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Dental Pulp Stem Cell
Mechanoresponsiveness: Effects of
Mechanical Stimuli on Dental Pulp
Stem Cell Behavior
Massimo Marrelli1†, Bruna Codispoti1†, Richard M. Shelton2, Ben A. Scheven2,
Paul R. Cooper2, Marco Tatullo1* and Francesco Paduano1*

1 Stem Cells Unit, Biomedical Section, Tecnologica Research Institute and Marrelli Health, Crotone, Italy, 2 School
of Dentistry, Institute of Clinical Sciences, College of Medical and Dental Sciences, The University of Birmingham,
Birmingham, United Kingdom

Dental pulp is known to be an accessible and important source of multipotent
mesenchymal progenitor cells termed dental pulp stem cells (DPSCs). DPSCs can
differentiate into odontoblast-like cells and maintain pulp homeostasis by the formation
of new dentin which protects the underlying pulp. DPSCs similar to other mesenchymal
stem cells (MSCs) reside in a niche, a complex microenvironment consisting of
an extracellular matrix, other local cell types and biochemical stimuli that influence
the decision between stem cell (SC) self-renewal and differentiation. In addition to
biochemical factors, mechanical factors are increasingly recognized as key regulators
in DPSC behavior and function. Thus, microenvironments can significantly influence
the role and differentiation of DPSCs through a combination of factors which are
biochemical, biomechanical and biophysical in nature. Under in vitro conditions, it
has been shown that DPSCs are sensitive to different types of force, such as
uniaxial mechanical stretch, cyclic tensile strain, pulsating fluid flow, low-intensity pulsed
ultrasound as well as being responsive to biomechanical cues presented in the form
of micro- and nano-scale surface topographies. To understand how DPSCs sense
and respond to the mechanics of their microenvironments, it is essential to determine
how these cells convert mechanical and physical stimuli into function, including lineage
specification. This review therefore covers some aspects of DPSC mechanoresponsivity
with an emphasis on the factors that influence their behavior. An in-depth understanding
of the physical environment that influence DPSC fate is necessary to improve the
outcome of their therapeutic application for tissue regeneration.

Keywords: dental pulp stem cells (DPSCs), mechanobiology, mechanosensing, mechanical properties, behavior,
surface topography

INTRODUCTION

Dental pulp tissue contains an accessible source of multipotent mesenchymal progenitor cells,
known as dental pulp stromal/stem cells (DPSCs), which participate in dentin and pulp
regeneration (Gronthos et al., 2000). In the tooth, a specialized microenvironment called the stem
cell niche exists and is located at specific anatomic sites which regulate how DPSCs participate in
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tissue homeostasis, regeneration and repair (Mitsiadis et al.,
2011). The dental pulp is contained in the pulp cavity of the
tooth within its hard tissues. The pulp is composed of four layers:
an external layer containing the odontoblasts, a cell-free zone, a
cell-rich zone and the pulp core. The external layer is comprised
of odontoblasts produce the dentin extracellular matrix (ECM)
that protects the pulp from external stimuli. The cell-free zone
lacks cells and is rich in ECM, the cell-rich zone contains
progenitor cells that exhibit plasticity and pluripotentiality
whereas the central area contains the vasculature and nerve
plexus (D’Aquino et al., 2008), these structures are also present
at the periphery of the pulp in a close functional relationship with
odontoblasts.

A key study by Lizier et al. (2012) indicated that DPSCs
are located in multiple niches, which are associated with
capillaries and the nerve network of the central region, in the
cell rich-zone and in the outer layer. Importantly, there are
specific interactions which occur between DPSCs and their local
microenvironment in these niches (Mitsiadis et al., 2007, 2011)
with DPSCs being functionally regulated by the local ECM,
growth factors, other bioactive molecules and key signaling
pathways (Mitsiadis et al., 2011). These factors act synergistically
or antagonistically and as a network to regulate the status of
DPSCs in the niches. Notably a complex network of biochemical
signaling pathways including Notch and WNT/β-Catenin
signaling, many growth factors such as vascular endothelial
growth factor (VEGF), transforming growth factor (TGF)-β
and ECM proteins participate in maintaining and regulating
homeostasis in the DPSC niche as well as in the regulation of the
proliferation and differentiation of DPSCs (Mitsiadis et al., 2007;
Yu et al., 2015).

The teeth are essential for mastication and are subjected to
various mechanical stresses due to jaw movement and occlusal
forces which are transmitted to the dental pulp tissue and can
subsequently influence DPSC fate (Smith et al., 2001; Cai et al.,
2011; Hata et al., 2012). Moreover, odontoblasts and DPSCs
contained within the dental pulp are responsible for dentin
formation and its repair due to their ability to sense stress
such as the biomechanical forces that occur during trauma
(Kraft et al., 2011). Indeed, the dentin-pulp complex in response
to external insults possesses the capacity to repair itself by
producing dentin, in a process known as dentinogenesis (Loison-
Robert et al., 2018). The dentin formed in response to such
condition is called tertiary dentin, which may be deposited by
either of two mechanisms known as reactionary and reparative
dentinogenesis. Reactionary dentinogenesis occurs in response to
mild tissue damage, whereby post-mitotic primary odontoblasts
located at the periphery of the pulp secrete a tertiary dentin
matrix in response. Reparative dentinogenesis occurs when the
damage to the pulp is more substantive, resulting in the death
of resident odontoblasts. As a consequence, there is recruitment
of stem/progenitor cells that differentiate into new odontoblast-
like cells which subsequently secrete a tertiary dentin matrix
(Loison-Robert et al., 2018).

The signals involved in regulating SC fate are not only
ECM proteins, adjacent differentiated cells, secreted and cell
surface molecules but also mechanical signals. Notably it has

been reported that in response to degradation, disruption
and mechanical erosion DPSCs can differentiate into
odontoblast-like cells to form dentin. Indeed several studies
have now demonstrated that mechanical stresses transmitted to
the pulp tissue can affect the behavior of DPSCs (Cai et al., 2011).
Therefore, the formation and differentiation of odontoblast-like
cells from DPSCs depend on signal transduction from the
environment, including both chemical and physical cues (Tucker
et al., 1998; Tatullo et al., 2016).

Dental pulp stem cells not only play a crucial role in
dentinogenesis but also provide a promising source of cells for
use in regenerative medicine (Hata et al., 2012). DPSCs can
differentiate into many cell types including osteoblasts, neuronal
cells and adipocytes (Mitsiadis et al., 2011; Marrelli et al., 2015).
Several studies have also shown the potential of DPSCs for
repair and regeneration of various tissues, such as teeth, bone,
muscles, and heart (Gronthos et al., 2000; Mitsiadis et al.,
2011). Importantly, DPSCs can be relatively easily harvested
from a patient’s wisdom teeth [or even stem cells from human
exfoliated deciduous teeth (SHED)], subsequently expanded,
manipulated and returned to the same patient when tissue repair
is required.

Effects of Mechanical Stimuli on the
Biological Behavior of DPSCs
Sübay et al. (2001) have shown that orthodontic extrusive
forces applied to the teeth did not cause significant pathological
changes in human pulp tissue. However, due to the difficulty
in studying the role of mechanical stimuli on DPSC behavior
in vivo, many studies have investigated the effects of mechanical
forces using in vitro models (Table 1). In this context, several
studies have shown that mechanical stimuli including cyclic
mechanical tension, low-intensity pulsed ultrasound (LIPUS),
uniaxial mechanical stretch and cyclic uniaxial compressive
stress are able to induce the proliferation of DPSCs (Han
et al., 2008; Hata et al., 2012; Gao et al., 2016, 2017;
Yang et al., 2017). Furthermore physical stimuli such as
loading, surface topographies, dynamic hydrostatic pressure and
pulsating fluid flow can reportedly promote the differentiation
of DPSCs (see Table 1 and Figure 1) (Han et al., 2008,
2010; Yu et al., 2009; Kraft et al., 2010, 2011; Lee et al.,
2010; Ji et al., 2014; Kolind et al., 2014; Tabatabaei et al.,
2014; Miyashita et al., 2017; Yang et al., 2017). Several
investigations have also shown that mechanical stimuli including
dynamic hydrostatic pressure, cyclic tensile strain, mechanical
compression and cyclic uniaxial compressive strain can promote
the odontogenic differentiation of DPSCs (Yu et al., 2009;
Lee et al., 2010; Miyashita et al., 2017; Yang et al., 2017).
While other studies have demonstrated that cyclic mechanical
tension, pulsating fluid flow, surface topographies, equiaxial
static tensile strain and mechanical loading can promote the
osteogenic differentiation of DPSCs (Han et al., 2008, 2010;
Kraft et al., 2010, 2011; Ji et al., 2014; Kolind et al., 2014;
Tabatabaei et al., 2014). Interestingly, mechanical forces such as
uniaxial stretch can increase the proliferation of DPSCs while
inhibiting the odontogenic and osteogenic differentiation of
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TABLE 1 | Studies identified between 2001 and 2017 that analyze the effects of mechanical stimuli on dental pulp stem cell behavior.

Mechanical stimulus Stimulus description Cell/Tissue description Response Reference

Mechanical tension
(tensile strain,
mechanical stretch)

Cyclic mechanical
tension

Human DPSCs Mechanical tension acted as a potent positive
modulator of proliferation, osteogenic differentiation
and ECM production in DPSCs.

Han et al., 2008

Mechanical tension Human DPSCs Mechanical stimulation promotes osteogenesis in
DPSCs

Han et al., 2010

Cyclic tensile strain Human Dental Pulp Cells
(HDP)

Mechanical strain activates inflammatory cytokines
and oxidative stress, which then act in concert to
induce the Nrf2-/ARE-mediated antioxidant
enzymes

Lee et al., 2008

Cyclic tensile strain Human dental pulp cells
(HDPCs) immortalized with
human telomerase
transcriptase gene

MS stimulates odontoblastic differentiation of
HDPCs via modulation of the Nrf2-mediated HO-1
pathway.

Lee et al., 2010

Uniaxial cyclic tensile
stretch

Human DPSCs Cyclic tensile stretch inhibits the osteogenic and
odontogenic differentiation of dental pulp stem cells

Cai et al., 2011

Mechanical stretch Human DPSCs Dental pulp stem cells express tendon markers
under mechanical loading

Chen et al., 2016

Uniaxial mechanical
stretch

Rat DPSCs Uniaxial stretch increased the proliferation of
DPSCs, while suppressing osteogenic
differentiation. These results suggest a crucial role
of mechanical stretch in the preservation of DPSCs
in dentin

Hata et al., 2012

Equiaxial static tensile
strain

Human dental pulp stem
cells (hDPSCs)

Static equiaxial strain which mimics the types of
orthodontic forces can result in differentiation of
hDPSCs to osteoblasts.

Tabatabaei et al., 2014

Mechanical loading Mechanical loading Human DPSCs Dental pulp stem cells express tendon markers
under mechanical loading

Chen et al., 2016

Mechanical loading that
mimic tooth-chewing
movement

Human dental pulp stro-
mal cells (hDPSCs)

Mechanical loading seems to promote the
osteogenic potential for real bone-like matrix
formation

Ji et al., 2014

Mechanical loading in
spinner flask
bioreactors

Human dental pulp stem
cells (hDPSCs) seeded on
porous silk fibroin scaffolds

Mechanical loading is able to increase the
mineralization potential of hDPSCs seeded on
porous silk fibroin scaffolds

Woloszyk et al., 2014

Pulsating fluid flow
(PFF)

Pulsating fluid flow
(PFF)

Human DPSCs DPSCs show a bone cell-like response to
mechanical loading by PFF, and PDSC-mature
show a more pronounced NO and PGE2 response
to mechanical loading by PFF.

Kraft et al., 2010

Pulsating fluid flow
(PFF)

Human dental pulp-derived
cells (DPC)

DPC show a bone cell-like response to mechanical
load by PFF and DPC exposed to mineralizing
conditions display more pronounced NO
production than undifferentiated cells

Kraft et al., 2011

Micro and nanoscale
surface topographies

Biomechanical cues
presented in the form of
micro and nanoscale
surface topographies

Human mesenchymal
dental pulp-derived stem
cells (DPSCs)

Osteogenic inducers affect the influence of surface
topography on DPSC differentiation along the
osteogenic lineage

Kolind et al., 2014

Mechanical influence of
tissue culture plates
and extracellular matrix

Human dental pulp stem
cells (hDPSCs)

Mechanical and geometrical factors can influence
DPSCs behavior and fate

Tatullo et al., 2016

Low-intensity pulsed
ultrasound (LIPUS)

Low-intensity pulsed
ultrasound (LIPUS)

Rat DPSCs LIPUS promoted DPSCs proliferation in an intensity
and cell-specific dependent manner via activation
of distinct MAPK pathways

Gao et al., 2016

Low-intensity pulsed
ultrasound (LIPUS)

Rat DPSCs This study demonstrated the presence of the
membrane ion channels Piezo1 and Piezo2 in
DPSCs. Piezo-dependent stimulation of ERK1/2
phosphorylation is involved in promoting DPSC
proliferation after LIPUS treatment

Gao et al., 2017

(Continued)
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TABLE 1 | Continued

Mechanical stimulus Stimulus description Cell/Tissue description Response Reference

Mechanical
compression

Mechanical stress
(compressive stress)

Human deciduous dental pulp
stem cells (DDPSCs) and
permanent dental pulp stem
cells (DPSCs)

Expression levels of SLURP−1 and α7 nAChR in
DPSCs increased with mechanical force
stimulation. α7 nAChRs in DDPSCs were activated
by SLURP-1 to up-regulate the expression of
NF-κB and enhance its activity, which resulted in
the promotion of osteoclastogenesis during the
physiological root resorption of deciduous teeth.

Wang et al., 2017

Mechanical
compression

Human dental pulp stem cells
(hDPSCs)

Odontoblastic differentiation of hDPSCs is
promoted by optimal mechanical compression
through the MAPK signaling pathway and
expression of the BMP7 and Wnt10a genes

Miyashita et al., 2017

Cyclic uniaxial
compressive stress

Human dental pulp stem cells
(hDPSCs)

Proliferation and odontogenic differentiation were
significantly promoted in DPSCs subjected to cyclic
uniaxial compressive stress

Yang et al., 2017

Mechanical forces that
mimic parafunctional
masticatory forces

Orthodontic extrusive
force applications

Human Pulpal Tissue Extrusive forces applied in this study did not cause
significant pathological changes in human pulp
tissue

Sübay et al., 2001

Dynamic hydrostatic
pressure (HSP) that
simulate intra-pulpal
pressure

Human DPSCs HSP-treated DPSCs displayed enhanced
odontogenic differentiation

Yu et al., 2009

Studies were categorized into groups according to the type of mechanical stimulus used.

DPSCs, indicating that mechanical stimuli are therefore critical
and contextually important in modifying DPSC fate (Cai et al.,
2011; Hata et al., 2012).

The positive effects of mechanical force on DPSC proliferation
and osteogenic/odontogenic differentiation are well described
(Figure 1 and Table 1), however, a few researchers have reported
that these forces have no significant effect on dental pulp cells
(Sübay et al., 2001) or indeed have negative effects on the
osteogenic and odontogenic differentiation of DPSCs (Cai et al.,
2011; Hata et al., 2012).

Interestingly, it has also been shown that mechanical
stimulation of deciduous pulp stem cells (SHEDs), promotes their
osteoclastogenic differentiation which occurs during physiologic
root resorption of deciduous teeth (Wang et al., 2017). Notably,
using an in vitro model that mimicked the occlusal force
during chewing movements, Wang et al. (2017) showed that
the expression levels of the mammalian Ly-6 urokinase-type
plasminogen activator receptor-associated protein 1 (SLURP-
1) and alpha 7 nicotinic acetylcholine receptor (α7 nAChR)
in deciduous DPSCs increased with mechanical stimulation.
Subsequently, there was an activation of the NF-kB signaling and
the promotion of osteoclastogenesis that ultimately resulted in
root resorption (Wang et al., 2017).

The overall aim of this review therefore is to report the
effects of mechanical stimuli on the biological behavior of
DPSCs as well as describing the associated intracellular signaling
and odonto/osteogenic differentiation in DPSCs. The data
discussed in this review indicates that appropriate mechanical
stresses are important biological stimuli that can effectively
promote proliferation and differentiation of DPSCs. The
understanding of how these cells respond to mechanical stimuli
(mechanosensitivity) is important for bone and tooth tissue
engineering applications using DPSCs alone or in conjunction

with biomaterials and other bioactive molecules such as growth
factors and cytokines.

DPSC MECHANOSENSING AND
MECHANICAL STIMULI THAT INDUCE
THEIR PROLIFERATION

Dental pulp stem cells are mechanosensitive cells that can
recognize mechanical changes and transform this information
into cellular responses (Kraft et al., 2011). For example, it has
been shown that low-intensity pulsed ultrasound (LIPUS), a
potential therapy for dental tissue repair, can stimulate mitogen-
activated protein kinase (MAPK) signaling and induce the
proliferation of DPSCs (Gao et al., 2016). In this context,
several cell membrane proteins such as ion channels are
implicated in the mechanosensing mechanism (Gao et al., 2017).
Indeed Gao et al. (2017) observed that Piezo-1 and -2, two
transmembrane cation channels, are important cell membrane–
located mechanotransduction components expressed on DPSCs
and involved in activating intracellular signaling that supports
cellular responses. The authors observed that the levels of Piezo-1
and -2 proteins in DPSCs were increased after LIPUS treatment
and that the LIPUS-mediated stimulation of DPSC proliferation
was subsequently mediated by ERK1/2 MAPK signaling (Gao
et al., 2017). These findings indicate that the Piezo ion channels
present on DPSC membranes are able to transduce the LIPUS
stimuli into a biological response.

Three other studies have shown that mechanical stimuli
including cyclic mechanical tension, uniaxial mechanical stretch
and cyclic uniaxial compressive stress can significantly increase
DPSC proliferation in vitro (Table 1 and Figure 1) (Han
et al., 2008; Hata et al., 2012; Yang et al., 2017). In contrast,
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FIGURE 1 | Schematic representation showing that mechanical factors stimulate stem cells through the activation of mechanosensors such as cadherins, integrins,
focal adhesion proteins, gap junctions, cytoskeleton, Piezo and TRP ion channels, which subsequently trigger signaling pathways such as MAPK, TGF-β/Smad and
Wnt/β-catenin cascades that modulate gene expression. Mechanical stimuli including mechanical stretch, cyclic tensile strain tension, compression, tension,
pulsating fluid flow (PFF), low-intensity pulsed ultrasound (LIPUS) as well as surface topographies and substrate stiffness affect DPSCs responses such as by
promoting DPSC proliferation and/or osteo/odontogenic differentiation. The control of the mechanical cues has application in DPSCs therapy approaches for tissue
regeneration.

Yu et al. (2009) reported that mechanical forces that mimic
parafunctional masticatory forces in vivo were able to reduce
DPSC survival and adhesion through the downregulation of
the adhesion markers ICAM-1 and VCAM-1. These authors
concluded that additional studies were required to clarify the
role of intra- and inter-cellular adhesion molecules and other
cellular pathways associated with DPSCs subjected to cellular
stress. The process whereby cells translate mechanical inputs
into biochemical signals known as mechanotransduction has
been well described in the literature (D’Angelo et al., 2011).
Briefly, the mechanotransduction occurs through numerous
mechanoreceptors and mechanosensors, including cadherins,
integrins, focal adhesion proteins, gap junctions, cytoskeleton
and ion channels such as Piezo and transient receptor potential
(TRP) ion channels, which can modify the gene expression levels
in response to mechanical stimuli by activating downstream
signaling pathways (Pavalko et al., 2003; Papachristou et al.,
2009; Yin and Kuebler, 2010; Steward et al., 2014; Gao et al.,
2017). Several classical pathways are able to transduce mechanical
stimuli to biochemical signals including the mitogen-activated
protein kinases (p38 MAPK, ERK, and JNK) or TGF-β/Smad and

Wnt/β-catenin signaling cascade. These biochemical cascades
are linked to transcription factor activation and thus to the
expression of genes which are crucial for stem cell-fate decision
(Figure 1). In this context, it is also important to stress
that the changes in the expression of transcription factors are
influenced not only by mechanical stimuli but also by the
microenvironment in which the stem cells reside. Therefore,
synchronized interactions with the neighboring cells, soluble
factors and ECM produce mechanical and biochemical signals
that enable the stem cells to survive, proliferate or differentiate
(Li et al., 2011).

MECHANICAL STIMULI THAT INDUCE
OSTEOGENIC DIFFERENTIATION OF
DPSCs

A recent study by Han et al. (2008) investigated the effects of
mechanical tension on DPSC proliferation and differentiation.
They observed that a cyclic mechanical tension (8% strain)
increased the proliferation and mRNA expression levels of
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the osteogenic markers osteopontin and type I collagen and
decreased the mRNA expression levels of smooth muscle
actin (α-SMA) and the surface protein CD90 (Han et al.,
2008). These findings suggest that mechanical cyclic tension
can be considered a potent positive modulator of osteogenic
differentiation by DPSCs. Similarly, the same authors showed
that cyclic mechanical stretch increased the transcript levels
of collagen I, fibronectin and osteoprotegerin in these cells
whereas it decreased the expression levels of α-SMA. Moreover,
other osteogenic-related proteins including collagen I, bone
sialoprotein (BSP), osteocalcin and osteonectin increased in
DPSCs that were subjected to mechanical cyclic tension (Han
et al., 2010). These data suggest that specific mechanical stimuli
such as stretch can effectively enhance osteogenic differentiation
of DPSCs.

In vitro mechanical stimuli including pulsating fluid flow
(PFF), equiaxial static tensile strain and micro- and nano-scale
surface topographies have also been shown to induce osteogenic
differentiation of DPSCs (Kraft et al., 2010; Kolind et al., 2014;
Tabatabaei et al., 2014). For example, DPSCs in a similar manner
to osteocytes (Kleinnulend et al., 1995) are able to respond
to PFF, which is used to mimic the mechanical loading on
the dental pulp under in vivo conditions. Subsequently DPSCs
responded to PFF by increasing the production of markers that
were positively correlated with increased mechanoresponsiveness
of osteocytes after mechanical loading such as nitric oxide
(NO), prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2)
(Kraft et al., 2010, 2011).

As has been observed for osteocytes, the rapid stimulation of
NO production by PFF in DPSCs appears to be related to the
activity of the enzyme endothelial nitric oxide synthase (eNOS)
but not to the activity of inducible NOS (iNOS) (Kraft et al.,
2011). Importantly, by comparing the response to PFF in two
DPSC lines, both with osteogenic potential, one immature and
the other more mature, it was shown that the more mature cells
possessed a more osteocytic mechanoresponsiveness compared
with the immature DPSCs. As has been shown for osteocytes,
these data indicated that the osteogenic maturation of DPSCs
was influenced by their mechanoresponsivity, and there was a
positive correlation between the degree of osteogenic maturation
and increased mechanical stimulation (Kraft et al., 2010).

An interesting study by Tabatabaei et al. (2014) investigated
whether equiaxial mechanical strain could be used to induce
the osteogenic differentiation of DPSCs in the absence of
other osteogenic induction agents. Interestingly, they observed
that a mechanical stimulus that mimicked the orthodontic
forces, such as static equiaxial strain, increased the expression
levels of the osteogenic markers osteopontin and alkaline
phosphatase (ALP), and therefore reportedly effectively
induced the differentiation of human DPSCs into osteoblasts
(Tabatabaei et al., 2014).

Furthermore, using a bioreactor that mimicked biting force, Ji
et al. (2014) successfully developed a novel method to enhance
the osteogenic differentiation of DPSCs. They showed that the
application of mechanical forces that mimicked the dynamics of
those exerted in vivo on DPSCs could be used to promote bone
formation and limit bone resorption (Ji et al., 2014).

A further study by Woloszyk et al. (2014) in the same
year evaluated the mineralization potential of human DPSCs
seeded on porous silk fibroin scaffolds in a mechanically
dynamic environment established using spinner flask bioreactors.
Interestingly, these authors showed that DPSCs are reactive
to mechanical loading, which also affects bone and that the
mechanical loading increased the mineralization of silk scaffolds
seeded with DPSCs. Therefore, these authors demonstrated that
loading in the form of turbulent flow can accelerate the process
of mineral deposition of DPSCs (Woloszyk et al., 2014).

MECHANICAL STIMULI THAT INDUCE
THE ODONTOGENIC DIFFERENTIATION
OF DPSCs

It has previously been shown that abnormal occlusal forces
generated from malocclusion or orthodontic appliances can
induce abnormal mineralization such as root canal calcification
and pulp stone formation as well as lead to cell death and
root absorption (Landay et al., 1970; Yu et al., 2009). Moreover,
chronic parafunctional forces such as those derived from bruxism
and clenching can generate an elevated intra-pulpal pressure,
pulpal inflammation and the formation of calcified nodules
(Yu et al., 2009).

The formation of mineralized tissue in response to mechanical
forces that mimic the parafunctional masticatory forces has been
studied by Yu et al. (2009). They showed that the dynamic
hydrostatic pressure (HSP) that mimics the sustained intra-
pulpal pressure in in vivo conditions can induce odontogenic
differentiation as well as mineralization in DPSC cultures in vitro
(Yu et al., 2009). More importantly, DPSCs that were subjected to
HSP seeded within a bed of hydroxyapatite/tricalcium phosphate
(HA-TCP) were found to be more responsive to the stimulatory
effects of BMP-2 in vivo. The authors also reported that these
HSP-induced DPSCs can induce the formation of hard tissue.

Several other in vivo studies have been performed which
demonstrate the response of dental pulp tissue to mechanical
forces (Shibutani et al., 2010; Yang et al., 2017). Interestingly,
it has been observed that excessive occlusal forces can induce
changes in mineral deposition and in the microvasculature
structure in the dental pulp tissue (Shibutani et al., 2010). To
better understand the effect of mechanical stress on DPSCs
differentiation, Yang et al. (2017) showed that compressive
stress was able to induce several changes in DPSCs, including
proliferation, cell morphology and odontogenic differentiation.
DPSCs under compressive stress increased their expression of the
odontogenic-related transcripts of ALP, DMP1, BMP2, DSPP and
COL I, and therefore subsequently concluded that mechanical
stimuli could be used to initiate repair mechanisms within the
dentin-pulp complex (Yang et al., 2017).

A recent study by Miyashita et al. (2017) demonstrated
a novel mechanism of mechanical induction of odontoblastic
differentiation of DPSCs. Their research showed that mechanical
compression promoted differentiation of these cells through the
MAPK, ERK1/2 and p38 signaling pathways, as well as through
the expression of the bone morphogenetic protein 7 (BMP-7)

Frontiers in Physiology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 1685

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01685 November 22, 2018 Time: 18:8 # 7

Marrelli et al. Effects of Mechanical Stimuli on DPSC Behavior

and the wingless-type MMTV integration site family member 10a
(Wnt10a) (Miyashita et al., 2017).

MECHANICAL STIMULI THAT INDUCE
THE ACTIVATION OF
PROINFLAMMATORY CYTOKINES AND
ANTIOXIDANT DEFENSE ENZYME
RELEASE IN DPSCs

The biological response of DPSCs to mechanical stimuli occurs
not only during orthodontic tooth movement but also during
normal mastication. For example, DPSCs can produce growth
factors, angiogenic changes and a mild inflammatory-type
reaction in response to orthodontic forces (Lee et al., 2008,
2010). Furthermore it is notable that there is activation of
pro-inflammatory cytokines and antioxidant defense enzymes
in DPSCs subjected to physiological mechanical stress (Lee
et al., 2008). Lee et al. (2008) have shown that the in vitro
mechanical loading of DPSCs by cyclic strain stimulates the
production of inflammatory cytokines including interleukins
(ILs)-6 and -1β, tumour necrosis factor (TNF)-α as well as the
expression of the antioxidant genes heme oxygenase-1 (HO-1)
and superoxide dismutases (SOD). The same authors also showed
that mechanical stimulation using cyclic tensile strain induced
expression of the odontoblastic markers DSPP, DMP-1, OPN,
and BSP. Moreover, they demonstrated that the odontoblastic
differentiation of DPSCs was mediated by the NF-E2-related
transcription factor 2 (Nrf2)/HO-1 pathway (Lee et al., 2010).
These data suggest that it is possible to target the HO-1
pathway to manipulate odontogenic differentiation of DPSCs
subjected to mechanical stress. Further studies also indicated
that a limited amount of mechanical stress was appropriate to
stimulate physiological metabolism and to induce odontoblastic
differentiation of DPSCs, and subsequently the formation of
tertiary dentin (Lee et al., 2008). In support of this, clinical
studies have demonstrated that mechanical biting of teeth during
mastication can produce a relatively thick dentin, whereas
impacted teeth did not produce the same type of dentin as they
are not used during mastication and therefore not exposed to
mechanical stress (Mjör, 2002).

CONCLUSION AND FUTURE
PROSPECTIVE

Dental pulp tissue is subjected to mechanical stress during
normal masticatory process and also during pathological
trauma or orthodontic tooth movement (Lee et al., 2010;
Yang et al., 2017).

Moreover, it is also well known that occlusive force plays
a role in physiological root resorption of deciduous teeth,
in which dental pulp cells from these mechanically stressed
teeth secrete cytokines that are important for odontoclast
activation and subsequent root resorption (Lin et al., 2012;
Wang et al., 2017).

Therefore, DPSCs located near the roots of teeth are subjected
to higher levels of oral mechanical stress by jaw movement and
occlusal forces. Moreover, orthodontic forces transfer horizontal
stretch to DPSCs, and also during tooth eruption dental pulp
tissue is stretched vertically (Hata et al., 2012).

Furthermore, during physiological mechanical loading of
teeth, the dentin is subjected to fluid flow which can activate the
nocireceptors and mechanoreceptors on odontoblast processes
present in the dentin tubules that regulate the maintenance of
tooth integrity (Paphangkorakit and Osborn, 2000).

Importantly, Kraft et al. (2010, 2011) in two separate studies,
found that the mechanism that govern the DPSCs response to
mechanical loading is similar to that observed for osteocytes. In
fact, they observed that the odontoblastic progenitors present
in dental pulp are able to repair and form dentin by sensing
mechanical stimuli such as PFF through NO production. NO
is well known to play a key role in the response of bone to
mechanical loading, indicating that DPSCs exhibit a similar
response to this mechanical stimulus (Kolind et al., 2014).
Therefore, this mechanoresponsiveness of DPSCs suggests that
these cells can be used for bone tissue engineering applications
such as the repair of maxillofacial defects.

To the best of our knowledge, until now only the study by
Gao et al. (2017) has demonstrated that DPSCs sense mechanical
stimuli by using the membrane ion channels of Piezo-1 and -2,
interesting other authors are yet to investigate how DPSCs sense
mechanical forces.

Regenerative medicine is an important application of DPSCs
and this necessitates a thorough knowledge of mechanobiology.
However, the studies analyzed in this review demonstrate
that the response of DSPCs to mechanical stimuli differs
according to the type and source of the mechanical forced
applied (Table 1 and Figure 1). Importantly, we would like
to underline that the literature reviewed in Table 1 contains
studies with different approaches and experimental conditions.
Therefore, it is very difficult to determine which approach
may represent the “best” mechanical stimulus able to induce
tissue regeneration or proliferation. We hypothesize that, among
them, low-intensity pulsed ultrasound (LIPUS) is one of the
most promising mechanical stimuli that could be used for
future clinical applications as it is regarded as an economical,
relatively straightforward and safe therapeutic approach as well
as having reported ability to enhance the viability, proliferation
and multilineage differentiation of several types of MSCs
(Gao et al., 2016, 2017).

The understanding of the mechanical stimuli that regulate
DPSC behavior will not only improve our knowledge relating
to mechanisms involved in their differentiation but could also
provide valuable insights for optimizing DPSC-based therapies.
In fact, the particular mechanoresponsiveness of DPSCs to
mechanical stimuli may be of utility for future bone and teeth
tissue engineering applications.

Although physical and mechanical factors are known
to play a key role in regulating DPSC fate, further
studies are required to elucidate the detailed molecular
mechanisms and signaling pathways involved in the
mechanosensitive response of DPSCs to various types of forces.
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Ultimately it may be possible to use mechanical forces that
mimic the dynamics of the in vivo environment on DPSCs to
promote the regeneration of dental and bone tissues.
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