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Abstract
Learning from high dimensional data is challenging in gen-
eral – however, often the data is not truly high dimensional
in the sense that it may have some hidden low complex-
ity geometry. We give new, user-friendly PAC-bounds that
are able to take advantage of such benign geometry to re-
duce dimensional-dependence of error-guarantees in settings
where such dependence is known to be essential in general.
This is achieved by employing random projection as an an-
alytic tool, and exploiting its structure-preserving compres-
sion ability. We introduce an auxiliary function class that op-
erates on reduced dimensional inputs, and a new complexity
term, as the distortion of the loss under random projections.
The latter is a hypothesis-dependent data-complexity, whose
analytic estimates turn out to recover various regularisation
schemes in parametric models, and a notion of intrinsic di-
mension, as quantified by the Gaussian width of the input
support in the case of the nearest neighbour rule. If there is be-
nign geometry present, then the bounds become tighter, other-
wise they recover the original dimension-dependent bounds.

1 Introduction
We consider learning settings where the generalisation er-
ror has a known essential dependence on the dimension of
the input representation – examples include learning on un-
bounded input domains, learning with scale-insensitive loss
functions, metric learning, and non-parametric methods.

Traditionally, the statistical analysis of learning has been
concerned with how fast the empirical error converges to the
true error as the sample size increases, and how large the
sample must be to match the complexity of the model or
hypothesis class of choice. However, in practice, especially
in the above settings, the answers to these questions are often
not sufficiently informative – for one cannot have access to
unlimited sample sizes.

Instead, here we are mainly interested in the questions of
what error-guarantee can be given for the available sample
size in problems where the input dimension can be arbi-
trarily high, and what characteristics of the problem ensure
good generalisation despite the sample size is small? A nice
example illustrating that analysis in small and large sam-
ple regimes may bring different insights is found in (Kon-
torovich and Weiss 2014).
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While it is not a technical requirement for our analysis to
have a fixed sample size, our main goal and focus in this
work is to better understand when and why high dimen-
sional learning can work well in settings where existing the-
ory would not predict so.

We approach this problem from first principles. Although
it is common practice, as well as technically convenient,
to prime the analysis with a margin or some regularisa-
tion scheme in order to obtain dimension-free guarantees –
where these geometric structures come from some form of
prior knowledge, or experience – instead here we are inter-
ested in a generic principle that brings these in automatically
when necessary.

To this end, we introduce a notion of compressibility that
quantifies the distortion suffered by the loss when the inputs
are subjected to a universal compression – that is a random
projection. Random projection is often used for dimension-
ality reduction in algorithms, however in this context, the
role of this compression will be purely analytic. In this role,
it is somewhat analogous to the one-dimensional random
projection of function outputs in Rademacher and Gaussian
complexities, but here instead a random matrix acts on the
inputs to the functions.

Based on these ideas we derive new generalisation
bounds, which will depend on the complexity of an auxiliary
low-dimensional hypothesis class instead the original one,
plus a new complexity term that we call the data-complexity
of the original function class. The latter captures and iden-
tifies benign geometric structures for the problem (of which
‘margin’ is a special case). We give the generic formalism
first, which we then instantiate in concrete models.

2 Framework
Notations and Problem Setup
Let Xd ⊆ Rd be an input domain, and Y the set of target
values. In binary classification Y = {−1, 1} is the set of
class labels, in regression Y ⊆ R. Let Hd be a function
class (hypothesis class) with elements h ∈ Hd of the form
h : Xd → Y . Let ` : Y × Y → [0, ¯̀] be a bounded loss
function.

We are given a set of labelled examples TN =
{(x1, y1), . . . , (xN , yN )} drawn i.i.d. from some unknown
distribution Dd over Xd×Y . The learning problem is to use



these to select a function from Hd with smallest generalisa-
tion error E(x,y)∼Dd

[`(h(x), y)].
Let Gd = ` ◦ Hd = {g : (x, y) ∈ Xd × Y → `(h(x), y) :

h ∈ Hd} denote the function class under study. Expecta-
tion w.r.t. the unknown data distribution Dd will be denoted
as E[g] := E(x,y)∼Dd

[g(x, y)] =
∫
X×Y gdDd. Expectation

w.r.t. the empirical measure defined by a sample TN will be
denoted as ÊTN [g] = 1

N

∑N
n=1 g(xn, yn) =

∫
X×Y gdDTN

– where DTN = 1
N

∑N
n=1 δxn

, and δx is the probability dis-
tribution concentrated at the point x.

Definitions of Concepts
For the analysis that follows we make an auxiliary construc-
tion. Let R ∈ Rk×d, k ≤ d be a random matrix; a so-called
random projection (RP) matrix. For instance a random ma-
trix with i.i.d. Gaussian entries, or a Haar matrix is conve-
nient, soR has full row rank almost surely (a.s.) and has low
distortion property when used to reduce dimension (Das-
gupta and Gupta 2003). As this is used in a purely analytic
role, computationally fast variants are not required.

We apply R to the points in Xd. For labelled points we
use the convention R(x, y) ≡ (Rx, y). This creates a ran-
dom input space RXd that is k-dimensional a.s., and which
we denote as XR. When we refer to this as a k-dimensional
input domain, then we use Xk instead.

On Xk (or XR), we define an auxiliary function class,
denoted Gk = ` ◦ Hk (or GR = ` ◦ HR) with elements
gR = ` ◦ hR. This class may be chosen, and each choice
gives rise to a different generalisation bound. Examples will
be given later. A natural choice is for instance to have the
same functional form as the elements of Gd, but operating
on k rather than d-dimensional inputs. An often more con-
venient choice is GR := Gd ◦RT .
Definition 1. We define the following functional to represent
the compressive distortion of a function g ∈ Gd relative to
gR ∈ GR:

DR(g, gR) ≡ |gR ◦R− g|
When gR = g ◦ RT , we write instead DR(g) ≡∣∣g ◦RTR− g∣∣.

We note that, conveniently, under suitable and fairly stan-
dard assumptions on the loss function, the compressive dis-
tortion can be bounded independently of the targets y. Ex-
amples in a later section will make this concrete.
Remark 2. (i) ∃k ≤ d s.t. DR(g) = 0; (ii) If g(x, y) ∈
[0, ¯̀],∀(x, y) then DR(g) ∈ [0, ¯̀], ∀k.

By Remark 2(i), it is always possible to choose GR and k
to have zero compressive distortion. In particular, the choice
GR = Gd ◦ RT with k = d will recover the traditional error
analysis. In turn, the use of the above quantity captures a
condition that allows us to reduce dimensional dependence
in error bounds. To this end we define the following new
notion of complexity that will play a key role in the sequel.
Definition 3. We define the data-complexity of a function
class Gd as the following:

C2N,k(Gd) = ET2N∼D2N
d

sup
g∈Gd

ER inf
gR∈Gk

ÊT2N [DR(g, gR)]

We may think of this as the largest (w.r.t. g ∈ Gd) ‘mim-
icking error’ on average (over training sets) of an ensemble
of learners that each receive a randomly compressed version
of the inputs and train to behave as g.

We note that this complexity term is always non-negative
and, as already mentioned, it can be made zero by our
choices of GR and k. The interesting cases are those in which
this quantity is small despite k < d.

3 Generic Bound
This section gives a novel and generic PAC-style uniform
generalisation bound. It bounds the error of any function in
a given class in terms of the notion of data-complexity of
the class introduced in the previous section, which allows
the use of a low complexity auxiliary function class that op-
erates on low dimensional random projections of the inputs.
The former is based on the distortion of the loss incurred
by the random projection of the inputs – therefore, due to
the structure-preserving property of random projections, this
term may be low when the data exhibits some benign geom-
etry with respect to the function class under study. This al-
lows us to quantify and exploit benign geometry that may be
present – that is, naturally occurring structures that make a
learning problem less complex than it appears to be. Exam-
ples will follow in the subsequent sections.

In generic terms, we prove the following Theo-
rem 4. Recall the empirical Rademacher complexity
of a function class G is defined as R̂N (G) =
1
NEσ supg∈G

∑N
n=1 σng(xn), where σ = (σ1, . . . , σN )

i.i.d∼
Uniform(±1).
Theorem 4. Let Gd be the function class as-
sociated with the class of functions Hd, with a
bounded loss function ` taking values in [0, ¯̀]:
Gd = {g : (x, y) ∈ Xd × Y → `(h(x), y), s.t. h ∈ Hd}.
Let TN = {(xn, yn)Nn=1 ∼ DNd } be a training set over
Xd ×Y . Then, for any δ > 0, w.p. at least 1− 2δ, uniformly
for all g ∈ Gd, we have:

E[g] ≤ ÊTN [g] + 2C2N,k(Gd)

+ 2ER[R̂N (GR)] + 3¯̀

√
log(1/δ)

2N

where R is a k × d, k ≤ d random matrix independent of
the sample, and GR = {x′ → gR(x′) ∈ Y : x′ ∈ XR} is an
auxiliary function class chosen before seeing the sample.

By Remark 2(i), for any choice of ζ ≥ 0 we can have the
data-complexity term C2N,k(Gd) ≤ ζ for a suitable choice of
k. In particular, ζ = 0 is always satisfied by k = d, in which
case we recover the classical Rademacher complexity based
bound. However when the Rademacher complexity term is
dimension dependent, then the data-complexity term may
reduce this dependence by reducing dimension and exploit-
ing the presence of naturally occurring structures through
the structure preserving properties of random projections. In
addition, even in the absence of favourable geometry, k and
ζ allow us to control the tradeoff between bias and variance
by choosing k ≤ d according to the available sample size N
at the expense of a bias ζ.



As we shall see in concrete examples in the next section,
the analytic estimate of the data-complexity term takes dif-
ferent forms, depending on the form of the function class of
interest – in some of the parametric models it brings in a con-
straint on the margin distribution, or a finiteness constraint
on the norms of various parameters akin to regularisation.
In the nonparametric case it takes the form of a notion of
intrinsic dimension.

Proof of Theorem 4. Let

φ(TN ) := sup
g∈Gd

|E[g]− ÊTN [g]|.

By McDiarmid inequality, w.p. 1− δ,

φ(TN ) ≤ ETN∼DN
d

[φ(TN )] + ¯̀

√
log(1/δ)

2N
.

Now, bounding this expectation, we have:

ETN∼DN
d

[φ(TN )] = ETN∼DN
d

sup
g∈Gd

∣∣∣E[g]− ÊTN [g]
∣∣∣

= ETN∼DN
d

sup
g∈Gd

∣∣∣ET ′N∼DN
d

[ÊT ′N [g]]− ÊTN [g]
∣∣∣

≤ ETN ,T ′N∼D2N
d

sup
g∈Gd

∣∣∣ÊT ′N [g]− ÊTN [g]
∣∣∣ by Jensen ineq.

≤ ETN ,T ′N∼D2N
d

sup
g∈Gd

ER inf
gR∈GR

{∣∣∣ÊT ′N [g]− ÊRT ′N [gR]
∣∣∣

+
∣∣∣ÊRT ′N [gR]− ÊRTN [gR]

∣∣∣
+
∣∣∣ÊRTN [gR]− ÊTN [g]

∣∣∣}
≤ ETN ,T ′N∼D2N

d
sup
g∈Gd

ER inf
gR∈GR

{∣∣∣ÊT ′N [g]− ÊRT ′N [gR]
∣∣∣

+
∣∣∣ÊRTN [gR]− ÊTN [g]

∣∣∣}
+ ETN ,T ′N∼D2N

d
ER sup

gR∈GR

∣∣∣ÊRT ′N [gR]− ÊRTN [gR]
∣∣∣

The first term can be bounded by triangle inequality:

ETN ,T ′N∼D2N
d

sup
g∈Gd

ER inf
gR∈GR

{∣∣∣ÊT ′N [g]− ÊRT ′N [gR]
∣∣∣

+
∣∣∣ÊRTN [gR]− ÊTN [g]

∣∣∣} ≤
ETN ,T ′N∼D2N

d
sup
g∈Gd

ER inf
gR∈GR

{
1

N

[
N∑
n=1

|g(x′n, y
′
n)− gR(Rx′n, y

′
n)|

+

N∑
n=1

|g(xn, yn)− gR(Rxn, yn)|

]}

= ET2N∼D2N
d

sup
g∈Gd

ER inf
gR∈GR

{
2

2N

[
2N∑
n=1

|g(xn, yn)− gR(Rxn, yn)|

]}
= 2C2N,k(Gd)

To estimate the second term we observe that it is the supre-
mum of the empirical process indexed by the reduced class
GR, hence we can apply the classical steps of symmetriza-
tion and McDiarmid inequality. Let σ ∼ Uniform(±1)N be
Rademacher variables. We have:

ETN ,T ′N∼D
2N
d
ER sup

gR∈GR

∣∣∣ÊRT ′
N

[gR]− ÊRTN [gR]
∣∣∣ =

ERETN ,T ′N ,σ sup
gR

∣∣∣∣∣ 1

N

N∑
n=1

σn[gR(Rxn, yn)− gR(Rx′n, y
′
n)]

∣∣∣∣∣
= 2ERETN∼DN

d
,σ sup
gR∈GR

∣∣∣∣∣ 1

N

N∑
n=1

σngR(Rxn, yn)

∣∣∣∣∣
= 2ER[RN (GR ◦R)]

=1−δ 2ER[R̂N (GR ◦R)] + 2¯̀

√
log(1/δ)

2N

Plugging back and noticing that RN (GR ◦ R) = RN (GR)
completes the proof.

4 Examples
To instantiate Theorem 4 in concrete learning settings, we
will need to estimate our newly introduced data-complexity
term for the specific function classes. The following proper-
ties will be useful for doing so.
Remark 5. The following simpler expressions upper bound
the data-complexity:

(i) C2N,k(Gd) ≤ ETN∼DN
d

sup
g∈Gd

ÊTNER[DR(g)] ≡ Ck(Gd)

(ii) Ck(Gd) ≤ sup
g∈Gd

sup
(x,y)∈X×Y

ER[DR(g)].

Proof. Relaxing the infimum, and using Jensen’s inequality,

C2N,k(Gd) = ...

ETN ,T ′N∼D2N
d

sup
g∈Gd

ER inf
gR∈GR

ÊTN
⋃
T ′N |gR ◦R− g| ≤

ETN ,T ′N∼D2N
d

sup
g∈Gd

ERÊTN
⋃
T ′N |gR ◦R− g|,∀gR ∈ GR

≤ 1

2
ETN∼DN

d
sup
g∈Gd

ERÊTN |gR ◦R− g|

+
1

2
ET ′N∼DN

d
sup
g∈Gd

ERÊT ′N |gR ◦R− g|, ∀gR ∈ GR

≤ ETN∼DN
d

sup
g∈Gd

ERÊTN |gR ◦R− g|, ∀gR ∈ GR

Now choose GR = Gd ◦RT to complete the proof.

Thresholded Linear Model with the 0-1 Loss
We start with the classical example of learning a halfspace,
which allows us to demonstrate the working of our generic
Theorem 4 on a simple example, and at the same time it
gives us chance to fix an error in the existing literature.

Consider the linear function class in Rd, Hd = {x →
hTx : h, x ∈ Rd} with the 0-1 loss, `01 : Y × Y →
{0, 1}, `(ŷ, y) = 1(ŷy ≤ 0), where 1(·) takes the value 1
if its argument is true, and 0 otherwise. Let Gd = `01 ◦ Hd.



By a slight abuse of notation we will identify the hypothesis
h with its parameter vector.

It is known that the generalisation error of this class, when
working with the 0-1 loss directly and allowing X to be un-
bounded, is of order Θ(

√
d/
√
N), and this dependence on d

cannot be removed in general. However, deploying our The-
orem 4 yields a condition of geometric nature under which
we can prove the following dimension-free bound.
Theorem 6. Let Gd = `01 ◦ Hd as above. Let TN =
{(xn, yn)Nn=1 ∼ DNd } be a training set over Xd × Y .
Let R be a k × d Gaussian random matrix, k ≤ d.
Suppose that for some ζ = ζ(k) > 0 we have for
all g ∈ Gd and for all samples TN ∼ DNd of size
N that 1

N

∑N
n=1 1

{
sign(hTxn) 6= sign(hTRTRxn)

}
≤

ζ(k) w.p. 1−δ with respect to the random draw ofR. Then,
for any δ > 0, w.p. 1− 2δ the following holds uniformly for
all g ∈ Gd:

E[g] ≤ Ê[g] + 2ζ(k)1(k < d) + C

√
k

N
+ 3

√
log(2/δ)

2N
where C > 0 is an absolute constant.

The use of random projection (RP) to derive a dimension-
free bound for this function class was previously attempted
in (Garg, Har-Peled, and Roth 2002), but unfortunately an
error in their proof1 makes a meaningful comparison diffi-
cult. Nevertheless we believe the idea itself has potential.
An alternative approach specialised to halfspace learning in
pursued in (Kabán and Durrant 2017).

We note that both k and ζ(k) need to be chosen before
seeing the sample. Interesting to notice that the role of k in
the above bound replaces that of the VC dimension in clas-
sical bounds, which in this example would be d. A sensi-
ble choice is to set k proportional to N – which is typically
known. The classical VC bound is recovered if we take the
worst case complexity d to have ζ(k) = 0, and demand the
sample size N to be proportional to it. However, one typi-
cally cannot have access to unlimited sample sizeN . Instead
this new type of bound allows us to choose k proportional to
the N we do have access to, and pay the price accordingly
by ζ(k). Note however, that ζ(k) may still be small if there
is benign geometry present – for instance if most points of
the two classes are well separated.

The proof of Theorem 6 shows how the requirement for
small data-complexity translates into an average margin dis-
tribution like condition in this case.

Proof of Theorem 6. We apply Theorem 4. Choosing GR :=
Gd ◦RT , by Remark 5 (i) we have:

C2N,k(Gd) ≤ ETN∼DN
d

sup
g∈Gd

ERÊTN
∣∣g ◦RTR− g∣∣

1In (Garg, Har-Peled, and Roth 2002), Lemma 3.5 correctly
bounds the absolute difference of empirical errors from two inde-
pendent samples S1, S2, in terms of their RP-ed counterpart, for
a fixed classifier h. But the authors then attempt to apply Lemma
3.5, on page 8 after their eq.(3), with respect to a supremum over
all hypotheses unfortunately neglecting the effect of taking unions
over events outside the subspace of the RP. The error carries over
throughout the rest of the proof of their Theorem 3.1. and invali-
dates its main statement.

and plugging in the form of Gd, we get:

ÊTN |gR ◦R− g| ≤

1

N

N∑
n=1

∣∣1(hTxn 6= yn)− 1(hTRTRxn 6= yn)
∣∣

=
1

N

N∑
n=1

1
{

sign(hTxn) 6= sign(hTRTRxn)
}
.

Hence, C2N,k(Gd) ≤ . . .

ETN∼DN
d

sup
h∈Hd

1

N

N∑
n=1

PrR
{

sign(hTxn) 6= sign(hTRTRxn)
}

≤ ζ(k)

It now remains to estimate the complexity of the func-
tion class in the reduced space, R̂N (Hk). By Lemma 3.1 in
(Mohri, Rostamizadeh, and Talwalkar 2012), and the known
inequality between empirical Rademacher complexity and
VC dimension for binary valued function classes (Bartlett

and Mendelson 2002), we have R̂N (Hk) ≤ C
√

V (Hk)
N

where C > 0 is an absolute constant, and V (Hk) = k in
this example. Hence the result follows from Theorem 4.

Generalised Linear Models
Consider the function class Gd = ` ◦Hd whereHd = {x→
hTx : x ∈ X , h ∈ Rd} and ` : Y × Y → [0, ¯̀] is a bounded
loss function that is also L`-Lipschitz in its first argument.
The input domain is not assumed to be bounded; it will be
sufficient to require that Ex[xxT ] <∞. Furthermore we do
not impose any constraint a-priori on the parameter vector
h – this will pop out of deploying our generic Theorem 4.
Because of the unbounded input domain and the absence of
a-priori constraints on h, the error is again known to be of
order Θ(

√
d/
√
N) in general.

By deploying our Theorem 4 we can prove following.
Theorem 7. Let Gd be the class of generalised linear models
of the form Gd = ` ◦ Hd, where Hd = {x → hTx : h, x ∈
Rd, and the loss function ` : Y × Y → [0, ¯̀] is L`-Lipschitz
in its first argument. Let TN = {(xn, yn)Nn=1 ∼ DNd } be
a training set over Xd × Y , where Dd satisfies that Σ ≡
Ex∼Dd

[xxT ] is finite. Then, for any k ≤ d positive integer,
and any δ > 0, w.p. 1−2δ we have uniformly for all g ∈ Gd:

E[g] ≤ ÊTN [g]...

+ 2L`

√
2

k
Ex[‖x‖2]1(k < rank(Σ)) · sup

h∈Hd

‖h‖2

+ 2¯̀C

√
k

N
+ +3¯̀

√
log(2/δ)

2N

where C is an absolute constant.
We can interpret the various terms in the bound as fol-

lows. The term after the empirical error on the r.h.s. is an
upper bound on the data-complexity term. It provides, as in
the previous section, a condition under which a dimension-
free bound holds. Specifically, in this example it tells us that



finiteness of ‖h‖2 is such a condition, and that small values
of this norm represent a benign geometric structure that re-
duces generalisation error when N is limited. While this is
no news, finding it from our generic theorem validates the
principle behind it, namely that the distortion of the loss un-
der a random projection of the inputs is able to capture a
meaningful condition that explains what makes the learn-
ing problem easier despite the limited sample size. It will be
interesting to follow this principle through in several other
models too in the next couple of subsections.

It is also interesting to note similarities and differences
of the obtained Theorem 7 with traditional Rademacher
bounds. It is well known that, if X is bounded, then to-
gether with the norm constraint on ‖h‖2 derived above (or
pre-imposed, as usual in the literature), one can have a
dimension-free estimate of the empirical Rademacher com-
plexity term. If we were to assume that X is bounded then
our bound recovers exactly the Rademacher bound with the
choice k ≥ rank(Σ) – that is, when the data-complexity term
vanishes – and other choices of k have a disadvantage. On
the other hand, boundedness of X is not required for The-
orem 7 to hold, and as already discussed, the constraint on
‖h‖2 pops out from a generic procedure without the need for
any prior knowledge.

Proof of Theorem 7. We can work with Gaussian R with
i.i.d. 0-mean entries and variance 1/k so that on average any
projected vector has the same squared length as the original.
Choose the auxiliary function class be GR = Gd ◦ RT , and
we have for the data-complexity term: C2N,k(Gd) ≤ . . .

L`ETN ,T ′N∼D2N
d

sup
h∈Hd

ER
1

2N

2N∑
n=1

∣∣hTxn − hTRTRxn∣∣
(1)

By Jensen inequality, and Lemma 2 from (Kabán 2014) we
get (after some algebra):

ER
∣∣hTx− hTRTRx∣∣ ≤ {ER [‖hTx− hTRTRx‖2]}1/2

≤
√

2

k
‖h‖2‖x‖2

Having decoupled h and the data, we plug this back into eq.
(1) to get the following when k < rank(Xd) (and 0 other-
wise, by construction):

C2N,k(Gd) ≤ L`

√
2

k
E‖x‖2 sup

h∈Hd

‖h‖2 (2)

We note that the factor of
√

2 can be improved to 1 at the
expense of a lengthier derivation if we chose to work with a
scaled Haar distributed R.

Next, we estimate the Rademacher complexity term in the
reduced space. Since there is no constraint on the parameters
or the input domain, we instead exploit that the loss function
is bounded through the following lemma (proof omitted).

Lemma 8. Let Fk = {x → f(wTx) ∈ [0, 1] : x ∈ Rk}.
Then ∃C > 0 s.t. R̂N (Fk) ≤ C

√
k
N .

Using this, let FR := GR/¯̀, and we have:

R̂N (GR) ≤ ¯̀R̂N (GR/¯̀) ≤ ¯̀C

√
k

N
(3)

Putting together eqs. (3) and (2) completes the proof.

Mahalanobis Metric Learning Classifiers

In this section we consider the problem of learning a generic
classifier simultaneously with a linear transformation of the
inputs – equivalent to learning a Mahalanobis metric that
enhances classification performance. Here we will assume a
bounded input space living in a ball of radius B for conve-
nience, i.e. Xd ⊆ B(0, B) as previous work by (Verma and
Branson 2015) that studied the exact same problem.

The work of (Verma and Branson 2015) gave an error
bound with dimensional dependence of orderO(d

√
log(d)),

and proved that this is not improvable in general. The au-
thors then proposed a restriction on the Mahalanobis met-
rics, under which they show for the specific class of 2-layer
perceptrons that the dimensional dependence of the risk up-
per bound reduces toO(

√
log(d)). Our main purpose here is

to demonstrate how this regulariser comes out automatically
from the data-complexity term when applying our generic
Theorem 4, without the need to specify it by a-priori knowl-
edge, and we may take advantage if it more widely to tighten
the bound whenever there are weakly informative features.

Let Hd = {x → h(x) : x ∈ Xd} be some paramet-
ric Lh-Lipschitz function class with uniformly bounded fat
shattering dimension over all scales2. DefineMd = {M ∈
Rd×d, σmax(M) ≤ 1}, where the condition σmax(M) ≤ 1
(also assumed in (Verma and Branson 2015)) is not a re-
striction but serves to remove arbitrary scaling. The matrix
MTM may be thought of as a metric tensor in the high di-
mensional space, although we work with M directly. As in
the previous section, the loss function ` : Y × Y → [0, ¯̀]
is assumed to be bounded and L`-Lipschitz in its first ar-
gument. The function class of our interest is then Gd =
` ◦ Hd ◦Md.

Again we deploy Theorem 4, and now obtain the follow-
ing.

Theorem 9. Consider the class of functions of the
form Gd = ` ◦ Hd ◦ Md, where Md = {M ∈
Rd×d, σmax(M) ≤ 1}, Hd = {x → h(x) : x ∈
Xd, h is Lh-Lipschitz, fatα(H) ≤ fd} for some fd > 0, the
loss function ` : Y×Y → [0, ¯̀] is L`-Lipschitz in its first ar-
gument, andX ⊆ B(0, B). Let TN = {(xn, yn)Nn=1 ∼ DNd }
be a training set of size N taking values in Xd × Y . Then,
for any k ≤ d positive integer, and any η > 0, δ > 0, w.p.

2This condition can be dropped at the expense of a
√

log(N)
factor in the error bound (by using a fixed scale α instead of Dud-
ley’s integral inequality in the proof, as it was done in Lemma 3 of
(Verma and Branson 2015)). However, for function classes that are
closed under scalar multiplication it is simply equivalent to having
a bounded pseudo-dimension, cf. Theorem 11.14. in (Anthony and
Bartlett 1999).



1− 2δ we have uniformly for all g ∈ Gd that:

E[g] ≤ ÊTN [g] + 2L`Lh1(k < rank(Xd))

·
{
η +
√

2√
k

E‖x‖2 sup
M∈M

‖M‖Fro + exp

(
−η

2

2

)}
+

12L`√
N

(√
kd ln

(
1 + 2LhB

√
d
)

+ fk ln (4) + 2
√
π(kd+ fk)

)

+ 3¯̀

√
log(2/δ)

2N

The proof is rather lengthy, and deferred to the full ver-
sion. The main steps are to choose GR in a way to make
sure that the scaling indeterminacy of the metric is taken
care of in the auxiliary function class – if we work with
Gaussian R, this involves a truncation step – and to esti-
mate the Rademacher complexity in the reduced class. The
latter involves Dudley inequality and covering number esti-
mation (Mendelson 2003) on the matrix class that represents
the metric in the reduced space.

The bound of Theorem 9 has the same high-level struc-
ture to what we have seen in the previous sections: On the
r.h.s. we have the empirical error, the data-complexity term
– which can only be nonzero for k < d – and the complex-
ity of the auxiliary function class – whose dependence on d

is reduced to O(
√
kd log(

√
d)) whenever k < d is chosen.

The choice k = d (assuming Xd is not degenerate) recov-
ers the bound of (Verma and Branson 2015) with two small
improvements: in the log factor d is improved to

√
d, and

a log(N) factor is eliminated. Note that the complexity of
the high dimensional class Hd is not present in this bound,
instead we have the complexity of its k-variate version, fk,
which is the fat shattering dimension of Hk instead. Note
also that we did not specify the class Hd so we can plug in
any function class if we have an estimate of its fat shatter-
ing dimension. Upon more specification the dependence on
d may be further reducible.

In general, coming up with the extra constraints that re-
duce dimensional dependence is not a trivial task, and typi-
cally relies on some prior knowledge about the problem. By
contrast, in our framework we do not require any a-priori
knowledge of the specific problem, instead require a ro-
bustness to perturbations created by the random projection.
This automatically yields an appropriate constraint – in the
present example this is the magnitude of ‖M‖Fro – that re-
flects robustness to distortions from random projection that
our generic Theorem 4 rests on. Since σmax(M) ≤ 1, this is
at most

√
d – but it can be much smaller if there are weakly

informative features that are then down-weighted by the lin-
ear mapping being learned.

An equivalent formulation of Theorem 9 is to say that for
some k and ζ(k) chosen before seeing the data, we require
the precondition that, ∀M ∈ Md, ‖M‖Fro ≤ ζ(k). On the
r.h.s. then ζ(k) takes the place of supM∈Md

‖M‖Fro. Of
course, the supremum of the Frobenius norms of all matri-
ces in Md is not likely to be known, but we can use the
technique of Structural Risk Minimisation (Vapnik 1998) to
covert the bound into an algorithm that uses an estimate from

the data. In this example, this would yield Frobenius-norm
regularisation of the metric.

Finally, for the specific class of 2-layer perceptrons, it
is natural to wonder whether we can recover a bound in
O(
√

log(d)) as in (Verma and Branson 2015). It turns out
that, by using from our main Theorem 4 with a choice of
fixed metric in the auxiliary class GR we can actually obtain
a dimension-free bound:
Corollary 10. Consider the class of functions of the form
Gd = ` ◦ Hd ◦ Md, where Hd has the following form.
Let φ : R → [−b, b] be Lφ-Lipschitz, and Hd = {x →∑m
i=1 viφ(wTi x) : x ∈ Xd, ‖wi‖1 ≤ 1, ‖vi‖1 ≤ 1}. Let TN

be a training set, as before. Then, for any k ≤ d positive
integer, and any δ > 0, w.p. 1− δ we have uniformly for all
g ∈ Gd that:

E[g] ≤ ÊTN [g] + CL`b

√
k

N
+ 3¯̀

√
log(2/δ)

2N
+

2
√

2L`Lφ√
k

E‖x‖21(k < rk(Xd)) sup
v,W,M

‖v‖2‖WTM‖Fro

Nearest Neighbour
The previous sections concerned various linear and nonlin-
ear parametric models. Here we take a simple representative
of nonparametric models – a nearest neighbour classifier.

The nearest neighbour rule can be expressed as the
following (Kontorovich and Weiss 2015). Denote by
T +
N , T

−
N ⊂ TN , T +

N ∪ T
−
N = TN the positively and neg-

atively labelled training points respectively. Define the dis-
tance of a point x ∈ X to a set S as d(x, S) = infz∈S{‖x−
z‖}. Then N+(x) ≡ d(x, T +

N ) and N−(x) ≡ d(x, T −N ) are
the nearest positive and nearest negative neighbours of x re-
spectively, and the label prediction for x ∈ X is given by the
sign of the following 1-Lipschitz function:

h(x : T +
N , T

−
N ) :=

1

2
(d(x, T −N )− d(x, T +

N )) (4)

=
1

2

(
‖x−N−(x)‖ − ‖x−N+(x)‖

)
We use Euclidean norms throughout.

To facilitate the analysis, we assume a bounded input do-
main, Xd ⊆ B(0, B), same as in (Kontorovich and Weiss
2015) and the truncated γ-margin loss, which is [0, 1]-valued
and 1/γ-Lipschitz, where γ ∈ (0, 1] – so that in the re-
duced space we can make use of existing estimates. The
function class of our interest is therefore the composition of
the 1/γ-Lipschitz loss and the 1-Lipschitz classifier of the
form given in eq. (4) – that is, Gd ⊆ {x → g(x) : x ∈
Xd, g is 1/γ-Lipschitz}.

By applying again our generic Theorem 4, we will ob-
tain a bound where the data-complexity term turns out to be
bounded by the Gaussian width of Xd. For a set T the Gaus-
sian width (Vershynin 2018; Liaw et al. 2017) is defined as:

w (T ) = Eg

[
sup
x∈T
{〈g, x〉}

]
,

where g ∼ N (0, Id). It is a measure of complexity of a set
(see e.g. (Vershynin 2018), sec. 7.5 and references therein).



Hence we shall see from the below example that the name
‘data-complexity’ that we introduced in an early section is
quite appropriate.

In this setting, Theorem 4 yields the following:
Theorem 11. Let Xd ⊆ B(0, B),Y = {−1, 1}, and TN ∼
DN . For any k ≤ d positive integer, for any γ > 0, δ ∈
(0, 1), w.p. 1− δ, uniformly for all g ∈ Gd we have:

E[g] ≤ ÊTN [g] +
4c

γ
√
k
w(Xd)1(k < d)

+ C
1

γ
BN−

1
k+1 + 3

√
log(2/δ)

2N
(5)

where c and C are constants.
Eq. (5) holds for any positive integer k chosen before

seeing the data. For instance, if we set it to make the data-
complexity term below some η ∈ (0, 1), this is:

k ≥ 16cw2(Xd)
η2γ2

(6)

Then replacing this choice of k into the bound of Theo-
rem 11 resembles the flavour of the bounds obtained pre-
viously in doubling metric spaces in (Gottlieb, Kontorovich,
and Krauthgamer 2016), with the squared Gaussian width
taking the place of the doubling dimension. This is an inter-
esting connection since there is a known link between the
doubling dimension and the squared Gaussian width (Indyk
2007) – in an Euclidean metric space with algebraic dimen-
sion d they are both of order Θ(d), but are otherwise more
general and can take fractional values. The Gaussian width
is sensitive to structure embedded in Euclidean spaces, such
as the existence of a sparse representation, smooth manifold
structure, and so on.

Despite the above connection, there are differences. If the
sample size is too small compared to intrinsic dimension of
the input space, then we might opt for a lower value for k in
the bound of Theorem 11 than that of eq.(6) at the expense of
a larger bias. This is also practical since N is known while
the Gaussian width may be unknown. As we see from the
function class complexity term, the sample size needs to be
exponential in k. Conversely, if N increases then k should
be increased as well, in order to reduce or to eliminate (as k
reaches d) the bias.

Another difference is in the methodological focus: In
(Kontorovich and Weiss 2015; Gottlieb, Kontorovich, and
Krauthgamer 2016), bounding the error in terms of a notion
of intrinsic dimension was made possible due to a property
of the Lipschitz class, by which the covering numbers of the
function class are upper bounded in terms of the covering
numbers of the input space. By contrast, in our strategy the
starting point was to exploit random projection to obtain an
auxiliary class with lower complexity, and as such, the Lips-
chitz property of the classifier functions is not in general re-
quired for our strategy to yield bounds in terms of the com-
plexity of the input space. Indeed, we have seen through-
out the various examples in this section that the same start-
ing point has drawn together margin distribution and some
widely used regularisation schemes in the case of parametric

models, as well as the Gaussian width in the nearest neigh-
bour example.

We note that in Theorem 11, the parameter γ needs to be
chosen before seeing the data. Alternatively, if the Gaussi-
uan width is known, and noting that the constant C is speci-
fied in (Kontorovich and Weiss 2015), one can pursue SRM
to tune the value of γ on the training set by minimising the
bound.

Proof of Theorem 11. We take R ∈ Rk×d a random projec-
tion matrix with 0-mean 1/k-variance i.i.d. Gaussian entries
and will use the notations N+

R (x) and N−R (x) for the points
whose image under a random projection is the nearest posi-
tive or nearest negative to Rx.

For GR we choose a function class of the same form as Gd,
but acting on the compressed k-dimensional inputs instead.

The data-complexity term can be bounded as follows:
C2N,k(Gd) ≤ Ck(Gd) (7)

= ETN sup
g∈Gd

ER
1

N

N∑
n=1

|gR(Rxn, yn)− g(xn, yn)|

where
|gR(Rx, y)− g(x, y)| ≤

1

2γ

∣∣∣‖Rx− RN−R (x)‖ − ‖Rx− RN+
R (x)‖

− ‖x−N−(x)‖+ ‖x−N+
(x)‖

∣∣∣
≤

1

2γ

(∣∣∣‖Rx− RN−R (x)‖ − ‖x−N−(x)‖
∣∣∣

+
∣∣∣‖Rx− RN+

R (x)‖ − ‖x−N+
(x)‖

∣∣∣) (8)

Note that ‖Rx−RN±R (x)‖ ≤ ‖Rx−RN±(x)‖, and ‖x−
N±(x)‖ ≤ ‖x−N±R (x)‖, hence

eq. (8) ≤
1

2γ

(
max

{∣∣∣‖Rx− RN−(x)‖ − ‖x−N−(x)‖∣∣∣ ,∣∣∣‖Rx− RN−R (x)‖ − ‖x−N−R (x)‖
∣∣∣}

+max
{∣∣∣‖Rx− RN+

(x)‖ − ‖x−N+
(x)‖

∣∣∣ ,∣∣∣‖Rx− RN+
R (x)‖ − ‖x−N+

R (x)‖
∣∣∣})

Therefore the supremum over g ∈ Gd amounts to a supre-
mum over N+(x), N−(x) ∈ Xd. So, eq. (7) ≤ . . .
1

2γ
ETN sup

N−(x)

ER
1

N

N∑
n=1

∣∣∣‖Rxn − RN−(xn)‖ − ‖xn −N−(xn)‖
∣∣∣

+
1

2γ
ETN sup

N+(x)

ER
1

N

N∑
n=1

∣∣∣‖Rxn − RN+
(xn)‖ − ‖xn −N+

(xn)‖
∣∣∣

≤
1

2γ
sup

x,N−(x)∈Xd

ER

∣∣∣‖Rx− RN−(x)‖ − ‖x−N−(x)‖∣∣∣
+

1

2γ
sup

x,N+(x)∈Xd

ER

∣∣∣‖Rx− RN+
(x)‖ − ‖x−N+

(x)‖
∣∣∣

≤
1

2γ
ER sup

x,N−(x)∈Xd

∣∣∣‖Rx− RN−(x)‖ − ‖x−N−(x)‖∣∣∣
+

1

2γ
ER sup

x,N+(x)∈Xd

∣∣∣‖Rx− RN+
(x)‖ − ‖x−N+

(x)‖
∣∣∣

≤
1c

γ
ER sup

x,x′∈Xd

∣∣‖Rx− Rx′‖ − ‖x− x′‖∣∣ (9)

.
1

γ
w(Xd − Xd)/

√
k (10)

=
2c

γ
√
k
w(Xd) (11)



where w(Xd) is the Gaussian width of Xd, and the last two
steps follow from (Liaw et al. 2017).

For the function class complexity term we can use exist-
ing estimates. Note that GR is a class of 1/γ-Lipschitz func-
tions, on k-dimensional inputs. The empirical Rademacher
complexity3 of the class of Lipschitz functions with a
fixed Lipschitz constant has been derived in (Gottlieb, Kon-
torovich, and Krauthgamer 2016), which in our case takes
the following form:

R̂N (GR) ≤

[
34(4 1

γ diam(RXd))k/2

N

(
k − 1

2

)] 2
k+1

≤ C
1

γ
diam(RXd)N−

1
k+1 (12)

where C is an absolute constant.
To assemble the generalisation bound, we require the ex-

pected value ER[R̂N (GR)]. Since ER‖Rx‖2 = ‖x‖2, and
by convexity of the supremum and the square root functions,
Jensen’s inequality yields that:

ER[diam(RXd)] ≤ 2B, (13)
where the factor of 2 can be absorbed into the constant C
above, and so

ER[R̂N (GR)] ≤ C 1

γ
BN−

1
k+1 (14)

Putting the pieces together completes the proof.

5 Conclusions
We presented an approach to reduce dimensional depen-
dence of error bounds for learning settings where such
dependence is known to be essential in general. This is
achieved by the ability of random projections to take advan-
tage of benign low complexity geometry – leveraged here
in a purely analytic (rather than algorithmic) role. First we
gave a generic uniform upper bound on the generalisation er-
ror in terms of the complexity of an auxiliary function class,
and a new complexity term that quantifies benign geometry
in a problem-dependent manner. We then instantiated this to
parametric linear and nonlinear models, as well as a simple
non-parametric model. If there is benign geometry present,
then the bounds become tighter, otherwise they recover ex-
isting bounds. It is also possible in principle to use these
results in conjunction with the classical technique of struc-
tural risk minimisation to convert them into regularised es-
timators. Future work will extend this framework to other
learning settings, to find out what other geometric structures
are benign for high dimensional learning.
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3An alternative approach, pursued in (Gilad-Bachrach, Navot,
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fat-shattering dimension of the Lipschitz class, which gives a better
convergence rate once the sample size exceeds a large threshold,
but it is less tight in the small sample regime.
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