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REGULAR ARTICLE

Predictive entrainment of natural speech through two fronto-motor top-down
channels
Hyojin Park a,c, Gregor Thut c and Joachim Gross b,c

aSchool of Psychology & Centre for Human Brain Health (CHBH), University of Birmingham, Birmingham, UK; bInstitute for Biomagnetism and
Biosignalanalysis, University of Muenster, Muenster, Germany; cInstitute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK

ABSTRACT
Natural communication between interlocutors is enabled by the ability to predict upcoming speech
in a given context. Previously we showed that these predictions rely on a fronto-motor top-down
control of low-frequency oscillations in auditory-temporal brain areas that track intelligible speech.
However, a comprehensive spatio-temporal characterisation of this effect is still missing. Here, we
applied transfer entropy to source-localised MEG data during continuous speech perception. First,
at low frequencies (1–4 Hz, brain delta phase to speech delta phase), predictive effects start in left
fronto-motor regions and progress to right temporal regions. Second, at higher frequencies (14–
18 Hz, brain beta power to speech delta phase), predictive patterns show a transition from left
inferior frontal gyrus via left precentral gyrus to left primary auditory areas. Our results suggest a
progression of prediction processes from higher-order to early sensory areas in at least two
different frequency channels.
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Introduction

Natural communication between interlocutors may seem
effortless, however it relies on a series of complex com-
putational tasks that have to be performed in the
human brain in real-time and often in the presence of
noise and other interferences. This high performance
can only be achieved with the help of very effective pre-
diction mechanisms (Levinson, 2016; Norris, McQueen, &
Cutler, 2016). As auditory speech signals enter the
sensory auditory system and are complemented by
visual signals and cues, the human brain generates and
constantly updates predictions about the timing and
content of upcoming speech (Friston & Frith, 2015; Pick-
ering & Garrod, 2007, 2013). In this context of natural
conversation, we can model human brains as dynamic
systems that are coupled through sensory information
and operate according to active inference principles
(Friston & Frith, 2015). In this framework, the brain
relies on internal models to generate predictions about
itself and others and updates the internal model to mini-
mise prediction errors.

The temporal structure of this predictive coding
mechanism can be mediated by cortical oscillations
(Lakatos, Karmos, Mehta, Ulbert, & Schroeder, 2008)
and previous studies have shown the computational
role of cortical oscillations in speech processing as critical

elements for parsing and segmentation of connected
speech not only for auditory speech (Arnal & Giraud,
2012; Ding, Melloni, Zhang, Tian, & Poeppel, 2016;
Giraud & Poeppel, 2012) but also for visual speech (Gior-
dano et al., 2017; Park, Kayser, Thut, & Gross, 2016; Zion
Golumbic, Cogan, Schroeder, & Poeppel, 2013). In
addition, cortical oscillations track hierarchical com-
ponents of speech rhythm and cortical oscillations them-
selves are hierarchically nested for speech tracking
(Gross, Hoogenboom, et al., 2013). Importantly, these
findings are evident only for intelligible speech proces-
sing where top-down modulation by prediction is poss-
ible. In our previous study, we found that low-
frequency rhythms in the left frontal and motor cortices
carry top-down signals to sensory areas, particularly to
left auditory cortex, and this top-down signal was corre-
lated with entrainment to speech (Park, Ince, Schyns,
Thut, & Gross, 2015).

While previous studies have provided convincing evi-
dence that low-frequency brain rhythms are involved in
mediating top-down predictions, several important
questions are still unresolved. First, what is the spatio-
temporal structure of these prediction processes, or put
differently, when and where in the brain is neural activity
predictive of upcoming speech in an intelligibility-
dependent manner? Second, what is the relationship
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between these low-frequency rhythms and higher fre-
quency rhythms that have been implicated in prediction
(Morillon & Baillet, 2017)? Third, how do predictive pro-
cesses (preceding speech) interact with reactive pro-
cesses (following speech) in temporally unfolding
environment?

In order to address these questions, we used causal
connectivity analysis – transfer entropy (TE) – to identify
directed coupling between brain rhythms and speech
rhythm for a range of positive delays (brain activity fol-
lowing speech) and negative delays (brain activity pre-
ceding speech) on the previously published dataset
(Friston & Frith, 2015; Park et al., 2015). For the speech
signal, we analysed low-frequency phase information
which is a dominant spectral component in amplitude
envelope of speech signal (Chandrasekaran, Trubanova,
Stillittano, Caplier, & Ghazanfar, 2009). For the brain
signal, we analysed both low-frequency phase infor-
mation as well as high frequency beta power. We
hypothesised that beta rhythms in the brain, particularly
in higher order areas, are involved in the prediction of
forthcoming speech as suggested by the role of beta
oscillations in top-down predictive mechanism (Arnal &
Giraud, 2012; Bastos et al., 2012; Fontolan, Morillon, Lie-
geois-Chauvel, & Giraud, 2014). A recent EEG study that
used time-compressed speech reported beta oscillations
reflecting an endogenous top-down channel which
gradually builds up contextual information across time
(Pefkou, Arnal, Fontolan, & Giraud, 2017). Particularly,
beta oscillations in motor system were shown to be
associated with precise temporal anticipation of forth-
coming auditory inputs (Morillon & Baillet, 2017). We
also hypothesised that this top-down “predictive
speech coding” mechanism by beta oscillations (which
should be represented at negative delays between
brain activity and speech) recurrently interacts with
low-frequency “speech entrainment” (represented at
positive delays) where better prediction leads to stronger
entrainment.

Materials and methods

Participants and experiment

Twenty-two volunteers participated in the study (11
females; age range 19–44 years, mean age ± SD: 27.2 ±
8.0 years). None of the participants had a history of
psychological, neurological, or developmental disorders.
They all had normal or corrected-to-normal vision and
were right-handed. Written informed consent was
obtained from all participants prior to the experiment
and all participants received monetary compensation
for their participation. The study was approved by the

local ethics committee (FIMS00733; University of
Glasgow, Faculty of Information and Mathematical
Sciences) and conducted in accordance with the Declara-
tion of Helsinki.

Participants were instructed to listen to a recording of
a 7-min-long story (“Pie-man,” told by Jim O’Grady at
“The Moth” storytelling event, New York). The stimulus
was presented binaurally via a sound pressure transdu-
cer through two 5-meter-long plastic tubes terminating
in plastic insert earpieces. Stimulus presentation was
controlled via Psychtoolbox (Brainard, 1997) in MATLAB
(MathWorks, Natick, MA). The experiment consisted of
two conditions: standard (forward) presentation of
story and backward played presentation of story. Exper-
imental conditions were presented in randomised order
across participants. Other analyses of these data have
been published (Gross, Hoogenboom, et al., 2013; Park
et al., 2015).

Data acquisition, preprocessing and source
localisation

For speech signal, we computed amplitude envelope
(Chandrasekaran et al., 2009) using Chimera toolbox
(Smith, Delgutte, & Oxenham, 2002). We first constructed
nine frequency bands in the range 100–10,000 Hz to be
equidistant on the cochlear map. The speech waveform
was band-pass filtered in these bands using a fourth-
order Butterworth filter (forward and reverse). Hilbert
transform was applied for each band and amplitude
envelopes were computed as absolute values. These
amplitude envelopes were averaged across bands to
obtain a wideband amplitude envelope that was used
for all further analysis.

Data recordings were acquired with a 248-magnet-
ometers whole-head MEG system (MAGNES 3600 WH,
4-D Neuroimaging) in a magnetically shielded room.
Data were sampled at 1017 Hz and resampled at
250 Hz, denoised with information from the reference
sensors, and detrended. The analysis was performed
using the FieldTrip toolbox (Oostenveld, Fries, Maris, &
Schoffelen, 2011) (http://fieldtrip.fcdonders.nl) and in-
house MATLAB scripts according to the guidelines
(Gross, Baillet, et al., 2013).

Structural T1-weighted magnetic resonance images
(MRI) of each participant were obtained at 3T Siemens
Trio Tim Scanner (Siemens, Erlangen, Germany) and co-
registered to the MEG coordinate system using a semi-
automatic procedure. Anatomical landmarks (nasion,
left and right pre-auricular points) were manually ident-
ified in the individual’s MRI. Both coordinate systems
were initially aligned based on these three points.
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Numerical optimisation by using the iterative closest
point (ICP) algorithm (Besl & McKay, 1992) was applied.

Individual MRIs were segmented to grey matter, white
matter, and cerebrospinal fluid to create individual head
models. Leadfield computation was based on a single
shell volume conductor model (Nolte, 2003) using a 10-
mm grid defined on the standard template brain (Mon-
treal Neurological Institute; MNI). The template grid
was transformed into individual head space by linear
spatial transformation. Cross-spectral density matrices
were computed using Fast Fourier Transform on 1-s seg-
ments of data after applying Hanning window.

Frequency-specific spatial filters were computed for
delta (1–4 Hz) and beta (14–18 Hz) bands at each voxel.
We computed the covariance matrix over the full
broad-band 7-minute data to compute LCMV filters for
each voxel using 7% regularisation. These time series
were then subjected to band-pass filtering (4th order
Butterworth filter, forward and reverse). Dominant
dipole orientation was estimated using SVD (singular
value decomposition) at each voxel. Bandpass filtered
data (1–4 Hz for delta band and 14–18 Hz for beta
band) were projected through the filter to obtain band-
limited time-series for each voxel. This computation
was performed for each frequency band, and each exper-
imental condition (forward and backward). Hilbert trans-
formation was applied to the bandpass filtered data at
each voxel to obtain instantaneous phase and power.
We also used regions of interest (ROI) maps from the
AAL (Automated Anatomical Labeling) atlas (Tzourio-
Mazoyer et al., 2002) in order to delineate the temporal
characteristics of directed causal relationship over the
delays (see below) within the anatomically parcellated
regions. We used ROIs labelled Heschl gyrus, inferior
frontal gyrus – opercular part, and precentral gyrus.

Directed causal connectivity analysis by transfer
entropy (TE)

In this paper, we aimed to investigate two relationships
of speech entrainment and predictive speech coding
between speech and brain signal. In order to assess the
relationships, we used transfer entropy (TE) that quan-
tifies directed statistical dependencies between two
signals, i.e. time-lagged predictability. TE is also known
as Directed Information (Ince, Schultz, & Panzeri, 2014;
Massey, 1990; Schreiber, 2000). Transfer entropy and
Granger causality (Granger, 1969) conceptually similar
and they are even identical for Gaussian data (Barnett,
Barrett, & Seth, 2009) that we would expect to see very
similar results from both methods. We used TE which is
based on information theory in order to be consistent
with our previous work (Park et al., 2015).

For speech entrainment, we computed TE from
speech signal to signal at each brain voxel to quantify
to what extent knowledge of speech signal reduces
uncertainty in predicting the future of brain signal over
and above what could be predicted from knowledge of
the past of brain signal alone. For predictive speech
coding, we computed TE from brain signal at each
voxel to speech signal to quantify to what extent knowl-
edge of brain signal reduces uncertainty in predicting
the future of speech signal over and above what could
be predicted from knowledge of the past of speech
signal alone.

Specifically, we quantised the phase values from the
two signals across all time points during stimulus presen-
tation, and then used 4 bins in which each bin was
equally occupied. For a specific delay d, we computed
TE from speech (X ) to brain (Y ) for speech entrainment,
and from brain (X ) to speech (Y ) for predictive speech
coding as follows:

TEd(X � Y) = CMI(Xd ; Y|Yd)
= H(Xd , Yd)+ H(Y , Yd)− H(Xd , Y , Yd)− H(Yd)

Where CMI is conditional mutual information, H rep-
resents entropy. The suffix d represents that signal is
delayed with respect to the target signal Y by d millise-
conds (i.e. considers that signal d milliseconds prior to
Y ). We computed entropy terms from the standard
formula:

H(Y , Yd) =
∑4

a,b=1

pY ,Yd (a, b) log2 pY ,Yd (a, b)

Where the joint distribution pY ,Yd (a, b) is obtained
from the multinomial maximum likelihood estimate
obtained over time points:

pY ,Yd (a, b) =
∑Nt

t=d

da(Y(t))db(Y(t − d))
Nt

With da(Y(t)) a Kronecker delta function taking the value
1 if the binned phase value at Y(t) is quantile a and 0
otherwise.

In the TE computation bias correction was not applied.
Bias of mutual information depends on the number of
bins and time points that are used in the analysis
(Panzeri, Senatore, Montemurro, & Petersen, 2007). In
our analysis, we performed statistical contrast between
conditions in which the same number of bins and time
points was used for each calculation (Ince, Mazzoni,
Bartels, Logothetis, & Panzeri, 2012). Bias correction
reduces bias but increases the variance of the estimator,
so comparisons between calculations with the same bias
are better with uncorrected estimates.
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The TE calculation was repeated for 25 different
delays, from 20 to 500 ms with a 20-ms step. These com-
putations were performed for each participant, and both
conditions (forward, backward). For TE computation to
study speech entrainment (TE from speech to brain),
we analysed the same frequency (delta; 1–4 Hz) phase
information for both speech and brain signals. For TE
computation to study predictive speech coding (TE
from brain to speech), we analysed 1) the same delta
(1–4 Hz) phase information for both brain and speech
signals as well as 2) beta (14–18 Hz) power for brain
signal and delta (1–4 Hz) phase for speech signal.
These computations resulted in TE values for each
voxel, each delay, and each condition within each partici-
pant and then yielded to statistical comparison between
conditions for each delay. For ROI analysis using AAL
atlas map, TE values were first averaged across the
voxels within the ROI, and then yielded to statistics.

Group statistics was performed using non-parametric
randomisation in FieldTrip (Monte Carlo randomisation).
Specifically, individual volumetric maps were smoothed
with a 10-mm Gaussian kernel and subjected to depen-
dent-samples t-test between conditions (forward versus
backward). The null distribution was estimated using
500 randomisations and multiple comparison correction
was performed using FDR (false discovery rate). Only sig-
nificant results (p < 0.05, FDR-corrected) are reported.

Results

To investigate the bidirectional nature of speech-brain
coupling during listening to continuous speech we com-
puted transfer entropy (TE) – an information-theoretic
measure of directed causal connectivity – between
speech and brain signals at positive and negative
delays. This allows a disambiguation of two different
effects that contribute to speech-brain coupling –
namely those that follow speech (entrainment) and
those that precede speech (prediction).

Since speech-brain coupling is strongest for the low
frequency delta rhythm (1–4 Hz) we performed our
analysis for this frequency band. In the following, we
first present results for positive delays where delta-
band brain activity follows speech. Second, we show
how delta-band brain activity at different negative
delays (i.e. preceding speech) in different brain areas pre-
dicts (in a statistical sense) the speech signal. Finally,
since beta oscillations in motor cortex have been impli-
cated in temporal predictions (e.g. (Arnal & Giraud,
2012; Morillon & Baillet, 2017) we investigate how
these higher frequency oscillations in the brain are
related to the low-frequency delta rhythm in speech
(Figure 1).

Entrained brain signals following speech
(positive delays)

We first examine how low-frequency speech signal
entrains the same frequency brain rhythms with positive
delays (brain signals following speech signals, Figure 2a).
We computed TE from speech envelope to brain signals
from different ROIs with delays ranging from 20 to
500 ms in steps of 20 ms. Based on our recent study
(Park et al., 2015), we focused on three ROIs from the
AAL atlas; primary auditory cortex, inferior frontal gyrus
(IFG) and precentral gyrus. We computed TE between
forward and backward played speech conditions
(Figure 2b–d). Whole brain results of the same analysis
are shown in Supplementary Figure 1.

Figure 2b shows the statistical difference between
forward and backward played speech across different
delays for left (pink) and right (green) auditory cortex.
Highest t-values are observed at delays of about 80 ms
in right auditory cortex and are stronger than correspond-
ing effects in left auditory cortex. The effect of intelligibility
remains significant for delays up to about 300 ms for right
auditory cortex and for delays up to 500 ms for left audi-
tory cortex. In IFG, the effect of intelligibility is also most
pronounced in the right hemisphere (up to about
450 ms) compared to only early transient effect for the
left hemisphere (Figure 2c). Precentral areas in left and
right hemisphere show similar sensitivity to intelligibility
but are longer lasting in the right hemisphere (Figure 2d)
(Figure 2b-d: paired t-test; upper red line: t21 = 3.53, p <
0.05, corrected; bottom red line: t21 = 2.08, p < 0.05,
uncorrected).

Entrained brain signals predicting upcoming
speech (negative delays)

Next, we aimed to characterise the spatio-temporal
pattern of predictive processes in the brain in the same
low-frequency band (1–4 Hz, Figure 3a). Specifically, we
computed TE between speech and brain signals over a
range of negative delays (−500 ms to −20 ms in steps
of 20 ms) to assess where and when brain signals
predict significantly stronger upcoming forward com-
pared to backward speech. We performed the compu-
tation in the whole brain and show maps of statistical
difference between forward and backward speech con-
dition. Overall, we found the strongest directed effect
in left fronto-motor regions ∼−220 ms prior to the forth-
coming speech when speech is played forward com-
pared to backward (Figure 3b: paired t-test; upper red
line: t21 = 3.53, p < 0.05, corrected; bottom red line: t21
= 2.08, p < 0.05, uncorrected).

To further characterise the spatio-temporal evolution
of brain signals that predict upcoming speech, we
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averaged TE-maps in 100 ms windows and computed
again the statistical contrast of forward compared to
backward played speech (Figure 3c). This revealed a
sequence of events that starts around −300 ms in
fronto-motor areas (see also Figure 3b) and then
moves to right auditory-temporal areas at around
−200 ms prior to speech (Figure 3c: p < 0.05, FDR-cor-
rected). These results indicate that brain activity in
fronto-motor areas preceding speech by 300 ms
contain information that predicts the forthcoming
speech significantly better for forward compared to
backward speech. The same holds true for right audi-
tory-temporal areas at shorter delays of 200 ms preced-
ing speech. This suggests that predictive speech
mechanisms occur first in left inferior fronto-motor
areas and later in right auditory-temporal areas.

Beta rhythms and the prediction of upcoming
speech (negative delays)

As we hypothesised based on the literature that beta
rhythms are involved in predictive process during
speech processing, we examined the causal relationship
between beta rhythm in the brain and low-frequency
rhythm in the speech signal. We computed TE from
beta (14–18 Hz) power at each voxel to the low-fre-
quency delta (1–4 Hz) phase of the speech signal for a
range of delays (−500 ms to −20 ms in steps of 20 ms,
Figure 4a). The same computation was performed for
the forward and backward conditions and then statisti-
cally compared. We first focus on the temporal dynamics

of the three ROIs (primary auditory cortex (Heschl gyrus),
inferior frontal gyrus, precentral gyrus).

Figure 4b shows over a range of delays for each ROI to
what extent the prediction of forthcoming speech
depends on speech intelligibility.

Beta power in left inferior frontal gyrus shows strong
intelligibility-dependent prediction about 340–500 ms
prior to speech (Figure 4b orange line). Left primary
auditory cortex and left precentral gyrus show a
similar significant effect but at a shorter delay peaking
just before −200 ms (Figure 4b, blue and yellow lines).
For the precentral gyrus, the ROI map from the AAL
atlas is rather big, so we extracted the time series for
the voxel with the local maximum in this area (yellow
line, but also see the similar pattern for whole precen-
tral gyrus ROI in the AAL atlas; light green line). Interest-
ingly, this intelligibility-dependent prediction in these
ROIs was left-lateralized (see Figure 4c and Supplemen-
tary Figure 2) (Figure 4b: paired t-test; upper red line:
t21 = 3.53, p < 0.05, corrected; bottom red line: t21 =
2.08, p < 0.05, uncorrected). Whole brain results aver-
aged across 100 ms-long windows corroborated this
pattern that first engages left inferior frontal gyrus
about 300–500 ms prior to the speech followed by left
precentral gyrus and left primary auditory area
200–300 ms prior to the speech (Figure 4c: p < 0.05,
FDR-corrected).

We have analysed predictive mechanism on speech
theta rhythm (4–7 Hz) which represents syllabic rate
(Alexandrou, Saarinen, Kujala, & Salmelin, 2016; Giraud
& Poeppel, 2012) however, we did not find any

Figure 1. A schematic figure for temporal dynamics of information flow during natural speech perception. In the present study, we
analysed transfer entropy (TE) to investigate two mechanisms of information flow during natural speech perception: (1) Predictive
speech coding (top-down prediction mechanism investigated by negative delays between speech-brain; purple colour) and (2)
Speech entrainment (stimulus-driven bottom-up processing investigated by positive delays between speech-brain; cyan colour). For
speech signal, we used low-frequency delta phase information, and for brain signal, we used both low-frequency delta phase and
high-frequency beta power information. Note that the signal waveform for the MEG signal shown in this figure and following
figures is schematic illustration.
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significant results. This might be due to the fact that both
word rate (2.3 Hz) and syllable rate (3.0 Hz) in our speech
stimuli fall into delta rhythm. This was revealed by a tran-
scription analysis (959 words and 1237 syllables during
420 s) and word production rate matches previous
findings (Alexandrou et al., 2016; Levelt, Roelofs, &
Meyer, 1999; Ruspantini et al., 2012).

Relationship between temporal dynamics of
speech entrainment and predictive speech
coding

We next assessed how intelligibility-dependent predic-
tion and the temporal dynamics of speech entrain-
ment are related. We hypothesised that predictive
control mechanisms interact with the rhythms in the

brain driven by speech. We performed correlation
analysis between TE values of intelligible speech at
negative delays (preceding speech) and positive
delays (following speech) using robust Spearman
rank correlations across participants (Pernet, Wilcox,
& Rousselet, 2013).

Motivated by the role of top-down beta activity par-
ticularly in the perception of sustained temporal aspect
of speech (Pefkou et al., 2017), we correlated predictive
coding by beta activity (Figure 4) and speech entrain-
ment (Figure 2) at various delays. We studied this mech-
anism first within early sensory area (auditory cortex) as
well as higher order areas where we found strong top-
down prediction.

Figure 5a shows this relationship in the left primary
auditory cortex where predictive speech coding

Figure 2. Entrained brain signals following speech. (a) A schematic figure for directed causal analysis: TE from speech delta phase to
brain delta phase (positive delays between speech-brain). TE computation was performed for each condition (forward played and back-
ward played) at each voxel from 20 to 500 ms with a 20-ms step. Orange line represents delta rhythm in the brain and each circle
represents a certain point in time. TE values are averaged within each ROI from the AAL atlas and compared statistically between con-
ditions. T-values are shown in each ROI bilaterally (pink: left hemisphere, green: right hemisphere): (b) primary auditory cortex (Heschl
gyrus) (c) Inferior frontal gyrus – opercular part (BA44) (d) precentral gyrus. Statistical significance was shown with two red lines depict-
ing t-values by paired t-test (upper red line: t21 = 3.53, p < 0.05, corrected; bottom red line: t21 = 2.08, p < 0.05, uncorrected).
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mechanism of beta power in the left auditory cortex
∼250 ms prior to the forthcoming speech with low fre-
quency delta phase information (corresponding to the
plot for the left auditory cortex (blue line) at ∼250 ms in
the Figure 4b) is closely associated with low-frequency
delta rhythm in the left auditory cortex driven by
speech (corresponding to the plot for the left auditory
cortex (pink line) at ∼250 ms in the Figure 2b) (r = 0.46,
p = 0.02). This suggests that individuals with stronger pre-
dictive coding by beta power in the left auditory cortex
∼250 ms prior to the upcoming low frequency delta
phase information in the speech signal are capable of
stronger speech entrainment in the left auditory cortex
by speech rhythm with low frequency delta phase at
∼250 ms.

Another interesting aspect of this relationship
emerged between the left inferior frontal cortex and

left precentral gyrus. Figure 5b shows that beta power
in the left inferior frontal gyrus ∼400 ms prior to the
forthcoming speech (delta phase) is associated with
delta phase in the left precentral gyrus following the
same frequency phase in the speech at ∼200 ms (corre-
sponding to the plot for the left precentral gyrus (pink
line) at ∼200 ms in the Figure 2d) (r = 0.53, p = 0.01).
This is a relationship between predictive coding (nega-
tive delay; corresponding to the plot for left inferior
frontal gyrus (orange line) at ∼400 ms in the Figure 4b)
and reactive processing (positive delay; corresponding
to the plot for the left precentral gyrus (pink line) at
∼200 ms in the Figure 2d). This suggests that individuals
with stronger modulation of predictive coding by beta
power in the left inferior frontal gyrus ∼400 ms prior to
the low frequency delta phase information in the
speech signal are capable of stronger speech

Figure 3. Entrained brain signals predicting upcoming speech. (a) A schematic figure for directed causal analysis: TE from brain delta
phase to speech delta phase (negative delays between speech-brain). TE computation was performed for each condition (forward
played and backward played) at each voxel from 20 to 500 ms in 20-ms steps and compared statistically between conditions.
Orange line represents delta rhythm in the brain and each circle represents a certain point in time. (b) The strongest prediction
was found at ∼220 ms in left IFG (upper red line: t21 = 3.53, p < 0.05, corrected; bottom red line: t21 = 2.08, p < 0.05, uncorrected).
(c) Statistical contrast maps of averaged across 100 ms windows show a sequence of events that start around −300 ms in fronto-
motor areas and then move to right auditory-temporal areas at around −200 ms prior to speech (p < 0.05, FDR-corrected).
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entrainment in the left precentral gyrus by speech
rhythm with low frequency delta phase at ∼200 ms.

Discussion

Here, we aimed to study the spatio-temporal character-
istics of predictions during continuous speech recog-
nition. We analysed transfer entropy (TE) at various
(positive and negative) delays between the speech
envelope and brain activity. At low frequencies (1–
4 Hz) our results reveal a progression of predictive
effects from left fronto-motor regions to right temporal
regions. A different pattern emerged when we investi-
gated TE between beta power in the brain and the
phase of 1–4 Hz components in the speech envelope.
We first see an engagement of left inferior frontal

gyrus about 300–500 ms prior to speech followed by
left precentral gyrus and left primary auditory areas.
Our results suggest a progression of prediction processes
from higher-order to early sensory areas.

First, it is important to carefully consider what aspects
of predictions are captured using our approach. Transfer
entropy (TE) is an information theoretic measure that
quantifies directed statistical dependencies between
time series. Specifically, TE from signal X to signal Y quan-
tifies to what extent knowledge of X reduces uncertainty
in predicting the future of Y over and above what could
be predicted from knowledge of the past of Y alone. TE is
conceptually similar to Granger causality as it infers
causal relationships from time-lagged predictability.
Here, when analysing prediction effects, we quantify to
what extent the past of brain activity in a certain brain

Figure 4. Beta rhythms and the prediction of upcoming speech. (a) A schematic figure for directed causal analysis: TE from brain beta
power to speech delta phase (negative delays between speech-brain). TE computation was performed for each condition (forward
played and backward played) at each voxel from 20 to 500 ms in 20 ms steps and compared statistically between conditions. Green
line represents beta rhythm in the brain and each circle represents a certain point in time. (b) TE values are averaged within each
ROI from the AAL atlas and compared statistically between conditions. T-values are shown in each ROI: left primary auditory cortex
(Heschl gyrus) (blue line), left IFG (orange line), and left precentral gyrus (both at local maximum coordinate (yellow line) and
whole precentral gyrus ROI (light green line)). Statistical significance was shown with two red lines depicting t-values by paired t-
test (upper red line: t21 = 3.53, p < 0.05, corrected; bottom red line: t21 = 2.08, p < 0.05, uncorrected). Left-lateralised predictions by
beta power were observed (see Supplementary Figure 2). (c) Statistical contrast maps of averaged across 100 ms windows show
that intelligibility-dependent prediction first engages left inferior frontal gyrus about 300–500 ms prior to the speech followed by
left precentral gyrus and left primary auditory area 200–300 ms prior to the speech (p < 0.05, FDR-corrected).
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area improves prediction of the future of the speech
envelope (over and above what could be predicted
from the past of the speech envelope alone). Our main
conclusions are then based on the statistical contrast
between forward played speech and backward played
speech. This is important for two reasons. First, the
power spectrum of the speech envelope is the same
for both conditions. Therefore, this statistical contrast
controls (to some extent) for the low-level rhythmicity
in speech and amplifies sensitivity of the analysis to intel-
ligibility. However, we acknowledge that backward
played speech is not a perfect control condition due to
differences in the finer temporal structure and attention
to the stimulus. However, we acknowledge that back-
ward played speech is not a perfect control condition

due to differences in the finer temporal structure and
attention to the stimulus. We assume that attention or
predictions during presentation of backward played
speech will not change systematically over time, there-
fore temporal profile of our TE results (TE changes over
delays) is unlikely to be affected by attention. However
we did not explicitly monitor the difference in attentional
level between the conditions so we cannot rule out that
condition-specific differences in attention affected the
results. Second, similar to Granger causality, the compu-
tation of TE on bandpass-filtered data is not without pro-
blems (Florin, Gross, Pfeifer, Fink, & Timmermann, 2010;
Weber, Florin, von Papen, & Timmermann, 2017). Statisti-
cally contrasting two conditions will counteract these
problems. In addition, we would like to note that our

Figure 5. Relationship between temporal dynamics of speech entrainment and predictive speech coding. To assess how the temporal
dynamics of speech entrainment (positive delays) and intelligibility-dependent top-down prediction (negative delays) are interacting,
we performed correlation analysis using robust Spearman rank correlations across participants between the two mechanisms (but for
top-down prediction, we used TE from brain beta to speech delta; Figure 4). Orange and green colours represent delta and beta
rhythms in the brain and each circle represents a certain point in time. We tested the relationship within in early sensory area. i.e.
primary auditory cortex as well as higher order areas. (a) Delta phase in the left auditory cortex driven by speech (corresponding to
the plot for the left auditory cortex (pink line) at ∼250 ms in the Figure 2b) is associated with predictive speech coding mechanism
of beta power in the left auditory cortex ∼250 ms prior to the forthcoming speech with low frequency delta phase information (corre-
sponding to the plot for the left auditory cortex (blue line) at ∼250 ms in the Figure 4b) (r = 0.46, p = 0.02). (b) Delta phase in the left
precentral gyrus modulated by the same frequency phase in the speech at ∼200 ms (corresponding to the plot for the left precentral
gyrus (pink line) at ∼200 ms in the Figure 2d) is associated with predictive speech coding of beta power in the left inferior frontal gyrus
∼400 ms prior to the forthcoming speech with low frequency delta phase information (corresponding to the plot for left inferior frontal
gyrus (orange line) at ∼400 ms in the Figure 4b) (r = 0.53, p = 0.01).
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results are very similar when using delayed mutual infor-
mation (data not shown), a measure that is less sensitive
to the effects of filtering. In summary, our approach is
expected to be mostly sensitive to intelligibility-related
components in speech.

Still, from our study it is difficult to exactly specify
the structure in speech that is the target of the predic-
tion processes presented here. This is in contrast to the
many studies that demonstrate that a semantic viola-
tion at a certain point in a sentence gives rise to the
well-known N400 evoked response (e.g. Kutas and Fed-
ermeier (2011)). Our main results show that both low
(delta: 1–4 Hz) and high frequency (beta: 14–18 Hz)
brain oscillations predict speech envelope in the
delta band (1–4 Hz). Since we do not have controlled
manipulations of linguistic content or temporal profile
in our experiment, we could interpret the results
based on what we have used in the analysis. By
definition, higher TE values refer to a situation where
prediction of the future of one time series X can be
improved by knowing the past of another time series
Y over and above predictions based on the past of
time series X alone. The method is therefore sensitive
to any information that is represented in the MEG
and speech time series. Consequently, our TE effects
could be driven by acoustic features, linguistic
content or both. In combination with the statistical
comparison (forward vs. backward speech conditions),
we interpret that signal input that is related to lexical
and phrasal units (delta band) in forward speech can
be predicted. However, this is currently only specu-
lation. This question should be elucidated with
further experimental manipulations on different levels
such as semantics, grammar, syntax, or linguistic con-
tents. While being less controlled, our approach
benefits from ecological validity and more directly
taps into prediction processes that operate during
natural speech processing.

Brain oscillations in the delta band (1–4 Hz) follow the
same frequency in the speech envelope robustly across
all delays between 20 and 500 ms. The pattern is stron-
ger in the right hemisphere (higher t-values in the Sup-
plementary Figure 1). In our previous study we showed
more right-lateralised speech-brain coupling at a fixed
delay using mutual information (Figure 2a in Gross, Hoo-
genboom, et al. (2013)). This mechanism seems to
extend to the directed TE measure used here up to
∼400 ms delays. This supports the asymmetric sampling
in time (AST) model (Poeppel, 2003) that posits a right
hemisphere preference for longer temporal integration
window (∼150–250 ms). The sustained pattern suggests
brain responses modulated by speech envelope are criti-
cal to continuous intelligible speech perception.

Directed coupling between speech envelope and
brain oscillations across negative delays suggests a pre-
dictive coding mechanism where sensory processing is
modulated in top-down manner. We investigated this
mechanism from low-frequency delta (1–4 Hz) phase
in the brain to low-frequency delta phase in the
speech envelope and from beta power (14–18 Hz) in
the brain to low-frequency delta (1–4 Hz) phase in
the speech envelope. Our study reveals robust predic-
tion processes at low frequencies (1–4 Hz). This is the
frequency that represents intonation and prosody
(Ghitza, 2011; Giraud & Poeppel, 2012) but also over-
laps at the upper end with the mean syllable rate
(Ding et al., 2017). It shows an interesting temporal
progression from left inferior fronto-motor areas to
right auditory-temporal areas. This progression of pre-
diction from higher order areas in the left hemisphere
(200–300 ms prior to speech) to the early sensory areas
in the right hemisphere suggests that the brain first
generates prediction of upcoming sensory input by
top-down contextual knowledge that is later used for
optimised stimulus encoding in early sensory areas.
Indeed, top-down modulations of delta phase (such
as temporal expectation or selection of an attended
stimulus stream) has been shown to increase sensitivity
to external inputs in the auditory (Lakatos et al., 2008)
and visual domain (Cravo, Rohenkohl, Wyart, & Nobre,
2013). Similarly, we find that beta power in the left
frontal cortex and sensorimotor areas reflects predic-
tion of upcoming speech relatively early (200–500 ms
prior to speech) and is left-lateralised (Supplementary
Figure 2). Active inference by motor systems regarding
predictive coding has been studied recently and beta
oscillation has been suggested to be working together
with low-frequency activity in top-down modulation of
ongoing activity during predictive coding (Arnal &
Giraud, 2012). Recently an elegant study employing
an auditory attention task has shown that interdepen-
dent delta and beta activity from left sensorimotor
cortex encodes temporal prediction and this is directed
towards auditory areas (Morillon & Baillet, 2017). This is
consistent with our finding that both delta phase and
beta power in the left frontal and sensorimotor
engages in the prediction of forthcoming speech
from relatively early stage. The temporal progression
from inferior frontal to motor areas seems to suggest
a hierarchical organisation of prediction processes
that warrant further investigation. Based on the pre-
vious findings regarding potential top-down prediction
effects from different frequency bands, including alpha
frequency band (Rohenkohl & Nobre, 2011; Wostmann,
Herrmann, Wilsch, & Obleser, 2015), we have computed
TE for other frequency bands (alpha: 8–13 Hz, high
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beta: 19–30 Hz, and gamma: 35–45 Hz), however, we
did not find any significant effects.

During continuous speech perception, brain oscil-
lations entrained by speech (positive delays) and pre-
dicting speech (negative delays) are expected to
interact in time. In other words, there is a continuous
recurrent interaction between stimulus-driven bottom-
up processing and top-down prediction processing
during continuous speech perception. This enables
the brain to estimate input statistics as well as calibrate
top-down and bottom-up processing of temporally
unfolding features (Hasson, 2017) such as speech in
the present study.

We focused our analysis on the interaction between
top-down predictive coding, i.e. TE from beta power in
the brain to delta phase in the speech (Figure 4, negative
delays) in the auditory cortex and higher order areas, i.e.
fronto-motor areas and speech entrainment, i.e. TE from
delta phase in the speech to delta phase in the brain
(Figure 2, positive delays). In the left auditory cortex
(Figure 5a), subjects with better top-down prediction
by beta power at ∼250 ms (∼ peak of LAC in Figure 4b;
Supplementary Figure 2b) show better entrainment by
speech delta phase at ∼250 ms (∼crossing point
between the LAC and RAC in Figure 2b). This result indi-
cates that although low-frequency brain oscillations fol-
lowing speech envelope seems stronger in the right
hemisphere than the left hemisphere (higher t-value
for RAC at early delays in Figure 2b; Supplementary
Figure 1), the interaction between both (top-down pre-
diction and bottom-up speech entrainment) is modu-
lated by the left auditory cortex (Park et al., 2015). In
the higher order areas (Figure 5b), speech-driven
bottom-up information flow to the left motor cortex in
the delta phase at delays ∼200 ms is strongly associated
with top-down predictive information flow from beta
power in the left IFG to speech delta phase at ∼400 ms
prior to the speech. This indicates that subjects with
stronger top-down predictive speech coding ∼400 ms
prior to the upcoming speech by beta power in the left
IFG (orange line in Figure 4b; Supplementary Figure 2c)
are also better bottom-up entrained by speech delta
phase at ∼200 ms in the left motor cortex (pink line in
Figure 2d).

It should be noted that the stimulus we used is a pre-
pared and organised text (read-aloud text as a mono-
logue speech) that was spoken at a storytelling event
which enables more intelligible speech comprehension
when compared to spontaneously produced speech
which is characterised by disfluencies (e.g. interruptions,
repetitions, false starts) (Hirose & Kawanami, 2002; Tree,
1995, 2001). Since it is unclear how our findings general-
ise across speech settings, studying possible differences

in predictive mechanisms between different speech set-
tings would be an interesting topic for future studies.

It also should be noted that our results from statistical
comparison between standard speech and backward
played speech could result from differences in relation
to temporal structure of acoustic amplitude envelope
other than speech intelligibility. Normal speech has fast
onsets and long decays whereas reversed speech has
the opposite pattern (slow onsets and rapid decays)
(Narain et al., 2003), so it should be interpreted with
caution. In order to reduce this concern, other types of
control condition, e.g. foreign languages, would be
required. In addition, the transcription analysis revealed
that word and syllable rate overlap with the delta
band. Therefore, our delta band results might reflect
phase resetting driven due to word and syllable onsets.

From a broader perspective, it is worth asking
whether processes involved in this predictive mechan-
ism are specialised for speech or underlie general audi-
tory processes including music perception.

In summary, our results indicate that predictive pro-
cesses during continuous speech processing involve
fronto-motor areas, operate in at least two frequency chan-
nels (delta and beta), follow an organised temporal pro-
gression from higher-order areas to early sensory areas
and recurrently interact with reactive processes. Further
research is needed todecode the exact natureof thesepre-
dictions, identify the contributions of individual areas and
elucidate the mutual dependencies between processes
that precede and follow speech. In addition, in order to
gain a better understanding of interaction between top-
down predictive and bottom-up processing, studies
using more complex type of stimuli that manipulate
degrees of uncertainty (Hasson, 2017) would be helpful.
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