present set-up (14-51Pa) combined with a low 332 

injection rate (i.e. 1 ml min-1) yielded w/o/w emulsions for all three emulsifiers with comparable 333 

droplet size of around 60-70 µm. As our intention for the Mg 2+ encapsulation/release tests was to 334 

investigate the influence of emulsifier independently of droplet size (to keep the surface area for the 335 

release constant) droplets with a diameter of roughly 60 µm were produced according to the 336 

conditions from Figure 3.   337 

 338 

3.3 Mid-term microstructure stability of the w/o/w emulsions  339 

The coalescence stability of the w/o/w emulsions stabilised with 2% Tween 20, 4% OSA starch and 340 

1.5% PPI manufactured at 1ml min-1 injection rate and the three maximum shear stress levels (low, 341 

mid and high) was investigated for up to 13 days after processing.  342 

Figure 4 shows the corresponding droplet size distributions and micrographs. For each emulsion, the 343 

droplet size distributions showed no difference over 13 days, which suggests these w/o/w emulsions 344 

were stable against coalescence independent of emulsifier type and sample age. Although all w/o/w 345 

emulsions creamed by visual observation, the micrographs show that there was no apparent change 346 

in microstructure and no emptying out for any of the emulsions over the 13 day period of 347 

observation. As it can be seen from Figure 4, even on day 13, the emulsion droplets had a dark 348 

appearance, which demonstrates that there was little or no loss of the inner water droplets from the 349 
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oil droplets of the w/o/w emulsions. 350 

 351 

3.4 Effect of continuous phase (w2) on Mg2+ release and encapsulation  352 

Magnesium release was tracked over a period of 13 days to explore encapsulation efficiency of 353 

magnesium or the diffusion of the internal water phase (w1) to the external water phase (w2) of the 354 

w1/o/w2 emulsions. These emulsions had xanthan gum added post emulsification to eliminate the 355 

impact of creaming on the release data. According to section 3.2, similarly sized uniform droplets 356 

(roughly 60 µm diameter), characterised by a low span, independent of emulsifier type were 357 

obtained when a low injection rate (1 ml min-1) was combined with the maximum shear stress of 14, 358 

16 and 36 Pa for Tween 20, PPI and OSA starch (see Figure 3). For production of w/o/w emulsions for 359 

the release measurement sodium chloride was substituted for magnesium as a more convenient 360 

marker molecule (see section 2.6). To maximise the observation window, the volume fraction of 361 

w1/o in w/o/w emulsions was increased from 10 vol.% to 30 vol.%. So, initially it was ascertained 362 

through microscopic inspection and acquisition of droplet size distribution data that these two 363 

formulation changes had no impact on the microstructure of the w/o/w emulsions. There was no 364 

apparent change in the microstructure of the w/o/w emulsions when using Mg2+ instead of NaCI in 365 

w1 compared to the respective microstructure shown in Figure 3 on the day of emulsion processing 366 

and on day 13 (micrographs omitted for sake of brevity).   367 

Figure 5 shows the release of magnesium from w1 into w2 of the xanthan gum thickened w/o/w 368 

emulsions over 13 days. It has been widely reported that an increase in the viscosity of aqueous 369 

phases in w/o/w emulsions by the addition of thickening and gelling agents leads to an improvement 370 

in the encapsulation efficiency of w/o/w emulsions (Kim et al., 2017, Oppermann et al., 2018). 371 

Although viscosity change induced by xanthan gum was expected to play a significant role on the 372 

encapsulation efficiency, there were differences found in the released amount of magnesium from 373 
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all xanthan gum added w/o/w emulsions depending on emulsifier type. Encapsulation efficiency 374 

immediately after production was 100% for the OSA starch and PPI stabilised w/o/w emulsions. The 375 

OSA starch and PPI stabilised w/o/w emulsions showed some release only between day 3 and day 6 376 

after emulsion preparation. Approximately 1% of magnesium were detected in w2 on day 6. Release 377 

continued at a slow rate and reached roughly 3% on day 13. So, these two types of emulsions 378 

appeared relatively stable against magnesium release from the encapsulated water phase, thus it is 379 

assumed that there was limited diffusion of w1 into w2 setting on only between 3 and 6 days after 380 

emulsion generation.  381 

The Tween 20 stabilised w/o/w emulsion was less stable against magnesium release. 5% magnesium 382 

release was noted on the day of emulsion processing meaning that encapsulation efficiency of 2% 383 

Tween was 95%. This could be indicative of a rapid setting on of diffusion of w1 into w2, or loss of w1 384 

into w2 during the emulsification process. Magnesium continuously leaked into the external water 385 

phase albeit at decreasing rate over time. Similar observations for Tween 20 stabilised w/o/w 386 

emulsions, but manufactured at a higher injection speed (about 5 ml min-1), so having a larger 387 

droplet size (d3,2 = 107 µm), and encapsulating copper in w1, have previously been reported 388 

(Dragosavac et al., 2012).  In that case around 50% of the encapsulated copper was released and 389 

w/o/w drops appeared clear within 13 days of emulsion generation. In the current study, there was 390 

no apparent change in the droplet appearance of Tween 20 stabilised w/o/w emulsions after 13-day 391 

storage. However, a loss of 27% of internal water phase (w1) into w2 by day 13 has been detected. 392 

Nevertheless, this loss might not be enough to visibly change the appearance of the droplets, but 393 

diffusion of w1 into w2 might still have occurred. Water and water soluble material transport in 394 

w/o/w emulsions can be explained either by a swelling-breakdown mechanism or diffusion and/ or 395 

permeation through the oil film (Cheng et al., 2007). Specifically, mechanisms behind diffusion and/ 396 

or permeation including an osmotic pressure gradient between two aqueous phases (Matsumoto et 397 

al., 1980), the thin lamellae of surfactant which partially form in the oil layer due to fluctuations in its 398 
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thickness (Jager-Lezer et al., 1997, Garti, 1997b), or reverse micelles in the oil phase (Sela et al., 399 

1995) have previously been reported. Since the osmotic pressure was balanced in this study, water 400 

transport between two aqueous phases and release of magnesium might result from the thin 401 

lamellae of surfactant forming in the oil film and the PGPR micelles and/or Tween 20 reverse micelles 402 

in the oil phase.  403 

 404 

4 Conclusions 405 

This research has for the first time shown that complex food emulsifiers such as starch and protein 406 

can be applied to produce stable w/o/w emulsions with the technology of stirred cell membrane 407 

emulsification. One should consider though that stabilisation with a low molecular surfactant such as 408 

Tween 20 would allow formation of slightly more uniform droplet size distributions (lower span) 409 

with a lower mean diameter. For the release of magnesium from the internal water phase to the 410 

external water phase, OSA starch and PPI stabilised w/o/w emulsions thickened by xanthan gum 411 

showed a better stability against release than Tween 20 stabilised ones. The results reported in this 412 

study enabled the production of uniformly sized w/o/w emulsions with similar average droplet 413 

diameters and high encapsulation efficiency using complex food emulsifiers. Immediately after 414 

production encapsulation efficiency for OSA starch and PPI was 100% while for Tween it was 97%. 415 

Delayed release was obtained when complex food emulsifiers (starch and protein) were used with 416 

almost no release up to 2 days. After 13 days, the emulsions stabilised with Tween 20 had released 417 

almost 30% of Mg2+ and for those stabilised with starch and protein Mg 2+ leakage was less than 4%. 418 

This study has introduced a pathway, beneficial for food and pharmaceutical applications, to 419 

enhance the stability and encapsulation efficiency of w/o/w emulsions based on the appropriate 420 

selection of the hydrophilic emulsifier. Low energy membrane emulsification process proved to be a 421 

worthy tool to control as desired, both the droplet size of w/o/w emulsions independent of the 422 
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hydrophilic emulsifier. Future work will focus on incorporation of volatile flavours within the 423 

emulsion matrix stabilised by complex food emulsifiers (PPI and starch). 424 
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Table 1: Averaged interfacial tension, viscosity (at 10 s-1) and density data acquired at 20 °C  569 

w2 
interfacial tension at 
w1/o interface (mN/m) 

viscosity 
(mPa.s) density (g/cm3) 

2% Tween 20 in 0.1 M NaCI 5.9 ± 0.4 1.07 ±0.01 1.0050 ± 0.0000 
4% OSA starch in 0.1 M NaCI 13.7 ± 0.2 11.57 ± 0.12 1.0173 ± 0.0000 
1.5% PPI in 0.1 M NaCI 10.5 ± 0.4 1.26 ± 0.05 1.0065 ± 0.0002 
 570 

 571 

  572 
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Table 2: Physicochemical properties of emulsifiers used in this study. CMC: critical micelle 573 
concentration . 574 

Emulsifier 

Approxim
ate 
molecular 
weight 
(g/mol) 

Approximate 
CMC 

Structural formula 

PGPR 

3000 
(Ushikubo 
and 
Cunha, 
2014) 

1.8 (% w/w) 
at 20 °C 
(Bahtz et al., 
2016) 

 
A) chemical structure of PGPR. R is a hydrogen, ricinoleic 
acid or polyricinoleic acid. The average value of n is about 3. 
B) chemical structure of ricinoleic acid. (Ushikubo and 
Cunha, 2014) 

Tween 20  

1228 
(Obradovi
ć and 
Poša, 
2017) 

0.07 (% w/w) 
at 25°C 
(Cottrell and 
Van Peij, 
2015) 

 
Dotted box notes the alkyl chain. (Obradović and Poša, 2017) 

OSA 
starch  

470000 
(Kasprzak 
et al., 
2018) 

0.05 (% w/v) 
at 25°C 
(Krstonošić 
et al., 2011) 

 
(Shogren et al., 2000) 

PPI  

Main 
compone
nts (O' 
Kane et 
al., 2005): 
legumin, 
380000 
g/mol; 
vicilin, 
150000 
g/mol. 

0.04 (% w/w) 
at 20 °C 
(Gharsallaoui 
et al., 2009) 

- 
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