UNIVERSITYOF
 BIRMINGHAM

On the spherical quasi-convexity of quadratic functions

Ferreira, Orizon; Nemeth, Sandor; Xiao, Lianghai

DOI:
10.1016/j.laa.2018.10.011

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
 Peer reviewed version

Citation for published version (Harvard):
Ferreira, O, Nemeth, S \& Xiao, L 2019, 'On the spherical quasi-convexity of quadratic functions', Linear Algebra and its Applications, vol. 562, pp. 205-222. https://doi.org/10.1016/j.laa.2018.10.011

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 22/10/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
\bullet User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

On the Spherical Quasi-Convexity of Quadratic Functions ${ }^{\text {AT }}$

O. P. Ferreira ${ }^{\text {a }}$, S. Z. Németh ${ }^{\text {b,* }}$, L. Xiao ${ }^{\text {b }}$
${ }^{a}$ IME/UFG, Avenida Esperança, s/n, Campus II, Goiânia, GO-74690-900, Brazil
${ }^{b}$ School of Mathematics, University of Birmingham, Watson Building, Edgbaston, Birmingham - B15 2TT, United Kingdom

Abstract

In this paper the spherical quasi-convexity of quadratic functions on spherically convex sets is studied. Several conditions characterizing the spherical quasiconvexity of quadratic functions are presented. In particular, conditions implying spherical quasi-convexity of quadratic functions on the spherical positive orthant are given. Some examples are provided as applications of the obtained results.

Keywords: sphere, spherical quasi-convexity, quadratic functions, positive orthant.

2010 MSC: 26B25, 90C25

1. Introduction

In this paper we study the spherical quasi-convexity of quadratic functions on spherically convex sets, which is related to the problem of finding their minimizer. This problem of minimizing a quadratic function on the sphere has arisen to S. Z. Németh by trying to make certain fixed point theorems, surjectivity theorems, and existence theorems for complementarity problems and variational inequalities more explicit (see [1] and the related references therein). In particular, some existence theorems could be reduced to the optimization of a

[^0]quadratic function on the intersection of the sphere and a cone. Indeed, consider a closed convex cone $K \subseteq \mathbb{R}^{n}$ with dual K^{*}. Let $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous mapping such that $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined by $G(x)=\|x\|^{2} F\left(x /\|x\|^{2}\right)$ and $G(0)=0$ is differentiable at 0 . Denote by $D G(0)$ the Jacobian matrix of G at 0 . By [2, Corollary 8.1] and [3, Theorem18], if $\min _{\|u\|=1, u \in K}\langle D G(0) u, u\rangle>0$, then the nonlinear complementarity problem defined by $K \ni x \perp F(x) \in K^{*}$ has a solution. Thus, we need to minimize a quadratic form on the intersection between a cone and the sphere. These sets are exactly the spherically convex sets; see [4]. Therefore, this leads to minimizing quadratic functions on spherically convex sets. In fact the optimization problem above reduces to the problem of calculating the scalar derivative, along cones introduced by S. Z. Németh (see [1] and the related references therein). Similar minimizations of quadratic functions on spherically convex sets are needed in the other settings (see 1] and the related references therein). Apart from the above, the motivation of this study is much wider. For instance, the quadratic constrained optimization problem on the sphere
\[

$$
\begin{equation*}
\min \{\langle Q x, x\rangle: x \in C\}, \quad C \subseteq \mathbb{S}^{n-1}:=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\} \tag{1}
\end{equation*}
$$

\]

for a symmetric matrix Q, is a minimum eigenvalue problem in C, which includes the problem of finding the spectral norm of the matrix $-Q$ when $C=\mathbb{S}^{n-1}$ (see, e.g., [5]). It is important to highlight that the special case when C is the nonneg5 ative orthant is of particular interest because the nonnegativity of the minimum value is equivalent to the copositivity of the matrix Q [6, Proposition 1.3] and to the nonnegativity of all Pareto eigenvalues of Q 6, Theorem 4.3]. As far as we are aware there are no methods for finding the Pareto spectra by using the intrinsic geometrical properties of the sphere, hence our study is expected to open new perspectives for detecting the copositivity of a symmetric matrix. More problems that deal with "spherical" constraints can be found in [7].

Optimization problems posed on the sphere have a specific underlying algebraic structure that could be exploited to greatly reduce the cost of obtaining the solutions; see [8, 9, [5, 10, 11, 12]. It is worth to point out that when a quadratic
function is spherically quasi-convex, then a spherical strict local minimizer is equal to a spherical strict global minimizer. Therefore, it is natural to consider the problem of determining the spherically quasi-convex quadratic functions on spherically convex sets. The goal of the paper is to present necessary conditions and sufficient conditions for quadratic functions which are spherically quasi${ }_{20}$ convex on spherical convex sets. As a particular case, we exhibit several such results for the spherical positive orthant.

The paper can be considered as a first spherical analogue for the study of quasi-convexity of quadratic functions. Without the aim of completeness, we list here some of the main papers about the quasi-convexity of quadratic functions:

The remainder of this paper is organized as follows. In Section 2, we recall some notations and basic results used throughout the paper. In Section 3 we present some general properties of spherically quasi-convex functions on spherically convex sets. In Section 4 we present some conditions characteriz30 ing quadratic spherically quasi-convex functions on a general spherically convex set. In Section 4.1 we present some properties of quadratic functions defined in the spherical positive orthant. We conclude this paper by making some final remarks in Section 5

2. Basics results

In this section we present the notations and the auxiliary results used throughout the paper. Let \mathbb{R}^{n} be the n-dimensional Euclidean space with the canonical inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. The set of all $m \times n$ matrices with real entries is denoted by $\mathbb{R}^{m \times n}$ and $\mathbb{R}^{n} \equiv \mathbb{R}^{n \times 1}$. Denote by \mathbb{R}_{+}^{n} the nonnegative orthant and by \mathbb{R}_{++}^{n} the positive orthant, that is,

$$
\mathbb{R}_{+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right)^{\top}: x_{1} \geq 0, \ldots, x_{n} \geq 0\right\}
$$

and

$$
\mathbb{R}_{++}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right)^{\top}: x_{1}>0, \ldots, x_{n}>0\right\}
$$

Denote by e^{i} the i-th canonical unit vector in \mathbb{R}^{n}. A set \mathcal{K} is called a cone if it is invariant under the multiplication with positive scalars and a convex cone if it is a cone which is also a convex set. The dual cone of a cone $\mathcal{K} \subset \mathbb{R}^{n}$ is the cone $\mathcal{K}^{*}:=\left\{x \in \mathbb{R}^{n}:\langle x, y\rangle \geq 0, \forall y \in \mathcal{K}\right\}$. A cone $\mathcal{K} \subset \mathbb{R}^{n}$ is called pointed if $\mathcal{K} \cap\{-\mathcal{K}\} \subseteq\{0\}$, or equivalently, if \mathcal{K} does not contain straight lines through the origin. Any pointed closed convex cone with nonempty interior will be called proper cone. The cone \mathcal{K} is called subdual if $\mathcal{K} \subseteq \mathcal{K}^{*}$, superdual if $\mathcal{K}^{*} \subseteq \mathcal{K}$ and self-dual if $\mathcal{K}^{*}=\mathcal{K}$. The matrix I_{n} denotes the $n \times n$ identity matrix. Recall that $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$ is positive if $a_{i j}>0$ and nonnegative if $a_{i j} \geq 0$ for all $i, j=1, \ldots, n$. A matrix $A \in \mathbb{R}^{n \times n}$ is reducible if there is permutation matrix $P \in \mathbb{R}^{n \times n}$ so that

$$
\begin{gathered}
P^{T} A P=\left[\begin{array}{cc}
B_{11} & B_{12} \\
0 & B_{22}
\end{array}\right] \\
B_{11} \in \mathbb{R}^{m \times m}, \quad B_{22} \in \mathbb{R}^{(n-m) \times(n-m)}, B_{12} \in \mathbb{R}^{m \times(n-m)}, \quad m<n .
\end{gathered}
$$

${ }_{35}$ A matrix $A \in \mathbb{R}^{n \times n}$ is irreducible if it not reducible. In the following we state a version of Perron-Frobenius theorem for both positive matrices and nonnegative irreducible matrices, its proof can be found in [18, Theorem 8.2.11] and 18, Theorem 8.4.4], respectively.

Theorem 1. Let $A \in \mathbb{R}^{n \times n}$ be either nonnegative and irreducible or positive.
${ }_{40}$ Then A has a dominant eigenvalue $\lambda_{\max }(A) \in \mathbb{R}$ with associated eigenvector $v \in \mathbb{R}^{n}$ which satisfies the following properties:
i) The eigenvalue $\lambda_{\max }(A)>0$ and its associated eigenvector $v \in \mathbb{R}_{++}^{n}$;
ii) The eigenvalue $\lambda_{\max }(A)>0$ has multiplicity one;
iii) Every other eigenvalue λ of A is less that $\lambda_{\max }(A)$ in absolute value, i.e, $|\lambda|<\lambda_{\max }(A) ;$
iii) There are no other positive or non-negative eigenvectors of A except positive multiples of v.

Recall that $A \in \mathbb{R}^{n \times n}$ is copositive if $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}_{+}^{n}$ and a Z-matrix is a matrix with nonpositive off-diagonal elements. Let $\mathcal{K} \subset \mathbb{R}^{n}$ be a pointed closed convex cone with nonempty interior, the \mathcal{K} - Z-property of a matrix $A \in \mathbb{R}^{n \times n}$ means that $\langle A x, y\rangle \leq 0$ for all $(x, y) \in C(\mathcal{K})$, where $C(\mathcal{K}):=$ $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \in \mathcal{K}, y \in \mathcal{K}^{*},\langle x, y\rangle=0\right\}$. If $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$, then $\operatorname{diag}(x)$ will denote an $n \times n$ diagonal matrix with (i, i)-th entry equal to x_{i}, for $i=1, \ldots, n$. Throughout the paper the tangent hyperplane of the n-dimensional Euclidean sphere \mathbb{S}^{n-1} at a point $x \in \mathbb{S}^{n-1}$ is denoted by

$$
T_{x} \mathbb{S}^{n-1}:=\left\{v \in \mathbb{R}^{n}:\langle x, v\rangle=0\right\},
$$

The intrinsic distance on the sphere between two arbitrary points $x, y \in \mathbb{S}^{n-1}$ is defined by

$$
\begin{equation*}
d(x, y):=\arccos \langle x, y\rangle \tag{2}
\end{equation*}
$$

It can be shown that $\left(\mathbb{S}^{n-1}, d\right)$ is a complete metric space, so that $d(x, y) \geq 0$ for all $x, y \in \mathbb{S}^{n-1}$, and $d(x, y)=0$ if and only if $x=y$. It is also easy to check that $d(x, y) \leq \pi$ for all $x, y \in \mathbb{S}^{n-1}$, and $d(x, y)=\pi$ if and only if $x=-y$. The intersection curve of a plane though the origin of \mathbb{R}^{n} with the sphere \mathbb{S}^{n-1} is called a geodesic. If $x, y \in \mathbb{S}^{n-1}$ are such that $y \neq x$ and $y \neq-x$, then the unique segment of minimal geodesic from to x to y is
$\gamma_{x y}(t)=\left(\cos (t d(x, y))-\frac{\langle x, y\rangle \sin (t d(x, y))}{\sqrt{1-\langle x, y\rangle^{2}}}\right) x+\frac{\sin (t d(x, y))}{\sqrt{1-\langle x, y\rangle^{2}}} y, \quad t \in[0,1]$.

Let $x \in \mathbb{S}^{n-1}$ and $v \in T_{x} \mathbb{S}^{n-1}$ such that $\|v\|=1$. The minimal segment of geodesic connecting x to $-x$, starting at x with velocity v at x is given by

$$
\begin{equation*}
\gamma_{x\{-x\}}(t):=\cos (t) x+\sin (t) v, \quad t \in[0, \pi] \tag{4}
\end{equation*}
$$

Let $\Omega \subset \mathbb{S}^{n-1}$ be a spherically open set (i.e., a set open with respect to the induced topology in \mathbb{S}^{n-1}). The gradient on the sphere of a differentiable function $f: \Omega \rightarrow \mathbb{R}$ at a point $x \in \Omega$ is the vector defined by

$$
\begin{equation*}
\operatorname{grad} f(x):=\left[I_{n}-x x^{T}\right] D f(x)=D f(x)-\langle D f(x), x\rangle x \tag{5}
\end{equation*}
$$

where $D f(x) \in \mathbb{R}^{n}$ is the usual gradient of f at $x \in \Omega$. Let $\mathcal{D} \subseteq \mathbb{R}^{n}$ be an open set, $I \subset \mathbb{R}$ an open interval, $\Omega \subset \mathbb{S}^{n-1}$ a spherically open set and $\gamma: I \rightarrow \Omega$ a geodesic segment. If $f: \mathcal{D} \rightarrow \mathbb{R}$ is a differentiable function, then, since $\gamma^{\prime}(t) \in T_{\gamma(t)} \mathbb{S}^{n-1}$ for all $t \in I$, the equality (5) implies

$$
\begin{equation*}
\frac{d}{d t} f(\gamma(t))=\left\langle\operatorname{grad} f(\gamma(t)), \gamma^{\prime}(t)\right\rangle=\left\langle D f(\gamma(t)), \gamma^{\prime}(t)\right\rangle, \quad \forall t \in I \tag{6}
\end{equation*}
$$

Definition 2. The set $\mathcal{C} \subseteq \mathbb{S}^{n-1}$ is said to be spherically convex if for all x, $y \in \mathcal{C}$ all the minimal geodesic segments joining x to y are contained in \mathcal{C}.
${ }_{50}$ Example 3. The set $S_{+}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{S}^{n-1}: x_{1} \geq 0, \ldots, x_{n} \geq 0\right\}$ is a closed spherically convex set.

We assume for convenience that from now on all spherically convex sets are nonempty proper subsets of the sphere. For each closet set $A \subset \mathbb{S}^{n-1}$, let $K_{A} \subset \mathbb{R}^{n}$ be the cone spanned by A, namely,

$$
\begin{equation*}
K_{A}:=\{t x: x \in A, t \in[0,+\infty)\} . \tag{7}
\end{equation*}
$$

Clearly, K_{A} is the smallest closed cone which contains A. In the next proposition we exhibit a relationship of spherically convex sets with the cones spanned by them; for the proof see [19].
${ }_{55}$ Proposition 4. The set \mathcal{C} is spherically convex if and only if the cone $K_{\mathcal{C}}$ is convex and pointed.

Let $\mathcal{C} \subset \mathbb{S}^{n-1}$ be a spherically convex set. A function $f: \mathcal{C} \rightarrow \mathbb{R}$ is said to be spherically convex (respectively, strictly spherically convex) if for all minimal geodesic segment $\gamma:[0,1] \rightarrow \mathcal{C}$, the composition $f \circ \gamma:[0,1] \rightarrow \mathbb{R}$ is convex (respectively, strictly convex) in the usual sense.

We end this section by stating some standard notations. We denote the spherically open and the spherically closed ball with radius $\delta>0$ and center in $x \in \mathbb{S}^{n-1}$ by $B_{\delta}(x):=\left\{y \in \mathbb{S}^{n-1}: d(x, y)<\delta\right\}$ and $\bar{B}_{\delta}(x):=\left\{y \in \mathbb{S}^{n-1}:\right.$ $d(x, y) \leq \delta\}$, respectively. The sub-level sets of a function $f: \mathbb{R}^{n} \supseteq \mathcal{D} \rightarrow \mathbb{R}$ are denoted by

$$
\begin{equation*}
[f \leq c]:=\{x \in \mathcal{D}: f(x) \leq c\}, \quad c \in \mathbb{R} \tag{8}
\end{equation*}
$$

3. Spherically quasi-convex functions on spherically convex sets

In this section we study general properties of quasi-convex functions on the sphere. In particular, we present first order characterizations of differentiable quasi-convex functions on the sphere. Several results of this section have already appeared in [20], but here these results have more explicit statements and proofs. It is worth to remark that the quasi-convexity concept generalizes the convexity one, which was extensively studied in 4]. Let us start by defining this concept.

Definition 5. Let $\mathcal{C} \subset \mathbb{S}^{n-1}$ be a spherically convex set. A function $f: \mathcal{C} \rightarrow \mathbb{R}$ is said to be spherically quasi-convex (respectively, strictly spherically quasiconvex) if for all minimal geodesic segment $\gamma:[0,1] \rightarrow \mathcal{C}$, the composition $f \circ \gamma:[0,1] \rightarrow \mathbb{R}$ is quasi-convex (respectively, strictly quasi-convex) in the usual sense, i.e., $f(\gamma(t)) \leq \max \{f(\gamma(0)), f(\gamma(1))\}$ for all $t \in[0,1]$, (respectively, $f(\gamma(t))<\max \{f(\gamma(0)), f(\gamma(1))\}$ for all $t \in[0,1])$.

Naturally, from the above definition, it follows that spherically convex (respectively, strictly spherically convex) functions are spherically quasi-convex (respectively, strictly spherically quasi-convex), but the converse is not true; see [4].

Proposition 6. Let $\mathcal{C} \subset \mathbb{S}^{n-1}$ be a spherically convex set. A function $f: \mathcal{C} \rightarrow \mathbb{R}$ is spherically quasi-convex if and only if the sub-level sets $[f \leq c]$ are spherically convex for all $c \in \mathbb{R}$.

Proof. Assume that f is spherically quasi-convex and $c \in \mathbb{R}$. Take $x, y \in[f \leq c]$ and $\gamma:[0,1] \rightarrow \mathbb{S}^{n-1}$ the minimal geodesic such that $\gamma(0)=x$ to $\gamma(1)=y$, see (3) and (4). Since f is a spherically quasi-convex function and $x, y \in[f \leq c]$ we have $f(\gamma(t)) \leq \max \{f(\gamma(0)), f(\gamma(1))\} \leq c$ for all $t \in[0,1]$, which implies that ${ }_{85} \gamma(t) \in[f \leq c]$ for all $t \in[0,1]$. Hence we conclude that $[f \leq c]$ is a spherically convex set for all $c \in \mathbb{R}$. Conversely, we assume that $[f \leq c]$ is spherically convex for all $c \in \mathbb{R}$. Let $\gamma:[0,1] \rightarrow \mathcal{C}$ be a minimal geodesic segment. Since $[f \leq c]$ is a spherically convex set, we have $\gamma(t) \in[f \leq c]$ for all $t \in[0,1]$, which implies
$f(\gamma(t)) \leq \max \{f(\gamma(0)), f(\gamma(1))\}$ for all $t \in[0,1]$. Therefore, f is a spherically

Proposition 7. Let $\mathcal{C} \subset \mathbb{S}^{n-1}$ be spherically convex and $f: \mathcal{C} \rightarrow \mathbb{R}$ be spherically quasi-convex. If $x^{*} \in \mathcal{C}$ is a strict local minimizer of f, then x^{*} is also a strict global minimizer of f in \mathcal{C}.

Proof. If x^{*} is a strict local minimizer of f, then there exists a number $\delta>0$ such that

$$
\begin{equation*}
f(x)>f\left(x^{*}\right), \quad \forall x \in B_{\delta}\left(x^{*}\right) \backslash\left\{x^{*}\right\}=\left\{y \in \mathcal{C}: 0<d\left(y, x^{*}\right)<\delta\right\} \tag{9}
\end{equation*}
$$

Assume by contradiction that x^{*} is not a strict global minimizer of f in \mathcal{C}. Thus, there exists $\bar{x} \in \mathcal{C}$ with $\bar{x} \neq x^{*}$ such that $f(\bar{x}) \leq f\left(x^{*}\right)$. Since C is spherically convex, we can take a minimal geodesic segment $\gamma:[0,1] \rightarrow \mathcal{C}$ joining x^{*} and \bar{x}, let's say, $\gamma(0)=x^{*}$ and $\gamma(1)=\bar{x}$. Considering that f is spherically quasiconvex we have $f(\gamma(t)) \leq \max \left\{f\left(x^{*}\right), f(\bar{x})\right\}=f\left(x^{*}\right)$ for all $t \in[0,1]$. On the other hand, for t sufficiently small we have $\gamma(t) \in B_{\delta}\left(x^{*}\right)$. Therefore, the last inequality contradicts (9) and the proof is concluded.

Proposition 8. Let $\mathcal{C} \subset \mathbb{S}^{n-1}$ be a spherically convex set and $f: \mathcal{C} \rightarrow \mathbb{R}$ be a strictly spherically quasi-convex function. Then f has at most one local minimizer which is also a global minimizer of f.

Proof. Assume by contradiction that f has two local minimizers $x^{*}, \bar{x} \in \mathcal{C}$ with $\bar{x} \neq x^{*}$. Thus, we can take a minimal geodesic segment $\gamma:[0,1] \rightarrow \mathcal{C}$ joining x^{*} and \bar{x}, let's say, $\gamma(0)=x^{*}$ and $\gamma(1)=\bar{x}$. Due to f being strictly spherically quasi-convex $f(\gamma(t))<\max \left\{f\left(x^{*}\right), f(\bar{x})\right\}$ for all $t \in[0,1]$. Since we can take t sufficiently close to 0 or 1 , the last inequality contradicts the assumption that x^{*}, \bar{x} are two distinct local minimizers. Thus, f has at most one local minimizer. Since f is strictly quasi-convex, the local minimizer is strict. Therefore, Proposition 7 implies that the local minimizer is global and the proof is concluded.

Proposition 9. Let $\mathcal{C} \subset \mathbb{S}^{n-1}$ be an open spherically convex set and $f: \mathcal{C} \rightarrow \mathbb{R}$ be a differentiable function. Then f is spherically quasi-convex if and only if

$$
\begin{equation*}
f(x) \leq f(y) \Longrightarrow\langle D f(y), x\rangle-\langle x, y\rangle\langle D f(y), y\rangle \leq 0, \quad \forall x, y \in \mathcal{C} \tag{10}
\end{equation*}
$$

Proof. Let $\gamma: I \rightarrow \mathcal{C}$ be a geodesic segment and consider the composition $f \circ \gamma: I \rightarrow \mathbb{R}$. The usual characterization of scalar quasi-convex functions implies that $f \circ \gamma$ is quasi-convex if and only if

$$
\begin{equation*}
f\left(\gamma\left(t_{1}\right)\right) \leq f\left(\gamma\left(t_{2}\right)\right) \Longrightarrow \frac{d}{d t}\left(f\left(\gamma\left(t_{2}\right)\right)\right)\left(t_{1}-t_{2}\right) \leq 0, \quad \forall t_{2}, t_{1} \in I \tag{11}
\end{equation*}
$$

On the other hand, for each $x, y \in \mathcal{C}$ with $y \neq x$ we have from (3) that $\gamma_{x y}$ is the minimal geodesic segment from $x=\gamma_{x y}(0)$ to $y=\gamma_{x y}(1)$ and

$$
\gamma_{x y}^{\prime}(1)=\frac{\arccos \langle x, y\rangle}{\sqrt{1-\langle x, y\rangle^{2}}}\left(y y^{T}-I_{n}\right) x \in T_{y} \mathbb{S}^{n-1}, \quad y \neq-x
$$

Note that letting $x=\gamma\left(t_{1}\right)$ and $y=\gamma\left(t_{2}\right)$ we have that $\gamma_{x y}(t)=\gamma\left(t_{1}+t\left(t_{2}-t_{1}\right)\right)$.
Therefore, by using (6) we conclude that the condition in (11) is equivalent to (10) and the proof of the proposition follows.

4. Spherically quasi-convex quadratic functions on spherically convex

 setsIn this section our aim is to present some conditions characterizing quadratic spherically quasi-convex functions on a general spherically convex set. For that we need some definitions: From now on we assume that $\mathcal{K} \subset \mathbb{R}^{n}$ is a proper subdual cone, $\mathcal{C}=\mathbb{S}^{n-1} \cap \operatorname{int}(\mathcal{K})$ is an open spherically convex set and $A=A^{T} \in$ $\mathbb{R}^{n \times n}$ with the associated quadratic function $q_{A}: \mathcal{C} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
q_{A}(x):=\langle A x, x\rangle . \tag{12}
\end{equation*}
$$

We also need the restriction on $\operatorname{int} \mathcal{K}$ of the Rayleigh quotient function φ_{A} : $\operatorname{int} \mathcal{K} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\varphi_{A}(x):=\frac{\langle A x, x\rangle}{\|x\|^{2}} \tag{13}
\end{equation*}
$$

In the following propositions we present some equivalent characterizations of the convexity of q_{A} defined by (12) on spherically convex sets. Our first result is the following proposition.

Proposition 10. Let q_{A} and φ_{A} be the functions defined in (12) and (13), respectively. The following statements are equivalent:
(a) The quadratic function q_{A} is spherically quasi-convex;
(b) $\langle A x, y\rangle \leq\langle x, y\rangle \max \left\{q_{A}(x), q_{A}(y)\right\}$ for all $x, y \in \mathbb{S}^{n-1} \cap \mathcal{K}$;
(c) $\frac{\langle A x, y\rangle}{\langle x, y\rangle} \leq \max \left\{\varphi_{A}(x), \varphi_{A}(y)\right\}$ for all $x, y \in \mathcal{K}$ with $\langle x, y\rangle \neq 0$.

Proof. First of all, we assume that item (a) holds. Let $x, y \in \mathcal{C}$. Thus, either $q_{A}(x) \leq q_{A}(y)$ or $q_{A}(y) \leq q_{A}(x)$. Hence, by using Proposition 9 we conclude that either $\langle A y, x\rangle \leq\langle x, y\rangle q_{A}(y)$ or $\langle A x, y\rangle \leq\langle x, y\rangle q_{A}(x)$. Thus, since $A=A^{T}$ implies $\langle A x, y\rangle=\langle A y, x\rangle$, taking into account that \mathcal{K} is a subdual cone and hence $\langle x, y\rangle \geq 0$, we have
$\langle A x, y\rangle \leq \max \left\{\langle x, y\rangle q_{A}(x),\langle x, y\rangle q_{A}(y)\right\}=\langle x, y\rangle \max \left\{q_{A}(x), q_{A}(y)\right\}, \forall x, y \in \mathcal{C}$.
Therefore, by continuity we extend the above inequality to all $x, y \in \mathbb{S}^{n-1} \cap \mathcal{K}$ and, then item (b) holds. Conversely, we assume that item (b) holds. Let $x, y \in \mathcal{C}$ satisfying $q_{A}(x) \leq q_{A}(y)$. Then, by the inequality in item (b) and considering that \mathcal{K} is a subdual cone, we have $\langle A x, y\rangle \leq\langle x, y\rangle q_{A}(y)$. Hence, 130 by using Proposition 9 we conclude that q_{A} is spherically quasi-convex and the proof of the equivalence between (a) and (b) is complete.

To establish the equivalence between (b) and (c), we assume first that item (b) holds. Let $x, y \in \mathcal{K}$ with $\langle x, y\rangle \neq 0$. Then, $x \neq 0$ and $y \neq 0$. Moreover, we have

$$
u:=\frac{x}{\|x\|} \in \mathbb{S}^{n-1} \cap \mathcal{K}, \quad v:=\frac{y}{\|y\|} \in \mathbb{S}^{n-1} \cap \mathcal{K} .
$$

Hence, by using the inequality in item (b) with $x=u$ and $y=v$, we obtain the inequality in item (c). Conversely, suppose that (c) holds. Let $x, y \in \mathbb{S}^{n-1} \cap \mathcal{K}$. First assume that $\langle x, y\rangle \neq 0$. Since, $\|x\|=\|y\|=1$, from the inequality in item (c) we conclude that

$$
\frac{\langle A x, y\rangle}{\langle x, y\rangle} \leq \max \left\{q_{A}(x), q_{A}(y)\right\}
$$

Due to \mathcal{K} being a subdual cone, we have $\langle x, y\rangle \geq 0$, and hence the last inequality is equivalent to the inequality in item (b). Now, assume that $\langle x, y\rangle=0$. Then, take two sequences $\left\{x^{k}\right\},\left\{y^{k}\right\} \subset \mathcal{C}$ such that $\lim _{k \rightarrow+\infty} x^{k}=x, \lim _{k \rightarrow+\infty} y^{k}=y$ and $\left\langle x^{k}, y^{k}\right\rangle \neq 0$. Since \mathcal{K} is a subdual cone, we have $\left\langle x^{k}, y^{k}\right\rangle>0$ for all $k=1,2, \ldots$ Therefore, considering that $\left\|x^{k}\right\|=\left\|y^{k}\right\|=1$ for all $k=1,2, \ldots$, we can apply again the inequality in item (c) to conclude

$$
\left\langle A x^{k}, y^{k}\right\rangle \leq\left\langle x^{k}, y^{k}\right\rangle \max \left\{q_{A}\left(x^{k}\right), q_{A}\left(y^{k}\right)\right\}, \quad k=1,2, \ldots
$$

By tending with k to infinity, we conclude that the inequality in item (b) also holds for $\langle x, y\rangle=0$ and the proof of the equivalence between (b) and (c) is complete.

135 Corollary 11. Assume that \mathcal{K} is a self-dual cone. If the quadratic function q_{A} is spherically quasi-convex, then A has the \mathcal{K}-Z-property.

Proof. Let $x, y \in \mathbb{R}^{n} \times \mathbb{R}^{n}$ such that $x \in \mathcal{K}, y \in \mathcal{K}^{*}$ and $\langle x, y\rangle=0$. If $x=0$ or $y=$ 0 we have $\langle A x, y\rangle=0$. Thus, assume that $x \neq 0$ and $y \neq 0$. Considering that \mathcal{K} is self-dual we have $x /\|x\|, y /\|y\| \in \mathbb{S}^{n-1} \cap \mathcal{K}$. Thus, since q_{A} is spherically 140 quasi-convex and $\langle x /\|x\|, y /\|y\|\rangle=0$, we obtain, from items (a) and (b) of Proposition 10, that $\langle A x, y\rangle \leq 0$. Therefore, A has the \mathcal{K}-Z-property and the proof is concluded.

Theorem 12. The function q_{A} defined in (12) is spherically quasi-convex if and only if φ_{A} defined in (13) is quasi-convex.

Proof. For $c \in \mathbb{R}$, let $\left[q_{A} \leq c\right]:=\left\{y \in \mathcal{C}: q_{A}(x) \leq c\right\}$ and $\left[\varphi_{A} \leq c\right]:=\{x \in$ $\left.\operatorname{int}(\mathcal{K}): \varphi_{A}(x) \leq c\right\}$ be the sublevel sets of q_{A} and φ_{A}, respectively, where $c \in \mathbb{R}$. Let $\mathcal{K}_{\left[q_{A} \leq c\right]}$ be the cone spanned by $\left[q_{A} \leq c\right]$. Since $\mathcal{C}=\mathbb{S}^{n-1} \cap \operatorname{int}(\mathcal{K})$, we conclude that $x \in \operatorname{int} \mathcal{K}$ if and only if $x /\|x\| \in \mathcal{C}$. Hence, the definitions of $\left[q_{A} \leq c\right]$ and $\left[\varphi_{A} \leq c\right]$ imply that

$$
\begin{equation*}
\mathcal{K}_{\left[q_{A} \leq c\right]}=\left[\varphi_{A} \leq c\right] . \tag{14}
\end{equation*}
$$

145 Now, we assume that q_{A} is spherically quasi-convex. Thus, from Poposition 6 we conclude that $\left[q_{A} \leq c\right]$ is spherically convex for all $c \in \mathbb{R}$. Hence, it follows
from Proposition 4 that the cone $\mathcal{K}_{\left[q_{A} \leq c\right]}$ is convex and pointed, which implies from (14) that $\left[\varphi_{A} \leq c\right]$ is convex for all $c \in \mathbb{R}$. Therefore, φ_{A} is quasi-convex. Conversely, assume that φ_{A} is quasi-convex. Thus, $\left[\varphi_{A} \leq c\right]$ is convex for

Corollary 13. Assume that $\left\{x \in \operatorname{int}(\mathcal{K}):\left\langle A_{c} x, x\right\rangle<0\right\} \neq \varnothing$, where $c \in \mathbb{R}$ and $A_{c}:=A-c I_{n}$. If q_{A} defined in (12) is spherically quasi-convex, then the cone

$$
\begin{equation*}
\left\{x \in \mathcal{K}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}, \tag{15}
\end{equation*}
$$

is convex.

Proof. Assume that q_{A} is spherically quasi-convex. Hence Theorem 12 implies that φ_{A} is quasi-convex and then $\left[\varphi_{A} \leq c\right]$ is convex for all $c \in \mathbb{R}$. Since $\left\{x \in \operatorname{int}(\mathcal{K}):\left\langle A_{c} x, x\right\rangle<0\right\} \neq \varnothing$ we conclude that

$$
\operatorname{closure}\left(\left\{x \in \operatorname{int}(\mathcal{K}):\left\langle A_{c} x, x\right\rangle \leq 0\right\}\right)=\left\{x \in \mathcal{K}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}
$$

where "closure" is the topological closure operator of a set. Thus, considering that $\left.\left[\varphi_{A} \leq c\right]=\left\{x \in \operatorname{int}(\mathcal{K}):\left\langle A_{c} x, x\right\rangle \leq 0\right\}\right)$, we obtain that

$$
\operatorname{closure}\left(\left[\varphi_{A} \leq c\right]\right)=\left\{x \in \mathcal{K}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}
$$

Taking into account that $\left[\varphi_{A} \leq c\right]$ is convex, the set closure $\left(\left[\varphi_{A} \leq c\right]\right)$ is also convex. Therefore, last equality implies that the set in (15) is convex.
4.1. Spherically quasi-convex quadratic functions on the spherical positive orthant

In this section we present some properties of a quadratic function defined in the spherical positive orthant, which corresponds to $\mathcal{K}=\mathbb{R}_{+}^{n}$. We know that if A
has only one eigenvalue, then q_{A} is constant and, consequently, it is spherically quasi-convex. Therefore, throughout this section we assume that A has at least two distinct eigenvalues. The domains \mathcal{C} and $\operatorname{int}(\mathcal{K})$ of q_{A} and φ_{A}, respectively are given by

$$
\begin{equation*}
\mathcal{C}:=\mathbb{S}^{n-1} \cap \mathbb{R}_{++}^{n}, \quad \operatorname{int}(\mathcal{K}):=\mathbb{R}_{++}^{n} \tag{16}
\end{equation*}
$$

We recall that q_{A} and φ_{A} are defined in (12) and (13), respectively. Next we present a technical lemma which will be useful in the sequel.

Lemma 14. Let $n \geq 2$ and $V=\left[\begin{array}{llll}v^{1} & v^{2} & v^{3} & \cdots\end{array} v^{n}\right] \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, $A=V^{\top} \Lambda V$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Assume that $\lambda_{1}<\lambda_{2} \leq \ldots \leq$ $165 \lambda_{n}$. If $v^{1} \in \mathbb{R}_{+}^{n}$ and $c \notin\left[\lambda_{2}, \lambda_{n}\right)$ then the sublevel set $\left[\varphi_{A} \leq c\right]$ is convex.

Proof. By using that $V V^{\top}=I_{n}$ and $A=V^{\top} \Lambda V$ we obtain from the definition (13) that

$$
\begin{equation*}
\left[\varphi_{A} \leq c\right]=\left\{x \in \mathbb{R}_{++}^{n}: \sum_{i=1}^{n}\left(\lambda_{i}-c\right)\left\langle v^{i}, x\right\rangle^{2} \leq 0\right\} \tag{17}
\end{equation*}
$$

We will show that $\left[\varphi_{A} \leq c\right]$ is convex for all $c \notin\left[\lambda_{2}, \lambda_{n}\right)$. If $c<\lambda_{1}$, then since $v^{1}, v^{2}, \ldots, v^{n}$ are linearly independent, we conclude from (17) that $\left[\varphi_{A} \leq c\right]=$ $\{0\}$ and therefore it is convex. If $c=\lambda_{1}$, then from (17) we conclude that $\left[\varphi_{A} \leq c\right]=\mathcal{S} \cap \mathbb{R}_{++}^{n}$, where $\mathcal{S}:=\left\{x \in \mathbb{R}^{n}:\left\langle v^{2}, x\right\rangle=0, \ldots,\left\langle v^{n}, x\right\rangle=0\right\}$, and hence $\left[\varphi_{A} \leq c\right]$ is convex. Assume that $\lambda_{1}<c<\lambda_{2}$. By letting $y=V^{\top} x$, i.e., $y_{i}=\left\langle v^{i}, x\right\rangle$, for $i=1, \ldots, n$, and since $v^{1} \in \mathbb{R}_{++}^{n}$ and $x \in \mathbb{R}_{++}^{n}$, we have $y_{1}>0$ and from (17) we obtain that $\left[\varphi_{A} \leq c\right]=\mathcal{L} \cap V^{\top} \mathbb{R}_{++}^{n}$, where

$$
\begin{aligned}
\mathcal{L}:=\left\{y=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}^{n}: y_{1}\right. & \left.\geq \sqrt{\theta_{2} y_{2}^{2}+\ldots+\theta_{n} y_{n}^{2}}\right\} \\
\theta_{i} & =\frac{\lambda_{i}-c}{c-\lambda_{1}}, \quad i=2, \ldots, n .
\end{aligned}
$$

Since \mathcal{L} and $V^{\top} \mathbb{R}_{++}^{n}$ are convex sets, we conclude that $\left[\varphi_{A} \leq c\right]$ is convex. If $c \geq \lambda_{n}$, then $\left[\varphi_{A} \leq c\right]=\mathbb{R}_{++}^{n}$ is convex, which concludes the proof.

Lemma 15. Let λ be an eigenvalue of A. If $\lambda I_{n}-A$ is copositive and $\lambda \leq c$, then

$$
\left[\varphi_{A} \leq c\right]=\mathbb{R}_{++}^{n}
$$

and consequently it is a convex set.

Proof. Let $c \in \mathbb{R}$ and $\left[\varphi_{A} \leq c\right]=\left\{x \in \mathbb{R}_{++}^{n}:\langle A x, x\rangle-c\|x\|^{2} \leq 0\right\}$. Since ${ }_{170} \quad \lambda \leq c$ and $\lambda I_{n}-A$ is copositive, we have $\langle A x, x\rangle-c\|x\|^{2} \leq\langle A x, x\rangle-\lambda\|x\|^{2}=$ $\left\langle\left(A-\lambda I_{n}\right) x, x\right\rangle \leq 0$ for all $x \in \mathbb{R}_{++}^{n}$, which implies that $\left[\varphi_{A} \leq c\right]=\mathbb{R}_{++}^{n}$.

The next theorem exhibits a series of implications and, in particular, conditions which imply that the quadratic function q_{A} is spherically quasi-convex.

Theorem 16. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix and let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$
(iv) A is a Z-matrix and $\lambda_{2} \geq a_{i i}$ for any $i \in\{1,2, \ldots, n\}$.
(v) A is a Z-matrix, $\lambda_{1}<\lambda_{2}$ and $\lambda_{2} \geq a_{i i}$ for all $i \in\{1,2, \ldots, n\}$.
(vi) A is an irreducible Z-matrix and $\lambda_{2} \geq a_{i i}$ for all $i \in\{1,2, \ldots, n\}$.

Then the following implications hold:

$$
\begin{gathered}
(v) \\
\Downarrow \\
(i v) \Leftarrow \quad(i i i) \Rightarrow \quad(i) \Rightarrow \quad \text { (ii) } \\
\Uparrow \\
\\
(v i)
\end{gathered}
$$

Proof.
$($ v $) \Rightarrow($ iii $) \Leftarrow($ vi $)$: It is easy to verify that $\lambda_{2} I_{n}-A$ is nonnegative and hence copositive. Moreover, Perron-Frobenius theorem applied to the matrix $\lambda_{2} I_{n}-A$ implies that there exists an eigenvector $v^{1} \in \mathbb{R}_{+}^{n}$ corresponding to the largest eigenvalue $\lambda_{2}-\lambda_{1}$ of $\lambda_{2} I_{n}-A$, which is also the eigenvector of A corresponding to λ_{1}.
(iii) \Rightarrow (i): If $c \leq \lambda_{2}$, then Lemma 14 implies that $\left[\varphi_{A} \leq c\right.$] is convex. If $c \geq \lambda_{2}$, then from Lemma 15 we have $\left[\varphi_{A} \leq c\right]=\mathbb{R}_{++}^{n}$, which is convex. Hence, [$\left.\varphi_{A} \leq c\right]$ is convex for all $c \in \mathbb{R}$. Therefore, by using Theorem 12, we conclude that q_{A} is spherically quasi-convex function.
$(\mathrm{i}) \Rightarrow$ (ii): From Corollary 1, it follows that A has the \mathbb{R}_{+}^{n}-Z-property. It is easy to check that this is equivalent to A being a Z-matrix.
$($ iii $) \Rightarrow($ iv $)$: Since $($ iii $) \Longrightarrow($ i) \Longrightarrow (ii), it follows that A is a Z-matrix. Since $\lambda_{2} I_{n}-A$ is copositive it follows that its diagonal elements are nonnegative. Hence, $\lambda_{2} \geq a_{i i}$ for all $i \in\{1,2, \ldots, n\}$.

Corollary 17. Let $n \geq 2$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ be the eigenvalues of A. Assume that $-A$ is a positive matrix, $\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{n}$ and $0<\lambda_{2}$. Then q_{A} is spherically quasi-convex.

Proof. First note that the matrix $\lambda_{2} I_{n}-A$ is a positive matrix and $\lambda_{2}-\lambda_{1}>0$ is its largest eigenvalue. Thus, Theorem 1 implies that the eigenvalue $\lambda_{2}-\lambda_{1}$ has the associated eigenvector $v^{1} \in \mathbb{R}_{++}^{n}$. Since $\left(\lambda_{2} I_{n}-A\right) v^{1}=\left(\lambda_{2}-\lambda_{1}\right) v^{1}$ we have $A v^{1}=\lambda_{1} v^{1}$. Hence v^{1} is also an eigenvector of A associated to λ_{1}. Therefore, considering that A is a Z-matrix, $v^{1} \in \mathbb{R}_{+}^{n}, \lambda_{1}<\lambda_{2}$ and $\lambda_{2} \geq a_{i i}$ for all $i \in\{1,2 \ldots, n\}$, it follows from Theorem $16(\mathrm{v}) \Rightarrow(\mathrm{i})$ that q_{A} is spherically quasi-convex.

In the following two examples we use Theorem 16 (iii) \Rightarrow (i) to present a class of quadratic quasi-convex functions defined in the spherical positive orthant.

Example 18. Let $n \geq 3$ and $V=\left[\begin{array}{llll}v^{1} & v^{2} & v^{3} & \cdots\end{array} v^{n}\right] \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, $A=V^{\top} \Lambda V$ and $\Lambda:=\operatorname{diag}(\lambda, \mu, \ldots, \mu, \nu)$, where $\lambda, \mu, \nu \in \mathbb{R}$. Then q_{A} is a spherically quasi-convex, whenever

$$
\begin{equation*}
v^{1}-\sqrt{\frac{\nu-\mu}{\mu-\lambda}}\left|v^{n}\right| \in \mathbb{R}_{+}^{n}, \quad \lambda<\mu<\nu \tag{18}
\end{equation*}
$$

where $\left|v^{n}\right|:=\left(\left|v_{1}^{n}\right|, \ldots,\left|v_{n}^{n}\right|\right)$. Indeed, by using that $V V^{\top}=I_{n}$ and $A=V^{\top} \Lambda V$,
after some calculations we conclude that

$$
\begin{equation*}
\langle A x, x\rangle-\mu\|x\|^{2}=(\mu-\lambda)\left[-\left\langle v^{1}, x\right\rangle^{2}+\frac{\nu-\mu}{\mu-\lambda}\left\langle v^{n}, x\right\rangle^{2}\right] . \tag{19}
\end{equation*}
$$

Thus, using the condition in (18) and considering that $x \in \mathbb{R}_{++}^{n}$, we have

$$
-\left\langle v^{1}, x\right\rangle^{2}+\frac{\nu-\mu}{\mu-\lambda}\left\langle v^{n}, x\right\rangle^{2} \leq \frac{\nu-\mu}{\mu-\lambda}\left[-\langle | v^{n}|, x\rangle^{2}+\left\langle v^{n}, x\right\rangle^{2}\right] \leq 0
$$

Hence, by combining the last inequality with (19), we conclude that $\mu I_{n}-A$ is copositive. Therefore, since $v^{1} \in \mathbb{R}_{+}^{n}$ we can apply Theorem 16 (iii) \Rightarrow (i) with $\lambda_{2}=\mu$ to conclude that q_{A} is a spherically quasi-convex function. For instance, taking $\lambda<(\lambda+\nu) / 2<\mu<\nu$ the vectors $v^{1}=\left(e^{1}+e^{n}\right) / \sqrt{2}, v^{2}=$ $e^{2}, \ldots, v^{n-1}=e^{n-1}, v^{n}=\left(e^{1}-e^{n}\right) / \sqrt{2}$, satisfy (18).

Example 19. Let $n \geq 3$ and $V=\left[\begin{array}{lllll}v^{1} & v^{2} & v^{3} \cdots & v^{n}\end{array}\right] \in \mathbb{R}^{n \times n}$ be an orthogonal matrix, $A=V^{\top} \Lambda V$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Then q_{A} is a spherically quasiconvex, whenever

$$
\begin{equation*}
v^{1}=\left(v_{1}^{1}, \ldots, v_{n}^{1}\right) \in \mathbb{R}_{++}^{n}, \quad \lambda_{1}<\lambda_{2} \leq \cdots \leq \lambda_{n} \leq \lambda_{2}+\frac{\alpha^{2}}{(n-2)}\left(\lambda_{2}-\lambda_{1}\right) \tag{20}
\end{equation*}
$$

where $\alpha:=\min \left\{v_{i}^{1} \neq 0: i=1, \ldots, n\right\}$. Indeed, by using that $V V^{\top}=I_{n}$ and the definition of the matrix A, we obtain that

$$
\langle A x, x\rangle-\lambda_{2}\|x\|^{2}=\left(\lambda_{1}-\lambda_{2}\right)\left\langle v^{1}, x\right\rangle^{2}+\left(\lambda_{3}-\lambda_{2}\right)\left\langle v^{3}, x\right\rangle^{2}+\cdots+\left(\lambda_{n}-\lambda_{2}\right)\left\langle v^{n}, x\right\rangle^{2} .
$$

Since $\lambda_{2}-\lambda_{1}>0$ and $0 \leq \lambda_{j}-\lambda_{2} \leq \lambda_{n}-\lambda_{2}$ for all $j=3, \ldots, n$, the last equality becomes

$$
\begin{equation*}
\langle A x, x\rangle-\lambda_{2}\|x\|^{2} \leq\left(\lambda_{2}-\lambda_{1}\right)\left[-\left\langle v^{1}, x\right\rangle^{2}+\frac{\lambda_{n}-\lambda_{2}}{\lambda_{2}-\lambda_{1}}\left(\left\langle v^{3}, x\right\rangle^{2}+\cdots+\left\langle v^{n}, x\right\rangle^{2}\right)\right] . \tag{21}
\end{equation*}
$$

On the other hand, by using that $v_{i}^{1} \in \mathbb{R}_{++}$and $v_{i}^{1} \geq \alpha$ for all $i=1, \ldots, n$, we obtain that

$$
\begin{align*}
\left\langle v^{1}, x\right\rangle^{2} & =\left(v_{1}^{1} x_{1}+\cdots+v_{n}^{1} x_{n}\right)^{2} \\
& \geq \alpha^{2}\left(x_{1}+\cdots+x_{n}\right)^{2} \geq \alpha^{2}\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)=\alpha^{2}\|x\|^{2} \tag{22}
\end{align*}
$$

for all $x \in \mathbb{R}_{+}^{n}$. Moreover, taking into account that $\left\|v^{j}\right\|=1$ for all $j=3, \ldots, n$, it follows from the Cauchy-Schwarz inequality, that

$$
\left\langle v^{3}, x\right\rangle^{2}+\cdots+\left\langle v^{n}, x\right\rangle^{2} \leq\left\|v^{3}\right\|^{2}\|x\|^{2}+\cdots+\left\|v^{n}\right\|^{2}\|x\|^{2} \leq(n-2)\|x\|^{2}
$$

for all $x \in \mathbb{R}_{+}^{n}$. Thus, combining the last inequalities with (21) and (22) and considering that the last inequality in (20) is equivalent to $-\alpha^{2}+(n-2)\left(\lambda_{n}-\right.$ $\left.\lambda_{2}\right) /\left(\lambda_{2}-\lambda_{1}\right) \leq 0$, we have

$$
\langle A x, x\rangle-\lambda_{2}\|x\|^{2} \leq\left(\lambda_{2}-\lambda_{1}\right)\left[-\alpha^{2}+(n-2) \frac{\lambda_{n}-\lambda_{2}}{\lambda_{2}-\lambda_{1}}\right]\|x\|^{2} \leq 0
$$

for all $x \in \mathbb{R}_{+}^{n}$. Hence, we conclude that $\lambda_{2} I_{n}-A$ is copositive. Therefore, since $v^{1} \in \mathbb{R}_{+}^{n}$ is the eigenvector of A corresponding to the eigenvalue λ_{1}, we apply Theorem 16 (iii) \Rightarrow (i), to conclude that q_{A} is spherically quasiconvex function. For instance, $n \geq 3, A=V^{\top} \Lambda V, \Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ and $V=\left[v^{1} v^{2} v^{3} \cdots v^{n}\right] \in \mathbb{R}^{n \times n}$, where $\alpha=1 / \sqrt{n}$,

$$
v^{1}:=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} e^{i}, \quad v^{j}:=\frac{1}{\sqrt{(n+1-j)+(n+1-j)^{2}}}\left[e^{1}-(n+1-j) e^{j}+\sum_{i>j}^{n} e^{i}\right]
$$

for $j=2, \ldots, n$ and $\lambda_{1}<\lambda_{2} \leq \ldots \leq \lambda_{n}<\lambda_{2}+(1 /[n(n-2)])\left(\lambda_{2}-\lambda_{1}\right)$, satisfy the orthogonality of V and the condition (20).

In the next theorem we establish the characterization for quasi-convex quadratic functions q_{A} on the spherical positive orthant where A is symmetric having only two distinct eigenvalues.

Theorem 20. Let $n \geq 3$ and $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with only two distinct eigenvalues, such that its smallest one has multiplicity one. Then, q_{A} is spherically quasi-convex if and only if there is an eigenvector of A corresponding to the smallest eigenvalue with all components nonnegative.

Proof. Let $A:=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigenvalues of A corresponding to an orthonormal set of eigenvectors $v^{1}, v^{2}, \ldots, v^{n}$, respectively. Then, we can assume without lose of generality that $\lambda_{1}=: \lambda<\mu:=\lambda_{2}=\cdots=\lambda_{n}$. Thus, we have
$A=V \Lambda V^{T}, \quad V:=\left[v^{1} v^{2} \ldots v^{n}\right] \in \mathbb{R}^{n \times n}, \quad \Lambda:=\operatorname{diag}(\lambda, \mu, \ldots, \mu) \in \mathbb{R}^{n \times n}$.

First we assume that q_{A} is a spherically quasi-convex function. The matrix Λ can be equivalently written as follows

$$
\begin{equation*}
\Lambda=\mu I_{n}+(\lambda-\mu) D \tag{24}
\end{equation*}
$$

where $D:=\left(d_{i j}\right) \in \mathbb{R}^{n \times n}$ has all entries 0 except the d_{11} entry which is 1 . Then (24) and (23) imply

$$
\begin{equation*}
a_{i j}=(\lambda-\mu) v_{i}^{1} v_{j}^{1} \quad i \neq j . \tag{25}
\end{equation*}
$$ Since q_{A} is spherically quasi-convex and $e^{i} \in \mathcal{C}=\mathbb{S}^{n-1} \cap \mathbb{R}_{++}^{n}$ for all $i=$ $1, \ldots, n$, by using item (b) of Proposition 10 we conclude that $a_{i j} \leq 0$ for all $i, j=1, \ldots, n$ with $i \neq j$. Thus, since $\lambda<\mu$, we obtain form (25) that $0 \leq v_{i}^{1} v_{j}^{1}$ for all $i \neq j$, which implies $v^{1} \in \mathbb{R}_{+}^{n}$ or $-v^{1} \in \mathbb{R}_{+}^{n}$. Therefore, there is an eigenvector corresponding to the smallest eigenvalue with all components nonnegative. Conversely, assume that $v^{1} \in \mathbb{R}_{+}^{n}$. Then, applying Lemma 14 with $\lambda=\lambda_{1}<\mu=\lambda_{2}=\cdots=\lambda_{n}$ we conclude that $\left[\varphi_{A} \leq c\right]$ is convex for all $c \in \mathbb{R}$, and hence φ_{A} is quasi-convex. Therefore, by using Theorem 12, we conclude that q_{A} is spherically quasi-convex.

In the following example we present a class of matrices satisfying the assumptions of Theorem 20.

Example 21. Let $v \in \mathbb{R}_{+}^{n}$ and define the Householder matrix $H:=I_{n}-$ $2 v v^{T} /\|v\|^{2}$. The matrix H is nonsingular and symmetric. Moreover, $H v=-v$ and letting $E:=\left\{u \in \mathbb{R}^{n}:\langle v, u\rangle=0\right\}$ we have $H u=u$ for all $u \in E$. Since the dimension of E is $n-1$, we conclude that -1 and 1 are eigenvalues of H with multiplicities one and $n-1$, respectively. Furthermore, the eigenvector corresponding to the smallest eigenvalue of H has all components nonnegative. Therefore, Theorem 20 implies that $q_{H}(x)=\langle H x, x\rangle$ is spherically quasi-convex.

In order to give a complete characterization of the spherical quasi-convexity of q_{A} for the case when A is diagonal, in the following result we start with a necessary condition for q_{A} to be spherically quasi-convex on the spherical positive orthant.

Lemma 22. Let $n \geq 3, \mathcal{C}=\mathbb{S}^{n-1} \cap \mathbb{R}_{++}^{n}$ and $A \in \mathbb{R}^{n \times n}$ be a nonsingular diagonal matrix. If q_{A} is spherically quasi-convex, then A has only two distinct eigenvalues, such that its smallest one has multiplicity one.

Proof. The proof will be made by contradiction. First we assume that A has at least three distinct eigenvalues, among which exactly two are negative, or at least two distinct eigenvalues, among which exactly one is negative and has multiplicity greater than one, i.e.,

$$
\begin{equation*}
A e^{1}=-\lambda_{1} e^{1}, \quad A e^{2}=-\lambda_{2} e^{2}, \quad A e^{3}=\lambda_{3} e^{3}, \quad \lambda_{1}, \lambda_{2}, \lambda_{3}>0 \tag{26}
\end{equation*}
$$

with $-\lambda_{1}<-\lambda_{2}<0<\lambda_{3}$ or $-\lambda_{1}=-\lambda_{2}<0<\lambda_{3}$ and e^{1}, e^{2}, e^{3} are canonical vectors of \mathbb{R}^{n}. Define the following two auxiliary vectors

$$
\begin{equation*}
v^{1}:=e^{1}+t_{1} e^{3}, \quad v^{2}:=e^{2}+t_{2} e^{3}, \quad t_{i}=\sqrt{\frac{\lambda_{i}}{\lambda_{3}}}, \quad i=1,2 . \tag{27}
\end{equation*}
$$

Hence, (26) and (27) imply that $\left\langle A v^{1}, v^{1}\right\rangle=0$ and $\left\langle A v^{2}, v^{2}\right\rangle=0$ and since $v^{1}, v^{2} \in \mathbb{R}_{+}^{n}$, we conclude that $v^{1}, v^{2} \in\left\{x \in \mathbb{R}_{+}^{n}:\langle A x, x\rangle \leq 0\right\}$. However, using again (26) and (27) we obtain that

$$
\left\langle A\left(v^{1}+v^{2}\right), v^{1}+v^{2}\right\rangle=2 \sqrt{\lambda_{1} \lambda_{2}}>0,
$$

250 and then $v^{1}+v^{2} \notin\left\{x \in \mathbb{R}_{+}^{n}:\langle A x, x\rangle \leq 0\right\}$. Thus, $\left\{x \in \mathbb{R}_{+}^{n}:\langle A x, x\rangle \leq 0\right\}$ is not convex. Finally, assume that A has at least three distinct eigenvalues or at least two distinct ones with the smallest one having multiplicity greater than one. Let λ, μ, ν be eigenvalues of A such that $\lambda<\mu<\nu$ or $\lambda=\mu<\nu$. Take a constant $c \in \mathbb{R}$ such that $\mu<c<\nu$. Letting $A_{c}:=A-c I_{n}$ we conclude that or $\lambda-c=\mu-c<0<\nu-c$. Hence, by the first part of the proof, with A_{c} in the role of A, we conclude that $\left\{x \in \mathbb{R}_{+}^{n}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}$ is not convex. On the other hand, due to $e^{i} \in \mathbb{R}_{+}^{n}$ and $\left\langle A e^{i}, e^{i}\right\rangle=\lambda-c<0$, for some i, we obtain that $\left\{x \in \mathbb{R}_{++}^{n}:\left\langle A_{c} x, x\right\rangle<0\right\} \neq \varnothing$. Thus, applying Corollary 13 with ${ }_{260} \mathcal{K}=\mathbb{R}_{+}^{n}$ and taking into account that $\left\{x \in \mathbb{R}_{+}^{n}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}$ is not convex, we conclude that q_{A} is not spherically quasi-convex, which is absurd and the proof is complete.

To make the paper self-contained we state the result of [21, Theorem 1] explicitly here:

Theorem 23. Let $\mathcal{C}=\mathbb{S}^{n-1} \cap \mathbb{R}_{++}^{n}$ and $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then q_{A} is spherically convex if and only if there exists $\lambda \in \mathbb{R}$ such that $A=\lambda I_{n}$. In this case q_{A} is a constant function.

The next result gives a full characterization for q_{A} to be spherically quasiconvex quadratic function on the spherical positive orthant, where A is a diagonal matrix. The proof of this result is a combination of Theorem 20, Lemma 22 and Theorem 23, Before presenting the result we need the following definition: A function is called merely spherically quasi-convex if it is spherically quasiconvex, but it is not spherically convex.

Theorem 24. Let $n \geq 3$ and $A \in \mathbb{R}^{n \times n}$ be a nonsingular diagonal matrix. Then q_{A} is merely spherically quasi-convex if and only if A has only two eigenvalues, such that its smallest one has multiplicity one and has a corresponding eigenvector with all components nonnegative.

We end this section by showing that, if a symmetric matrix A has three eigenvectors in the nonnegative orthant associated to at least two distinct eigenvalues, then the associated quadratic function q_{A} cannot be spherically quasi-convex.

Lemma 25. Let $n \geq 3$ and $v^{1}, v^{2}, v^{3} \in \mathbb{R}^{n}$ be distinct eigenvectors of a symmetric matrix A associated to the eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3} \in \mathbb{R}$, respectively, among which at least two are distinct. If q_{A} is spherically quasi-convex, then $v^{i} \notin \mathbb{R}_{+}^{n}$ for some $i=1,2,3$.

Proof. Assume by contradiction that $v^{1}, v^{2}, v^{3} \in \mathbb{R}_{+}^{n}$. Without loss of generality we can also assume that $\left\|v^{i}\right\|=1$, for $i=1,2,3$. We have three possibilities: $\lambda_{1}<\lambda_{2}<\lambda_{3}, \lambda_{1}=\lambda_{2}<\lambda_{3}$ or $\lambda_{1}<\lambda_{2}=\lambda_{3}$. We start by analyzing the possibilities $\lambda_{1}<\lambda_{2}<\lambda_{3}$ or $\lambda_{1}=\lambda_{2}<\lambda_{3}$. First we assume that $\lambda_{1}<\lambda_{2}<$ $0<\lambda_{3}$ or $\lambda_{1}=\lambda_{2}<0<\lambda_{3}$. Define the following vectors

$$
\begin{equation*}
w^{1}:=v^{1}+t_{1} v^{3}, \quad w^{2}:=v^{2}+t_{2} v^{3}, \quad t_{1}:=\sqrt{\frac{-\lambda_{1}}{\lambda_{3}}}, \quad t_{2}:=\sqrt{\frac{-\lambda_{2}}{\lambda_{3}}} \tag{28}
\end{equation*}
$$

We have $\left\langle v^{i}, v^{j}\right\rangle=0$ for all $i, j=1,2,3$ with $i \neq j$, and since

$$
\begin{equation*}
A v^{1}=\lambda_{1} v^{1}, \quad A v^{2}=\lambda_{2} v^{2}, \quad A v^{3}=\lambda_{3} v^{3}, \quad v^{1}, v^{2}, v^{3} \in \mathbb{R}_{+}^{n} \tag{29}
\end{equation*}
$$

we conclude from (28) that $\left\langle A w^{1}, w^{1}\right\rangle=0$ and $\left\langle A w^{2}, w^{2}\right\rangle=0$. Moreover, since $v^{1}, v^{2}, v^{3} \in \mathbb{R}_{+}^{n}$ we conclude that $w^{1}, w^{2} \in\left\{x \in \mathbb{R}_{+}^{n}:\langle A x, x\rangle \leq 0\right\}$. On the other hand, by using (29) and (28), we obtain that

$$
\left\langle A\left(w^{1}+w^{2}\right), w^{1}+w^{2}\right\rangle=2 \sqrt{\lambda_{1} \lambda_{2}}>0
$$

and then $w^{1}+w^{2} \notin\left\{x \in \mathbb{R}_{+}^{n}:\langle A x, x\rangle \leq 0\right\}$. Thus, $\left\{x \in \mathbb{R}_{+}^{n}:\langle A x, x\rangle \leq 0\right\}$ is not a convex cone. For the general case, take $c \in \mathbb{R}$ such that $\lambda_{2}<c<\lambda_{3}$. Letting $A_{c}:=A-c I_{n}$ we conclude that $\lambda_{1}-c, \lambda_{2}-c, \lambda_{3}-c$ are eigenvalues of A_{c} and satisfying $\lambda_{1}-c<\lambda_{2}-c<0<\lambda_{3}-c$ or $\lambda_{1}-c=$ $\lambda_{2}-c<0<\lambda_{3}-c$ with the three corresponding orthonormal eigenvectors $v^{1}, v^{2}, v^{3} \in \mathbb{R}_{+}^{n}$. Hence, by the first part of the proof, with A_{c} in the role of A, we conclude that the cone $\left\{x \in \mathbb{R}_{+}^{n}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}$ is not convex. On the other hand, due to $v^{1} \in \mathbb{R}_{+}^{n}$ and $\left\langle A v^{1}, v^{1}\right\rangle=\lambda_{1}-c<0$, we have $\left\{x \in \mathbb{R}_{++}^{n}:\left\langle A_{c} x, x\right\rangle<0\right\} \neq \varnothing$. Thus, applying Corollary 13 with $\mathcal{K}=\mathbb{R}_{+}^{n}$ and taking into account that $\left\{x \in \mathbb{R}_{+}^{n}:\left\langle A_{c} x, x\right\rangle \leq 0\right\}$ is not convex, we conclude that q_{A} is not spherically quasi-convex, which is absurd. To analyze the possibility $\lambda_{1}<\lambda_{2}=\lambda_{3}$, first assume that $\lambda_{1}<0<\lambda_{2}=\lambda_{3}$ and define the vectors

$$
w^{1}:=t_{1} v^{1}+v^{3}, \quad w^{2}:=t_{2} v^{1}+v^{3}, \quad t_{1}=\sqrt{\frac{\lambda_{2}}{-\lambda_{1}}}, \quad t_{2}=\sqrt{\frac{\lambda_{3}}{-\lambda_{1}}}
$$

for some $i=1,2,3$ and the proof is complete.

5. Final remarks

This paper is a continuation of [4, 19, 21], where intrinsic properties of the spherically convex sets and functions were studied. As far as we know this is
challenging problem, we will work towards developing efficient algorithms for constrained optimization on spherically convex sets. Minimizing a quadratic function on the spherical nonnegative orthant is of particular interest because the nonnegativity of the minimum value is equivalent to the copositivity of the corresponding matrix [6, Proposition 1.3] and to the nonnegativity of its Pareto eigenvalues [6, Theorem 4.3]. Considering the intrinsic geometrical properties of the sphere will open interesting perspectives for detecting the copositivity of a matrix. We foresee further progress in these topics in the near future.

Acknowledgements

This work was supported by CNxy (Grants 302473/2017-3 and 408151/20161) and FAPEG. The authors wish to express their gratitude to the reviewers for their helpful comments.
[1] G. Isac, S. Z. Németh, Scalar and asymptotic scalar derivatives, Vol. 13 of Springer Optimization and Its Applications, Springer, New York, 2008, theory and applications.
[2] G. Isac, S. Z. Németh, Duality in nonlinear complementarity theory by using inversions and scalar derivatives, Math. Inequal. Appl. 9 (4) (2006) 781-795.
[3] S. Z. Németh, Scalar derivatives in Hilbert spaces, Positivity 10 (2) (2006) 299-314.
[4] O. P. Ferreira, A. N. Iusem, S. Z. Németh, Concepts and techniques of optimization on the sphere, TOP 22 (3) (2014) 1148-1170.
[5] S. T. Smith, Optimization techniques on Riemannian manifolds, in: Hamiltonian and gradient flows, algorithms and control, Vol. 3 of Fields Inst. Commun., Amer. Math. Soc., Providence, RI, 1994, pp. 113-136.
[6] J.-B. Hiriart-Urruty, A. Seeger, A variational approach to copositive matrices, SIAM Rev. 52 (4) (2010) 593-629.
[7] J. Malick, The spherical constraint in Boolean quadratic programs, J. Global Optim. 39 (4) (2007) 609-622.
[15] S. Schaible, Quasiconvex, pseudoconvex, and strictly pseudoconvex quadratic functions, J. Optim. Theory Appl. 35 (3) (1981) 303-338.
[16] S. Komlósi, Generalized convexity of a certain class of quadratic functions, Izv. Vyssh. Uchebn. Zaved. Mat. (9) (1984) 38-43.
${ }_{340}$ [17] S. Karamardian, S. Schaible, J.-P. Crouzeix, Characterizations of generalized monotone maps, J. Optim. Theory Appl. 76 (3) (1993) 399-413.
[18] R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, Cambridge, 1985.
[19] O. P. Ferreira, A. N. Iusem, S. Z. Németh, Projections onto convex sets on
[20] S. Z. Németh, Five kinds of monotone vector fields, Pure Math. Appl. 9 (34) (1998) 417-428.
[21] O. P. Ferreira, S. Z. Németh, On the spherical convexity of quadratic functions, J. Glob. Optim. (2018). https://doi.org/10.1007/s10898-018-0710-6.

[^0]: * Corresponding author

 Email addresses: orizon@ufg.br (O. P. Ferreira), s.nemeth@bham.ac.uk (S. Z. Németh), LXX490@bham.ac.uk (L. Xiao)

