

University of Birmingham

High-level signatures and initial semantics
Ahrens, Benedikt; Hirschowitz, Andre; Lafont, Ambroise; Maggesi, Marco

DOI:
10.4230/LIPIcs.CSL.2018.4

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Ahrens, B, Hirschowitz, A, Lafont, A & Maggesi, M 2018, High-level signatures and initial semantics. in DR
Ghica & A Jung (eds), 27th EACSL Annual Conference on Computer Science Logic 2018 (CSL 2018). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 119, Schloss Dagstuhl, pp. 4:1 - 4:22, 27th EACSL Annual
Conference on Computer Science Logic 2018 (CSL 2018), Birmingham, United Kingdom, 4/09/18.
https://doi.org/10.4230/LIPIcs.CSL.2018.4

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 10/10/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 05. May. 2024

https://doi.org/10.4230/LIPIcs.CSL.2018.4
https://doi.org/10.4230/LIPIcs.CSL.2018.4
https://birmingham.elsevierpure.com/en/publications/c608cf94-cc37-4e20-93b2-1763b498ee59

High-Level Signatures and Initial Semantics
Benedikt Ahrens
University of Birmingham, UK
B.Ahrens@cs.bham.ac.uk

https://orcid.org/0000-0002-6786-4538

André Hirschowitz
Université Nice Sophia Antipolis, France
ah@unice.fr

https://orcid.org/0000-0003-2523-1481

Ambroise Lafont
IMT Atlantique
Inria, LS2N CNRS, France
ambroise.lafont@inria.fr

https://orcid.org/0000-0002-9299-641X

Marco Maggesi1

Università degli Studi di Firenze, Italy
marco.maggesi@unifi.it

https://orcid.org/0000-0003-4380-7691

Abstract
We present a device for specifying and reasoning about syntax for datatypes, programming
languages, and logic calculi. More precisely, we consider a general notion of “signature” for
specifying syntactic constructions. Our signatures subsume classical algebraic signatures (i.e.,
signatures for languages with variable binding, such as the pure lambda calculus) and extend to
much more general examples.

In the spirit of Initial Semantics, we define the “syntax generated by a signature” to be the
initial object – if it exists – in a suitable category of models. Our notions of signature and syntax
are suited for compositionality and provide, beyond the desired algebra of terms, a well-behaved
substitution and the associated inductive/recursive principles.

Our signatures are “general” in the sense that the existence of an associated syntax is not
automatically guaranteed. In this work, we identify a large and simple class of signatures which
do generate a syntax.

This paper builds upon ideas from a previous attempt by Hirschowitz-Maggesi, which, in turn,
was directly inspired by some earlier work of Ghani-Uustalu-Hamana and Matthes-Uustalu.

The main results presented in the paper are computer-checked within the UniMath system.

2012 ACM Subject Classification Theory of computation → Algebraic language theory

Keywords and phrases initial semantics, signatures, syntax, monadic substitution, computer-
checked proofs

Digital Object Identifier 10.4230/LIPIcs.CSL.2018.4

Supplement Material Computer-checked proofs with compilation instructions on
https://github.com/amblafont/largecatmodules

1 Supported by GNSAGA-INdAM and MIUR.

© Benedikt Ahrens, André Hirschowitz, Marco Maggesi, and Ambroise Lafont;
licensed under Creative Commons License CC-BY

27th EACSL Annual Conference on Computer Science Logic (CSL 2018).
Editors: Dan Ghica and Achim Jung; Article No. 4; pp. 4:1–4:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:B.Ahrens@cs.bham.ac.uk
https://orcid.org/0000-0002-6786-4538
mailto:ah@unice.fr
https://orcid.org/0000-0003-2523-1481
mailto:ambroise.lafont@inria.fr
https://orcid.org/0000-0002-9299-641X
mailto:marco.maggesi@unifi.it
https://orcid.org/0000-0003-4380-7691
http://dx.doi.org/10.4230/LIPIcs.CSL.2018.4
https://github.com/amblafont/largecatmodules
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 High-Level Signatures and Initial Semantics

Funding This work has partly been funded by the CoqHoTT ERC Grant 637339. This material
is based upon work supported by the Air Force Office of Scientific Research under award number
FA9550-17-1-0363.

Acknowledgements We would like to thank the anonymous referees for their helpful comments.
Their constructive criticism led us to a deep revision of our presentation.

1 Introduction

1.1 Initial Semantics
The concept of characterizing data through an initiality property is standard in computer
science, where it is known under the terms Initial Semantics and Algebraic Specification [21],
and has been popularized by the movement of Algebra of Programming [5].

This concept offers the following methodology to define a formal language2:
1. Introduce a notion of signature.
2. Construct an associated notion of model (suitable as domain of interpretation of the

syntax generated by the signature). Such models should form a category.
3. Define the syntax generated by a signature to be its initial model, when it exists3.
4. Find a satisfactory sufficient condition for a signature to generate a syntax.
For a notion of signature to be satisfactory, it should satisfy the following conditions:

it should extend the notion of algebraic signature, and
complex signatures should be built by assembling simpler ones, thereby opening room for
compositionality properties.

In the present work we consider a general notion of signature – together with its associated
notion of model – which is suited for the specification of untyped programming languages
with variable binding. On one hand, our signatures are fairly more general than those
introduced in some of the seminal papers on this topic [10, 15, 11], which are essentially
given by a family of lists of natural numbers indicating the number of variables bound in
each subterm of a syntactic construction (we call them “algebraic signatures” below). On the
other hand, the existence of an initial model in our setting is not automatically guaranteed.

The main result of this paper is a sufficient condition on a signature to ensure such an
existence. Our condition is still satisfied far beyond the algebraic signatures mentioned above.
Specifically, our signatures form a cocomplete category and our condition is preserved by
colimits (Section 7). Examples are given in Section 8.

Our notions of signature and syntax enjoy modularity in the sense introduced by [13]:
indeed, we define a “total” category of models where objects are pairs consisting of a signature
together with one of its models; and in this total category of models, merging two extensions
of a syntax corresponds to building an amalgamated sum.

The present work improves a previous attempt [18] in two main ways: firstly, it gives a
much simpler condition for the existence of an initial model, secondly, it provides computer-
checked proofs for all the main statements.

2 Here, the word “language” encompasses data types, programming languages and logic calculi, as well as
languages for algebraic structures as considered in Universal Algebra.

3 In the literature, the word signature is often reserved for the case where such sufficient condition is
automatically ensured.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:3

1.2 Computer-checked formalization
The intricate nature of our main result made it desirable to provide a mechanically checked
proof of that result, in conjunction with a human-readable summary of the proof.

Our computer-checked proof is based on the UniMath library [26], which itself is based on
the proof assistant Coq [25]. The main reasons for our choice of proof assistant are twofold:
firstly, the logical basis of the Coq proof assistant, dependent type theory, is well suited for
abstract algebra, in particular, for category theory. Secondly, a suitable library of category
theory, ready for use by us, had already been developed [2].

The formalization consists of about 8,000 lines of code, and can be consulted on https:
//github.com/amblafont/largecatmodules. A guide is given in the README.

Here below, we give in teletype font the name of the corresponding result in the
computer-checked library, when available – often in the format filename:identifier.

1.3 Related work
The idea that the notion of monad is suited for modeling substitution concerning syntax (and
semantics) has been retained by many contributions on the subject (see e.g. [6, 13, 24, 4]).

Matthes, Uustalu [24], followed by Ghani, Uustalu, and Hamana [13], are the first
to consider a form of colimits (namely coends) of signatures. Their treatment rests on
the technical device of strength4 and so did our preliminary version of the present work
[18]. Notably, the present version simplifies the treatment by avoiding the consideration of
strengths.

We should mention several other mathematical approaches to syntax (and semantics).
Fiore, Plotkin, Turi [10] develop a notion of substitution monoid. Following [3], this

setting can be rephrased in terms of relative monads and modules over them [1]. Accordingly,
our present contribution could probably be customized for this “relative” approach.

The work by Fiore with collaborators [10, 8, 9] and the work by Uustalu with collaborators
[24, 13] share two traits: firstly, the modelling of variable binding by nested abstract syntax,
and, secondly, the reliance on tensorial strengths in the specification of substitution. In the
present work, variable binding is modelled using nested abstract syntax; however, we do
without strengths.

Gabbay and Pitts [11] employ a different technique for modelling variable binding, based
on nominal sets. We do not see yet how our treatment of more general syntax carries over to
nominal techniques.

Yet another approach to syntax is based on Lawvere Theories. This is clearly illustrated
in the paper [20], where Hyland and Power also outline the link with the language of monads
and put in an historical perspective.

Finally, let us mention the classical approach based on Cartesian closed categories recently
revisited and extended by T. Hirschowitz [19].

1.4 Organisation of the paper
Section 2 gives a succinct account of modules over a monad. Our categories of signatures and
models are described in Sections 3 and 4 respectively. In Section 5 we give our definition of a
syntax, and we show our modularity result about merging extensions of syntax. In Section 6

4 A (tensorial) strength for a functor F : V → V is given by a natural transformation βv,w : v ⊗ Fw →
F (v ⊗ w) commuting suitably with the associator and the unitor of the monoidal structure on V .

CSL 2018

https://github.com/amblafont/largecatmodules
https://github.com/amblafont/largecatmodules
https://github.com/amblafont/largecatmodules/blob/master/README.md

4:4 High-Level Signatures and Initial Semantics

we show through examples how recursion can be recovered from initiality. Our notions of
presentable signature and presentable syntax appear in Section 7. Finally, in Section 8, we
give examples of presentable signatures and syntaxes.

2 Categories of modules over monads

2.1 Modules over monads
We recall only the definition and some basic facts about modules over a monad in the specific
case of the category Set of sets, although most definitions are generalizable. See [17] for a
more extensive introduction on this topic.

A monad (over Set) is a monoid in the category Set −→ Set of endofunctors of Set, i.e.,
a triple R = (R,µ, η) given by a functor R : Set −→ Set, and two natural transformations
µ : R ·R −→ R and η : I −→ R such that the following equations hold:

µ · µR = µ ·Rµ, µ · ηR = 1R, µ ·Rη = 1R.

Let R be a monad.

I Definition 1 (Modules). A left R-module is given by a functor M : Set −→ Set equipped
with a natural transformation ρ : M ·R −→M , called module substitution, which is compatible
with the monad composition and identity:

ρ · ρR = ρ ·Mµ, ρ ·Mη = 1M .

There is an obvious corresponding definition of right R-modules that we do not need to
consider in this paper. From now on, we will write “R-module” instead of “left R-module”
for brevity.

I Example 2.
Every monad R is a module over itself, which we call the tautological module.
For any functor F : Set −→ Set and any R-module M : Set −→ Set, the composition
F ·M is an R-module (in the evident way).
For every set W we denote by W: Set −→ Set the constant functor W := X 7→W . Then
W is trivially an R-module since W = W ·R.
Let M1, M2 be two R-modules. Then the product functor M1 ×M2 is an R-module (see
Proposition 4 for a general statement).

I Definition 3 (Linearity). We say that a natural transformation of R-modules τ : M −→ N

is linear5 if it is compatible with module substitution on either side:

τ · ρM = ρN · τR.

We take linear natural transformations as morphisms among modules. It can be easily
verified that we obtain in this way a category that we denote Mod(R).

5 Given a monoidal category C, there is a notion of (left or right) module over a monoid object in C
(see https://ncatlab.org/nlab/show/module+over+a+monoid for details). The term “module” comes
from the case of rings: indeed, a ring is just a monoid in the monoidal category of Abelian groups.
Similarly, our monads are just the monoids in the monoidal category of endofunctors on Set, and our
modules are just modules over these monoids. Accordingly, the term “linear(ity)” for morphisms among
modules comes from the paradigmatic case of rings.

https://ncatlab.org/nlab/show/module+over+a+monoid

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:5

Limits and colimits in the category of modules can be constructed point-wise:

I Proposition 4. Mod(R) is complete and cocomplete.

See LModule_Colims_of_shape and LModule_Lims_of_shape in Prelims/LModuleColims for the
formalized proofs.

2.2 The total category of modules
We already introduced the category Mod(R) of modules with fixed base R. It it often useful
to consider a larger category which collects modules with different bases. To this end, we
need first to introduce the notion of pullback.

I Definition 5 (Pullback). Let f : R −→ S be a morphism of monads6 and M an S-module.
The module substitutionM ·R Mf−→M ·S ρ−→M defines an R-module which is called pullback
of M along f and noted f∗M .7

I Definition 6 (The total module category). We define the total module category
∫
R

Mod(R)
as follows8:

its objects are pairs (R,M) of a monad R and an R-module M .
a morphism from (R,M) to (S,N) is a pair (f,m) where f : R −→ S is a morphism of
monads, and m : M −→ f∗N is a morphism of R-modules.

The category
∫
R

Mod(R) comes equipped with a forgetful functor to the category of monads,
given by the projection (R,M) 7→ R.

I Proposition 7. The forgetful functor
∫
R

Mod(R) → Mon given by the first projection is
a Grothendieck fibration with fibre Mod(R) over a monad R. In particular, any monad
morphism f : R −→ S gives rise to a functor

f∗ : Mod(S) −→ Mod(R)

given on objects by Definition 5.

The formal proof is available as Prelims/modules:cleaving_bmod.

I Proposition 8. For any monad morphism f : R −→ S, the functor f∗ preserves limits
and colimits.

See pb_LModule_colim_iso and pb_LModule_lim_iso in Prelims/LModuleColims for the formal-
ized proofs.

2.3 Derivation
For our purposes, important examples of modules are given by the following general con-
struction. Let us denote the final object of Set as ∗.

6 An explicit definition of morphism of monads can be found in [17].
7 The term “pullback” is standard in the terminology of Grothendieck fibrations (see Proposition 7).
8 Our notation for the total category is modelled after the category of elements of a presheaf, and, more
generally, after the Grothendieck construction of a pseudofunctor. It overlaps with the notation for
categorical ends.

CSL 2018

4:6 High-Level Signatures and Initial Semantics

I Definition 9 (Derivation). For any R-module M , the derivative of M is the functor
M ′ := X 7→M(X + ∗). It is an R-module with the substitution ρ′ : M ′ ·R −→M ′ defined
as in the diagram

M(R(X) + ∗)
ρ′X //

M(R(iX)+ηX+∗·∗)
��

M(X + ∗)

M(R(X + ∗))
ρX+∗

77
(1)

where iX : X −→ X + ∗ and ∗ : ∗ −→ X + ∗ are the obvious maps.

Derivation is a cartesian endofunctor on the category Mod(R) of modules over a fixed monad
R. In particular, derivation can be iterated: we denote by M (k) the k-th derivative of M .

I Definition 10. Given a list of non negative integers (a) = (a1, . . . , an) and a left moduleM
over a monad R, we denote by M (a) = M (a1,...,an) the module M (a1)× · · · ×M (an). Observe
that, when (a) = () is the empty list, we have M () = ∗ the final module.

I Proposition 11. Derivation yields an endofunctor of
∫
R

Mod(R) which commutes with
any functor f∗ induced by a monad morphism f (Proposition 7).

See LModule_deriv_is_functor in Prelims/DerivationIsFunctorial and
pb_deriv_to_deriv_pb_iso in Prelims/LModPbCommute for the formalized proofs.

We have a natural substitution morphism σ : M ′ ×R −→M defined by σX = ρX ◦ wx,
where wX : M(X + ∗)×R(X)→M(R(X)) is the map

wX : (a, b) 7→M(ηX + b), b : ∗ 7→ b.

I Lemma 12. The transformation σ is linear.

See Prelims/derivadj:substitution_laws for the formalized proof.

The substitution σ allows us to interpret the derivative M ′ as the “module M with one
formal parameter added”.

Abstracting over the module turns the substitution morphism into a natural transforma-
tion that is the unit of the following adjunction:

I Proposition 13. The endofunctor of Mod(R) mapping M to the R-module M ×R is left
adjoint to the derivation endofunctor, the unit being the substitution morphism σ.

See Prelims/derivadj:deriv_adj for the formalized proof.

3 The category of signatures

In this section, we give our notion of signature. The destiny of a signature is to have actions
in monads. An action of a signature Σ in a monad R should be a morphism from a module
Σ(R) to the tautological one R. For instance, in the case of the signature Σ of a binary
operation, we have Σ(R) := R2 = R × R. Hence a signature assigns, to each monad R, a
module over R in a functorial way.

I Definition 14. A signature is a section of the forgetful functor from the category
∫
R

Mod(R)
to the category Mon.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:7

Now we give our basic examples of signatures.

I Example 15. The assignment R 7→ R is a signature, which we denote by Θ.

I Example 16. For any functor F : Set −→ Set and any signature Σ, the assignment
R 7→ F · Σ(R) yields a signature which we denote F · Σ.

I Example 17. The assignment R 7→ ∗R, where ∗R denotes the final module over R, is a
signature which we denote by ∗.

I Example 18. Given two signatures Σ and Υ, the assignment R 7→ Σ(R) × Υ(R) is a
signature which we denote by Σ × Υ . In particular, Θ2 = Θ × Θ is the signature of any
(first-order) binary operation, and, more generally, Θn is the signature of n-ary operations.

I Example 19. Given two signatures Σ and Υ, the assignment R 7→ Σ(R) + Υ(R) is a
signature which we denote by Σ + Υ. In particular, Θ2 + Θ2 is the signature of a pair of
binary operations.

This example explains why we do not need to distinguish here between “arities” – usually
used to specify a single syntactic construction – and “signatures” – usually used to specify a
family of syntactic constructions; our signatures allow us to do both (via Proposition 23 for
families that are not necessarily finitely indexed).

I Definition 20. For each sequence of non-negative integers s = (s1, . . . , sn), the assignment
R 7→ R(s1) × · · · ×R(sn) (see Definition 10) is a signature, which we denote by Θ(s), or by Θ′
in the specific case of s = 1. Signatures of this form are said elementary.

I Remark 21. The product of two elementary signatures is elementary.

I Definition 22. A morphism between two signatures Σ1,Σ2 : Mon −→
∫
R

Mod(R) is a nat-
ural transformation m : Σ1 −→ Σ2 which, post-composed with the projection

∫
R

Mod(R) −→
Mon, becomes the identity. Signatures form a subcategory Sig of the category of functors
from Mon to

∫
R

Mod(R).

Limits and colimits of signatures can be easily constructed point-wise:

I Proposition 23. The category of signatures is complete and cocomplete. Furthermore, it is
distributive: for any signature Σ and family of signatures (So)o∈O, the canonical morphism∐
o∈O(So × Σ)→ (

∐
o∈O So)× Σ is an isomorphism.

See Sig_Lims_of_shape and Sig_Colims_of_shape in Signatures/SignaturesColims, and
Sig_isDistributive in Signatures/PresentableSignatureBinProdR for the formalized proofs.

I Definition 24. An algebraic signature is a (possibly infinite) coproduct of elementary
signatures.

These signatures are those which appear in [10]. For instance, the algebraic signature of the
lambda-calculus is ΣLC = Θ2 + Θ′.

4 Categories of models

We define the notion of action of a signature in a monad.

CSL 2018

4:8 High-Level Signatures and Initial Semantics

I Definition 25. Given a monad R over Set, we define an action9 of the signature Σ in R
to be a module morphism from Σ(R) to R.

I Example 26. The usual app : LC2 −→ LC is an action of the elementary signature Θ2 into
the monad LC of syntactic lambda calculus. The usual abs : LC′ −→ LC is an action of the
elementary signature Θ′ into the monad LC. Then app + abs is an action of the algebraic
signature of the lambda-calculus Θ2 + Θ′ into the monad LC.

I Definition 27. Given a signature Σ, we build the category MonΣ of models of Σ as follows.
Its objects are pairs (R, r) of a monad R equipped with an action r : Σ(R) → R of Σ. A
morphism from (R, r) to (S, s) is a morphism of monads m : R → S compatible with the
actions in the sense that the following diagram of R-modules commutes:

Σ(R) r //

Σ(m)
��

R

m

��
m∗(Σ(S))

m∗s
// m∗S

This is equivalent to asking that the square of underlying natural transformations commutes,
i.e., m ◦ r = s ◦ Σ(m). Here, the horizontal arrows come from the actions, the left vertical
arrow comes from the functoriality of signatures, and m : R −→ m∗S is the morphism of
monads seen as morphism of R-modules.

I Proposition 28. These morphisms, together with the obvious composition, turn MonΣ into
a category which comes equipped with a forgetful functor to the category of monads.

In the formalization, this category is recovered as the fiber category over Σ of the displayed
category [2] of models, see Signatures/Signature:rep_disp.

I Definition 29 (Pullback). Let f : Σ −→ Υ be a morphism of signatures and R = (R, r) a
model of Υ. The linear morphism Σ(R) f−→ Υ(R) r−→ R defines an action of Σ in R. The
induced model of Σ is called pullback10 of R along f and noted f∗R.

5 Syntax

We are primarily interested in the existence of an initial object in the category MonΣ of
models of a signature Σ. We call this object the syntax generated by Σ.

5.1 Representability
I Definition 30. Given a signature Σ, a representation of Σ is an initial object in MonΣ. If
such an object exists, we call it the syntax generated by Σ and denote it by Σ̂. In this case,
we also say that Σ̂ represents Σ, and we call the signature Σ representable11.

I Theorem 31. Algebraic signatures are representable.

9 This terminology is borrowed from the vocabulary of algebras over a monad: an algebra over a monad
T on a category C is an object X of C with a morphism ν : T (X) −→ X that is compatible with the
multiplication of the monad. This morphism is sometimes called an action.

10Following the terminology introduced in Definition 5, the term “pullback” is justified by Lemma 33.
11For an algebraic signature Σ without binding constructions, the map assigning to any monad R its set

of Σ-actions can be upgraded into a functor which is corepresented by the initial model.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:9

This result is proved in a previous work [16, Theorems 1 and 2]. The proof goes as follows:
an algebraic signature induces an endofunctor on the category of endofunctors on Set. Its
initial algebra (constructed as the colimit of the initial chain) is given the structure of a
monad with an action of the algebraic signature, and then a routine verification shows that
it is actually initial in the category of models. As part of the present work, we provide a
computer-checked proof as algebraic_sig_representable in the file Signatures/BindingSig.

In the following we present a more general representability result: Theorem 35 states that
presentable signatures, which form a superclass of algebraic signatures, are representable.

5.2 Modularity
In this section, we study the problem of how to merge two syntax extensions. Our answer,
a “modularity” result (Theorem 32), was stated already in the preliminary version [18,
Section 6], there without proof.

Suppose that we have a pushout square of representable signatures,

Σ0 //

��

Σ1

��
Σ2 // Σ

p

Intuitively, the signatures Σ1 and Σ2 specify two extensions of the signature Σ0, and Σ
is the smallest extension containing both these extensions. Modularity means that the
corresponding diagram of representations,

Σ̂0 //

��

Σ̂1

��
Σ̂2 // Σ̂

is a pushout as well – but we have to take care to state this in the “right” category. The
right category for this purpose is the following total category

∫
Σ MonΣ of models:

An object of
∫

Σ MonΣ is a triple (Σ, R, r) where Σ is a signature, R is a monad, and r is
an action of Σ in R.
A morphism in

∫
Σ MonΣ from (Σ1, R1, r1) to (Σ2, R2, r2) consists of a pair (i,m) of a

signature morphism i : Σ1 −→ Σ2 and a morphism m of Σ1-models from (R1, r1) to
(R2, i

∗(r2)).
It is easily checked that the obvious composition turns

∫
Σ MonΣ into a category.

Now for each signature Σ, we have an obvious inclusion from the fiber MonΣ into
∫

Σ MonΣ,
through which we may see the syntax Σ̂ of any representable signature as an object in∫

Σ MonΣ. Furthermore, a morphism i : Σ1 −→ Σ2 of representable signatures yields a
morphism i∗ := Σ̂1 −→ Σ̂2 in

∫
Σ MonΣ. Hence our pushout square of representable signatures

as described above yields a square in
∫

Σ MonΣ.

I Theorem 32. Modularity holds in
∫

Σ MonΣ, in the sense that given a pushout square of
representable signatures as above, the associated square in

∫
Σ MonΣ is a pushout again.

In particular, the binary coproduct of two signatures Σ1 and Σ2 is represented by the binary
coproduct of the representations of Σ1 and Σ2.

Our computer-checked proof of modularity is available as pushout_in_big_rep in the file
Signatures/Modularity. The proof uses, in particular, the following fact:

CSL 2018

4:10 High-Level Signatures and Initial Semantics

I Lemma 33. The projection π :
∫

Σ MonΣ → Sig is a Grothendieck fibration.

See rep_cleaving in Signatures.Signature for the formalized proof.

6 Recursion

We now show through examples how certain forms of recursion can be derived from initiality.

6.1 Example: Translation of intuitionistic logic into linear logic
We start with an elementary example of translation of syntaxes using initiality, namely the
translation of second-order intuitionistic logic into second-order linear logic [14, page 6]. The
syntax of second-order intuitionistic logic can be defined with one unary operator ¬, three
binary operators ∨, ∧ and ⇒, and two binding operators ∀ and ∃. The associated (algebraic)
signature is ΣLK = Θ+(3×Θ2)+(2×Θ′). As for linear logic, there are four constants>,⊥, 0, 1,
two unary operators ! and ?, five binary operators &, `, ⊗, ⊕, (and two binding operators
∀ and ∃. The associated (algebraic) signature is ΣLL = (4×∗) + (2×Θ) + (5×Θ2) + (2×Θ′).

By universality of the coproduct, a model of ΣLK is given by a monad R with module
morphisms:

r¬ : R −→ R

r∀, r∃ : R′ −→ R

r∧, r∨, r⇒ : R×R −→ R

and similarly, we can decompose an action of ΣLL into as many components as there are
operators.

The translation will be a morphism of monads between the initial models (i.e. the syntaxes)
o : Σ̂LK −→ Σ̂LL that further satisfies the properties of a morphism of ΣLK-models, for
example o(r∃(t)) = r∃(r!(o(t))). The strategy is to use the initiality of Σ̂LK . Indeed,
equipping Σ̂LL with an action r′α : α(Σ̂LL) −→ Σ̂LL for each operator α of intuitionistic
logic (>,⊥, ∨,∧,⇒,∀ ,∃, ∈ and =) yields a morphism of monads o : Σ̂LK −→ Σ̂LL such that
o(rα(t)) = r′α(α(o)(t)) for each α.

The definition of r′α is then straightforward to devise, following the recursive clauses given
on the right:

r′¬ = r(◦ (r! × r0) (¬A)o := (!A) (0
r′∧ = r& (A ∧B)o := Ao&Bo

r′∨ = = r⊕ ◦ (r! × r!) (A ∨B)o :=!Ao⊕!Bo

r′⇒ = r(◦ (r! × id) (A⇒ B)o :=!Ao (Bo

r′∃ = r∃ ◦ r! (∃xA)o := ∃x!Ao

r′∀ = r∀ (∀xA)o := ∀xAo

The induced action of ΣLK in the monad Σ̂LL yields the desired translation morphism
o : Σ̂LK → Σ̂LL. Note that variables are automatically preserved by the translation because
o is a monad morphism.

6.2 Example: Computing the set of free variables
We denote by P (X) the power set of X. The union gives us a composition operator
P (P (X))→ P (X) defined by u 7→

⋃
s∈u s, which yields a monad structure on P .

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:11

We now define an action of the signature of lambda calculus ΣLC in the monad P . We
take union operator ∪ : P × P → P as action of the application signature Θ×Θ; this is a
module morphism since binary union distributes over union of sets. Next, given s ∈ P (X + ∗)
we define Maybe−1(s) = s ∩X. This defines a morphism of modules Maybe−1 : P ′ → P ; a
small calculation using a distributivity law of binary intersection over union of sets shows that
this natural transformation is indeed linear. It can hence be used to model the abstraction
signature Θ′ in P .

Associated to this model of ΣLC in P we have an initial morphism free : LC→ P . Then,
for any t ∈ LC(X), the set free(t) is the set of free variables occurring in t.

6.3 Example: Computing the size of a term
We now consider the problem of computing the “size” of a λ-term, that is, for any set X, a
function sX : LC(X) −→ N such that

sX(x) = 0 (x ∈ X variable)
sX(abs(t)) = 1 + sX+∗(t)

sX(app(t, u)) = 1 + sX(t) + sX(u)

This problem (and many similar other ones) does not fit directly in our vision because this
computation does not commute with substitution, hence does not correspond to a (potentially
initial) morphism of monads.

Instead of computing the size of a term (which is 0 for a variable), we compute a
generalized size gs which depends on arbitrary (formal) sizes attributed to variables. We
have

gs : ∀X : Set, LC(X)→ (X → N)→ N

Here, we recognize the continuation monad (see also [22])

ContN := X 7→ (X → N)→ N

with multiplication λf.λg.f(λh.h(g)). The sets ContA(∅) and A are in natural bijection and
we will identify them in what follows.

Now we can define gs through initiality by endowing the monad ContN of a structure of
ΣLC-model as follows.

The function α(m,n) = 1 +m+ n induces a natural transformation

α+ : ContN × ContN −→ ContN

thus an action for the application signature Θ×Θ in the monad ContN.
Next, given f ∈ ContN(X + ∗), define f ′ ∈ ContN(X) by f ′(x) = 1 + f(x) for all x ∈ X

and f ′(∗) = 0. This induces a natural transformation

β : Cont′N −→ ContN
f 7→ f ′

which is the desired action of the abstraction signature Θ′.
Altogether, we have the desired action of ΣLC in ContN and thus an initial morphism,

i.e., a natural transformation ι : LC→ ContN which respects the ΣLC-model structure. Now
let 0X be the identically zero function on X. Then the sought “size” map is given by
sX(x) = ιX(x, 0X).

CSL 2018

4:12 High-Level Signatures and Initial Semantics

6.4 Example: Counting the number of redexes
We now consider an example of recursive computation: a function r such that r(t) is the
number of redexes of the λ-term t of LC(X). Informally, the equations defining r are

r(x) = 0, (x variable)
r(abs(t)) = r(t),

r(app(t, u)) =
{

1 + r(t) + r(u) if u is an abstraction
r(t) + r(u) otherwise

Here the (standard) recipe is to make the desired function appear as a projection of an
iterative function with values in a product. Concretely, we will proceed by first defining a
ΣLC-action on the monad product W := ContN × LC. First, consider the linear morphism
β : Cont′N → ContN given by β(f)(x) = f(x) for all f ∈ ContN(X + ∗) and x ∈ X. Since we
have W ′ = Cont′N × LC′, the product

β × abs : W ′ −→W

is an action of the abstraction signature Θ′ in W .
Next we specify the action of the application signature Θ × Θ. Given ((u, s), (v, t)) ∈

W (X)×W (X) and k : X → A we define

c((u, s), (v, t)) :=
{

(1 + u(k) + v(k))(k) if t is an abstraction
(u(k) + v(k))(k) otherwise

and

a((u, s), (v, t)) := app(s, t)

The pair map (c, a) : W ×W →W is our action of app in W .
From this ΣLC-action, we get an initial morphism ι : LC → ContN × LC. The second

component of ι is nothing but the identity morphism. By taking the projection on the first
component, we find a module morphism π1 · ι : LC→ ContN. Finally, if 0X is the constant
function X → N returning zero, then π1(ι(0X)) : LC(X)→ N is the desired function r.

7 Presentable signatures and syntaxes

In this section, we identify a superclass of algebraic signatures that are still representable:
we call them presentable signatures.

I Definition 34. A signature Σ is presentable12 if there is an algebraic signature Υ and an
epimorphism of signatures p : Υ −→ Σ.

I Remark. By definition, any construction which can be encoded through a presentable
signature can alternatively be encoded through the “presenting” algebraic signature. The
former encoding is finer than the latter in the sense that terms which are different in the
latter encoding can be identified by the former. In other words, a certain amount of semantics
is integrated into the syntax.

12 In algebra, a presentation of a group G is an epimorphism F → G where F is free (together with a
generating set of relations among the generators).

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:13

The main desired property of our presentable signatures is that, thanks to the following
theorem, they are representable:

I Theorem 35. Any presentable signature is representable.

A sketch of the proof is available in Appendix A.
See PresentableisRepresentable in Signatures/PresentableSignature for the formalized
proof.

I Definition 36. We call a syntax presentable if it is generated by a presentable signature.

Next, we give important examples of presentable signatures:

I Theorem 37. The following hold:
1. Any algebraic signature is presentable.
2. Any colimit of presentable signatures is presentable.
3. The product of two presentable signatures is presentable.

(Signatures/PresentableSignatureBinProdR:har_binprodR_isPresentable in the case
when one of them is Θ).

Proof. Items 1–2 are easy to prove. For Item 3, if Σ1 and Σ2 are presented by
∐
i Υi and∐

j Φj respectively, then Σ1 × Σ2 is presented by
∐
i,j Υi × Φj . J

I Corollary 38. Any colimit of algebraic signatures is representable.

8 Examples of presentable signatures

In this section we present various constructions which, thanks to Theorem 35, can be
“safely” added to a presentable syntax. Safely here means that the resulting signature is still
presentable.

8.1 Example: Adding a syntactic binary commutative operator
Here we present a signature that could be used to formalize a binary commutative operator, for
example the addition of two numbers. The elementary signature Θ×Θ already provides a way
to extend the syntax with a constructor with two arguments. By quotienting this signature, we
can enforce commutativity. To this end, consider the signature S2 ·Θ (see Example 16) where
S2 is the endofunctor that assigns to each set X the set of its unordered pairs. It is presentable
because the epimorphism between the square endofunctor ∆ = X 7→ X ×X and S2 yields an
epimorphism from ∆ ·Θ ∼= Θ×Θ to S2 ·Θ. This signature could alternatively be defined as
the coequalizer of the identity morphism and the signature morphism swap : Θ×Θ→ Θ×Θ
that exchanges the first and the second projection.

An action of the signature S2 ·Θ in a monad R is given by an operation on unordered
pairs of elements of R(X) for any set X, or equivalently, thanks to the universal property of
the quotient, by a module morphism m : R2 → R such that, for any set X and a, b ∈ R(X),
mX(a, b) = mX(b, a).

8.2 Example: Adding a syntactic closure operator
Given a quantification construction (e.g., abstraction, universal or existential quantification),
it is often useful to take the associated closure operation. One well-known example is the
universal closure of a logic formula. Such a closure is invariant under permutation of the

CSL 2018

4:14 High-Level Signatures and Initial Semantics

fresh variables. A closure can be syntactically encoded in a rough way by iterating the
closure with respect to one variable at a time. Here our framework allows a refined syntactic
encoding which we explain below.

Let us start with binding a fixed number k of fresh variables. The elementary signature
Θ(k) already specifies an operation that binds k variables. However, this encoding does
not reflect invariance under variable permutation. To enforce this invariance, it suffices to
quotient the signature Θ(k) with respect to the action of the group Sk of permutations of
the set k, that is, to consider the colimit of the following one-object diagram:

Θ(k)

Θ(σ)

where σ ranges over the elements of Sk. We denote by S(k)Θ the resulting (presentable)
signature. By universal property of the quotient, a model of it consists of a monad R with
an action m : R(k) → R that satisfies the required invariance.

Now, we want to specify an operation which binds an arbitrary number of fresh variables,
as expected from a closure operator. One rough solution is to consider the coproduct∐
k S(k)Θ. However, we encounter a similar inconvenience as for Θ(k). Indeed, for each

k′ > k, each term already encoded by the signature S(k)Θ may be considered again, encoded
(differently) through S(k′)Θ.

Fortunately, a finer encoding is provided by the following simple colimit of presentable
signatures. The crucial point here is that, for each k, all natural injections from Θ(k) to
Θ(k+1) induce the same canonical injection from S(k)Θ to S(k+1)Θ. We thus have a natural
colimit for the sequence k 7→ S(k)Θ and thus a signature colimk S(k)Θ which, as a colimit of
presentable signatures, is presentable (Theorem 37, item 2).

Accordingly, we define a total closure on a monad R to be an action of the signature
colimk S(k)Θ in R. It can easily be checked that a model of this signature is a monad R

together with a family of module morphisms (ek : R(k) → R)k∈N compatible in the sense
that for each injection i : k → k′ the following diagram commutes:

R(k)

ek
##

R(i)
// R(k′)

ek′

��
R

8.3 Example: Adding an explicit substitution
In this section, we explain how we can extend any presentable signature with an explicit
substitution construction. In fact we will show three solutions, differing in the amount of
“coherence” which is handled at the syntactic level (e.g., invariance under permutation and
weakening). We follow the approach initiated by Ghani, Uustalu, and Hamana in [13].

Let R be a monad. We have already considered (see Lemma 12) the (unary) substitution
σR : R′ ×R→ R. More generally, we have the sequence of substitution operations

substp : R(p) ×Rp −→ R. (2)

We say that substp is the p-substitution in R; it simultaneously replaces the p extra variables
in its first argument with the p other arguments, respectively. (Note that subst1 is the
original σR).

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:15

We observe that, for fixed p, the group Sp of permutations on p elements has a natural
action on R(p) ×Rp, and that substp is invariant under this action.

Thus, if we fix an integer p, there are two ways to internalize substp in the syntax: we
can choose the elementary signature Θ(p) ×Θp, which is rough in the sense that the above
invariance is not reflected; and alternatively, if we want to reflect the permutation invariance
syntactically, we can choose the quotient Qp of the above signature by the action of Sp.

By universal property of the quotient, a model of our quotient Qp is given by a monad R
with an action m : R(p) ×Rp → R satisfying the desired invariance.

Before turning to the encoding of the entire series (substp)p∈N, we recall how, as noticed
already in [13], this series enjoys further coherence. In order to explain this coherence, we
start with two natural numbers p and q and the module R(p) × Rq. Pairs in this module
are almost ready for substitution: what is missing is a map u : Ip −→ Iq. But such a map
can be used in two ways: letting u act covariantly on the first factor leads us into R(q) ×Rq
where we can apply substq; while letting u act contravariantly on the second factor leads us
into R(p) ×Rp where we can apply substp. The good news is that we obtain the same result.
More precisely, the following diagram is commutative:

R(p) ×Rq R(p) ×Rp

R(q) ×Rq R

R(p)×Ru

R(u)×Rp substp

substq

(3)

Note that in the case where p equals q and u is a permutation, we recover exactly the
invariance by permutation considered earlier.

Abstracting over the numbers p, q and the map u, this exactly means that our series factors
through the coend

∫ p:N
R(p) ×Rp, where covariant (resp. contravariant) occurrences of the

bifunctor have been underlined (resp. overlined), and the category N is the full subcategory
of Set whose objects are natural numbers. Thus we have a canonical morphism

isubstR :
∫ p:N

R(p) ×Rp −→ R.

Abstracting over R, we obtain the following:

I Definition 39. The integrated substitution

isubst :
∫ p:N

Θ(p) ×Θp −→ Θ

is the signature morphism obtained by abstracting over R the linear morphisms isubstR.

Thus, if we want to internalize the whole sequence (substp)p:N in the syntax, we have
at least three solutions: we can choose the algebraic signature

∐
p:N Θ(p) × Θp, which is

rough in the sense that the above invariance and coherence is not reflected; we can choose
the presentable signature

∐
p:NQp, which reflects the invariance by permutation, but not

more; and finally, if we want to reflect the whole coherence syntactically, we can choose the
presentable signature

∫ p:N Θ(p) ×Θp.
Thus, whenever a signature is presentable, we can safely extend it by adding one or the

other of the three above signatures, for a (more or less coherent) explicit substitution.
Ghani, Uustalu, and Hamana already studied this problem in [13]. Our solution proposed

here does not require the consideration of a strength.

CSL 2018

4:16 High-Level Signatures and Initial Semantics

8.4 Example: Adding a coherent fixed point operator
In the same spirit as in the previous section, we define, in this section,

for each n ∈ N, a notion of n-ary fixed point operator in a monad;
a notion of coherent fixed point operator in a monad, which assigns, in a “coherent” way,
to each n ∈ N, an n-ary fixed point operator.

We furthermore explain how to safely extend any presentable syntax with a syntactic coherent
fixed point operator.

There is one fundamental difference between the integrated substitution of the previ-
ous section and our coherent fixed points: while every monad has a canonical integrated
substitution, this is not the case for coherent fixed point operators.

Let us start with the unary case.

I Definition 40. A unary fixed point operator for a monad R is a module morphism f from
R′ to R that makes the following diagram commute,

R′ R′ ×R

R

(idR′ ,f)

f σ

where σ is the substitution morphism defined in Lemma 12.

Accordingly, the signature for a syntactic unary fixpoint operator is Θ′, ignoring the
commutation requirement (which we plan to address in a future work by extending our
framework with equations).

Let us digress here and examine what the unary fixpoint operators are for the lambda
calculus, more precisely, for the monad LCβη of the lambda-calculus modulo β- and η-
equivalence. How can we relate the above notion to the classical notion of fixed-point
combinator? Terms are built out of two constructions, app : LCβη × LCβη → LCβη and
abs : LC′βη → LCβη. A fixed point combinator is a term Y satisfying, for any (possibly open)
term t, the equation

app(t, app(Y, t)) = app(Y, t).

Given such a combinator Y , we define a module morphism Ŷ : LC′βη → LCβη. It associates,
to any term t depending on an additional variable ∗, the term Ŷ (t) := app(Y, abs t). This
term satisfies t[Ŷ (t)/∗] = Ŷ (t), which is precisely the diagram of Definition 40 that Ŷ must
satisfy to be a unary fixed point operator for the monad LCβη. Conversely, we have:

I Proposition 41. Any fixed point combinator in LCβη comes from a unique fixed point
operator.

The proof can be found in Appendix B.

After this digression, we now turn to the n-ary case.

I Definition 42.
A rough n-ary fixed point operator for a monad R is a module morphism f : (R(n))n → Rn

making the following diagram commute:

(R(n))n
id(R(n))n ,f ,..,f //

f

��

(R(n))n × (Rn)n

∼=

Rn (R(n) ×Rn)n
(substn)n

oo

where substn is the n-substitution as in Section 8.3.

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:17

An n-ary fixed point operator is just a rough n-ary fixed point operator which is further-
more invariant under the natural action of the permutation group Sn.

The type of f above is canonically isomorphic to

(R(n))n + (R(n))n + . . .+ (R(n))n → R,

which we abbreviate to13 n× (R(n))n → R.
Accordingly, a natural signature for encoding a syntactic rough n-ary fixpoint operator is

n× (Θ(n))n.
Similarly, a natural signature for encoding a syntactic n-ary fixpoint operator is (n ×

(Θ(n))n)/Sn obtained by quotienting the previous signature by the action of Sn.
Now we let n vary and say that a total fixed point operator on a given monad R assigns

to each n ∈ N an n-ary fixpoint operator on R. Obviously, the natural signature for the
encoding of a syntactic total fixed point operator is

∐
n(Θ(n))n/Sn. Alternatively, we may

wish to discard those total fixed point operators that do not satisfy some coherence conditions
analogous to what we encountered in Section 8.3, which we now introduce.

Let R be a monad with a sequence of module morphisms fixn : n× (R(n))n → R. We call
this family coherent if, for any p, q ∈ N and u : p→ q, the following diagram commutes:

p× (R(p))q p× (R(p))p

q × (R(q))q R

p×(R(p))u

u×(R(u))q fixp

fixq

(4)

These conditions have an interpretation in terms of a coend, just as we already encountered
in Section 8.3. This leads us to the following

I Definition 43. Given a monad R, we define a coherent fixed point operator on R to be a
module morphism from

∫ n:N
n× (R(n))n to R where, for every n ∈ N, the n-th component is

a (rough)14 n-ary fixpoint operator.

Now, the natural signature for a syntactic coherent fixed point operator is
∫ n:N

n×(Θ(n))n.
Thus, given a presentable signature Σ, we can safely extend it with a syntactic coherent fixed
point operator by adding the presentable signature

∫ n:N
n× (Θ(n))n to Σ.

9 Conclusions and future work

We have presented notions of signature and model of a signature. A signature is said to be
representable when its category of models has an initial model. We have defined a class of
presentable signatures, which contains traditional algebraic signatures, and which is closed
under various operations, including colimits. Our main result says that any presentable
signature is representable.

One difference to other work on Initial Semantics, e.g., [24, 12, 7, 9], is that we do not
rely on the notion of strength. However, a signature endofunctor with strength as used in the
aforementioned articles can be translated to a high-level signature as presented in this work.
In future work, we will show that this translation extends faithfully to models of signatures,
and preserves initiality.

13 In the following, we similarly write n instead of In in order to make equations more readable.
14As in Section 8.3, the invariance follows from the coherence.

CSL 2018

4:18 High-Level Signatures and Initial Semantics

Furthermore, we plan to generalize our representability criterion to encompass explicit
join (see [24]); to generalize our notions of signature and models to (simply-)typed syntax;
and to provide a systematic approach to equations for our notion of signature and models.

References
1 Benedikt Ahrens. Modules over relative monads for syntax and semantics. Mathematical

Structures in Computer Science, 26:3–37, 2016. doi:10.1017/S0960129514000103.
2 Benedikt Ahrens and Peter LeFanu Lumsdaine. Displayed Categories. In Dale Miller,

editor, 2nd International Conference on Formal Structures for Computation and Deduction,
volume 84 of Leibniz International Proceedings in Informatics, pages 5:1–5:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
FSCD.2017.5.

3 Thorsten Altenkirch, James Chapman, and Tarmo Uustalu. Monads need not be endofunc-
tors. Logical Methods in Computer Science, 11(1), 2015. doi:10.2168/LMCS-11(1:3)2015.

4 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Com-
puter Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the
EACSL, Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes
in Computer Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

5 Richard S. Bird and Oege de Moor. Algebra of programming. Prentice Hall International
series in computer science. Prentice Hall, 1997.

6 Richard S. Bird and Ross Paterson. Generalised folds for nested datatypes. Formal Asp.
Comput., 11(2):200–222, 1999. doi:10.1007/s001650050047.

7 Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In Proceedings
of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA, pages 57–68. IEEE Computer Society, 2008. doi:
10.1109/LICS.2008.38.

8 Marcelo P. Fiore and Chung-Kil Hur. Second-order equational logic (extended abstract).
In Anuj Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes in Computer
Science, pages 320–335. Springer, 2010. doi:10.1007/978-3-642-15205-4_26.

9 Marcelo P. Fiore and Ola Mahmoud. Second-order algebraic theories - (extended abstract).
In Petr Hlinený and Antonín Kucera, editors, MFCS, volume 6281 of Lecture Notes in
Computer Science, pages 368–380. Springer, 2010. doi:10.1007/978-3-642-15155-2_33.

10 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable
binding. In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy,
July 2-5, 1999, pages 193–202, 1999. doi:10.1109/LICS.1999.782615.

11 Murdoch J. Gabbay and Andrew M. Pitts. A New Approach to Abstract Syntax Involving
Binders. In 14th Annual Symposium on Logic in Computer Science, pages 214–224, Wash-
ington, DC, USA, 1999. IEEE Computer Society Press. doi:10.1109/LICS.1999.782617.

12 Neil Ghani and Tarmo Uustalu. Explicit substitutions and higher-order syntax. InMERLIN
’03: Proceedings of the 2003 ACM SIGPLAN workshop on Mechanized reasoning about
languages with variable binding, pages 1–7, New York, NY, USA, 2003. ACM Press.

13 Neil Ghani, Tarmo Uustalu, and Makoto Hamana. Explicit substitutions and higher-order
syntax. Higher-Order and Symbolic Computation, 19(2-3):263–282, 2006. doi:10.1007/
s10990-006-8748-4.

14 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50(1):1–102, 1987. doi:10.1016/
0304-3975(87)90045-4.

15 Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics. J.
ACM, 40(1):143–184, jan 1993. doi:10.1145/138027.138060.

http://dx.doi.org/10.1017/S0960129514000103
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.5
http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.5
http://dx.doi.org/10.2168/LMCS-11(1:3)2015
http://dx.doi.org/10.1007/3-540-48168-0_32
http://dx.doi.org/10.1007/s001650050047
http://dx.doi.org/10.1109/LICS.2008.38
http://dx.doi.org/10.1109/LICS.2008.38
http://dx.doi.org/10.1007/978-3-642-15205-4_26
http://dx.doi.org/10.1007/978-3-642-15155-2_33
http://dx.doi.org/10.1109/LICS.1999.782615
http://dx.doi.org/10.1109/LICS.1999.782617
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1007/s10990-006-8748-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1145/138027.138060

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:19

16 André Hirschowitz and Marco Maggesi. Modules over monads and linearity. In D. Leivant
and R. J. G. B. de Queiroz, editors, WoLLIC, volume 4576 of Lecture Notes in Computer
Science, pages 218–237. Springer, 2007. doi:10.1007/978-3-540-73445-1_16.

17 André Hirschowitz and Marco Maggesi. Modules over monads and initial semantics. In-
formation and Computation, 208(5):545–564, May 2010. Special Issue: 14th Workshop
on Logic, Language, Information and Computation (WoLLIC 2007). doi:10.1016/j.ic.
2009.07.003.

18 André Hirschowitz and Marco Maggesi. Initial semantics for strengthened signatures. In
Dale Miller and Ésik Zoltán, editors, Proceedings of the 8th Workshop on Fixed Points in
Computer Science, pages 31–38, 2012. doi:10.4204/EPTCS.77.

19 Tom Hirschowitz. Cartesian closed 2-categories and permutation equivalence in higher-
order rewriting. Logical Methods in Computer Science, 9(3):10, 2013. 19 pages. doi:
10.2168/LMCS-9(3:10)2013.

20 Martin Hyland and John Power. The category theoretic understanding of universal algebra:
Lawvere theories and monads. Electronic Notes in Theoretical Computer Science, 172:437–
458, April 2007. doi:10.1016/j.entcs.2007.02.019.

21 J.W. Thatcher J.A. Goguen and E.G. Wagner. An initial algebra approach to the specific-
ation, correctness and implementation of abstract data types. In R. Yeh, editor, Current
Trends in Programming Methodology, IV: Data Structuring, pages 80–144. Prentice-Hall,
1978.

22 Patricia Johann and Neil Ghani. Initial algebra semantics is enough! In Typed Lambda
Calculi and Applications, 8th International Conference, TLCA 2007, Paris, France, June
26-28, 2007, Proceedings, pages 207–222, 2007. doi:10.1007/978-3-540-73228-0_16.

23 Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts
in Mathematics. Springer-Verlag, New York, second edition, 1998.

24 Ralph Matthes and Tarmo Uustalu. Substitution in non-wellfounded syntax with variable
binding. Theor. Comput. Sci., 327(1-2):155–174, 2004. doi:10.1016/j.tcs.2004.07.025.

25 The Coq development team. The Coq Proof Assistant, version 8.8.0, 2018. Version 8.8.
URL: http://coq.inria.fr.

26 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-
checked library of univalent mathematics. Available at https://github.com/UniMath/
UniMath.

A Proof of Theorem 35

The results of this section, as well as Theorem 35 for which these results are used, are
mechanically checked in our library; the reader may thus prefer to check the formalized
statements in the library rather than their proofs in this section.

The proof of Theorem 35 rests on the more technical Lemma 48 below, which requires
the notion of epi-signature:

I Definition 44. An epi-signature is a signature Σ that preserves the epimorphicity in the
category of endofunctors on Set: for any monad morphism f : R −→ S, if U(f) is an epi
of functors, then so is U(Σ(f)). Here, we denote by U the forgetful functor from monads
resp. modules to the underlying endofunctors.

I Example 45. Any algebraic signature is an epi-signature.

This example is formalized in Signatures/BindingSig:BindingSigAreEpiSig.

I Proposition 46. Epimorphisms of signatures are pointwise epimorphisms.

CSL 2018

http://dx.doi.org/10.1007/978-3-540-73445-1_16
http://dx.doi.org/10.1016/j.ic.2009.07.003
http://dx.doi.org/10.1016/j.ic.2009.07.003
http://dx.doi.org/10.4204/EPTCS.77
http://dx.doi.org/10.2168/LMCS-9(3:10)2013
http://dx.doi.org/10.2168/LMCS-9(3:10)2013
http://dx.doi.org/10.1016/j.entcs.2007.02.019
http://dx.doi.org/10.1007/978-3-540-73228-0_16
http://dx.doi.org/10.1016/j.tcs.2004.07.025
http://coq.inria.fr
https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath

4:20 High-Level Signatures and Initial Semantics

Proof. The proof if formalized in Signatures/EpiArePointwise:epiSig_is_pwEpi. In any
category, a morphism f : a→ b is an epimorphism if and only if the following diagram is a
pushout diagram ([23, exercise III.4.4]) :

a b

b b

f

f id

id

Using this characterization of epimorphisms, the proof follows from the fact that colimits are
computed pointwise in the category of signatures. J

Another important ingredient will be the following quotient construction for monads. Let
R be a monad, and let ∼ be a “compatible” family of relations on (the functor underlying) R,
that is, for any X : Set0, ∼X is an equivalence relation on RX such that, for any f : X → Y ,
the function R(f) maps related elements in RX to related elements in RY . Taking the
pointwise quotient, we obtain a quotient π : R → R in the functor category, satisfying
the usual universal property. We want to equip R with a monad structure that upgrades
π : R→ R into a quotient in the category of monads. In particular, this means that we need
to fill in the square

R ·R

π·π
��

µ // R

π
��

R ·R
µ // R

with a suitable µ : R ·R −→ R satisfying the monad laws. But since π, and hence π · π, is
epi, this is possible when any two elements in RRX that are mapped to related elements by
π · π (the left vertical morphism) are also mapped to related elements by π ◦ µ (the top-right
composition). It turns out that this is the only extra condition needed for the upgrade. We
summarize the construction in the following lemma:

I Lemma 47. Given a monad R, and a compatible relation ∼ on R such that for any set X
and x, y ∈ RRX, we have that if (π · π)X(x) ∼ (π · π)X(y) then π(µ(x)) ∼ π(µ(y)). Then
we can construct the quotient π : R → R in the category of monads, satisfying the usual
universal property.

We are now in a position to state and prove the main technical lemma:

I Lemma 48. Let Υ be a representable signature. Let F : Υ→ Σ be a morphism of signatures.
Suppose that Υ is an epi-signature and F is an epimorphism. Then Σ is representable.

Sketch of the proof. We denote by R the initial Υ-model, as well as – by abuse of notation
– its underlying monad. For each set X, we consider the equivalence relation ∼X on R(X)
defined as follows: for all x, y ∈ R(X) we stipulate that x ∼X y if and only if iX(x) = iX(y)
for each (initial) morphism of Υ-models i : R→ F ∗S with S a Σ-model and F ∗S the Υ-model
induced by F : Υ→ Σ.

Per Lemma 47 we obtain the quotient monad, which we call R/F , and the epimorphic
projection π : R→ R/F . We now equip R/F with a Σ-action, and show that the induced
model is initial, in four steps:

B. Ahrens, A. Hirschowitz, A. Lafont, and M. Maggesi 4:21

(i) We equip R/F with a Σ-action, i.e., with a morphism of R/F -modules mR/F :
Σ(R/F) → R/F . We define u : Υ(R) → Σ(R/F) as u = FR/F ◦ Υ(π). Then
u is epimorphic, by composition of epimorphisms and by using Corollary 46. Let
mR : Υ(R)→ R be the action of the initial model of Υ. We define mR/F as the unique
morphism making the following diagram commute in the category of endofunctors on
Set:

Υ(R) R

Σ(R/F) R/F

mR

u π

mR/F

Uniqueness is given by the pointwise surjectivity of u. Existence follows from the
compatibility of mR with the congruence ∼X . The diagram necessary to turn mR/F

into a module morphism on R/F is proved by pre-composing it with the epimorphism
π · (Σ(π) ◦ FS) and unfolding the definitions.

(ii) Now, π can be seen as a morphism of Υ-models between R and F ∗R/F , by naturality
of F and using the previous diagram.
It remains to show that (R/F ,mR/F) is initial in the category of Σ-models.

(iii) Given a Σ-model (S,ms), the initial morphism of Υ-models iS : R → F ∗S induces a
monad morphism ιS : R/F → S. We need to show that the morphism ι is a morphism
of Σ-models. Pre-composing the involved diagram by the epimorphism Σ(π)FR and
unfolding the definitions shows that ιS : R/F → S is a morphism of Σ-models.

(iv) We show that ιS is the only morphism R/F → S. Let g be such a morphism. Then
g ◦ π : R→ S defines a morphism in the category of Υ-models. Uniqueness of iS yields
g ◦ π = iS , and by uniqueness of the diagram defining ιS it follows that g = i′S . J

In the formalization, this result is derived from the existence of a left adjoint to the
pullback functor F ∗ from Σ-models to Υ-models. The right adjoint is constructed in
is_right_adjoint_functor_of_reps_from_pw_epi in Signatures/EpiSigRepresentability, and
transfer of representability is shown in push_initiality in the same file.

Proof of Thm. 35. Let Σ be presentable. We need to show that Σ is representable. By
hypothesis, we have a presenting algebraic signature Υ and an epimorphism of signatures
e : Υ −→ Σ.

As the signature Υ is algebraic, it is representable (by Theorem 31) and is an epi-signature
(by Example 45). We can thus instantiate Lemma 48 to deduce representability of Σ. J

B Miscellanea

Proof of Prop. 41. We construct a bijection between the set LCβη∅ of closed terms on the
one hand and the set of module morphisms from LC′βη to LCβη satisfying the fixed point
property on the other hand.

A closed lambda term t is mapped to the morphism u 7→ t̂ u := app(t, abs u). We have
already seen that if t is a fixed point combinator, then t̂ is a fixed point operator.

For the inverse function, note that a module morphism f from LC′βη to LCβη induces a
closed term Yf := abs(f1(app(∗, ∗∗))) where f1 : LCβη({∗, ∗∗})→ LCβη{∗}.

A small calculation shows that Y 7→ Ŷ and f 7→ Yf are inverse to each other.

CSL 2018

4:22 High-Level Signatures and Initial Semantics

It remains to be proved that if f is a fixed point operator, then Yf satisfies the fixed
point combinator equation. Let t ∈ LCβηX, then we have

app(Yf , t) = app(abs f1(app(∗, ∗∗)), t) (5)
= fX(app(t, ∗∗)) (6)
= app(t, app(Yf , t)) (7)

where (6) comes from the definition of a fixed point operator. Equality (7) follows from the
equality app(Yf , t) = fX(app(t, ∗∗)), which is obtained by chaining the equalities from (5) to
(6). This concludes the construction of the bijection. J

	Introduction
	Initial Semantics
	Computer-checked formalization
	Related work
	Organisation of the paper

	Categories of modules over monads
	Modules over monads
	The total category of modules
	Derivation

	The category of signatures
	Categories of models
	Syntax
	Representability
	Modularity

	Recursion
	Example: Translation of intuitionistic logic into linear logic
	Example: Computing the set of free variables
	Example: Computing the size of a term
	Example: Counting the number of redexes

	Presentable signatures and syntaxes
	Examples of presentable signatures
	Example: Adding a syntactic binary commutative operator
	Example: Adding a syntactic closure operator
	Example: Adding an explicit substitution
	Example: Adding a coherent fixed point operator

	Conclusions and future work
	Proof of Theorem 35
	Miscellanea

