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THERMAL ENERGY STORAGE SYSTEM FOR EFFICIENT DIESEL EXHAUST 
AFTERTREATMENT AT LOW TEMPERATURES 

M.R. Hamedi1, O. Doustdar1, A. Tsolakis1,*, J. Hartland2 

 

Abstract 

 To reduce cold-start emissions, a thermal energy storage (TES) system can be used 

in conjunction with the exhaust aftertreatment system. Phase change materials (PCM) can 

be used in the TES system to absorb the exhaust gas thermal energy, thus liquefying and 

storing it as latent heat. This allows storage of the exhaust gas thermal energy during the 

engine’s high-load conditions and gradually releases the thermal energy back to the 

catalyst substrate during the engine-off period.  

Based on the results, implementing a TES system into the diesel aftertreatment system 

has shown great potential in reducing a vehicle’s emissions, particularly for hybrid 

vehicles. This approach can assist the catalyst to activate the emissions’ conversion 

reactions straight after the cold-start. However, its effectiveness largely depends on the 

duration of the engine-off periods between the driving cycles. In this study, it was found 

that facilitating the heat transfer between the PCM and the catalyst can significantly 

improve the emissions’ reduction performance by avoiding the catalyst to light-out after 

the cold-start.  

A substantial improvement in the system’s thermal behaviour was observed by using 

PCM additives and metallic catalyst substrates to increase the system’s thermal 

conductivity. Although a TES system increases the aftertreatment cost and complexity, it 

can result in substantial emissions’ reduction over the vehicle’s operating life. This can also 

translate into reduced vehicle fuel consumption and CO2 emissions, as the emissions-

related fuel penalty will be minimized. 
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1. Introduction 

Emissions’ control technologies have substantially developed to fulfil the stringent 

emissions’ regulations since the first introduction of a catalytic converter. Different 

aftertreatment technologies, i.e. DOC (diesel oxidation catalyst), SCR (selective catalytic 

reduction) and DPF (diesel particulate filter) can reduce diesel engines’ emissions by 

oxidizing CO and HC, reducing NOx, then filtering and oxidizing PM emissions [1-3]. 

These aftertreatment systems have been developed over the past decades to reduce the 

required activation energy for emissions’ conversion reactions [4].  

However, recent advances in IC engines have limited the thermal energy available 

for the aftertreatment systems to effectively reduce the diesel engines’ emissions. 

Different engine-based heating strategies are used to provide more thermal energy to 

the aftertreatment catalysts for an improved emissions’ reduction performance, 

particularly during a cold-start [5-7]. In these strategies, the engine is calibrated to less 

efficient conditions to increase its exhaust gas temperature for aftertreatment systems; 

this can also assist in lowering engines’ NOx emissions [8]. However, engine-based 

catalyst heating strategies generally lead to increased fuel consumption and CO2 

emissions.  

Exhaust gas aftertreatment systems are typically ineffective during an engine’s 

cold-start; thus, releasing a high proportion of the vehicle’s emissions during this period 

[9, 10]. This highlights the need for the thermal management of aftertreatment systems 

for maximum emissions’ reduction, particularly during the engine’s cold-start and low-

load conditions [3].  
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To reduce the cold-start emissions, a thermal energy storage (TES) system can be 

used in conjunction with the exhaust aftertreatment system. Phase change materials 

(PCM) can be used in the TES system to absorb the exhaust gas thermal energy; thus, 

liquefying and storing it as latent heat [11, 12]. The PCMs offer relatively high energy 

storage density at a constant temperature [6, 12-14]. When the aftertreatment system 

temperature drops, the PCM will cool down and solidify, releasing the stored thermal 

energy to the catalytic converter substrate [15]. This allows the storage of the exhaust 

gas thermal energy during the engine’s high-load conditions and gradually releases the 

thermal energy back to the catalyst substrate during the engine-off period. Therefore, 

the substrate temperature can be kept above the operating limit (i.e. light-off 

temperature) until the following engine start for improved cold-start emissions’ 

conversion.  

The TES system can also moderate the aftertreatment temperature fluctuations 

during a driving cycle, which can enhance the catalyst’s performance and lifespan. 

Moreover, the use of additives in PCMs improves the thermal conductivity of the PCM 

and its heat transfer behaviour [12, 15]. Mettawee et al. investigated the benefit of 

adding aluminium powder to paraffin wax for solar heat storage applications [16]. It 

was found that embedding aluminium powder into the PCM can lead to a 60% reduction 

in the charging time of the TES system, as it can significantly enhance the thermal 

conductivity of the PCM mixture. In a different study, exfoliated graphite nano-platelets 

(xGnP) were added to paraffin wax to achieve a composite PCM of high latent heat and 

high thermal conductivity [17]. This resulted in increasing the thermal conductivity of 

the PCM mixture from approximately 0.25 W.m-1.K-1 to 2.41 W.m-1.K-1. It was also found 
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that the latent heat of the paraffin and the thermal stability of the PCM mixture were 

slightly improved.  

TES systems can also be used to accelerate engine oil and coolant warm-up during 

engine cold-start. Park et al. [18, 19] designed a PCM thermal storage system to recover 

and recycle the waste heat energy of the coolant system. Implementing this TES system 

on a 1.6-L diesel engine resulted in roughly 40% reduction in the coolant warm-up time 

to 95°C and a 2.71% decrease in fuel consumption was reported over the NEDC. 

Vittorini et al. [20] studied thermal management of engine oil via exhaust gas waste 

heat recovery to decrease the engine friction and consequently its fuel economy. In this 

study, fuel consumption, CO and HC emissions were reduced by 3.6%, 7.2% and 3.5%, 

respectively [20].  

M. Gumus tested PCM thermal energy storage systems in gasoline engines to control 

the cold-start emissions [5]. Burch et al. found that by applying a layer of PCM around a 

three-way catalyst (TWC) in a gasoline engine, the TES system retained an acceptable 

level of thermal energy for approximately 24 hours after a driving cycle [21]. This 

resulted in an 84% reduction in non-methane hydrocarbons (NMHCs) and a 91% 

reduction in CO emissions when the engine was re-started. Variable conductance 

vacuum insulation (using metal hydrides) was also used to minimize the heat loss to the 

atmosphere and also prevent the catalyst from over-heating during the engine’s high-

load conditions.  

Korin et al. investigated different PCM/catalyst layouts to increase the heat transfer 

between the PCM and the three-way catalyst [22]. His design proved to be effective; 

however, the catalyst’s temperature only remained above its light-off for approximately 

four hours after the engine’s shut-down. This highlights the significance of insulation, 
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alongside the PCM, in minimizing the heat loss to the atmosphere for improved heat 

retention capability.  

Gaiser et al. experimentally studied a TES system in a sequential arrangement with 

an SI engine’s catalytic converter [23]. This included a heat exchanger to transfer the 

heat to the exhaust gas, and vacuum insulation for minimizing the heat loss to the 

atmosphere. Although this arrangement accelerated the catalyst’s light-off behaviour, 

integrating the TES system into the catalyst proved to be substantially more effective. In 

an integrated TES system arrangement, the catalyst can remain hot during the engine-

off periods; whereas in a sequential arrangement, the heat is stored in the upstream 

device and the catalyst cools down shortly after the engine’s shut-down. Therefore, the 

catalyst needs to light-off again with the aid of the upstream TES system. This can lead 

to increased emissions compared to the integrated TES system arrangement.  

Considering the different nature of diesel exhaust gas aftertreatment in terms of 

temperatures, gaseous composition and catalysts, a thermal energy storage system has 

to be developed and investigated based on its requirements. Extensive reviews on the 

application of PCM have been published by [12, 24-27]; however, there are only a few 

studies in the field of the application of PCM in compression ignition engines for 

controlling pollutants.  

In this study, a novel PCM thermal energy storage system is developed for light-

duty diesel aftertreatment applications for maximum emissions’ reduction. This was 

achieved by investigating different materials for PCM additives and catalyst substrates 

to improve the thermal behaviour of the TES system. 
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The aim of this study is to utilize state-of-the-art mechanical, chemical and material 

engineering sciences to enhance the effectiveness of a thermal energy storage system 

integrated into a diesel oxidation catalyst. The benefits of this system can be further 

extended in series hybrid vehicles in which a repetitive engine cold-start is expected. 

Moreover, by absorbing the excessive heat during the engine’s high-load conditions, the 

catalyst’s durability can be improved due to the decreased catalyst active sites sintering 

and thermal shocks.  

 

2. Methodology 

An ANSYS Fluent® model was developed to simulate the PCM behaviour where the 

thermal energy storage system was integrated into the aftertreatment system. The 

Exothermia Axisuite® modelling package was used to perform the aftertreatment 

simulations. The model was created based on a close-coupled full-size DOC and its inlet 

exhaust gas conditions were extracted from a Euro 5 V6 Jaguar Land Rover research 

test engine operating on the NEDC. The test engine was equipped with a turbocharger 

to provide more demanding conditions for the DOC in terms of exhaust gas 

temperature. The models were calibrated and validated based on the experimental data 

for maximum consistency. 

2.1. Design of the Thermal Energy Storage (TES) System  

The TES system can be used both upstream of the catalytic converter to heat up the 

exhaust gas, or directly integrated into or around the catalyst. In this study, the 

integrated TES system design was implemented with an annular layer of PCM around 

the oxidation catalyst (Figure 1). This configuration offers the advantage of instant 
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emissions’ conversion with the engine start, as the catalyst can remain hot during the 

engine-off periods [23]. 

In order to select an appropriate PCM for the diesel exhaust gas aftertreatment, a 

few criteria have to be taken into account. The PCM’s melting point should be above the 

catalyst’s light-off temperature, to maintain the catalyst in the operating region while 

releasing the thermal energy at a constant temperature [14]. At the same time, the 

PCM’s melting point needs to be low enough so that the PCM can liquefy over a driving 

cycle (e.g. NEDC) for maximum thermal energy storage. 

High PCM latent heat of fusion (𝐿𝐿) and specific heat capacity (𝐶𝐶𝑝𝑝) are other main 

criteria which can minimize the PCM’s mass requirement for packaging purposes. The 

thermal conductivity (𝜆𝜆) of the PCM can significantly affect the heat transfer rate of the 

TES system; hence, phase change materials with higher thermal conductivity can 

respond faster to the transient environment of the exhaust gas aftertreatment. 

The catalyst used in this study has a light-off temperature of about 150 °C; 

therefore, PCMs with a phase change temperature between 170 °C and 200 °C were 

considered. Comparing the commercially available phase change materials, X180 PCM 

from PlusICE has been selected and its specifications are listed in Table 1. In the 

reference model, the TES system consists of 2 kg of PCM salt surrounding the DOC 

ceramic substrate with a vacuum insulation. Unless otherwise stated, a 10% PCM liquid 

fraction was assumed as an initial condition at the start of the NEDC to standardise 

different investigations. 
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Table 1: Modelled PCM Specifications 

PCM Specification Data 

Phase Change Temperature [°C] 180  

Latent Heat of Fusion [kJ.kg-1] 280  

Specific Heat Capacity [kJ.kg-1.K-1] 1.4  

Thermal Conductivity [W.m-1.K-1] 0.36  

 

2.2. Selection of PCM, PCM Additives and Catalyst Materials 

In order to enhance the heat transfer between the PCM and the catalyst, the 

application of mixing additives to the PCM was investigated. This can lead to an increase 

in the thermal conductivity of the PCM-additive mixture, to improve the TES system’s 

response time to the transient environment of the aftertreatment system. In 

conjunction with the PCM additives, the effect of the catalyst’s substrate material on the 

thermal energy transfer from the PCM to the catalyst’s active sites was also investigated. 

Aluminium, copper and graphite were selected, based on the exhaust gas 

aftertreatment requirements, from the studied PCM additive materials in the literature 

[16, 28]; their properties are listed in Table 2. These additives were mixed with the PCM 

salt by 10% mass ratio. Assuming a homogeneous mixture, the PCM-additive mixtures’ 

properties are calculated based on Equations 1 to 3 and are summarized in Table 3. 

Adding 10% graphite to the PCM leads to a 26 times increase in the PCM-additive 

mixture’s thermal conductivity from 0.36W.m-1.K-1 to 9.46W.m-1.K-1. The mixture’s latent 
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heat decreases by 10% as the additive portion of the mixture is not able to change its 

phase at the same temperature as the PCM. 

Table 2: PCM Additive Materials’ Properties 

Material Properties Aluminium Copper Graphite 

Density [kg.m-3] 2700 8960 2200 

Thermal Conductivity [W.m-1.K-1] 160 390 145 

Specific Heat [J.kg-1.K-1] 950 380 710 

Melting Point [°C] 620 990 3800 

 

𝝆𝝆𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =  𝝆𝝆𝑷𝑷𝑷𝑷𝑷𝑷𝒗𝒗𝒇𝒇,𝑷𝑷𝑷𝑷𝑷𝑷 +  𝝆𝝆𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒗𝒗𝒇𝒇,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨                                              Equation 1 

𝝀𝝀𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =  𝝀𝝀𝑷𝑷𝑷𝑷𝑷𝑷𝒗𝒗𝒇𝒇,𝑷𝑷𝑷𝑷𝑷𝑷 +  𝝀𝝀𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒗𝒗𝒇𝒇,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨                                               Equation 2 

𝑪𝑪𝒑𝒑,𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 =  𝑪𝑪𝒑𝒑,𝑷𝑷𝑷𝑷𝑷𝑷𝒎𝒎𝒇𝒇,𝑷𝑷𝑷𝑷𝑷𝑷 +  𝑪𝑪𝒑𝒑,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒎𝒎𝒇𝒇,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨                                   Equation 3 

where 𝜌𝜌 is density; 𝑣⃗𝑣 is fluid velocity; 𝜆𝜆 is thermal conductivity; 𝐶𝐶𝑝𝑝 is specific heat 

capacity. 

Table 3: PCM Additive Mixtures’ (10% by Mass) Properties 

Mixture Properties PCM 
PCM 

Aluminium 
Mixture 

PCM 
Copper 
Mixture 

PCM 
Graphite 
Mixture 

Density [kg.m-3] 1330 1401 1454 1385 

Thermal Conductivity [W.m-1.K-1] 0.36 8.64 6.68 9.46 

Specific Heat [J.kg-1.K-1] 1400 1355 1298 1331 
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Latent Heat [kJ.kg-1] 280 252 252 252 

 

In this study catalyst substrates made of ceramic and metallic materials have also 

been investigated. Comparable ceramic and metallic substrates with a cell density of 

400 cpsi were selected and their specifications are listed in Table 4. The metallic 

substrates’ thermal conductivity is approximately 10 times higher in comparison to the 

ceramic substrate. This can lead to a higher heat transfer rate and more uniform 

temperature contours over the catalyst’s substrate. Although the specific heat of the 

metallic substrate is lower, the substrate’s thermal inertia is slightly higher due to its 

increased mass. 

Table 4: Ceramic and Metallic Substrates’ Specifications 

Specifications Ceramic 
Substrate 

Metallic 
Substrate 

Wall Thickness [Mil] 4 3 

Density [kg.m-3] 2092 7900 

Thermal Conductivity [W.m-1.K-1] 1.5 14.5 

Specific Heat [J.kg-1.K-1] 930 431 

 

 

2.3. ANSYS Fluent® PCM Modelling 

To investigate the effect of a phase change material (PCM) thermal energy storage 

system on the diesel aftertreatment, a transient CFD model was developed using the 

ANSYS Fluent® 15 CFD package. The model can simulate PCM solidification and melting 
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over a driving cycle. It can also predict the PCM’s cooling behaviour for a prolonged 

period of time after vehicle shut down, where the thermal energy storage system can 

maintain the catalyst in an operational temperature window. To estimate the thermal 

effect of the PCM on the DOC, the heat transfer rate between the catalyst and the PCM 

was extracted from this model and imported into the Axisuite model. Both Axisuite and 

ANSYS Fluent models share similar attributes and assumptions unless otherwise stated. 

2.3.1. Model Geometry and Boundary Conditions 

As schematically illustrated in Figure 1, the model’s geometry is based on a close-

coupled full-size DOC substrate with a thermal energy storage system integrated into 

the catalyst canning. There are 2 kg of PCM salt encapsulated in a metallic annulus with 

a wall thickness of 2 mm surrounding the catalyst’s external periphery. Since the 

thermal energy storage system needs advanced insulation for maximum heat retention, 

vacuum insulation was introduced for the canning’s external wall. 

 

Figure 1: PCM Model Geometry Diagram 

To simulate the model’s inlet exhaust gas conditions, a user defined function (UDF) 

was developed in C programming language. As shown in Figure 2, this included an array 

Vacuum Insulation 
5mm 
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of the exhaust gas inlet temperature and mass flow rate for each time step of the NEDC, 

based on experimental data. The ambient temperature and air pressure were assumed 

to be 25 °C and 101 kPa, respectively. Once the driving cycle has finished after 1200 

seconds, the UDF assigns ambient conditions to the system inlet and outlet to simulate 

the engine-off period. 

The catalyst in an aftertreatment system has a dense honeycomb design that would 

require complicated geometry and mesh to represent it. In this study, the catalyst was 

assumed to be porous media with high viscosity and radial inertial forces to represent 

the substrate channels [29].  

The model’s geometry was discretized to an axisymmetric 2D structured grid with 

different zones for the inlet, catalyst, PCM and outlet. The boundaries between the 

different zones were defined as mesh interfaces to facilitate mass and heat transfer 

between zones as required. To ensure that the results are grid-independent, the mesh 

was gradually refined to achieve a maximum of 0.5% difference in the system’s outlet 

temperature value.  
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Figure  2: Exhaust Gas Temperature and Mass Flow Rate at the System Inlet 

2.3.2. Modelling Theory and Governing Equations 

The model’s theory is based on physical conservation laws and it employs a finite 

volume method. The simulation was set to be transient with a time step of one second 

and uses the coupled pressure-based solver. The standard k-ε turbulence model was 

used for the inlet and outlet zones; while flow was assumed to be laminar (based on the 

calculation for Reynold number ≅ 225) in the porous catalyst zone due to high viscous 

forces, as Reynold number was calculated 

The solidification/melting model was used to simulate the phase change of the PCM. 

Although a solid-solid PCM was chosen, the model is still applicable as the latent heat 

energy can be simulated, neglecting the actual phase of the material. This model uses 

the latent heat capacity of the PCM to predict the amount of energy which is absorbed 
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during melting, or released during solidification phases. The energy balance equation 

for calculating the heat conduction in this model is defined as: 

𝝏𝝏
𝝏𝝏𝝏𝝏

(𝝆𝝆𝝆𝝆) + 𝛁𝛁. (𝛒𝛒𝒗𝒗��⃗ 𝑯𝑯) = 𝛁𝛁. (𝝀𝝀𝛁𝛁𝑻𝑻) + 𝑺𝑺                                                                        Equation 4 

The enthalpy 𝐻𝐻 is calculated as follows: 

𝑯𝑯 = 𝒉𝒉 + ∆𝑯𝑯                                                                                                                   Equation 5 

The latent heat content ∆𝐻𝐻 which is defined as: 

∆𝑯𝑯 =  𝜷𝜷𝜷𝜷                                                                                                                        Equation 6 

where 𝜌𝜌 is density; 𝑣⃗𝑣 is fluid velocity; 𝜆𝜆 is thermal conductivity; 𝑆𝑆 is source term; ℎ is the 

sensible enthalpy; 𝛽𝛽 is the liquid fraction; and 𝐿𝐿 is the latent heat of the material. 

The temperature of the PCM between the solidus and liquidus temperatures defines 

the liquid fraction; when at 0 the PCM is fully solid and at 1 it is fully liquid. In this 

model, a temperature range of 2 °C is used to simulate the phase change region of the 

PCM. The initial PCM temperature is set during the model’s initialisation step to 

reproduce a hot-start if required. 

2.3.3. Model Calibration and Validation 

The model was calibrated for both the catalyst’s outlet exhaust gas temperature and 

pressure drop. This was achieved by modifying the properties of the porous media: 

including the porosity, viscosity and inertial resistances. To ensure consistency, the 

calibrated model was compared with a set of reference data for validation purposes, as 

shown in Figure 3. Inlet exhaust gas temperature (T Gas) was provided as an indicator 

of exhaust manifold conditions over the NEDC. The model slightly underestimates the 
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catalyst’s outlet temperature; which can be caused by the catalyst’s porous media 

assumption in which increased heat transfer rate and consequent heat loss to the 

atmosphere are expected. 

 

Figure 3: ANSYS Fluent Model Validation 

2.4. Exothermia Axisuite® Aftertreatment Modelling 

In the present study, aftertreatment chemical reactions were simulated in the 

commercial Exothermia Axisuite® package. This software is able to model the transient 

behaviour of aftertreatment components including flow-through catalysts and predict 

their time-based temperature profiles and exhaust gas composition. To investigate the 

effect of the TES system on the emissions reduction performance of the DOC, an Axisuite 

model was developed. This model has similar geometry, boundary conditions and 

assumptions as discussed in Section 2.3.1. Axisuite standard DOC chemical reactions 

scheme was used to simulate the chemical reactions occurring over the DOC. The full 
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methodology and detailed characteristics of the model are explained by Lafossas et al. 

[30]. 

To simulate the chemical reactions occurring over the DOC, the molar fractions of N2, O2, 

CO2, H2O, CO and HC species of the inlet exhaust mixture for each time step of NEDC 

were extracted from experimental data. This model can predict the rate and enthalpies 

of CO and THC oxidation reactions, based on their species’ concentration, exhaust gas 

temperature and pressure. Also, the principle of the model’s creation for simulation was 

explained in the author’s previous paper in which thermal performance of diesel 

aftertreatment was investigated in the Exothermia Axisuite® package [3]. The DOC 

model was validated by comparison with experimental data from a diesel engine 

provided by Jaguar Land Rover for the purpose of this research study. As shown in 

Figure 4, adequate consistency with experimental data was found in the simulated 

results of cumulative CO and THC emissions over the NEDC. 
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Figure 4: Axisuite Model Validation (a) Cumulative CO Emissions; (b) Cumulative 

THC Emissions 

 

3. Results and Discussion 

3.1 Preliminary Study 

The aftertreatment temperature profiles of the reference model are shown in 

Figure 5. The results indicate that when the DOC is equipped with a TES system, the 
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DOC outlet temperature would start at the initial temperature of the PCM (180 °C), and 

it increases by about 12 °C during the first 60 seconds of the NEDC. This temperature 

increase is mainly associated with the exothermic oxidation reactions over the DOC. As 

shown in Figure 6(a) and Figure 6(b), almost complete conversion of CO and THC 

emissions were achieved during this period. 

 

Figure 5: PCM Reference Model Temperature Profiles 

Following this increase, a sharp decrease of around 62 °C in the DOC outlet 

temperature was observed over the subsequent 30 seconds of the NEDC. During this 

period, the TES system is no longer able to provide enough heat to the catalyst and 

relatively cold passing exhaust gas tends to cool down the catalyst abruptly. As shown 

in Figure 6(a) and Figure 6(b), this temperature drop leads to catalyst light-out and a 

subsequent reduction in the emissions’ conversion performance. 
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Figure 6: Effect of the TES System on the Vehicle’s Cumulative CO Emissions (a); 

THC Emissions (b) 
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emissions’ conversion, results indicated that this TES system design can decrease the 

CO emissions by 64% and THC emissions by 34% over the NEDC.  

 

3.2 PCM Additives’ and Catalyst Substrate Materials’ Effect 

The thermal behaviour of the TES system with the PCM-graphite mixture and 

metallic substrate was extracted from the ANSYS Fluent model and compared to the 

reference case. This includes the PCM’s liquid fraction (Figure 7(a)), the PCM’s internal 

energy (Figure 7(b)) and heat flux from the PCM’s wall to the catalyst (Figure 7(c)). As 

discussed previously, adding 10% graphite to the PCM salt decreases the initial PCM 

internal energy as the additive is not able to change its phase and store the thermal 

energy. 

Figure 7(a) illustrates that the PCM in the reference case gradually solidifies and 

releases its stored thermal energy over the urban part of the NEDC, as its liquid fraction 

decreases from 0.10 to around 0.02. During the extra-urban cycle of the NEDC the PCM 

melts and increases its liquid fraction to 0.11. The metallic substrate proves to behave 

similarly with slightly improved heat transfer, particularly when storing heat during the 

extra-urban cycle. 
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Figure 7: PCM Additive and Substrate Materials’ Effect on the: (a) PCM’s Liquid 

Fraction; (b) PCM’s Internal Energy; (c) PCM’s Heat Flux to the Catalyst  

As shown in Figures 7(a) to Figure 7(c), the graphite additive can considerably 

increase the PCM’s performance in releasing and storing thermal energy. The results 

indicate that 10% graphite can increase the PCM’s heat discharge rate by 121% during 

the first 200 seconds of the NEDC; while 71% more thermal energy was absorbed 

during the NEDC’s extra-urban cycle. 

Using a metallic substrate in conjunction with the PCM graphite mixture leads to 

further improvement in the TES’s thermal performance, particularly where there is a 

high temperature gradient between the exhaust gas and the PCM (e.g. cold-start). As 

illustrated in Figure 7(a), this combination can assist the PCM to completely discharge 

its stored latent heat during the first 150 seconds of the NEDC, when the DOC demands 

a high level of thermal energy to remain activated for emissions’ conversion.  

Moreover, the metallic substrate significantly helps the PCM graphite mixture to 

melt and store more thermal energy throughout the NEDC’s extra-urban cycle. As 

shown in Figure 7(a), the PCM liquid fraction can reach up to 0.36 over the extra-urban 

cycle, with the metallic substrate and graphite additive; while a PCM liquid fraction of 

0.14 was achieved in the reference case. It should be noted that the NEDC is a 

comparatively low-load driving cycle, in which the thermal energy available for the PCM 

to store is limited. 

Considering the results, it can be concluded that the PCM’s thermal energy is 

relatively confined within the PCM due to its low thermal conductivity. Consequently, 

the thermal energy is not able to transfer to the catalyst’s substrate in a timely manner, 
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as required by the exhaust aftertreatment system. Furthermore, low thermal 

conductivity of the catalyst’s substrate can limit the heat penetration into the core of the 

catalyst and its active sites, where most of the emissions’ conversion reactions occur. 

Therefore, alleviating these two issues with the PCM graphite additive and metallic 

substrate turns out to significantly improve the TES system performance. 

Figure 8 illustrates the ceramic and metallic DOCs’ temperature profiles with and 

without the TES system. The metallic DOC tends to heat up more gradually compared to 

the ceramic DOC, due to its higher thermal inertia as discussed previously. Moreover, its 

temperature profile shows lower fluctuations as higher thermal conductivity of the 

metallic substrate leads to a more uniform heat distribution over the catalyst’s 

substrate during a driving cycle. Results indicate similar behaviour when comparing the 

ceramic and metallic DOCs equipped with the TES system as well. 

As discussed previously, the TES system with the PCM-graphite mixture and 

metallic substrate can enhance utilization of the PCM’s thermal energy storage capacity. 

This effect is shown in Figure 8, as the local maximum temperature was elevated by 68 

°C to 209 °C at 87 seconds after the cold-start, due to the improved heat transfer and 

promoted oxidation reactions. Following this peak, the drop in the DOC’s outlet 

temperature diminished considerably (from 62 °C to 49 °C) and the DOC outlet 

temperature reached its local minimum of 160°C at 172 seconds after the cold-start. 
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Figure 8: PCM Additive and Substrate Materials’ Effect on the DOC’s Temperature 

Profiles 

Considering the extra-urban cycle of the NEDC in Figure 8, the improved TES 

system reduces the average DOC outlet temperature from 235 °C to 210 °C; while the 

baseline TES system reduces it to 229 °C. In more aggressive driving cycles, this 

temperature drop can result in improved durability and extend the catalyst’s 

operational life. It should be also noted that the improved TES system maintains the 

DOC outlet temperature above 157 °C over the NEDC, which is above the catalyst’s light-

off temperature. 
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Figure 9: PCM Additive and Substrate Materials’ Effect on the Vehicle’s Cumulative 

CO Emissions (a); THC Emissions (b) 

 

Figure 9(a) illustrates the effect of the PCM additive and substrate material on the 

vehicle’s cumulative CO emissions. The PCM-graphite mixture in conjunction with the 

metallic substrate proves to reduce the cumulative CO emissions by 91.7%, as described 

in Table 5. The DOC tends to slightly light-out at around 137 seconds after the cold-

start. At this point, the TES system is not able to provide enough thermal energy to the 

catalyst, since most of its stored latent heat has been already discharged (Figure 7(a)). 
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Table 5: Summary of PCM Additive and Substrate Materials’ Effect on the Vehicle’s 

Emissions 

Case Cumulative 
CO (g) 

CO    
Emissions’ 

Reduction (%) 

Cumulative 
THC (g) 

THC 
Emissions’ 

Reduction (%) 

Ceramic DOC - No 
PCM (Reference) 7.02 - 0.859 - 

Ceramic DOC - PCM 2.50 64.4 0.567 34.0 

Metallic DOC - PCM 
Graphite 0.58 91.7 0.505 41.2 

 

As shown in Figure 9(b) and listed in Table 5, the improved TES system can 

increase the THC emissions’ conversion by 41.2% compared to the reference case. 

Hydrocarbon speciation results indicate that 88% of the emitted THC in the improved 

TES system is methane (CH4). The C-H bonds in methane are exceptionally stable (with 

a bond energy of 435 kJ/mol) compared to other alkane hydrocarbons [31]. Therefore, 

sufficient methane oxidation over conventional catalysts requires considerably higher 

temperatures, which are challenging to achieve in diesel exhaust gas aftertreatment 

during the NEDC. 

3.3 TES System Cooling 

In this section the cooling behaviour of the improved TES system has been 

investigated to evaluate its thermal energy retention capability. During the engine-off 

periods, the aftertreatment system was assumed to be at the atmospheric temperature 

of 25 °C and without any input from the engine for modelling purposes. It was also 

assumed that the aftertreatment and TES systems start the cooling procedure at the 

melting temperature of the PCM (180 °C) and with the PCM completely melted (liquid 
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fraction of 1). The TES system’s insulation and PCM’s mass can significantly affect the 

TES’s thermal energy retention capability and its cooling behaviour. Therefore, vacuum 

insulation was taken into account and PCM mixture masses of 1, 2 and 3 kg were 

investigated. 

As shown in Figure 10(a), each kilogram of the PCM mixture requires 

approximately 4 hours and 56 minutes to completely solidify. During this period, the 

PCM releases its stored thermal energy and maintains the aftertreatment system 

temperature at around 180 °C (Figure 7(b)). Since this is an isothermal (constant 

temperature) process, the heat transfer rate remains constant and the PCM liquid 

fraction declines linearly with respect to time. 

Following the PCM’s complete solidification, the catalyst’s average temperature 

starts to drop and reaches 150 °C in approximately 3 hours for a TES system with 2 kg 

of PCM mixture. Figure 10(b) shows that the catalyst’s cooling rate after the PCM 

solidification is considerably lower compared to the reference case, due to the improved 

insulation and added thermal inertia of the PCM.  
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Figure 10: TES System Cooling Effect on the: (a) PCM’s Liquid Fraction; 

(b) Catalyst’s Average Temperature 

The TES system’s ‘effective cooling time’ was defined as the time required for the 

fully melted PCM to reach a liquid fraction of 0.1 at atmospheric conditions. As pointed 

out previously, a PCM liquid fraction of 0.1 was assumed as the model’s initial condition 

for investigating the performance of the TES system. The time needed for the catalyst to 
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energy and its temperature declines, the TES system’s effectiveness will deteriorate 

considerably. It should be noted that in an aggressive or extended driving cycle the PCM 

can completely melt and its temperature can increase (further than 180 °C), while it is 

storing excessive exhaust gas thermal energy. 

Table 6: TES System Cooling Times for a Varying PCM Mixture’s Mass 

PCM Mixture Mass 
Effective Cooling 

Time                 
[h:m] 

Cooling Time to 
150 °C              
[h:m] 

1 kg 4:27 7:13 

2 kg 8:49 12:53 

3 kg 13:12 18:30 

 

Results indicate that the effective cooling time of 1 kg of PCM mixture is 4 hours and 

27 minutes; while it can maintain the catalyst’s average temperature above 150 °C for 

more than 7 hours (Table 6). It can be concluded that increasing the PCM mixture mass 

by 1 kg can result in prolonging the TES system’s effective cooling period by 

approximately 4 hours and 25 minutes. The maximum thermal energy retention was 

recorded for the case with 3 kg of PCM mixture; which yielded more than 13 hours of an 

effective cooling period and maintained the catalyst above its light-off temperature for 

more than 18 hours. 

3.4 Cold-PCM-start and Hot-PCM-start Trade-off 

As the PCM cools down to atmospheric temperature and loses its stored thermal 

energy, its added thermal inertia can act as a heat sink and absorb the heat required for 
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the catalyst to activate the emissions’ conversion reactions. In this section, the trade-off 

between the effect of a cold and a hot PCM was investigated, to provide more insight 

into the costs and benefits of a TES system in exhaust gas aftertreatment. The TES 

system in this study consists of 2 kg of PCM-graphite mixture and metallic substrate as 

introduced previously. 

 

Figure 11: PCM Hot and Cold-Start Effect on the Heat Transfer to the Catalyst 

The ‘cold-PCM-start’ was defined as a condition where the aftertreatment and the 

TES systems are at an atmospheric temperature (25 °C) at the start of the driving cycle. 

On the other hand, in the ‘hot-PCM-start’ condition, it was assumed that the whole 

aftertreatment system was repeating the NEDC for the second time consecutively. In 

other words, the initial aftertreatment conditions of the hot-PCM-start case correspond 

to the final state of the cold-PCM-start case. 
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As shown in Figure 11, the improved TES system absorbs thermal energy from the 

catalyst at an average rate of 413 W during the urban part of the NEDC in the cold-PCM-

start condition. This increases the PCM-graphite mixture’s temperature; however, as 

illustrated in Figure 12, the PCM remains completely solid during this period. 

 

Figure 12: PCM Hot and Cold-Start Effect on the PCM’s Liquid Fraction 

On the other hand, the TES system in the hot-PCM-start condition can provide 

thermal energy to the catalyst with an average rate of 261 W during the urban part of 

the NEDC. As shown in Figure 11, the heat transfer rate is more biased towards the 

beginning of the driving cycle; this is mainly due to the greater temperature gradients 

between the PCM and the exhaust gas. Similar thermal behaviour was observed during 

the extra-urban part of the NEDC, when comparing the cold and hot-PCM-start 

conditions.  
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part of the NEDC (Figure 13). This can result in a 26% increase in CO emissions and a 

20% increase in THC emissions compared to the reference case (Figure 14(a) and 

Figure 14(b)). Considering the hot-PCM-start condition, the stored thermal energy in 

the PCM helps to maintain the DOC’s outlet temperature above 166 °C throughout the 

NEDC. The results indicate that a 92% reduction in CO emissions and a 42% reduction 

in THC emissions can be achieved in the hot-PCM-start condition compared to the 

reference case. 
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Figure 13: PCM Hot and Cold-Start Effect on the DOC’s Temperature Profiles 
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Figure 14: PCM Hot and Cold-Start Effect on the Vehicle’s: (a) Cumulative CO 

Emissions; (b) Cumulative THC Emissions 

 

3.5 TES System Design Optimization Study 

In order to further improve the heat transfer rate between the PCM and the catalyst, 

the TES system design was optimized. As shown in Figure 15, the optimized design 

features a PCM annulus which accommodates a catalyst core inside and also is 

surrounded by an annular catalyst. This allows the PCM to transfer thermal energy to 

the catalysts by its inner and outer surfaces simultaneously. Furthermore, as the PCM’s 

distance to the centre of the catalyst is reduced, the heat can penetrate more effectively 

to the catalyst’s core. A similar catalyst volume (3 L) and PCM-graphite mixture mass 

(2 kg) have been taken into account for the optimized TES system design; however, this 

design can increase the cost of the aftertreatment system and also slightly increase the 

exhaust system’s back pressure on the engine. 
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Figure 15: a) TES System Design with Outer PCM; b) Optimized TES System Design 
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Figure 16: TES System Design Optimization Effect on the: (a) PCM’s Internal 

Energy; (b) PCM’s Liquid Fraction 

Figure 16(a) shows that the optimized TES system design accelerates the PCM’s 

thermal energy discharge during the cold-start compared to the improved TES system 

with the PCM-graphite mixture and metallic substrate. Moreover, this design 

optimization proved to further increase the total thermal energy delivered from the 

PCM to the aftertreatment system by 37% during the first 200 seconds of the NEDC. 
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Thermal energy storage performance of the optimized design has also improved 

significantly during the extra-urban part of the NEDC. As shown in Figure 16(b), the 

PCM’s liquid fraction at the end of the NEDC can reach up to 0.68 for the optimized TES 

system, compared to 0.14 for the reference case and 0.36 for the case with improved 

materials. This can lead to an extended cooling period and enhanced emissions’ 

conversion in the following driving cycle. 

4. Conclusions 

In this paper, a thermal energy storage (TES) system was introduced into the 

aftertreatment system to maintain the catalyst activated during engine-off periods for 

maximum cold-start emissions’ conversion. This system includes a phase change 

material (PCM) mixture to store the excessive thermal energy and vacuum insulation to 

minimize the heat loss. The TES system was designed, investigated and optimized based 

on a light-duty diesel vehicle’s aftertreatment requirements. 

Preliminary investigations showed that the TES system is not able to provide 

sufficient thermal energy to the aftertreatment system in a timely manner, and the 

catalyst tends to light-out after around 85 seconds from the start of the NEDC. 

Therefore, different PCM additives and catalyst substrate materials were examined to 

increase the heat transfer rate between the PCM and the catalyst. 

Adding 10% graphite by mass to the PCM mixture showed a significant increase in 

the PCM’s thermal conductivity, which leads to an improved PCM thermal energy 

discharge during the cold-start. In conjunction with the PCM-graphite mixture, the 

ceramic catalyst substrate was substituted with a comparable metallic substrate that 
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features considerably higher thermal conductivity. This resulted in further 

improvement in the TES system’s thermal behaviour, particularly in storing the 

excessive thermal energy during the extra-urban part of the NEDC. The improved TES 

system proved to reduce the cumulative CO and THC emissions by 91.7% and 41.2% 

respectively. 

The TES system’s cooling behaviour was also investigated to evaluate its thermal 

energy retention capability. Based on the results, 2 kg of the fully melted PCM mixture 

can maintain its liquid fraction above 0.1 for approximately 8 hours and 49 minutes 

when the engine is off in an atmospheric temperature of 25 °C. It can also maintain the 

catalyst’s temperature above 150 °C for 12 hours and 53 minutes. It was concluded that 

the TES system’s effective cooling period can be extended by approximately 4 hours and 

25 minutes by increasing the PCM mixture’s mass by 1 kg. 

Lastly the TES system’s design was optimized by utilizing an annular PCM reservoir 

that was accommodated in between two catalysts for improved heat transfer. The 

results indicated that this optimization can improve the TES’s thermal behaviour and 

approximately double the PCM’s liquid fraction at the end of the NEDC. 
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Nomenclature 

Abbreviations 

CFD 

Cpsi 

DOC 

DPF 

IC 

NEDC 

NMHCs 

PCM 

PM 

SCR 

TES 

THS 

TWC 

UDF 

Symbols 

C 

𝐶𝐶𝑝𝑝 

CH4 

CO 

CO2 

H2O 

 

 

Computation fluid dynamics 

Cells per square inch 

Diesel oxidation catalyst 

Diesel particulate filter 

Internal combustion 

New European driving cycle 

non-methane hydrocarbons 

Phase change material 

Particulate matter 

Selective catalytic reduction 

Thermal energy storage 

Thermal hybrid system 

Three-way catalyst 

User define function 

 

Carbon 

Specific heat capacity (J.kg-1K-1) 

Methane 

Carbon monoxide 

Carbon dioxide 

Water 

 

 

H 

𝐻𝐻 

ℎ 

∆𝐻𝐻 

HC 

𝐿𝐿 

Mil 

N2 

NOx 

O2 

𝑆𝑆 

𝑇𝑇 

𝑡𝑡 

xGnP 

Greek Symbols 

𝛽𝛽 

𝜆𝜆 

𝜌𝜌 

𝑣⃗𝑣 

 

 

Hydrogen 

Enthalpy (J.kg-1) 

Sensible enthalpy (J.kg-1) 

Latent heat (J.kg-1) 

Hydrocarbon 

Latent heat (J.kg-1) 

Milli-inch 

Nitrogen 

Nitrogen oxides 

Oxygen 

Source term 

Temperature (K) 

Time (s) 

exfoliated graphite Nano-platelets 

 

Liquid fraction 

Thermal conductivity (W.m-1.K-1) 

Density (kg.m-3) 

Fluid velocity 
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