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LONG PROPERLY COLOURED CYCLES IN EDGE-COLOURED

GRAPHS.

ALLAN LO

School of Mathematics, University of Birmingham,

Birmingham, B15 2TT, UK

Abstract. Let G be an edge-coloured graph. The minimum colour degree δc(G) of G is
the largest integer k such that, for every vertex v, there are at least k distinct colours on
edges incident to v. We say that G is properly coloured if no two adjacent edges have the
same colour. In this paper, we show that, for any ε > 0 and n large, every edge-coloured
graph G with δc(G) ≥ (1/2 + ε)n contains a properly coloured cycle of length at least
min{n, ⌊2δc(G)/3⌋}.

1. Introduction

An edge-coloured graph is a graph G with an edge-colouring c of G. We say that G is
properly coloured if no two adjacent edges of G have the same colour. If all edges have the
same (or distinct) colour, then G is monochromatic (or rainbow, respectively).

Finding properly coloured subgraphs in edge-coloured graphs G has a long and rich
history. Grossman and Häggkvist [10] are the first to give a sufficient condition on the
existence of properly coloured cycles in edge-coloured graphs with two colours. Later on,
Yeo [19] extended the result to edge-coloured graphs with any number of colours. A natural
question is to ask what guarantees the existence of properly coloured Hamiltonian paths
and cycles.

In particular, the case when G is an edge-coloured Kn has been receiving the most
attention. Given k ∈ N, an edge-coloured graph G is locally k-bounded if for all vertices
v ∈ V (G), no colour appears more than k times on the edges incident to v for all vertices v.
A conjecture of Bollobás and Erdős [4] states that every locally (⌊n/2⌋−1)-bounded edge-
coloured Kn contains a properly coloured Hamilton cycle. There is a series of partial
results toward this conjecture by Bollobás and Erdős [4], Chen and Daykin [6], Shearer [17],
and Alon and Gutin [1]. In [15] the author showed that the conjecture of Bollobás and
Erdős holds asymptotically, that is, for any ε > 0 and n sufficiently large, every locally
(1/2 − ε)n-bounded edge-coloured Kn contains a properly coloured Hamilton cycle. A
hypergraph generalisation of finding properly coloured Hamilton cycle in locally k-bounded
edge-coloured complete graphs has also been studied by Dudek, Frieze and Ruciński [8] as
well as Dudek and Ferrara [7]. Recently, Sudakov and Volec [18] proved that every locally
n/(500r3/4)-bounded edge-coloured Kn contains all properly coloured graphs with at most
r paths of length two. This proved a conjecture of Shearer [17] as well as improves results of
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2 LONG PROPERLY COLOURED CYCLES IN EDGE-COLOURED GRAPHS.

Alon, Jiang, Miller, Pritikin [2] and Böttcher, Kohayakawa and Procacci [5]. For a survey
regarding properly coloured subgraphs in edge-coloured graphs, we recommend Chapter 16
of [3]. Also see [11] for a survey regarding monochromatic and rainbow subgraphs in edge-
coloured graphs.

Consider an edge-coloured (not necessarily complete) graphG. Given a vertex v ∈ V (G),
the colour degree dcG(v) is the number of distinct colours of edges incident to v. The
minimum colour degree δc(G) is the minimum dcG(v) over all vertices v in G. Li and
Wang [12] showed that every edge-coloured graph G with δc(G) ≥ d contains a properly
coloured path of length 2d or a properly coloured cycle of length at least 2d/3. In [13],
the author improved 2d/3 to d+ 1, which is best possible. In the same paper, the author
conjectured the following.

Conjecture 1.1. Every edge-coloured connected graph G with δc(G) ≥ d contains a prop-

erly coloured Hamilton cycle or a properly coloured path of length ⌊3d/2⌋.
If this conjecture holds, then the bound is sharp by the following example. Let d, n ∈ N

with n ≥ 3d/2. Let c1, c2, . . . , cd be distinct colours. Let X,Y be disjoint sets of vertices
such that X = {x1, x2, . . . , xd} and |Y | = n− d. For each 1 ≤ i ≤ d, join xi to each vertex
of Y with colour ci. For 1 ≤ i < j ≤ d, join xi to xj with a new distinct colour. Let G
be the resulting edge-coloured graph. Note that G has n vertices and δc(G) = d. Every
properly coloured path in G with both endpoints in Y must contain at least two vertices
in X. Thus, every properly coloured path in G is of length at most |X|+⌊|X|/2⌋ = ⌊3d/2⌋.

In [14], the author proved that the conjecture holds when d ≥ (2/3+ε)n for ε > 0 and n
large, that is, every edge-coloured graph G on n vertices with δc(G) ≥ (2/3 + ε)n contains
a properly coloured Hamilton cycle.

In this paper, we prove the following results.

Theorem 1.2. For ε > 0, there exists n0 ∈ N such that every edge-coloured graph G on

n ≥ n0 vertices with δc(G) ≥ (1/2 + ε)n contains a properly coloured cycle of length at

least min{⌊3δc(G)/2⌋, n}.
Note that Theorem 1.2 implies Conjecture 1.1 when d ≥ (1/2 + ε)n and n large. By

analysing the proof of Theorem 1.2, one might be able to prove Conjecture 1.1 when
d ≥ n/2. Therefore, it would be interesting to know whether Conjecture 1.1 hold for
d < n/2.

2. Notation and sketch proof

For a graph G, we denote V (G) and E(G) for the vertex set and edge set of G, respec-
tively. Write |G| for |V (G)|. For (edge-coloured) graphs G and H, we write G−H for the
graph with vertex set V (G) and edge set E(G) \ E(H). For W ⊆ V (G), we write G \W
for the subgraph of G induced by the vertex set V (G) \W , and write G \H for G \V (H).
For disjoint X,Y ⊆ V (G), let G[X] be the (edge-coloured) subgraph induced by X and
let G[X,Y ] be the induced bipartite subgraph with vertex classes X and Y . For a set of
edges E, we write G∪E for the graph with vertex set V (G)∪V (E) and edge set E(G)∪E.
For a singleton set {v}, we sometimes write v for short.

For an edge-coloured graph G, let C(G) := {c(uv) : uv ∈ E(G)}, that is, the set of
colours appeared in G. For a vertex v ∈ V (G), let CG(v) := {c(uv) : u ∈ NG(v)}.
Thus dcG(v) = |CG(v)|. For V ⊆ V (G), define dcG(v, V ) := |CG[V ∪v](v)|. Let x = (x, cx)
be a pair with vertex x ∈ V (G) and colour cx ∈ CG(x). We write NG(x) be the set
of vertices v ∈ NG(x) such that c(xv) 6= cx. For distinct x, y ∈ V (G), we denote by



LONG PROPERLY COLOURED CYCLES IN EDGE-COLOURED GRAPHS. 3

distG(x, y) the shortest distance between x and y. If x and y are not connected, then we
say distG(x, y) = ∞. If G is known from the context, then we omit G in the subscript.

For a path P = x1x2 . . . xk from x1 to xk and a vertex y /∈ V (P ), we write Py for the
path x1x2 . . . xky. If P

′ = y1 . . . yℓ is a path with y1 = xk and V (P ) ∩ V (P ′) = {xk}, then
we write PP ′ for the concatenated path x1x2 . . . xky2 . . . yℓ.

An edge-coloured graph G is critical, if for every edge uv, dcG(u) > dcG−uv(u) or d
c
G(v) >

dcG−uv(v). Note that if G is critical, then any monochromatic subgraph H of G is a union
of vertex-disjoint stars. Since we are only concerning about properly coloured subgraphs,
we may assume further that any two vertex-disjoint monochromatic component in G have
distinct colours. Thus, from now on, we assume that every monochromatic subgraph H of
any critical edge-coloured graph G is a star.

Let F be a direct graph. For u, v ∈ V (F ), we write uv for the directed edge from u to v.
For Z,W ⊆ V (F ), denote by eF (Z,W ) the number of directed edges from Z to W in F .

The constants in the hierarchies used to state our results are chosen from right to left.
For example, if we claim that a result holds whenever 0 < 1/n ≪ a ≪ b ≪ c ≤ 1 (where n
is the order of the graph), then there is a non-decreasing function f : (0, 1] → (0, 1] such
that the result holds for all 0 < a, b, c ≤ 1 and all n ∈ N with b ≤ f(c), a ≤ f(b) and
1/n ≤ f(a). Hierarchies with more constants are defined in a similar way.

2.1. Sketch proof of Theorem 1.2. Here we present an outline of the proof of Theo-
rem 1.2, which naturally splits into three lemmas. First, we consider the case when G is
close to the extremal example in Section 3. More precisely, for δ, ε > 0, we say that an
edge-coloured graph G on n vertices is (δ, ε)-extremal if there exist disjoint A,B ⊆ V (G)
such that

(A1) |A| ≥ (δ − ε)n and |B| ≥ (1− δ − ε)n;
(A2) for each a ∈ A, there exists a distinct colour ca such that there are at least |B|−εn

vertices b ∈ B such that c(ab) = ca;
(A3) for each b ∈ B, dG(b) ≤ (δ+ ε)n and b has at least |A| − εn neighbours a ∈ A such

that c(ab) = ca.

Throughout this paper, we will always assume that ε ≪ δ. In this case, we will find a
properly coloured cycle (of the desired length) directly (see Section 3).

Lemma 2.1. Let 0 < 1/n ≪ ε ≪ δ ≤ 1. Let G be a (δ, ε)-extremal critical edge-coloured

graph on n vertices with δc(G) ≥ δn. Then G contains a properly coloured cycle of length

min{⌊3δn/2⌋, n}.

Note that Lemma 2.1 does not require that δ ≥ 1/2 + ε. Thus Lemma 2.1 implies that
Conjecture 1.1 holds if G is (δ, ε)-extremal with 1/n ≪ ε ≪ δ ≤ 1.

If G is not close to the extremal, then we proceed using the absorption technique in-
troduced by Rödl, Ruciński and Szemerédi [16], which was used to tackle Hamiltonicity
problems in hypergraphs. The absorption technique has been adapted for finding properly
coloured Hamilton cycles in [14, 15]. First we find a small ‘absorbing cycle’ C in G using
the following lemma, which is proved in Section 4.

Lemma 2.2. Let 0 < 1/n ≪ γ ≪ ε < 1/2. Suppose that G is an edge-coloured graph

on n vertices with δc(G) ≥ (1/2 + ε)n. Then there exists a properly coloured cycle C
of length at most εn/2 such that for any collection P1, . . . , Pk of vertex-disjoint properly

coloured paths in G \ V (C) with k ≤ γn, there exists a properly coloured cycle with vertex

set V (C) ∪⋃

1≤i≤k V (Pi).
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Remove the vertices of C from G and call the resulting graph G′. Since G is not
extremal, neither is G′. (Indeed, if G′ is (δ, ε)-extremal with vertex subsets A,B, then G
is (δ, 2ε)-extremal with vertex subsets A,B as ε ≪ 1.) We find vertex-disjoint properly
coloured paths by the next lemma (which is implied by Lemma 5.1).

Lemma 2.3. Let 0 < 1/n ≪ β ≪ ε ≪ 1/2 < δ. Suppose that G is a critical edge-coloured

graph on n vertices with δc(G) ≥ δn+1. If G is not (δ, ε)-extremal, then G contains vertex-

disjoint properly coloured paths P1, . . . , Pk with k ≤ 100β−1 covering min{(3δ + β)n/2, n}
vertices.

We now prove Theorem 1.2 using Lemmas 2.1–2.3.

Proof of Theorem 1.2. Without loss of generality, we may assume that G is critical edge-
coloured with δc(G) = δn and that ε is sufficiently small. Let γ, ε′ be such that 1/n ≪
γ ≪ ε ≪ ε′ ≪ 1/2 < δ.

Apply Lemma 2.2 and obtain a properly coloured cycle C of length at most εn/2 such
that for any collection P1, . . . , Pk of vertex-disjoint properly coloured paths in G \ V (C)
with k ≤ γn, there exists a properly coloured cycle with vertex set V (C) ∪⋃

1≤i≤k V (Pi).

Let G′ := G \ C, n′ := |G′| and δ′ := (δn − |C| − 1)/n′. Note that δc(G) ≥ δ′n′ + 1
and 1/n′ ≪ ε ≪ ε′ ≪ 1/2 < δ′. If G′ is not (δ′, ε′)-extremal, then apply Lemma 2.3 (with
ε, ε′, δ′, n′ playing the roles of β, ε, δ, n) and obtain vertex-disjoint properly coloured paths
P1, . . . , Pk such that k ≤ 100ε−1 ≤ γn and

⋃

i≤k

|V (P ′
i )| ≥ min{3(δ − |C| − 1)n + εn′)/2, n − |C|} ≥ min{3δn/2, n} − |C|

as |C| ≤ εn/2 ≤ εn′. Thus, by the property of C, there exists a properly coloured cycle
C ′ with vertex set V (C) ∪⋃

i≤k V (P ′
i ). So |C ′| ≥ min{3δn/2, n} as desired.

On the other hand, if G′ is (δ′, ε′)-extremal, then there exist disjoint A,B ⊆ V (G′) =
V (G) \ V (C) satisfying

(A1) |A| ≥ (δ′ − ε′)n′ ≥ (δ − 2ε′)n and |B| ≥ (1− δ′ − ε′)n′ ≥ (1− δ − 2ε′)n;
(A2) for each a ∈ A, there exists a colour ca such that there are at least |B| − ε′n′ ≥

|B| − 2ε′n vertices b ∈ B such that c(ab) = ca;
(A3) for each b ∈ B,

dG(b) ≤ dG′(b) + |C| ≤ (δ′ + ε′)n′ + |C| = δn− 1 + ε′n′ < (δ + 2ε′)n

and b has at least |A| − ε′n′ ≥ |A| − 2ε′n neighbours a ∈ A such that c(ab) = ca.

Therefore G is (δ, 2ε′)-extremal. By Lemma 2.1, G contains a properly coloured cycles of
length at least min{⌊3δn/2⌋, n}. �

3. Extremal case

In this section, we prove Lemma 2.1, that is, Theorem 1.2 when G is critical and (δ, ε)-
extremal. We would need the following definition. Let G be an edge-coloured graph on n
vertices. Let A,B ⊆ V (G) be disjoint. We say that the ordered pair (A,B) is ε-extremal

if the following holds:

(E1) for each a ∈ A, there exists a distinct colour ca;
(E2) for each a ∈ A, there are at least |B|−εn vertices b ∈ B∩N(a) such that c(ab) = ca,

and at least |A| − εn vertices a′ ∈ A ∩N(a) such that ca 6= c(aa′) 6= ca′ ;
(E3) for each b ∈ B, there are at least |A|−εn vertices a ∈ A∩N(b) such that c(ab) = ca.
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Next we show that if G is (δ, ε)-extremal, then there exists 4
√
ε-extremal pair in G.

Lemma 3.1. Let 0 < 1/n ≪ ε ≪ 1 and let δ > 4
√
ε. Let G be a critical edge-coloured

graph on n vertices with δc(G) ≥ δn. Suppose that G is (δ, ε)-extremal. Then there exist

disjoint A,B ⊆ V (G) such that (A,B) is 4
√
ε-extremal, |A| ≥ (δ−4

√
ε)n, |B| ≥ (1−δ−ε)n

and, for each b ∈ B, dG(b) ≤ (δ + ε)n.

Proof. Let ε′ := 4
√
ε. Since G is (δ, ε)-extremal, there exist disjoint A∗, B∗ ⊆ V (G)

satisfying (A1)–(A3).
Note that |V (G) \ (A∗ ∪ B∗)| ≤ 2εn. We say that an edge aa′ in G[A∗] is good if

ca 6= c(aa′) 6= ca′ . We bound the number of good edges from below as follows. Define
a directed graph D on A∗ such that there is a directed edge from a to a′ if and only if
ca 6= c(aa′). For each a ∈ A∗, a sends at most 1 + εn + |V (G) \ (A∗ ∪ B∗)| ≤ 3εn + 1
distinct colours (including the colour ca) to V (G) \ A∗ by (A2). So the outdegree of a
in D is at least δn− 3εn− 1 ≥ |A∗| − 5εn− 1. Since the number of good edges equals the

number of 2-cycles in D, the number of good edges is at least (|A∗|−5εn−1)|A∗|−
(|A∗|

2

)

=
|A∗|(|A∗|−10εn−1)/2. Let A′ be the set of a ∈ A∗ that is incident with at most |A∗|−ε′n
good edges. Note that |A′| ≤ 3

√
εn.

Let A := A∗ \ A′. Thus |A| ≥ |A∗| − 3
√
εn ≥ (δ − ε′)n by (A1). Moreover, every

a ∈ A is incident with at least |A| − ε′n good edges in G[A] implying (E2). Set B := B∗.
So |B| ≥ (1 − δ − ε)n. Also, (A3) implies that (E3) holds and that, for each b ∈ B,
dG(b) ≤ (δ + ε)n. Therefore (A,B) is ε′-extremal. �

In the next two lemma, we find properly coloured cycles spanning A ∪ B, when (A,B)
is ε-extremal.

Lemma 3.2. Let ε < 1/36. Let G be an edge-coloured graph on 3m vertices. Suppose that

there is a partition A,B of V (G) such that (A,B) is ε-extremal, |A| = 2m and |B| = m.

Then G has a properly coloured Hamilton cycle.

Proof. Partition A into X and Y each of size m. Let HX be the subgraph of G[X,B]
induced by edges of colour in {ca : a ∈ A}. By (E2) and (E3), HX is a bipartite graph
with δ(HX) ≥ m − 3εm. Hence by Hall’s theorem, there exists a perfect matching MX

in HX .
Similarly, let HY be the subgraph of G[Y,B] induced by edges of colour in {ca : a ∈ A}

and there exists a perfect matching MY in HY . Note that MX ∪ MY is a union of m
vertex-disjoint path of length 2 each with midpoint in B. By (E1), MX ∪MY is properly
coloured. Let MX ∪MY = {xibiyi : xi ∈ X, bi ∈ B, yi ∈ Y and i ≤ m}.

Now define an oriented graph F on vertex set Z = {z1, . . . , zm} such that there is a
directed edge from zi to zj if and only if yixj is an edge (in G) with cyi 6= c(yixj) 6= cxj .
By (E2), each zi has indegree and outdegree at least m − 3εm ≥ m/2. Therefore F
contains a directed Hamilton cycle by a result of Ghouila-Houri [9], z1z2 . . . zmz1 say.
Then x1b1y1x2b2y2 . . . zmx1 is a properly coloured Hamilton cycle in G as desired. �

Lemma 3.3. Let ℓ ∈ N and 0 < 1/n ≪ ε ≪ α < 1/3 with ℓ < αn. Let G be a

critical edge-coloured graph on n vertices. Suppose that (A,B) is ε-extremal such that

αn + ℓ + 1 ≤ |B| ≤ |A|/2 + ℓ. Suppose that P is a union of ℓ vertex-disjoint properly

coloured paths such that each path has both of its endpoints in B and |(A∪B)∩V (P)| = 2ℓ.
Then G contains a properly coloured cycle with vertex set V (C) = A ∪B ∪ V (P).

Proof. First suppose that |B| < |A|/2+ℓ. Let p := |A|−2(|B|−ℓ−1), so 3 ≤ p ≤ |A|−2αn.
By (E2) and a greedy argument, G contains a properly colour path ba1a2 . . . apb

′ such that
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a1, . . . , ap ∈ A and b, b′ ∈ B \ V (P). We add the path ba1a2 . . . apb
′ to P and call the

resulting set P ′. Let A′ = A \ {a1, . . . , ap}, so |A′| = |A| − p = 2(|B| − ℓ− 1). Furthermore
(A′, B) is ε-extremal. Therefore by replacing A,B,P with A′, B,P ′, we may assume that
without loss of generality that |A| = 2m and |B| = m+ ℓ for some integer m ≥ αn with
ℓ ≤ m.

Consider G[A ∪B] ∪ P. Suppose that P1, . . . , Pℓ are the paths of P. We now contract
each Pi as follows. Let bi and b′i be the end vertices of Pi, so bi, b

′
i ∈ B. Let Ni be the

common neighbours a ∈ A of bi and b′i such that c(abi) = c(ab′i) = ca /∈ CPi(bi) ∪ CPi(b
′
i).

Note that |Ni| ≥ |A| − 2εn − 2 ≥ 2m − 3εα−1m ≥ 2m − 3
√
εm by (E3). We replace

each V (Pi) with a new vertex xi and join xi to each vertices a ∈ Ni with colour ca.
Call the resulting graph H. So A ⊆ H and |H| = 3m. Note that, for each i ≤ ℓ,
dH(xi, A) = |Ni| ≥ 2m− 3

√
εm. Since V (H) \ A = B \ V (P) ∪ {x1, . . . , xℓ}, it is easy to

see that (A,V (H) \ A) is
√
ε-extremal in H. Lemma 3.2 implies that H has a properly

coloured Hamiltonian cycle C. By replacing each xi in C with Pi we obtain a properly
coloured cycle in G with vertex set A ∪B ∪ V (P) as required. �

By Lemmas 3.1 and 3.3, to prove Lemma 2.1 it suffices to find a union of suitable
properly coloured paths. We would need a finer partition V (G) \ (A ∪ B) into Y and
Z as follows. Let Y be the set of v ∈ V (G) \ (A ∪ B) such that dcG(v,B) ≥ 10εn or
|{c(av) : a ∈ NG(v) ∩A and c(av) 6= ca}| ≥ 10εn. Let Z := V (G) \ (A ∪B ∪ Y ).

Proposition 3.4. Let ε, δ > 0. Let G be a critical edge-coloured graph on n vertices

with δc(G) ≥ δn. Suppose that (A,B) is ε-extremal such that |A| ≥ (δ − ε)n and |B| ≥
(1 − δ − ε)n. Let Y,Z be a partition of V (G) \ (A ∪ B) as above. For each v ∈ Z, there

are at least |A| − 24εn vertices a ∈ NG(v) ∩A such that c(av) = ca. Moreover, (A,B ∪Z)
is 24ε-extremal.

Proof. Note that |Y |+ |Z| ≤ 2εn. Consider any v ∈ Z. Since dcG(v,B) < 10εn, we have

dcG(v,A) ≥ dcG(v)− dcG(v,B)− |Y | − |Z| ≥ (δ − 12ε)n ≥ |A| − 14εn.

On the other hand, |{c(av) : a ∈ NG(v) ∩ A and c(av) 6= ca}| < 10εn. Thus there are at
least |A| − 24εn vertices a ∈ NG(v) ∩A such that c(av) = ca. �

Instead of finding a union of suitable properly coloured paths, the next lemma shows
that finding a suitable matching is sufficient.

Lemma 3.5. Let 0 < 1/n ≪ ε ≪ α < 1/3. Let G be a critical edge-coloured graph

on n vertices. Suppose that (A,B) is ε-extremal such that |A| ≥ (2α + 6ε)n + 2 and

|B| ≥ (α+4ε)n+ 1. Let Y be the set of v ∈ V (G) \ (A∪B) such that dcG(v,B) ≥ 10εn or

|{c(av) : a ∈ NG(v) ∩A and c(av) 6= ca}| ≥ 10εn. Let Z := V (H) \ (A ∪B ∪ Y ). Suppose

that M and M ′ are vertex-disjoint matchings such that

(i) there are at most 2εn edges in M ∪M ′;

(ii) M ⊆ G \ A;
(iii) M ′ ⊆ G[A,B ∪ Z] and for each edges av ∈ M ′ with a ∈ A, c(av) 6= ca.

Then G contains a properly coloured cycle C such that

|C| ≥ min

{

n,

⌊

3|A|
2

+ |M |+ |M ′|
2

+ |Y | − |V (M) ∩ Y |
2

⌋}

.

Proof. Note that (A,B ∪ Z) is 24ε-extremal by Proposition 3.4. Our aim is to extend
M ∪M ′ into a suitable path system P (see Claim 3.6 for the precise properties) such that
we can apply Lemma 3.3. The key features of P are that every path is properly coloured
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with both endpoints in B ∪Z and that P covers Y . Here, we give a rough outline on how
to construct P from M ∪M ′ (that is, the proof of Claim 3.6). For simplicity, we assume
that M ⊆ G[B∪Z] (so the edges of M can be already viewed as paths with both endpoints
in B ∪ Z). For each edge av ∈ M ′ with a ∈ A, we add the edge ab with b ∈ B such that
c(ab) = ca 6= c(av). In order to cover Y , consider any y ∈ Y . If dcG(y,B) ≥ 10εn, then we
extend y to a path byb′ with b, b′ ∈ B. Otherwise, we have |{c(av) : a ∈ NG(v) ∩ A and
c(av) 6= ca}| ≥ 10εn, so we construct the path baya′b′ with a, a′ ∈ A and b, b′ ∈ B.

We now give the formal definition of P in the following claim.

Claim 3.6. Let q := |V (M) ∩ Y |. There exists a properly coloured subgraph P of G such

that M ∪M ′ ⊆ P and

(i′) P is a union of ℓ∗ vertex-disjoint path such that each path has both endpoints in

B ∪ Z;

(ii′) ℓ∗ = |M |+ |M ′|+ |Y | − q ≤ 4εn;
(iii′) P covers Y ;

(iv′) P contains precisely 2ℓ∗ vertices in B ∪ Z, that is, each vertex in V (P) ∩ (B ∪ Z)
is an endpoint of some path in P;

(v′) P contains at most |M ′|+ 2|Y | − q vertices in A.

Proof of claim. We construct P0 as follows. Initially, we set P0 := M ∪M ′. For each edge
av ∈ M ′ with a ∈ A, we add an edge ab to P0 such that b ∈ B \ V (P) is distinct and
c(ab) = ca 6= c(av) (which exists by (E2)). Thus P0 is a union of |M |+ |M ′| vertex-disjoint
paths such that each path has both endpoints in V (G) \ A,

|V (P0) \ A| = 2|M |+ 2|M ′|, |V (P0) ∩ Y | = q and |V (P) ∩A| = |M ′|.
Let Y := {y1, . . . , y|Y |} be such that V (P0) ∩ Y = {y1, . . . , yq}. Suppose that for some

i ≤ |Y | we have already constructed P0 ⊆ · · · ⊆ Pi−1 such that for all j < i

(Q1) Pj is an union of |M |+|M ′|+max{0, j−q} vertex-disjoint properly coloured paths;
(Q2) |(B ∪ Z) ∩ V (Pj)| = 2|M | + 2|M ′| − q + j + max{0, j − r} and |A ∩ V (Pj)| ≤

|M ′|+ j +max{0, j − q};
(Q3) every vertex in V (Pj) ∩ (B ∪ Z) is an endpoint of some paths in Pj;
(Q4) for all j′ ≤ j, dPj (yj′) = 2 and for all j′ > j, dPj (yj′) = dPj−1

(yj′).

We now construct Pi as follows. By (Q2), |B ∩ V (Pi−1)|, |A ∩ V (Pi−1)| ≤ 8εn.
Note that by (Q4)

dPi−1
(yi) = dP0

(yi) = dM (yi) =

{

1 if i ≤ q

0 otherwise.

Suppose that i ≤ q. Let c′ be the colour of the edge incident with yi in Pi−1. If
dcG(yi, B) ≥ 10εn, then there exists an edge byi such that b ∈ B \ V (Pi−1) and c(byi) 6= c′

and set Pi := Pi−1 ∪ byi. Thus, we may assume that there exist at least 10εn vertices
a ∈ A∩NG(yi) such that c(ayi) 6= ca and these c(ayi) are distinct. So there exists a vertex
a ∈ (A ∩ NG(yi)) \ V (Pi−1) such that ca 6= c(ayi) 6= c′. By (E2), there exists a vertex
b ∈ B ∩ NG(a) \ V (Pi−1) such that c(ab) = ca 6= c(ayi). Set Pi := Pi−1 ∪ {ayi, ab}. A
similar argument also holds for the case when i > q, where we apply the previous argument
twice. Finally, set P := P|Y |. �

Let A∗ := A \ V (P). Let B∗ be a subset of B ∪ Z such that V (P) ∩ (B ∪ Z) ⊆ B∗ and
|B∗| = min{|B|+ |Z|, ⌊|A∗|/2⌋ + ℓ∗}.
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Note that |B| ≥ (α + 4εn) + 1 ≥ αn + ℓ∗ + 1, where the last inequality holds by
Claim 3.6(ii′). Since |Y | ≤ 2εn, together with Claim 3.6(v′) and (i), we have

|A∗| ≥ |A| − (|M ′|+ 2|Y |) ≥ |A| − 6εn ≥ 2αn + 2.

Therefore, we deduce that |B∗| ≥ αn + ℓ∗ + 1.
Note that (A∗, B∗) is 24ε-extremal (as (A,B∪Z) is by Proposition 3.4). By Lemma 3.3,

G contains a properly coloured cycle C with vertex set A∗ ∪B∗ ∪ V (P) = A ∪B∗ ∪ Y by
Claim 3.6(iii′). If |B∗| = |B|+ |Z|, then C is a properly coloured Hamilton cycle of G. If
|B∗| = ⌊|A∗|/2⌋ + ℓ∗, then

|C| = |A|+ |Y |+ |B∗| = |A|+ |Y |+ ⌊|A∗|/2⌋ + ℓ∗

= |A|+ |Y |+ ⌊(|A| − |V (P) ∩A|)/2⌋ + ℓ∗

(ii′), (v′)

≥ |A|+
⌊ |A| − (|M ′|+ 2|Y | − q)

2

⌋

+ |M |+ |M ′|+ 2|Y | − q

=

⌊

3|A|
2

+ |M |+ |M ′|
2

+ |Y | − q

2

⌋

as required. �

We are ready to prove Lemma 2.1.

Proof of Lemma 2.1. Let ε′ := 4
√
ε and without loss of generality (by adjusting ε′ slightly),

we have (δ − ε′)n ∈ Z. Let α such that ε ≪ α ≪ δ. Apply Lemma 3.1 and obtain an
ε′-extremal pair (A,B) such that |A| ≥ (δ − ε′)n,

|B| ≥ (1− δ − ε′)n ≥ (α+ 8ε′)n+ 1.

and

dG(b) ≤ (δ + ε)n for each b ∈ B. (3.1)

By removing vertices of A if necessary, we may assume that

|A| = (δ − ε′)n ≥ (2α + 12ε′)n + 2. (3.2)

Let Y be the set of v ∈ V (G)\(A∪B) such that dcG(v,B) ≥ 10ε′n or |{c(av) : a ∈ NG(v)∩A
and c(av) 6= ca}| ≥ 10ε′n. Let Z := V (G) \ (A ∪B ∪ Y ). Let p := max{ε′n− |Y |, 0}, so

|Y | ≥ ε′n− p. (3.3)

Let F := G \ A. So δ(F ) ≥ ε′n. Let R be the set of vertices v ∈ V (F ) such that
dF (v) ≤ 10ε′n and let S := V (F ) \ R. Note that |R| ≥ (1 − δ − ε′)n as B ⊆ R by (E3)
and (3.1). Since ∆(F [R]) ≤ 10ε′n, Vizing’s theorem implies that there exists a matching
MR in F [R] such that |MR| ≥ e(F [R])/(10ε′n + 1) ≥ 8e(F [R])/|R|. By summing the
degrees dF (v) in v ∈ R, we have

|R|ε′n ≤
∑

v∈R

dF (v) = 2e(F [R]) + e(F [R,S]) ≤ |R||MR|/4 + |R||S|,

ε′n ≤ |MR|/4 + |S|. (3.4)

We now divide the proof into two different cases.

Case 1: |MR|+ |S| ≥ ε′n+ p/2. We claim that there exists a matching M in F = G \ A
such that |M | = ⌈ε′n + p/2⌉. Indeed, there is nothing to prove if |MR| ≥ ε′n + p/2. If
|MR| < ε′n+p/2, then we can extend MR into a matching M of size ⌈ε′n+p/2⌉ by adding
(appropriate) edges incident with S (as dF (s) ≥ 10ε′n for all s ∈ S and p ≤ ε′n).
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Note that |M | = ⌈ε′n+ p/2⌉ ≤ 2ε′n and
⌊

3|A|
2

+ |M |+ |Y | − |V (MR) ∩ Y |
2

⌋

≥
⌊

3|A|
2

+ |M |+ |Y |
2

⌋

(3.2),(3.3)

≥
⌊

3(δ − ε′)n

2
+ ε′n+

p

2
+

ε′n− p

2

⌋

= ⌊3δn/2⌋.

By Lemma 3.5 (with M, ∅, ε′ playing the roles of M,M ′, ε), G contains a properly coloured
cycle C such that |C| ≥ min{n, ⌊3δn/2⌋} as desired.

Case 2: |MR| + |S| < ε′n + p/2. Together with (3.4) we have |MR| < 2p/3 and p > 0.
Thus |Y | = ε′n− p.

Case 2a: |S ∩ Y | ≤ ε′n− 10p/3 . Note that by (3.3)

|Y \ (S ∪ V (MR))| ≥ |Y | − |S ∩ Y | − 2|MR| ≥ ε′n− p− (ε′n− 10p/3) − 4p/3 = p.

By (3.4), |MR|+ |S| ≥ ε′n. We can extend MR into a matching M in F = G \ A such
that |M | = ⌈ε′n⌉ and |Y \V (M)| ≥ p. Indeed this is possible, by adding appropriate edges
between S and V (F ) \ Y as dF (s) ≥ 10ε′n ≥ |Y |+ 9ε′n for all s ∈ S. Hence

⌊

3|A|
2

+ |M |+ |Y | − |V (M) ∩ Y |
2

⌋

=

⌊

3|A|
2

+ |M |+ |Y |+ |Y \ V (MR)|
2

⌋

(3.2),(3.3)

≥
⌊

3(δ − ε′)n

2
+ ε′n+

(ε′n− p) + p

2

⌋

=

⌊

3δn

2

⌋

.

We are done by Lemma 3.5 (with M, ∅, ε′ playing the roles of M,M ′, ε).

Case 2b: |S ∩Y | > ε′n− 10p/3. Recall that |MR| < 2p/3 and |MR|+ |S| ≤ ε′n+ p/2. So

|(S ∪ V (MR)) ∩ (B ∪ Z)| = |(S ∪ V (MR)) \ Y | ≤ |S|+ 2|MR| − |S ∩ Y |
≤ ε′n+ p/2 + 2p/3− (ε′n− 10p/3) = 9p/2. (3.5)

Let F ′ be the subgraph G[A,B ∪ Z] obtained by removing all edges uv with c(uv) = ca
for some a ∈ A. Note that for each a ∈ A,

dF ′(a) ≥ δc(G) − (1 + |V (G) \ (B ∪ Z)| − 1) = δn − |A| − |Y | = ε′n− |Y | = p.

Hence, e(F ′) ≥ p|A| ≥ p(δ − ε′)n and ∆(F ′) ≤ 24ε′n as (A,B ∪ Z) is 24ε′-extremal by
Proposition 3.4. Since ε′ ≪ δ, König’s theorem implies that there is a matching

e(F ′)/∆(F ′) ≥ 11p/2
(3.5)

≥ p+ |(S ∪ V (MR)) ∩ V (F ′)|.
Thus there is a matching M ′ in F ′ ⊆ G[A,B ∪ Z] such that |M ′| = p and V (M ′) ∩
(V (MR)∪S) = ∅. By adding (appropriate) edges of F incident with S, we can extend MR

into a matching M in F = G \ A satisfying V (M) ∩ V (M ′) = ∅, |M | = ⌈ε′n⌉. Note that
|M |+ |M ′| = p+ ⌈ε′n⌉ ≤ 2ε′n+ 1 and

⌊

3|A|
2

+ |M |+ |M ′|
2

+ |Y | − |V (M) ∩ Y |
2

⌋

≥
⌊

3|A|
2

+ |M |+ |M ′|
2

+
|Y |
2

⌋

(3.2),(3.3)

≥
⌊

3(δ − ε′)n

2
+ ε′n+

p

2
+

ε′n− p

2

⌋

=

⌊

3δn

2

⌋

.

Again, we are done by Lemma 3.5 (with M,M ′, 2ε′ playing the roles of M,M ′, ε). �
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4. Absorbing cycles

In this section, we prove Lemma 2.2. We need the following definitions. Given a vertex
x, we say that a path P is an absorbing path for x if the following conditions hold:

(i) P = z1z2z3z4 is a properly coloured path of length 3;
(ii) x /∈ V (P );
(iii) z1z2xz3z4 is a properly coloured path.

Next we define an absorbing path for two disjoint edges. Given two vertex-disjoint edges
x1x2, y1y2, we say that a path P is an absorbing path for (x1, x2; y1, y2) if the following
conditions hold:

(i) P = z1z2z3z4 is a properly coloured path of length 3;
(ii) V (P ) ∩ {x1, x2, y1, y2} = ∅;
(iii) both z1z2x1x2 and y1y2z3z4 are properly coloured paths of length 3.

Note that the ordering of (x1, x2; y1, y2) is important. We would also need the following
proposition from [14].

Proposition 4.1. Let P ′ = x1x2 . . . xℓ−1xℓ be a properly coloured path with ℓ ≥ 4. Let

P = z1z2z3z4 be an absorbing path for (x1, x2;xℓ−1, xℓ) with V (P ) ∩ V (P ′) = ∅. Then

z1z2x1x2 . . . xℓ−1xℓz3z4 is a properly coloured path.

Given a vertex x, let L(x) be the set of absorbing paths for x. Similarly, given two
vertex-disjoint edges x1x2, y1y2, let L(x1, x2; y1, y2) be the set of absorbing paths for
(x1, x2; y1, y2). The following lemma follows immediately from Lemmas 4.3 and 4.5 of [14].

Lemma 4.2. Let 0 < 1/n ≪ γ ≪ ε < 1/2. Let G be an edge-coloured graph on n vertices

with δc(G) ≥ (1/2 + ε)n. Then there exists a family F of vertex-disjoint properly coloured

paths each of length 3, which satisfies the following properties:

|F| ≤ γ1/2n, |L(x) ∩ F| ≥ γn, |L(x1, x2; y1, y2) ∩ F| ≥ γn

for all x ∈ V (G) and for all distinct vertices x1, x2, y1, y2 ∈ V (G) with x1x2, y1y2 ∈ E(G).

To prove Lemma 2.2, we aim to join the paths in F given by Lemma 4.2 into a properly
coloured cycle. First, we need the following definition, which are only used in this section.

Let G be an edge-coloured graph on n vertices. Let x, y ∈ V (G) be distinct and let
ℓ ∈ N. Define PG

ℓ (x; y) to be the set of properly coloured paths P of length ℓ from x to y.

Define µG
ℓ (x; y) := |PG

ℓ (x; y)|/nℓ−1 and µG
≤ℓ(x; y) :=

∑

ℓ′≤ℓ µ
G
ℓ′ (x; y). For a colour set Cy,

let PG
ℓ (x; y,Cy) be the set of paths P ∈ Pℓ(x; y) such that CP (y) ∈ Cy. Define µG

ℓ (x; y,Cy)

and µG
≤ℓ(x; y,Cy) analogously. For ℓ ∈ N and η > 0, we say that y is (≤ ℓ, η)-reachable

from x in G if µG
≤ℓ(x; y) ≥ η. We say that y is strongly (≤ ℓ, η)-reachable from x in G

if for any colour c0, y is (≤ ℓ, η)-reachable from x in G − {yz ∈ E(G) : c(yz) = c0}.
Equivalently, y is strongly (≤ ℓ, η)-reachable from x in G if µG

≤ℓ(x; y,C(G) \ c0) ≥ η for all

colours c0 ∈ C(G).

Proposition 4.3. Let ℓ ∈ N and let η > 0. Let G be an edge-coloured graph on n vertices.

Let x, y, v be distinct vertices in V (G).

(i) If y is strongly (≤ ℓ, η)-reachable from x, then for any colour c0, we have µ
G\v
≤ℓ (x; y,C(G)\

c0) ≥ η − ℓ2/n.

If y is not strongly (≤ ℓ, η)-reachable from x but is (≤ ℓ, 2η)-reachable, then

(ii) there exists a unique colour cy such that µG
≤ℓ(x; y, cy) ≥ η;
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(iii) µ
G\v
≤ℓ (x; y, cy) ≥ η − ℓ2/n.

Proof. For each ℓ′ ∈ N, v is in at most (ℓ′ − 1)nℓ′−2 paths of length ℓ′ from x to y. Hence
for all ℓ′ ≤ ℓ,

µ
G\v
ℓ′ (x; y,C(G) \ c0) ≥ µG

ℓ′ (x; y,C(G) \ c0)− (ℓ′ − 1)/n

≥ µG
ℓ′ (x; y,C(G) \ c0)− ℓ/n,

so (i) holds. The definitions of (≤ ℓ, 2η)-reachable and strongly (≤ ℓ, η)-reachable imply-
ing (ii). The proof of (i) can be adapted to prove (iii). �

Lemma 4.4. Let 0 < 1/n ≪ ε < 1/2. Suppose that G is an edge-coloured graph on n
vertices with δc(G) ≥ (1/2 + ε)n+ 2. Let x, y ∈ V (G) be distinct and let cx, cy be any two

colours. Then there exists a properly coloured path P from x to y of length at most ε−2

such that CP (x) 6= {cx} and CP (y) 6= {cy}.
Proof. Let ℓ0 := ⌊ε−2⌋ and let η be such that 1/n ≪ η ≪ ε. Let G,x, y, cx, cy be as defined
in the lemma. Remove all edges at x with colour cx and all edges at y with colour cy. So
d(x), d(y) ≥ (1/2 + ε)n and dc(v) ≥ (1/2 + ε)n for all v ∈ V (G) \ {x, y}. Therefore to
prove the lemma, it suffices to show that there exists a properly coloured path from x to y
of length at most ℓ0. Note that for all v ∈ V (G), all ℓ ≤ ℓ0 and all P ∈ PG

ℓ (x; v), we may
assume that y /∈ V (P ) or else the lemma holds.

For each ℓ ∈ N, let Sℓ be the set of vertices v ∈ V (G) \ x that are strongly (≤ ℓ, ηℓ)-
reachable from x, and let Tℓ be the set of vertices v ∈ V (G) \ (Sℓ ∪ x) that are (≤ ℓ, 2ηℓ)-
reachable from x. Since a (≤ ℓ, 2ηℓ)-reachable vertex from x is also (≤ ℓ + 1, 2ηℓ+1)-
reachable from x and a similar statement for strongly reachable, we have

Sℓ ⊆ Sℓ+1 and Sℓ ∪ Tℓ ⊆ Sℓ+1 ∪ Tℓ+1 for all ℓ ∈ N. (4.1)

Also S1 = ∅ and T1 is the set of vertex v ∈ N(x), so

|T1| ≥ (1/2 + ε)n. (4.2)

Suppose that there exists s ∈ Sℓ ∩ N(y). Let P ∈ PG
ℓ (x; s) with c(sy) /∈ CP (s) (which

exists as s is strongly (≤ ℓ, η)-reachable from x). Note that Py is a properly coloured path
from x to y of length at most ℓ + 1. Thus we may assume that |Sℓ| ≤ (1/2 − ε)n for all
ℓ < ℓ0. If 2|Sℓ+1|+ |Tℓ+1| ≥ 2|Sℓ|+ |Tℓ|+ε2n for all 1 ≤ ℓ < ℓ0−1, then together with (4.2)
we have 2|Sℓ0−1| + |Tℓ0−1| ≥ 3n/2. Hence |Sℓ0−1| ≥ n/2, a contradiction. Therefore, we
may assume that for some ℓ < ℓ0 − 1,

2|Sℓ+1|+ |Tℓ+1| < 2|Sℓ|+ |Tℓ|+ ε2n. (4.3)

By (4.1), we have

|(Sℓ+1 ∪ Tℓ+1) \ (Sℓ ∪ Tℓ)| ≤ ε2n. (4.4)

Let W := Tℓ ∩ Tℓ+1. Recall that |Sℓ| ≤ (1/2 − ε)n. By (4.1) and (4.2), we have

|Tℓ| ≥ |Sℓ ∪ Tℓ| − |Sℓ| ≥ |T1| − (1/2 − ε)n ≥ 2εn.

Since Tℓ \W = Tℓ \Tℓ+1 ⊆ Sℓ+1 \Sℓ ⊆ (Sℓ+1 ∪Tℓ+1) \ (Sℓ ∪Tℓ) by (4.1), (4.4) implies that

|Tℓ \W | ≤ ε2n (4.5)

and so

|W | ≥ |Tℓ| − |Tℓ \W | ≥ 2εn− ε2n ≥ εn. (4.6)
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For each w ∈ W ⊆ Tℓ, Proposition 4.3(ii) implies that there exists a unique colour cw
such that µG

≤ℓ(x;w, cw) ≥ ηℓ. Define an auxiliary digraph H with on V (G) \ x and edge

set E(H) := {wv : w ∈ W,v ∈ NG(w) \ x and c(wv) 6= cw}. Note that for each w ∈ W , we
have d+H(w) ≥ dcG(w)− 1 ≥ (1 + ε)n/2 and so

e(H) ≥ (1 + ε)n|W |/2. (4.7)

We now bound e(H) from above (to obtain a contradiction) in the following claim.

Claim 4.5. Let eH(X,Y ) denote the number of edges from X to Y . Then

(i) eH(W, (Sℓ+1 ∪ Tℓ+1) \ (Sℓ ∪ Tℓ)) < ε2n|W |;
(ii) eH(W,Tℓ \W ) < ε2n|W |;
(iii) eH(W,V (G) \ (Sℓ+1 ∪ Tℓ+1 ∪ x)) < 4ηε−1n|W |;
(iv) eH(W,Sℓ) < 2ηn|W |;
(v) eH(W,W ) < (1/2 − ε+ 2η)n|W |.

Proof of claim. Note that (i) and (ii) follow from (4.4) and (4.5), respectively. To see (iii),

note that if wv ∈ E(H) with w ∈ W and v ∈ V (G) \ x and P ∈ PG\v
ℓ′ (x;w, cw), then Pv

is a properly coloured path of length ℓ′ + 1 from x to v. By Proposition 4.3(iii), for each
v ∈ V (G) \ x,

µG
≤ℓ+1(x, v) ≥

1

n

∑

w∈NH(v)

µ
G\x
≤ℓ (x;w, cw) ≥ ηℓeH(W,v)/2n.

Therefore, for all v ∈ V (G)\(Sℓ+1∪Tℓ+1∪x), we have eH(W,v) < 4ηn ≤ 4ηε−1|W |, where
the last inequality is due to (4.6). Thus (iii) holds.

Consider the edge ws ∈ E(H) with w ∈ W and s ∈ Sℓ. If P ∈ PG\v
ℓ′ (x; s, C(G) \ c(ws)),

then Pw is a properly coloured path of length ℓ′ + 1 from x to w with CP (w) 6= {cw}.
We must have eH(w,Sℓ) < 2ηn for all w ∈ W , which in turn implies (iv). Indeed, if
eH(w,Sℓ) ≥ 2ηn, then by Proposition 4.3(iii),

µG
≤ℓ+1(x;w,C(G) \ cw) ≥

1

n

∑

s∈NH(w)∩Sℓ

µ
G\v
≤ℓ (x; s, C(G) \ c(ws))

≥ 1

n
eH(w,Sℓ)(η

ℓ − ℓ2/n) ≥ ηℓ+1

and so w ∈ Sℓ+1 (as w ∈ W ⊆ Tℓ+1 implying that µG
≤ℓ+1(x;w, cw) ≥ ηℓ+1), a contradiction.

By a similar argument with (Tℓ playing the role of Sℓ), we deduce that every w ∈ W ⊆
Tℓ+1 has less than 2ηn edges ww′ in G such that w′ ∈ W ⊆ Tℓ and cw 6= c(ww′) 6= cw′ .
This means that, in H, each w ∈ W is contained less than 2ηn 2-cycles. Since each w ∈ W
is incident to at most (1/2 − ε)n edges of the same colour in G, we have eH(W,w) <
(1/2 − ε)n + 2ηn = (1/2 − ε+ 2η)n implying (v). �

By Claim 4.5, we deduce that

e(H) ≤
(

ε2 + ε2 + 4ε−1η + 2η + 1/2 − ε+ 2η
)

n|W | < (1 + ε)n|W |/2,

contradicting (4.7). This complete the proof of Lemma 4.4. �

We now prove Lemma 2.2.
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Proof of Lemma 2.2. Let ε0 be such that 1/n ≪ ε0 ≪ ε. Apply Lemma 4.2 and obtain
a family F of vertex-disjoint properly coloured paths each of length 3 such that for all
x ∈ V (G) and for all distinct vertices x1, x2, y1, y2 ∈ V (G) with x1x2, y1y2 ∈ E(G),

|F| ≤ 3γ1/2n, |L(x) ∩ F| ≥ 3γn, |L(x1, x2; y1, y2) ∩ F| ≥ 3γn.

Let P1, . . . , P|F| be paths in F . Let xi and yi be endvertices of Pi for all i ≤ |F|. Suppose
that for j ≤ |F|, we have already found Q1, . . . , Qj−1 such that

(a) for all i < j, Qi is a path from yi to xi+1 of length at most ε−2
0 ;

(b) for all i < j, PiQiPi+1 is a properly coloured path;
(c) Q1, . . . , Qj−1, Pj+1, . . . , P|F| are disjoint.

We now find Qj as follows. Let CPj(yj) = {cy}, let CPj+1
(xj+1) = {cx} and let W :=

(
⋃

i≤|F| V (Pi) ∪
⋃

i′<j V (Qi′)) \ {yj , xj+1}, where we take P|F|+1 = P1 and x|F|+1 = x1.

Note that |W | ≤ 3γ1/2n(4 + ε−2
0 ) ≤ εn/2. Let G′ = G \W . So δc(G′) ≥ (1/2 + ε/2)n ≥

(1/2 + ε0)|G′|. Apply Lemma 4.4 and obtain a properly coloured path Qj in G′ from yj
to xj+1 of length at most ε−2

0 such that CQj(yj) 6= {cy} and CQj(xj+1) 6= {cx}. Thus we
have found Q1, . . . , Q|F|.

Let C := P1Q1P2 . . . P|F|Q|F| be a properly coloured cycle in G. Note that |C| ≤
3γ1/2n(4 + ε−2

0 ) ≤ εn/2. Let P be any set of k vertex-disjoint properly coloured paths in
G \ V (C) with k ≤ γn. Let P ′ be the set of properly coloured paths obtained from P by
breaking up every path P ∈ P with |P | ≤ 3 into isolated vertices. Thus |P ′| ≤ 3γn and
for each P ∈ P ′, |P | = 1 or |P | ≥ 4. For each P ∈ P ′, there exists a distinct P ′ ∈ F
such that P ′ ∈ L(V (P )) if |P ′| = 1, and P ′ ∈ L(u1, u2;uℓ′uℓ′−1) if P = u1u2 . . . uℓ′ . By
Proposition 4.1 and the definition of an absorbing path for a vertex, there exists a properly
coloured cycle C ′ with vertex set V (C) ∪ V (

⋃P). �

5. Properly coloured 1-path-cycle

A 1-path-cycle is a disjoint union of cycles and at most one path. In this section, we
prove the following lemma, which immediately implies Lemma 2.3.

Lemma 5.1. Let 0 < 1/n ≪ β ≪ ε ≪ 1/2 < δ. Suppose that G is a critical edge-coloured

graph on n vertices with δc(G) ≥ δn + 1. Then one of the following statements holds

(i) G contains a properly coloured 1-path-cycle H such that |H| ≥ min{(3δ+β)n/2, n}
and every cycle in H has length at least βn/100;

(ii) G is (δ, ε)-extremal.

To prove Lemma 5.1, we need the following terminology. Let x = (x, cx) and y = (y, cy)
be pairs with vertices x, y ∈ V (H) and colours cx, cy. For ρ > 0, we say that H is a
1-path-cycle with parameters ρ-(x;y) if H satisfies the following four properties:

(a) H is a properly coloured 1-path-cycle;
(b) every cycle in H has length at least ρn;
(c) the path component P in H has length at least ρn with endvertices x and y;
(d) CH(x) = {cx} and CH(y) = {cy}.

Note that cx and cy are precisely the colours of the edges in P (and H) incident with x
and y, respectively. The order of x and y is important. If ρ is known from the context,
we simply write (x;y) instead of ρ-(x;y).

Orient the cycles of H into directed cycles arbitrarily and orient the path P into a
directed path from x to y. For each v ∈ V (H) \ y, define c+(v) to be c(vv+), where v+ is
the successor of v, and for each w ∈ V (H) \ x, define c−(w) to be c(ww−), where w− is
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the ancestor of w. From now on every 1-path cycle is assumed to be oriented as above.
For an oriented cycle C and u, v ∈ V (C), we write uC+v for the path uu+ . . . v−v in C
and uC−v for the path uu− . . . v+v in C.

Lemma 5.2. Let ρ > 0. Let G be an edge-coloured graph on n vertices with δc(G) ≥ ρn+1.
Suppose that H is a properly coloured 1-path-cycle in G of maximum order such that every

cycles in H has length at least ρn, and that |H| < n. Then there exists a 1-path-cycle H ′

with parameters ρ-(x;y) such that V (H ′) = V (H).

Proof. If H contains no path component, then H + w is a properly coloured 1-path-cycle
such that every cycle has length at least ρn, where w ∈ V (G) \ V (H). This contradicts
the maximality of |H|. So we may assume that H contains a path component P .

Suppose that P has length less than ρn. Let x be an endvertex of P . Let x = (x, cx)
with CP (x) = {cx} if |V (P )| ≥ 2, and cx is an arbitrary colour otherwise. Note that
|N(x)| ≥ δc(G) − 1 ≥ ρn ≥ |V (P ) \ x|. So there exists w ∈ N(x) \ V (P ). If w /∈ V (H),
then we can extend P thus enlarging H, a contradiction. Hence w ∈ V (H) \ V (P ) and
let C be the cycle in H containing w. Without loss of generality, we may assume that
c(xw) 6= c−(w). Then H ′ = H + xw−ww− is a properly coloured 1-path-cycles on vertex
set V (H) such that every cycle in H has length at least ρn and the path component
is P ′ = w+C

+wxP of length at least |C| ≥ ρn. Therefore H ′ is a 1-path-cycles with
parameters (w+;y), where w+ = (w+, c+(w+)) and y = (y, cy) such that y is the other
endvertex of P ′ and CP ′(y) = {cy}. �

In the next proposition, we show how we can change from 1-path-cycle to another one
by ‘switching edges’.

Proposition 5.3. Let G be an edge-coloured graph. Let ρ > 0. Let H be a 1-path-
cycle in G with parameters (x;y), where x = (x, cx) and y = (y, cy). Suppose that w ∈
V (H) ∪NG(x) such that distH(w, x),distH(w, y) ≥ ρn+ 1. Then

(i) if c(xw) 6= c−(w), then H+xw−ww+ is a 1-path-cycle with parameters ((w+, c+(w+));y);
(ii) if c(xw) 6= c+(w), then H+xw−ww− is a 1-path-cycle with parameters ((w−, c−(w−));y).

A similar statement holds for w ∈ V (H) ∪NG(y) with distH(w, x),distH(w, y) ≥ ρn+ 1.

Proof. Suppose that c(xw) 6= c−(w). If w is in the path component P of H, then P +
xw − ww+ is a properly coloured graph consisting of a cycle xPwx and a path w+Py (as
c(xw) 6= cx). Since distH(w, x),distH(w, y) ≥ ρn + 1, both of these components have size
at least ρn. Thus H + xw − ww+ is a 1-path-cycle with parameters ((w+, c+(w+));y). If
C is the cycle in H containing w, then P + C + xw − ww+ is a properly coloured path
w+C+wxPy. Hence H + xw − ww+ is a 1-path-cycle with parameters ((w−, c−(w−));y).
Therefore (i) holds, and (ii) holds by a similar argument. �

Let H be 1-path-cycle in G with parameters (x;y) and let H ′ be an 1-path-cycle with
parameters (z;y) in G obtained from H by switching one edges. Note that we can deduce
which edges were involved in the switching by analysing z as follows. Let z = (z, cz) be a
pair with vertex z ∈ V (H) \ {x, y} and colour cz ∈ CH(z). Define the vertex

wz :=

{

z− if cz = c+(z),

z+ if cz = c−(z).

Note that H ′ = H + xwz − wzz by Proposition 5.3.
Let X1(H) be the set of pairs z = (z, cz) with vertex z ∈ V (H) and colour cz ∈ CH(z)

such that



LONG PROPERLY COLOURED CYCLES IN EDGE-COLOURED GRAPHS. 15

• H + xwz − wzz is a 1-path-cycle with parameters (z;y);
• distH(wz, x),distH(wz, y) ≥ 2ρn.

Note that {(z;y) : z ∈ X1(H)} is a subset of possible parameters of the 1-path-cycle that
can be obtained from H by switching one edge of H with an edge incident to x. We obtain
the following properties of X1(H).

Proposition 5.4. Let G be an edge-coloured graph on n vertices and let ρ > 0. Suppose

that H is a properly coloured 1-path-cycle in G of maximum order, and that H has pa-

rameters ρ− (x;y). Let z ∈ NG(x) such that distH(z, x),distH(z, y) ≥ 2ρn+ 1. Then the

following statements hold

(a) NG(x) ⊆ V (H);
(b) if c(xz) 6= c−(z), then (z+, c+(z+)) ∈ X1(H);
(c) if c(xz) 6= c+(z), then (z−, c−(z−)) ∈ X1(H);
(d) for z ∈ X1(H), NG(z) ⊆ V (H).

Proof. If z ∈ NG(x) \ V (H), then H + xz is a 1-path-cycle with parameters (z, c(xz);y)
contradicting the maximality of H. Thus (a) holds, and (d) is proved similarly (by con-
sidering H + xwz − wzz instead of H).

If c(xz) 6= c−(z), then H + xz− zz+ is a 1-path-cycle with parameters ((z+, c+(z+));y)
by Proposition 5.3(i). So (z+, c+(z+)) ∈ X1(H) implying (b). A similar argument shows
that (c) holds. �

We would also need to consider the set of 1-path-cycles with parameters (z;y) that can
be obtained from H by replacing two edges of H. We now define X2, which is the analogue
of X1 for replacing two edges of H (with some additional constraints). Let X2(H) be the
set of pairs z = (z, cz) with vertex z ∈ V (H) and colour cz ∈ CH(z) such that there exist
at least 10ρn pairs z′ = (z′, cz′) ∈ X1(H) satisfying

• distH(z, x),distH(z, y),distH(z′, z) ≥ 2ρn and
• H + xwz′ + z′wz − zwz − z′wz′ is a 1-path-cycle with parameters (z;y).

In the next lemma, we show that if |X1(H)∪X2(H)| is bounded above, then there exist
disjoint W ∗, Z∗ ⊆ V (G) such that G[W ∗ ∪ Z∗] is extremal with partition W ∗, Z∗. The
proof relies on analysing the structure of X1(H), X2(H) and N(z) for z ∈ X1(H).

Lemma 5.5. Let 0 < 1/n ≪ ρ ≤ α/1000 < 1/1000 and let 1/2 + 3α < δ ≤ 2/3. Let

G be a critical edge-coloured graph on n vertices with δc(G) ≥ δn + 1. Suppose that H is

a properly coloured 1-path-cycle in G of maximum order. Suppose that H has parameters

(x;y), that |X1(H) ∪ X2(H)| ≤ (δ + α)n and that |H| < n. Then there exist disjoint

W ∗, Z∗ ⊆ V (H) such that

(i) |W ∗| ≥ (δ − 7
√
α)n and |Z∗| ≥ (2δ − 1− 3α1/4)n;

(ii) for each w ∈ W ∗, there exists a distinct colour c∗w such that there are at least

|Z∗| − 3
√
αn vertices z ∈ Z∗ ∩NG(w) such that c(zw) = c∗w;

(iii) for each z ∈ Z∗, dG(z) ≤ (δ + 4α1/4)n and there are at least (δ − 6α1/4)n vertices

w ∈ W ∗ ∩NG(z) and c(zw) = c∗w.

Proof. Write X1 for X1(H) and X2 for X2(H). Let Z be the set of vertices z ∈ V (H) such
that distH(z, x),distH(z, y) ≥ 2ρn and

(∗) there exists a colour cz ∈ CH(z) such that z = (z, cz) ∈ X1 with c(zwz) = c(xwz).

Let Z ′ be the set of vertices z ∈ Z such that both colours cz ∈ CH(z) satisfy (∗). Clearly
Z ′ ⊆ Z.

We now bound the sizes of Z and Z ′ from below.
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Claim 5.6. |Z|+ |Z ′| ≥ (δ − 2α)n ≥ n/2.

Proof of claim. Let

N := {u ∈ NG(x) : distH(u, x),distH(u, y) > 2ρn}, N ′ := {u ∈ N : c(xu) ∈ CH(u)}.
Thus |N | ≥ δc(G) − 1 − 2 · 2ρn ≥ (δ − 4ρ)n and N ⊆ V (H) by Proposition 5.4(a). By
Proposition 5.4(b) and (c),

|X1| ≥ |N ′|+ 2|N \N ′| = |N |+ |N \N ′| ≥ (δ − 4ρ)n + |N \N ′|.
Since |X1 ∪X2| ≤ (δ + α)n, we have |N \N ′| ≤ (4ρ+ α)n and so

|N ′| ≥ |N | − |N \N ′| ≥ (δ − α− 8ρ)n ≥ (δ − 2α)n.

Let X ′
1 be the subset of X1 generated by the edges xv with v ∈ N ′, that is, X ′

1 :=
{(x′, cx′) ∈ X1 : w(x′,cx′)

∈ N ′}. So |X ′
1| ≥ (δ − 2α)n. Thus if (z, cz) ∈ X ′

1, then

wz ∈ N ′ and c(zwz) = c(xwz). Note that Z contains all vertices z ∈ V (H) such that
(z, cz) ∈ X ′

1 for some colour cz. Similarly, Z ′ contains all vertices z ∈ V (H) such that
(z, c+(z)), (z, c−(z)) ∈ X ′

1. Hence, |Z|+ |Z ′| ≥ |X ′
1| ≥ (δ − 2α)n ≥ n/2 as required. �

Define a directed graph F on V (H) such that there exists a directed edge from z to w
if and only if

• (z, cz) ∈ X1 and z ∈ Z ∩NH(w) and c(wz) 6= cz;
• distH(w, x),distH(w, y),distH(w, z) ≥ 2ρn.

We also colour the edges uv (in F ) by c(uv). We now establish some properties of F .

Claim 5.7.

(a) e(F ) ≥ eF (Z, V (F )) ≥ (δ − 6ρ)n|Z|+∑

z∈Z′(dG(z)− δn).
(b) If w ∈ V (H) has 10ρn edges zw in F with c(zw) 6= c+(w), then (w−, c−(w−)) ∈ X2.

(c) If w ∈ V (H) has 10ρn edges zw in F with c(zw) 6= c−(w), then (w+, c+(w+)) ∈ X2.

Proof of claim. For z ∈ X1, NG(z) ⊆ V (H) by Proposition 5.4(d). Hence, for each z ∈ Z,
d+F (z) ≥ |NG(z)| − 3 · 2ρn ≥ (δ − 6ρ)n. A similar argument implies that, for each z ∈ Z ′,

d+F (z
′) ≥ dG(z

′)− 6ρn. Hence (a) holds.
Suppose that zw is an edge in F with c(zw) 6= c+(w). Thus there is z = (z, cz) ∈ X1

such that cz 6= c(zw). Note that by the definition of X1, H ′ = H + xwz − wzz is a
1-path-cycle with parameters (z;y). Since distH(w, x),distH(w, y),distH(w, z) ≥ 2ρn, we
have distH′(w, z),distH′(w, y) ≥ ρn + 1. Proposition 5.3(ii) implies that H ′ + zw − ww−

is a 1-path-cycle with parameters ((w−, c−(w−));y). This implies (b), and (c) is proven
similarly. �

Let W := {w ∈ V (F ) : d−F (w) ≥ 20ρn} and W ′ := {w ∈ V (F ) : d−F (w) ≥ (1− 2
√
α)|Z|}.

Let W ∗ be the set of w ∈ W ′ such that there exists a colour c∗w and there are at most 10ρn
vertices z ∈ NG(w) with c(zw) 6= c∗w.

Claim 5.8. |W ∗| ≥ (δ − 7
√
α)n, |W \W ∗| ≤ 5

√
αn and

1

n

∑

z∈Z′

(dG(z)− δn) + |W ′ \W ∗| ≤ 4
√
αn. (5.1)

Proof of claim. If |W \W ′| > √
αn, then Claim 5.7(a) implies that

(δ − 6ρ)n|Z| ≤ eF (Z, V (F )) ≤ eF (Z,W ) + 20ρn2 ≤ |Z||W | − 2
√
α|Z||W \W ′|+ 20ρn2

≤ |Z||W | − 2α|Z|n + 20ρn2 ≤ (|W | − 2αn + 80ρn)|Z|,
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where the last inequality holds as |Z| ≥ n/4 by Claim 5.6. This implies that |W | > (δ+α)n.
By Claim 5.7(b) and (c), we have |X2| ≥ |W |, a contradiction. Hence,

|W \W ′| ≤ √
αn.

Thus we have

eF (Z, V (F )) ≤ eF (Z,W ) + 20ρn2 ≤ (|W ′|+ (
√
α+ 80ρ)n)|Z| ≤ (|W ′|+ 2

√
αn)|Z|.

By Claim 5.7(a), we have

|W ′| ≥ (δ − 2
√
α− 6ρ)n +

1

|Z|
∑

z∈Z′

(dG(z)− δn)

≥ (δ − 3
√
α)n+

1

n

∑

z∈Z′

(dG(z)− δn). (5.2)

Note that if w ∈ W ′ \W ∗, then (w−, c−(w−)), (w+, c+(w+)) ∈ X2 by Claim 5.7(b) and (c).
Thus |X2| ≥ |W ′|+ |W ′ \W ∗|. Since |X2| ≤ (δ + α)n, (5.2) implies that

1

n

∑

z∈Z′

(dG(z)− δn) + |W ′ \W ∗| ≤ (α+ 3
√
α)n ≤ 4

√
αn,

so (5.1) holds. Moreover, |W ′ \W ∗| ≤ 4
√
αn, so |W \W ∗| ≤ 5

√
αn. Together with (5.2),

|W ∗| = |W ′| − |W ′ \W ∗| ≥ (δ − 7
√
α)n. �

Recall that for each w ∈ W ∗ ⊆ W ′, d−F (w) ≥ (1 − 2
√
α)|Z|. So for each w ∈ W ∗, the

number of edges zw of colour c∗w in G is at least

|{z ∈ NG(w) : c(zw) = c∗w}| ≥ (1− 2
√
α)|Z| − 10ρn ≥ |Z| − 3

√
αn. (5.3)

Since δc(G) ≥ δn, the left hand side of the inequality is bounded above by (1− δ)n. Thus
|Z| ≤ (1− δ + 3

√
α)n and so Claim 5.6 implies that

|Z ′| ≥ (2δ − 1− 4
√
α)n. (5.4)

Let Z∗ be the set of vertices z ∈ Z satisfying (iii). We now bound the size of Z∗ from
below.

Claim 5.9. |Z∗| ≥ (2δ − 1− 3α1/4)n.

Proof of claim. Let Z1 be the set of z ∈ Z ′ such that dG(z) ≥ (δ + 4α1/4)n. So (5.1)
implies that

|Z1| ≤ α1/4n.

Let Z2 be the set of z ∈ Z such that dG(z, V (F ) \W ) ≥ 20
√
ρn. Note that

|Z2| ≤ eF (Z, V (F ) \W )/20
√
ρn ≤ √

ρn.

Let Z3 be the set of z ∈ Z such that there exist at least 4α1/4n vertices w ∈ W ∗ with
c(zw) 6= c∗w. By (5.3), each w ∈ W ∗ is incident with at most 3

√
αn edges zw with z ∈ Z

and c(zw) 6= c∗w. Hence

|Z3| ≤ 3
√
αn2/(4α1/4n) < α1/4n.

For each z ∈ Z \ (Z2 ∪Z3), the number of edges zw (in both G and F ) such that w ∈ W ∗

and c(zw) = c∗w is at least

dG(z,W
∗)− 4α1/4n ≥ dG(z)− 20

√
ρn− |W \W ∗| − 4α1/4n ≥ (δ − 6α1/4)n,
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where the last inequality is due to Claim 5.8. Hence Z∗ ⊇ Z ′ \ (Z1 ∪ Z2 ∪ Z3). Together

with (5.4), we have |Z∗| ≥ (2δ − 1− 3α1/4)n. �

Note that properties (i) and (ii) holds by Claims 5.8 and 5.9 and (5.3), and (iii) holds by
our construction. To complete the proof, it suffices to show that W ∗ and Z∗ are disjoint.
For each w ∈ W ∗, (ii) and (i) imply that

dG(w) ≥ dcG(w) − 1 + |Z∗| − 3
√
αn ≥ (3δ − 1− 3α1/4 − 3

√
α)n > (δ + 4α1/4)n,

so w /∈ Z∗ as required. �

Let G be an edge-coloured graph and let H be 1-path-cycle with parameters (x;y) with
path component P . Let H ′ be the 1-path-cycle with parameters (y;x) obtained from H
by reversing the orientations of all edges. Let Y1(H) := X1(H

′) and Y2(H) := X2(H
′).

We study the edges between X1(H) ∪X2(H) and Y1(H) ∪ Y2(H) in the following lemma.

Lemma 5.10. Let G be a critical edge-coloured graph on n vertices and let ρ > 0. Suppose

that H is a properly coloured 1-path-cycle in G of maximum order. Suppose that H has

parameters (x;y) and that |H| < n. Then for all (x′, cx′) ∈ X1(H) ∪ X2(H) and all

(y′, cy′) ∈ Y1(H) ∪ Y2(H) such that distH(x, y) ≥ 2ρn, either xy /∈ E(G), c(xy) = cx or

c(xy) = cy.

Proof. Consider any x′ = (x′, cx′) ∈ X1(H)∪X2(H) and any y′ = (y′, cy′) ∈ Y1(H)∪Y2(H)
such that distH(x, y) ≥ 2ρn. To prove the lemma, it is sufficient to show that there exists
a 1-path-cycle H0 with V (H0) = V (H) and parameters (x′;y′). To see this suppose that
x′y′ ∈ E(G) and cx′ 6= c(xy) 6= cy′ , then H0 + x′y′ is a vertex-disjoint union of cycles each
of length at least ρn. For z /∈ V (H), (H0 + x′y′) ∪ z is a 1-path-cycle contradicting the
maximality of |H|.

We will only consider the case when x′ ∈ X2(H) and y′ ∈ Y2(H), since the other cases
proved by similar (and simpler) arguments. Choose z = (z, cz) ∈ X1(H) and v = (v, cv) ∈
Y1(H) such that

• any pair of {x, y, x′, y′, z, v} are distance at least ρn+ 10 apart in H;
• H ′ := H + xwz + zwx′ − zwz − x′wx′ is a 1-path-cycle with parameters (x′;y).
• H + ywv + vwy′ − vwv − y′wy′ is a 1-path-cycle with parameters (x;y′).

Note that z and v exist since x′ ∈ X2(H) and y′ ∈ Y2(H). Since distH(v, x),distH(v, y),distH(v, z) ≥
ρn + 10, we have distH′(v, x′),distH′(v, y) ≥ ρn + 1. Proposition 5.3 implies that H ′′ :=
H ′ + ywv − vwv is a 1-path-cycle with parameters (x′;v). By a similar argument, we
deduce that H ′′ + vwy′ − y′wy′ is a 1-path-cycle with parameters (x′;y′) as required. �

The next lemma plays a key role in the proof of Lemma 5.1.

Lemma 5.11. Let ε, ρ, α be such that 1/n ≪ α, ε ≪ 1. Let G be an edge-coloured graph

on n vertices with δc(G) ≥ δn+ 1. Then one of following statements holds

(a) G contains a properly coloured 1-path-cycle such that |H| ≥ min{n, (3δ+α/2)n/2}
and every cycle in H has length at least αn/100;

(b) there exist disjoint W ∗, Z∗ ⊆ V (G) such that

(i) |W ∗| ≥ (δ − 7
√
α)n and |Z∗| ≥ (2δ − 1− 3α1/4)n;

(ii) for each w ∈ W ∗, there exists a distinct colour c∗w such that there are at least

|Z∗| − 3
√
αn vertices z ∈ Z∗ such that c(zw) = c∗w;

(iii) for each z ∈ Z∗, dG(z) ≤ (δ+4α1/4)n and there are at least (δ−6α1/4)n edges

zw such that w ∈ W ∗ and c(zw) = c∗w.
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Here we give a brief description of the proof. By Lemma 5.5, we may assume that
|X1(H) ∪X2(H)| is bounded below (or else (b) holds). Similarly |Y1(H) ∪ Y2(H)| is also
bounded below. Using Lemma 5.10, we then show that |H| ≥ (3δ + α/2)n/2 as desired.

Proof of Lemma 5.11. Let ρ := α/1000. Let H be a properly coloured 1-path-cycle in G
such that every cycle in H has length at least ρn. Suppose that |H| is maximum. We may
assume that |H| < min{n, (3δ + α/2)n/2} or else we are done. By Lemma 5.2, we further
assume that H is a 1-path-cycle with parameters ρ-(x;y).

Let X := X1(H)∪X2(H) and let Y := Y1(H)∪Y2(H). By Lemma 5.5, we may assume
that |X| ≥ (δ + α)n. Similarly, by reversing all orientation of H and Lemma 5.5, we
may also assume that |Y | ≥ (δ + α)n. Let SX be the set of vertices v ∈ V (H) such that
(v, c+(v)), (v, c−(v)) ∈ X. Let RX := {(x′, cx′) ∈ X : x′ /∈ SX}. Note that

2|SX |+ |RX | = |X| ≥ (δ + α)n. (5.5)

Consider any y′ = (y′, cy′) ∈ Y . Proposition 5.4 and Lemma 5.10 imply that

|NG(y)| ≥ δn, NG(y) ⊆ V (H), |NG(y) ∩ SX | ≤ 4ρn. (5.6)

If RX = ∅, then
|H| ≥ |NG(y

′)|+ |SX | − 4ρn ≥ δn + (δ + α)n/2 − 4ρn ≥ (3δ + α/2)n/2,

a contradiction. Thus RX 6= ∅. Similarly, let SY be the set of vertices v ∈ V (H) such that
(v, c+(v)), (v, c−(v)) ∈ Y and RY := {(y′, cy′) ∈ Y : y′ /∈ Sy}.

Define F to be the auxiliary directed bipartite graph on vertex classes RX and RY such
that there exists a directed edge from v = (v, cv) to w = (w, cw) if and only if

• distG(v,w) ≥ 2ρn;
• vw is an edge in G with c(vw) 6= cv.

By Lemma 5.10, F is an oriented graph, that is, F has no directed 2-cycle. Consider any
y′ = (y′, cy′) ∈ Y . We have

d+F (y
′) ≥ |NG(y

′) ∩RX | − 4ρn ≥ |NG(y
′) ∩ (RX ∪ SX)| − 4ρn− |NG(y

′) ∩ SX |
(5.6)

≥ δn + |RX |+ |SX | − |H| − 8ρn
(5.5)

≥ (3δ + α− 16ρ)n + |RX |
2

− |H|.

Similarly, for any x′ ∈ RX , d+F (x
′) ≥ (3δ+α−16ρ)n+|RY |

2 −|H|. Since F is an oriented graph,
we have

|RX ||RY | ≥ e(F ) ≥
∑

x∈RX

d+F (x) +
∑

y∈RY

d+F (y)

≥ |RX |
(

(3δ + α− 16ρ)n + |RY |
2

− |H|
)

+ |RY |
(

(3δ + α− 16ρ)n + |RX |
2

− |H|
)

,

0 ≥ (|RX |+ |RY |)((3δ + α− 16ρ)n/2− |H|).
This implies that |H| ≥ (3δ+α−16ρ)n/2 ≥ (3δ+α/2)n/2 as RX∪RY 6= ∅, a contradiction.

�

When δ ≥ 2/3, Lemma 5.11 implies Lemma 5.1. For 1/2 < δ < 2/3, we present a rough
sketch proof of Lemma 5.1 using Lemma 5.11. Suppose that Lemma 5.1 holds for any δ′

with δ′ > δ. Apply Lemma 5.11 and we may assume that Lemma 5.11(b) holds (or else
we are done). Thus there exist disjoint Z∗,W ∗ ⊆ V (G) satisfying Lemma 5.11(b). Let

δ∗ := (δ − 4α1/8)n/|G \ Z∗|. So δ∗ > δ. If dc(v, Z∗) ≤ 4α1/8n for all vertices v /∈ Z∗, then

δc(G \Z∗) ≥ (δ − 4α1/8)n = δ∗|G \Z∗|. Since δ∗ > δ, we apply Lemma 5.1 to G \Z∗. We
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have either a large enough properly coloured 1-path-cycle or G\Z∗ is (δ∗, ε∗)-extremal for
some small ε∗ or both. In the second case, we then show that G is (δ, ε)-extremal. This
argument is formalised in the lemma below.

We would need the following notation. For φ ≥ 0, let I0(φ) := [2/3 − φ, 1). For s ∈ N,

let Is(φ) := {p ∈ [0, 1) \⋃0≤i<s Ii(φ) :
p−φ
3/2−p ∈ Is−1(φ)}. Let sφ(δ) be the integer s such

that δ ∈ Is(φ).

Lemma 5.12. Let 0 < 1/n ≪ αsφ(δ) ≪ αsφ(δ)−1 ≪ · · · ≪ α0 ≪ φ ≪ ε ≪ 1/2 ≪ δ ≤
δ∗ < 1. Suppose that 4sφ(δ)ε ≪ δ − 1/2, and that G is a critical edge-coloured graph

on n∗ ≥ 2sφ(δ
∗)n vertices with δc(G) ≥ δ∗n∗ + 1. Then one of the following statements

holds:

(i∗) G contains a properly coloured 1-path-cycle H such that |H| ≥ (3δ∗+αsφ(δ∗)/2)n
∗/2

and every cycle in H has length at least αsφ(δ∗)n
∗/100;

(ii∗) G is (δ∗, 4sφ(δ
∗)ε)-extremal.

Proof. Fix δ∗ and write s∗ and α for sφ(δ
∗) and αsφ(δ∗), respectively. Without loss of

generality, δ∗ ≤ 2/3. Suppose that G satisfies the hypothesis. Apply Lemma 5.11 to G
with ρ = αs∗/100. We may assume that Lemma 5.11(b) holds or else we are done. Thus
there exist disjoint W ∗, Z∗ ⊆ V (G) such that

(i′) |W ∗| ≥ (δ∗ − 7
√
α)n∗ and |Z∗| ≥ (2δ∗ − 1− 3α1/4)n∗;

(ii′) for each w ∈ W ∗, there exists a distinct colour c∗w such that there are at least
|Z∗| − 3

√
αn∗ vertices z ∈ Z∗ ∩NG(w) such that c(zw) = c∗w;

(iii′) for each z ∈ Z∗, dG(z) ≤ (δ∗+4α1/4)n∗ and there are at least (δ∗−6α1/4)n∗ edges
zw such that w ∈ W ∗ ∩NG(z) and c(zw) = c∗w.

First suppose that s∗ = 0. Since δ∗ ≥ 2/3− φ and α, φ ≪ ε, (i′) implies that

|Z∗| ≥ (2δ∗ − 1− 3α1/4)n∗ = (1− δ∗ + (3δ∗ − 2)− 3α1/4)n∗ ≥ (1− δ∗ − ε)n∗.

Thus G is (δ∗, ε)-extremal. So we may assume that s ≥ 1 and the lemma holds for all
s′ < s.

Let F be the subgraph of G induced by edges zv such that z ∈ Z∗ and either v /∈ W ∗

or v ∈ W ∗ with c(zv) 6= cv. Note that by (iii′), e(F ) ≤ 10α1/4n∗|Z∗|. Let VF be the set of

vertices v such that dF (v) ≥ 5α1/8n∗. So |VF | ≤ 5α1/8n∗. For any w ∈ W ∗, (i′) and (ii′)
imply that

dG(w) ≥ (dcG(w) − 1) + |Z∗| − 3
√
αn∗ ≥ (3δ∗ − 1− 4α1/4)n∗. (5.7)

We split the proof into two cases depending on the value of δ∗.

Case 1: δ∗ < 3(1−15α1/8)

5(1−10α1/8)
. Let Z1 be a subset of Z∗ of size |Z1| = (δ∗ − 1/2)n∗ − |VF | and

let Z2 := Z∗ \ Z1. Note that by (i′),

|Z2| ≥ (δ∗ − 1/2− 3α1/4)n∗. (5.8)

Let G′ := G \ (Z1 ∪ VF ). We claim that

δc(G′) ≥ (δ∗ − 10α1/8)n∗ + 1 (5.9)

If v ∈ V \ W ∗, then dcG(v, Z1 ∪ VF ) ≤ dG(v, Z
∗) + |VF | ≤ dF (v) + |VF | ≤ 10α1/8n∗. If

w ∈ W ∗, then by (ii′), dcG(v, Z1 ∪ VF ) ≤ dcG(w,Z
∗)+ |VF | ≤ 1+ 3

√
αn∗ + |VF | ≤ 10α1/8n∗.

Hence (5.9) holds.
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Let

n′ := |G′| = (3/2 − δ∗)n∗ and δ′ :=
δ∗ − 10α1/8

3/2 − δ∗
≥ δ∗ − φ

3/2− δ∗
.

Note that sφ(δ
′) < s∗, αn∗ ≪ αsφ(δ′)n

′ and δc(G′) ≥ δ′n′ + 1. Also,

(3δ′ + αsφ(δ′)/2)n
′

2
=

3(δ∗ − 10α1/8)n∗ + αsφ(δ′)n
′/2

2
>

3(δ∗ + α/2)n∗

2
.

By our assumption on δ∗, we have (3δ′ + α′/2)n′/2 < n′. Clearly, |G′| ≥ n∗/2 ≥ 2sφ(δ
′)n.

Let ε′ := 4sφ(δ
′)ε. By induction hypothesis, we may assume that G′ is (δ′, ε′)-extremal (or

else we are done). Thus there exist disjoint A′, B′ ⊆ V (G′) such that

(A1′) |A′| ≥ (δ′ − ε′)n′ and |B′| ≥ (1 − δ′ − ε′)n′;
(A2′) for each a ∈ A′, there exists a distinct colour c′a such that there are at least

|B′| − ε′n′ vertices b ∈ B′ such that c(ab) = c′a;
(A3′) for each b ∈ B′, dG(b) ≤ (δ′ + ε′)n′ and b has at least |A′| − ε′n′ neighbours a ∈ A′

such that c(ab) = c′a.

Let U ′ := V (G′) \ (A′ ∪ B′), so |U ′| ≤ 2ε′n′. Recall that W ∗ ⊆ V (G′) and that ε′, α ≪
δ∗ − 1/2. For any w ∈ W ∗,

dG′(w) ≥ dG(w) − |Z1 ∪ VF |
(5.7)

≥ (3δ∗ − 1− 4α1/4)n∗ − (δ∗ − 1/2)n∗

= (2δ∗ − 1/2− 4α1/4)n∗ ≥ (δ∗ + ε′)n∗ ≥ (δ′ + ε′)n′.

Therefore W ∗ ∩B′ = ∅ by (A3′). Let A := W ∗ ∩A′. So

|A| ≥ |W ∗| − |U ′|
(i′)

≥ (δ∗ − 7
√
α)n∗ − 2ε′n′ ≥ (δ∗ − 4s

∗

ε)n∗ (5.10)

and |A′ \A| ≤ (δ′ + ε′)n′ − |A| ≤ 2 · 4s∗εn∗. Since Z2 ∩W ∗ = ∅, we have Z2 ∩A′ ⊆ A∩A′.
Hence

|Z2 ∩B′| ≥ |Z2| − |Z2 ∩A′| − |Z2 \ (A′ ∪B′)| ≥ |Z2| − |A ∩A′| − |U ′|
(5.8)
> 3

√
αn∗ + ε′n′.

Consider any a ∈ A. By (ii′) and (A2′), there exists vertex z ∈ Z2 ∩ B′ such that
c∗a = c(az) = c′a. Therefore we have c∗a = c′a for all a ∈ A.

Let B := B′ ∪ Z1. Note that

|B| = |V (G) \ (A′ ∪ U ′ ∪ V (F )| ≥ n∗ − |A′| − |U ′| − |VF | ≥ (1− δ − 4s
∗

ε)n. (5.11)

We now claim that G is (δ, 4s
∗

ε)-extremal with partition (A,B). Note that (A1) holds by
(5.10) and (5.11). Statements (ii′) and (A2′) imply (A2). Similarly, statements (iii′) and
(A3′) imply (A3).

Case 2: δ∗ ≥ 3(1−15α1/8)

5(1−10α1/8)
. Note that s∗ = 1. Case 2 is proved via a similar argument used

in Case 1, where we let Z1 be a subset of Z∗ of size |Z1| = (1−(3δ∗+α/2)/2)n∗−|VF |. �

We now prove Lemma 5.1 by choosing φ, α0, α1, . . . , αsφ(δ) appropriately.

Proof of Lemma 5.1. Let s0 := s0(δ) and let ε′ := 4−2s0ε. Choose β ≪ φ ≪ ε′, δ−1/2 such

that sφ(δ) ≤ 2s0. So 4sφ(δ)ε′ ≤ ε. Next choose β < αsφ(δ) ≪ αsφ(δ)−1 ≪ · · · ≪ α0 ≪ φ.

Therefore, Lemma 5.12 with ε′ playing the role of ε implies Lemma 5.1. �
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