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Devices
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Abstract. In this paper, we systematically review and categorize differ-
ent hardware-based firmware extraction techniques, using 24 examples
of real, wide-spread products, e.g. smart voice assistants (in particular
Amazon Echo devices), alarm and access control systems, as well as home
automation devices. We show that in over 45% of the cases, an exposed
UART interface is sufficient to obtain a firmware dump, while in other
cases, more complicated, yet still low-cost methods (e.g. JTAG or eMMC
readout) are needed. In this regard, we perform an in-depth investiga-
tion of the security concept of the Amazon Echo Plus, which contains
significant protection methods against hardware-level attacks. Based on
the results of our study, we give recommendations for countermeasures
to mitigate the respective methods.

1 Introduction

Extracting the firmware from IoT devices is a crucial first step when analysing
the security of such systems. From a designer’s point of view, preventing the
firmware from falling into the hands of an adversary is often desirable: for in-
stance, to protect cryptographic keys that identify a device and to impede prod-
uct counterfeit or IP theft. The large variety of IoT devices results in different
approaches to firmware extraction, depending on the device in question.

Past work has looked at the state of security of IoT devices, e.g. [1,2,3].
Past work on the analysis of IoT firmware has found a wide range of vulnerabili-
ties [4,5,6], and such vulnerabilities have been widely exploited [7]. Much of this
work looks at firmware downloaded from the Internet, rather than taken from a
device.

In contrast, not so much attention has been given to the hardware security
of these devices. Having access to an embedded device’s firmware can provide
valuable insight into how the device operates and potential vulnerabilities it
might have. Sensitive information, such as passwords and static keys can often
be found in a firmware, which is indicative of insecure design and bad overall
security. Besides, vectors used for firmware extraction also give write access to
the device, enabling firmware modification as well.

Firmware extraction is not an exact science. The market is filled with a
variety of IoT devices, each using one of the many embedded processors, with



their own settings and software stacks, making each device unique in its own way.
Because of this, there is no one-glove-fits-all scenario when it comes to firmware
extraction of IoT devices. At DEFCON 25, techniques to extract firmware from
a range of IoT devices were presented [8], while Etemadieh et al. focused on
the use of the eMMC interface (cf. Section 3.2). This work culminated into the
Exploitee.rs project [9]. We include certain devices from [9] as part of our
survey (cf. Section 4), but would like to note that we are not affiliated with that
project.

The topic has only received relatively limited academic attention, with a first
step towards a more systematic approach given by Schwartz et al. [10]. However,
the authors of [10] focus on a relatively narrow class of low-cost devices (IP/baby
cameras and doorbells). In this paper, we consider a significantly wider range
of device types as well as extraction methods. Our case studies include popular
smart voice assistants like the Amazon Echo product range and other extremely
wide-spread IoT devices. Out of the devices included in the survey, our research
suggests that UART is currently the most common and exploitable debugging
interface found in IoT devices, with over 45% of the considered devices being
vulnerable to firmware extraction via UART. However, direct access to flash
memories (e.g. eMMC) is also becoming important for modern devices. Notably,
in almost all cases where a hardware method is available for firmware extraction,
the method also enables firmware modification and hence “rooting” of the device.

Contrary to the common opinion that security in the IoT is a lost cause,
we also observed positive developments, with newer high-profile devices like the
Amazon Echo offering a better level of protection compared to most other ven-
dors.

The remainder of this paper is structured as follows: in Section 2, we present
background information about the technologies and debugging interfaces in use
in embedded systems. In Section 3, we present methodologies for firmware extrac-
tion using different techniques and interfaces. Then, in Section 4 we present case
studies for the described methods. Particularly, in Section 4.4, we describe vari-
ous measures implemented in new Amazon Echo devices, that—while they do not
prevent firmware extraction—significantly raise the bar for malicious firmware
modifications. Based on the case study, we recommend countermeasures for se-
curing devices against firmware extraction and modification in Section 5, before
concluding in Section 6.

2 Technical Background

Unlike the PC market, embedded systems are very diverse, each suited for partic-
ular applications of these devices. Such devices usually employ microcontrollers,
that consist of one or more CPUs, along with their own memory and I/O pe-
ripherals. Common microcontroller architectures for IoT devices include ARM,
MIPS, Freescale and Texas Instruments TI MSP.

Firmware In the context of embedded IoT devices, the firmware usually refers
to the entire OS image that incorporates the kernel and file system, together



with different binaries and scripts running together, making up the device’s
functionality. On very low-end devices, such as TV remotes for example, the
firmware can be a single binary handling the entire functionality of the device,
from booting to transmitting RF signals. A full firmware image usually consists of
bootloader(s) (2nd/3rd stage, often U-Boot), the kernel, and one or multiple file
system images (e.g. SquashFS, JFFS2, UbiFS, etc.) containing custom binaries
and scripts. While there are many custom operating systems made for specific
devices, by far the most common is embedded Linux. There are many different
distributions of embedded Linux currently used in embedded devices, but they
are all very similar in functionality. Another notable commonly found OS in
embedded devices is Android (cf. Section 4.4). There are also new operating
systems specifically made to address the security and performance requirements
of the IoT devices of today. These include Windows IoT Core, Kaspersky OS
and Google Brillo OS (Android Things).

Bootloaders The bootloader is the first piece of software that runs on a system.
The bootloader initializes hardware components such as RAM, flash storage,
and I/O, and loads the kernel into memory for execution. In embedded systems,
the boot process can be set up in one, two, or three stages, each stage having
a different role during boot. In a three-stage process, the initial bootloader,
which is usually located in ROM and is microcontroller-specific, handles the basic
initialization of hardware components, and loads the second stage bootloader.
The second stage bootloader, which typically resides on flash storage and is
board-specific, handles the initialization of board-specific hardware. After the
initialization, it loads the final bootloader, which copies the kernel into main
memory, loads device drivers for the found hardware components, and runs the
kernel code. One of the most widely used bootloader for embedded systems is
U-Boot [11], which is used as a second stage bootloader. Aside from the booting
process, U-Boot also has a command line interface.

Debug Interfaces Most microcontrollers offer on-chip debugging functions, usu-
ally used for IC fault-testing, direct memory access, and for programming inte-
grated flash chips. Common interfaces include UART, JTAG, Serial Wire Debug
(SWD) for ARM processors, as well as Background Debug Mode (BDM) in au-
tomotive processors. Other serial interfaces include SPI and I2C.

3 Firmware Extraction Techniques

Firmware extraction presents a couple of challenges for IoT device manufactur-
ers. First, there is a risk of potential IP loss. More importantly however, firmware
extraction can often lead to the discovery of new vulnerabilities in such devices.
In some cases, this can have an effect not only on the analyzed device, but on
all devices belonging to the manufacturer, due to critical vulnerabilities being
discovered. We classify firmware extraction methods into three main categories:

– Leveraging debug interfaces to get local shell access or read memory contents;



– Performing a flash chip hardware memory dump;

– Using software methods to gain access to firmware (e.g. firmware updates,
network services, etc.).

The execution of these methods usually varies from one device to another, adapt-
ing to the particularities of each device. Apart from the aforementioned methods,
there is also a hardware method called bus snooping. This method inspects in-
transit data between caches and controllers on a bus. A well-known example
of this is the original XBox hack [12], which used hypertransport bus snoop-
ing to extract the firmware decryption key of the XBox. Aside from the hard-
ware extraction methods, there are also software methods that can be leveraged
for firmware extraction. One example are code execution vulnerabilities, which
can be exploited to get shell access on the device. As most software runs as
root on embedded devices, a successful exploit results in a root shell. In most
cases where firmware extraction is possible, firmware modification can also be
achieved using the same methodology [13]. In some cases, this can be even more
harmful than firmware extraction [14]. Even if no vulnerabilities are found, an
attacker might still implant a backdoor on a device such as the Amazon Echo
and sell it online. An unsuspecting buyer would get a backdoored device, capa-
ble of spying via the microphone, or using the linked Amazon account to make
fraudulent purchases. Besides, firmware modification is useful when dynamically
analysing the firmware’s behaviour, for instance by enabling live debug capabil-
ities (e.g. through a disabled UART or adb interface).

3.1 Debug Interfaces

UART Firmware Extraction UART is often a straightforward way (see
also [10]) of gaining access to an embedded device’s firmware. An unrestricted
root shell can often be found by simply connecting to UART. On Android-based
devices, a root shell is sometimes accessible via the Android debug interface adb.
Another method is to utilize the shell of a bootloader to enable root access or
obtain a firmware image in cases where a root shell is not present during opera-
tion or is password-protected. With root access, one way to dump the firmware
is to perform a live internal dump of the entire filesystem, with all files bundled
together in a tar or zip archive, or to dump the block devices available on the de-
vice using dd or cat. However, dumping block devices can cause problems since
embedded systems use different types of flash storage with different filesystems.
In general, we recommend to follow the following steps when performing UART
firmware extraction:

1. Identify the UART interface through visual inspection, oscilloscope probing,
and trial-and-error;

2. If an unprotected shell is available, image the device or download all files.
Files can be downloaded using netcat (or similar tools) and a PC connected
on the same network;

3. If the shell is password-protected, try common username/password pairs from
a list (e.g. root/root etc.). If no shell is available or the credentials cannot



be determined, attempt to interrupt the boot process and enter bootloader
shell;

4. If the bootloader shell cannot be entered, try to temporarily disturb the flash
interface (e.g. by grounding a data or clock pin) when the bootloader loads
the kernel in order to fallback to the bootloader’s shell. Image the device
from the bootloader shell (e.g. using nand dump or nand read and md under
U-Boot).

JTAG Firmware Extraction The JTAG port used during manufacturing
for loading firmware can in some cases be used for reading the full memory of
the chip. Reading the memory of a device via a JTAG port requires a suitable
programmer that can receive the memory dump and transmit it to a computer.
Some manufacturers lock the device from being read or reprogrammed after
manufacturing. Leaving the JTAG interface connected and unlocked exposes
the device to firmware extraction and firmware injection attacks. The general
process of JTAG firmware extraction is:

1. Visually identify possible JTAG/SWD (and other) debug interfaces. SWD
requires only two pins, while JTAG has a variety of different pin arrange-
ments, ranging from 8 pins to 20. As a general rule, two rows of four or more
pins are likely candidates for JTAG;

2. As with UART, first identify the ground pin using a multimeter;
3. To identify the pinout, the data sheet for the particular microcontroller is

needed. If the data sheet is not available, use a tool like the JTAGulator [15]
to identify possible pinouts;

4. After identifying all pins, a suitable JTAG/SWD programmer can be used to
dump the internal memory if no readout protection is enabled.

Due to the large variety of different pinouts and proprietary pins, as well as
different JTAG debuggers for different microprocessors and architecture types,
firmware extraction via JTAG requires more effort than UART, as specialized
hardware and software and information gathering are required.

3.2 Raw Flash Dump

The third and final hardware-based firmware extraction method considered in
this paper is directly reading the flash storage. Reading older flash chips with
parallel interfaces requires many connections to the target device, as well as a
specialized programmer. Newer technologies such as eMMC however, require less
connections and can be read with a standard SD card reader. Alternatively, spe-
cialised tools like easyJTAG Plus1 or RiffBox2 can be used. A deeper description
of eMMC extraction can be e.g. found in [16]. The general steps for performing
flash dumps are:

1 http://easy-jtag.com/
2 http://www.riffbox.org/

http://easy-jtag.com/
http://www.riffbox.org/


1. Identify the flash chip (by label, package type, number of connections to
processor) and obtain a data sheet if possible;

2. Identify the pins, either by data sheet or oscilloscope. eMMC uses DAT0,
CMD and CLK pins, as well as power and ground. CLK is a repetitive sig-
nal, while the CMD line has short data bursts, generally preceding data
reads/writes on the DAT0 pin.

3. For eMMC: Disable access to eMMC from the processor, and connect pins to
a generic SD card and use an SD reader to interface with it;

4. For other flash chips: Use a suitable adapter and programmer to read the
chip contents, e.g. the MiniPro TL8663;

5. If in-circuit dump is not possible, de-solder the flash chip and perform the
dump with a suitable reader.

For in-circuit dumps, it is required to prevent accesses from the board’s CPU
while reading the memory. This can e.g. be achieved by temporarily cutting the
clock line and re-connecting after the dump is completed. Sometimes, simply
connecting an eMMC interface (e.g. easyJTAG Plus) prevents the CPU from
booting, cf. Section 4.4. Alternatively, one can attempt to keep the processor in
reset through the respective pin.

3.3 Software Methods

Software methods are a form of firmware extraction that does not require phys-
ical access to the device in some cases. Examples include:

1. Check the device manufacturer website for publicly available firmware;

2. Follow direct download links to firmware updates, analyzing the device’s net-
work traffic;

3. Intercept network traffic for firmware updates. If TLS is used, attempt to
perform a man-in-the-middle attack using self-signed certificates to decrypt
the traffic;

4. Identifying and using running services on the device, and exploiting known
vulnerabilities in such software (e.g. default credentials).

Often, firmware update services provide packages containing only modified
files. Therefore, this results in an incomplete image. There are however cases
where firmware updates consist of full firmware images, making this method
a simple and effective firmware extraction solution. In addition, it should be
noted that in many cases, firmware images are packed or encrypted, sometimes
in proprietary formats. Unpacking or decrypting such images is a challenge on
its own.

4 Case Studies

Table 1 summarizes the results of the case studies presented in this paper to-
gether with other devices we analyzed (that are not described here for the sake

3 http://minipro.txt.si/

http://minipro.txt.si/


Table 1. Survey of firmware extraction and modification techniques

Device Reference Debug Interfaces HW Dump
SW

Methods
Root

achieved

UART JTAG Other

Accu-Chek Insulin Pump [17], this paper ?

Amazon Echo [18,19], this paper SD+UART

Amazon Echo Dot [19,20], this paper ?

Amazon Echo Plus this paper ?

DroiBOX MXG this paper

Hive Nano V2 Hub this paper

Infotainment ECU this paper

KONX Video Doorbell this paper

Phillips Hue Lights [21], this paper

Samsung SHS-5230 Lock this paper ?

Smart-I Doorbell this paper

Smart Rear View Mirror this paper adb

Swann OneTouch Hub this paper

WD My Cloud NAS this paper

Yale Alarm this paper ?

Amazon Fire TV Stick [9]

Amazon Fire TV [9]

Amazon Tap [9]

Asus OnHub [9]

Google Nest [9]

Google Chromecast [9]

Google OnHub [9] USB

LG Smart Refrigerator [9]

Samsung Allshare Cast [9]

Total # 24 11 3 3 7 5 18

Total % 45.83% 12.50% 12.50% 29.16% 20.83% 75%

of space) and devices from other sources as indicated. We also indicated whether
obtaining root access via a hardware method is possible, or if this has not been
tested but should be possible (marked as “?”). These devices were not tested
due to various reasons, as some devices are running monolithic firmware without
an OS, or running Windows CE. The Amazon Echo Dot is very similar to the
Amazon Echo Plus, so results from the Plus should transfer to the Dot.

For the devices from [9], we list a selection of popular devices where i) a
hardware method can be used to extract the firmware and ii) where it is clear that
a firmware binary was actually obtained. We chose devices from the following
major manufacturers: Google, Samsung, LG, Asus, and Amazon.

4.1 Custom Debug Interface: Amazon Echo

On the bottom of the device, a group of test points is exposed for debugging
purposes. The pinout of the debug port has been documented in [18].



The Echo pinout shows the device has a UART interface and an MMC inter-
face, which allows an external SD card to be connected. Connecting to the UART
interface and booting up the device, we observe that the Echo uses a three-stage
booting process. In the first stage, X-Loader tries to locate U-Boot in the boot
partition of the internal memory card. Once U-Boot is loaded, it starts the fi-
nal bootloader, found in the storage partition under the /boot directory. In
the case of the Echo, the booting process cannot be stopped by sending UART
characters, and any input after booting has finished is ignored. Since firmware
extraction purely via UART is not possible, the debug interface is marked as
“other” (combination of SD and UART) in Table 1.

The initial bootloader tries to boot from the external mmc-0 (which fails)
and then boots from mmc-1, the internal memory. As detailed in [18] and also
explained in [22], it is possible to build a bootable SD card that can be connected
to mmc-0. Then, the device can be configured to boot into a root shell, and
imaged with cat /dev/mmcblk1 > image.img. Alternatively, we found that it
is also possible to create an SD card that only contains U-Boot (but does not
attempt to boot the kernel). This was also reported by independent research
in [23]. From this card, we can drop into a U-Boot shell, from where the device
can be imaged or configured to enable root access (by injecting an SSH service
and running it on boot).

4.2 UART: Smart-I Doorbell

The Smart-I WiFi Doorbell is a WiFi-enabled unit that is installed outside the
front door of a house. It has a camera, which is activated when a visitor presses
the button, and can also be equipped with an optional door release. Using an
Android/iOS app, the user can see and speak to the visitor and open the door
remotely.

Fig. 1. Smart-I PCB with UART interface attached

Opening up the device, a UART port can be easily found, to which we can
connect. Using the UART interface of the device (baud rate of 38400), we iden-
tified the presence of U-Boot as bootloader, and found an enabled root shell as



well. Furthermore, U-Boot has the bootdelay left at the default value of 3, which
allows us to interrupt the booting process and drop to the U-Boot shell. The
firmware can be extracted via the live filesystem using the root shell or via the
U-Boot shell. For this device, the latter approach was used. The flash dump can
be obtained with the commands in Listing 1.1:

Listing 1.1. Dumping Smart-I SPI flash from U-Boot
=> sf probe 0:0; sf read 0x8000000 0x0 0x800000; md.b 0x8000000 0x800000
#SF: Got idcode ef 40 17
8192 KiB W25Q64CV at 0:0 is now current device
#########################
08000000: 47 4d 38 31 32 36 00 00 GM8126 ..

00 60 00 00 00 60 00 00 .‘...‘..
08000010: 00 60 0a 00 00 00 0e 00 . ‘......

00 00 00 00 00 00 00 00 ...........

In order to save and process the dump, the serial output needs to be saved to
a file. A simple Python script can then be used to convert the dump into a
binary file. Further analysis with Binwalk [24] revealed that the image is LZMA-
compressed. Decompression using Easylzma [25] results in a readable firmware
image.

4.3 JTAG: Yale Easy Fit Smartphone Alarm

The Yale Easy Fit Smartphone Alarm is a wireless home alarm system that can
be fully controlled from a mobile app. The alarm kit consists of motion sensors,
wireless cameras, a keypad, a wireless remote, a central unit and a siren. We
focused on the central unit as depicted in Fig. 2.

Fig. 2. Yale Easy Fit central unit PCB with UART and JTAG

Inspecting the disassembled device, we observe that the board employs an
ARM Freescale MK60 CPU. The board has both UART and JTAG interfaces,
highlighted in blue and red, respectively, in Fig. 2. A UART interface was enabled



on the device (baud rate 115200) but did not respond to user input. Its only
purpose appears to be to output proprietary debug data. As user input was
disabled, the bootloader could also not be bypassed. A standard JTAG header
was found on the board, so further pinout reverse engineering was not needed. As
the JTAG interface was not locked or disabled, the J-Link [26] programmer could
be used to extract the complete firmware image using the J-Link proprietary
software.

4.4 eMMC: Amazon Echo Plus

The new Echo Plus is similar to the second generation Echo Dot, as it runs an
Android system, compared to the previous Amazon Echo, which runs a custom
embedded Linux system (Section 4.1). We selected the Echo Plus as the most
extensive case study in this paper, as it (in contrast to most other devices)
employs a variety of rather effective security measures and is an example for
best practices in the IoT. As with the previous Echo, debug pins are available
on the bottom of the device. A UART interface is available, but only used for
diagnostic output during the boot process, instead of giving shell access on the
device. There are two different levels of debugging output, a lower level for the
first stage ROM bootloader with a baud rate of 115200, as well as output for the
following bootloaders with a baud rate of 912000. Booting from a custom SD
card image is no longer possible for the Echo Plus. Besides, we also could not find
an adb shell on the device, consistent with the findings of [20]. However, in [19],
the eMMC interface of the Echo Dot is documented. With minor modifications,
we could connect to this interface using the easyJTAG Plus programmer. The
pinout and the necessary connections are shown in Figure 3. It is noteworthy
that the easyJTAG, when connected, prevents the Echo Plus from booting.

DAT0 CMD

CLK
VCCq

GND

Fig. 3. eMMC pinout of Echo Plus. VCC is not connected to the easyJTAG; the eMMC
chip is powered via the normal power supply of the board.

Therefore, we used an interface board (plugged into the easyJTAG), to which
thin wires to the eMMC pads are soldered. The interface board can stay perma-



nently connected; to boot the Echo Plus, the board is simply unplugged from
the easyJTAG—yielding the ability to repeatedly read and write the firmware
without (re-)soldering wires. Extracting the firmware via eMMC results in 16
separate partitions (following the Android standard layout). The Echo Plus has
two separate _a and _b partitions each for the Little Kernel (LK), the actual
kernel, and the system partition. The reason for having redundant partitions
is the software update: the device e.g. boots from the *_a partitions, but then
updates the *_b ones and switches to those when fully updated.

Secure Boot The boot process on the Echo Plus consists of three stages. The
Boot ROM (BROM) embedded in the MT8163 processor boots the first stage
bootloader. The preloader is present in the bootloader rom2.bin partition. In
the second stage, the preloader loads the LK, which resides in the lk a and
lk b partitions. LK is the standard Android bootloader, which loads the kernel
(version 3.18.19+) in the final stage. The kernel, which is present on the boot a
and boot b partitions, loads the file system and initializes all system services.
The kernel image holds all Android startup scripts, SELinux domain definitions,
service definitions, kernel boot parameters and all other system configuration
files. As evident from the boot log, the Echo Plus employs a secure boot process,
where each bootloader verifies the subsequent stage. Furthermore, SELinux is
enabled in enforcing mode [27]. To enable dynamic analysis of the running device
(as achieved for the previous generation, see Section 4.1), we attempted to obtain
shell access with full root privileges.

Our first attempt was to modify the kernel image to implant our own startup
service with full root access. However, the Echo Plus employs a trusted boot
chain, where each bootloader verifies a signature of the next boot stage. This
means that we were unable to boot the device when changing the kernel image,
LK, or preloader on the eMMC. The first stage (BROM) is stored in ROM and
hence unchangeable.

Modifying the System Partition In contrast to the boot process, the system par-
tition is not signed, and we did not find evidence for the use of cryptographic
verification methods like dm-verity4. Having write access to the system parti-
tion, we first attempted to start a reverse shell from one of the several scripts
(in the system partition) that get executed at boot time. For this, we added an
ARM netcat binary in the /system/bin partition, as well as adding debug com-
mands in each .sh file found, outputting different files to the /cache partition
so we could identify which script files are executed on boot. After identifying
the startup scripts, we found that SELinux was preventing us from running the
netcat binary. The reason for this is that shell scripts on boot run in the re-
stricted init shell SELinux context. We are currently exploring further methods
to run a binary with full admin privileges (SELinux context su_exec). Work on
this subject has recently been published at DEFCON 26 [28], where researchers
have been able to successfully root the Echo Plus. We will examine this research
in order to obtain root access on the Echo Plus.
4 https://source.android.com/security/verifiedboot/dm-verity

https://source.android.com/security/verifiedboot/dm-verity


5 Countermeasures

Based on the findings from our survey, we propose a set of countermeasures
against firmware extraction (and sometimes modification). These measures in-
crease the cost to an adversary per device analyzed to prevent wide-reaching,
low-cost attacks. Although increasing the cost to an adversary might stop low-
level attackers, the model of “security by obscurity” is never an adequate defense
strategy against well-resourced attackers. As pointed out by Dullien [29], remov-
ing “inspectability” usually does not deter malicious adversaries, while creating
obstacles for benign security researches and defenders. On the other hand, when
physical access to a device is part of the threat model, leaving debug interfaces
open may allow straightforward extraction of secrets and user data as well as
malicious modifications. It is an open problem to balance these two aspects. A
potential solution might be to provide device-specific debugging credentials to
the device owner, or to implement an auditable mechanism (e.g. using write-once
fuse bits) to put the device into a debugging mode.

UART, Bootloader, and Software Methods Debug interfaces can be disabled or
protected post-production. For UART, the bootloader and kernel can be config-
ured to disable the console to prevent access (as e.g. implemented in the Echo
Plus). If a UART shell or remote SSH/Telnet access is required post-production,
it should be password-protected, with a password unique for each device. This
password could be made available in a secure way to the device owner to pro-
vide inspectability. All network communication with back-end services should
be encrypted using TLS or a similar protocol, especially for firmware updates.

JTAG and other Debug Interfaces On most microcontrollers, JTAG (and other
interfaces) can be either permanently disabled or protected with a password
(if JTAG is not to be fully disabled for debugging or fault analysis). While
these protections have been repeatedly shown to be vulnerable to fault injec-
tion (e.g. voltage and clock glitching) and similar physical attacks as well as
logical attacks [30,31,32,33,34,35,36], simple read-out with an off-the-shelf pro-
grammer is prevented. Again, in case of password use, this password could be
made available to the device owner.

Raw Flash Dump It is hard to prevent the direct dump of external flash memory,
especially eMMC, which only requires a few connections and a low-cost SD
card reader. Some processors provide means to encrypt the firmware stored in
external flash, e.g. the ESP32 [37]. If such features are available, they should
be activated. Otherwise, it may be at least possible to mitigate straightforward
in-circuit dumps by routing all flash connections on inner layers of the PCB
(without test pads) when BGA packages are used. Alternatively, the entire PCB
can be covered in epoxy or other materials to prevent access to the flash chip as
shown in Fig. 4. This thwarts direct access, but can still be removed with more
effort using heat or chemicals.



Fig. 4. Covered PCB of an industrial IoT device

Secure Boot and SELinux The Echo Plus is an example of an IoT device with
stronger security measures compared to most other devices. Through the use of
Android, trusted boot and SELinux, even though the firmware can be extracted,
obtaining root access is difficult compared to other devices. It appears that
SELinux, which is often considered hard to properly configure for a desktop
system, might be suitable for IoT devices, which usually only provide limited and
defined functionality. This is especially in light of the worrying practice to run all
services with root permissions, which we encountered on many IoT devices. In
addition, techniques to cryptographically verify the filesystem (e.g. dm-verity)
or possibly also firmware encryption (if supported by the underlying processor,
see e.g. [37]) should be considered for future IoT devices.

6 Conclusion

As shown in this paper, extracting firmware from IoT devices is possible through
a variety of low-cost methods, with over 45% of the considered devices vul-
nerable to extraction through a simple UART connection. This problem exists
throughout the industry, affecting high-profile devices like the first generation
Echo as well as home hubs and alarm systems with significant security and pri-
vacy implications. Further details of all analyzed devices (notes, photographs,
boot logs, etc.) are available at https://github.com/david-oswald/iot-fw-
extraction.

We considered whether our work requires responsible disclosure to the af-
fected manufacturers. However, our survey did not focus on the discovery of
vulnerabilities in the considered devices. Furthermore, in some cases, a similar
technique had already been disclosed by a third party (e.g. [23,19,21]). Therefore,
we decided not to engage in a formal disclosure process. We plan to widen our
survey, analysing additional devices and developing new methods for firmware
extraction where necessary. An interesting approach in this regard is to anal-

https://github.com/david-oswald/iot-fw-extraction
https://github.com/david-oswald/iot-fw-extraction


yse the low-level bootloaders integrated in the ROM of most modern processors
w.r.t. to undocumented functions or implementation errors. Besides, it would
also be interesting to better understand the susceptibility of firmware encryp-
tion mechanisms to physical attacks, e.g. side-channel analysis.
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