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Abstract   7 

Although the seafloor spreading Hess initially proposed was a virtually amagmatic process, 8 

little attention has been paid to that possibility since.  We construct a kinematic framework 9 

for virtually amagmatic and magma-poor Hess-style seafloor spreading, and successfully 10 

apply it to processes operating at the Southwest Indian Ridge (SWIR).  The kinematic model 11 

is based on symmetric divergence about a rift axis at depth, with a repeating cycle in which a 12 

fault propagates up from the rift axis, develops into a detachment fault accommodating the 13 

plate divergence, migrates beyond the rift axis and is abandoned when a new fault 14 

propagates up through the footwall from the rift axis.  We rigorously explore the controls on 15 

the depth, dip and timing of fault initiation and abandonment and use the kinematic 16 

framework to reconstruct the evolution of smooth mantle-dominated seafloor at the SWIR 17 

through symmetric divergence about a fixed rift axis.  The model predicts the development of 18 

successive detachments of flipping polarity, as observed, each rooting along a narrow and 19 

fixed rift axis at 20 km depth, the base of the seismically defined brittle lithosphere.  The 20 

detachments root at 80˚ (consistent with constraints on seismicity-defined detachment 21 

orientation at oceanic core complexes), and exhume mantle.  Based on the continuity of 22 

basement ridges, of magnetic anomalies and of the seismic activity at the base of the 23 

lithosphere, it appears that these exhumation detachments transition laterally into rafting 24 

detachments, transporting fault-bounded volcanic slices up and away from the spreading 25 



axis to form the rougher volcanic seafloor found between mantle-dominated domains.  The 26 

kinematic framework shows that increased magmatic divergence requires the detachments 27 

to root at shallower depths, consistent with the seismicity-defined shallowing of the base of 28 

the brittle lithosphere moving along the ridge axis towards the volcanic centres.  Only in the 29 

immediate vicinity of volcanic centres, where the seismicity dies out, may magmatism 30 

dominate.  We conclude that detachment tectonics dominate the process of ultraslow 31 

seafloor spreading as well as much of slow seafloor spreading, totalling about one third of 32 

the global ridge system, and present the first 3D tectonic model for ultraslow seafloor 33 

spreading. 34 

 35 
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 37 

1. Introduction:  38 

Seafloor spreading as first proposed by Hess (1962) was virtually amagmatic, leading to the 39 

unroofing of large tracts of mantle at the seafloor, but the dredging of dominantly basaltic 40 

crust and the structure of ophiolites led to the adoption of a more magmatic model, like that 41 

proposed by Dietz (1961).  However, the interpretation of oceanic core complexes (OCCs - 42 

Cann et al., 1996) as plutonic and mantle rocks exhumed in the footwall of large offset 43 

normal faults has re-emphasised the importance of faulting in seafloor spreading.   These 44 

oceanic detachment faults are believed to root steeply (deMartin et al., 2007; Figure 1), 45 

causing the exhumed footwall to be rotated by at least 60° about a ridge-parallel horizontal 46 

axis (Morris et al., 2009), as in a rolling hinge model (Lavier et al., 1999 – Figure 1). 47 

MacLeod et al., (2009) proposed that individual oceanic detachment faults develop through 48 

runaway weakening of normal faults, allowing the detachment to accommodate more than 49 

half the plate divergence and hence to migrate across the ridge axis, to be cut by dikes and 50 

abandoned (Figure 1 D, F, G – Escartin et al., 2017).   51 



The observation (Dick et al., 2003) that ultraslow spreading ridges such as the Southwest 52 

Indian Ridge (SWIR) and the Gakkel ridge are dominated by long-lived volcanic centres and 53 

intervening zones of exhumed mantle, is in keeping with the reduced magmatism expected 54 

as full spreading rates drop below 20 mm/yr (Bown and White, 1994), but Dick et al. did not 55 

investigate the kinematics of mantle exhumation.  Building on the MacLeod model for 56 

individual OCCs, Reston and McDermott (2011) suggested that successive detachments, 57 

each migrating across the rift axis to be cut by a new detachment, could explain the 58 

unroofing of large expanses of mantle both at magma-poor margins ( where it explained the 59 

unroofing of mantle, the dominance of landward-dipping root zones on each margin and the 60 

large scale symmetry of conjugate margins - Reston, 2007; 2009) and at ultraslow spreading 61 

ridges (Figure 2), suggesting that the polarity of successive faults would be “likely to 62 

alternate if flexure of the exhuming footwall induces strain weakening antithetic to the old 63 

fault”.   This “flip-flop” detachment model was subsequently applied by Sauter et al. (2013) to 64 

mantle-dominated parts of the SWIR.  Here we develop the flip-flop concept into a rigorous 65 

kinematic model for Hess-style seafloor spreading, exploring the controls on detachment 66 

abandonment and initiation, and the along strike transition from mantle-dominated to 67 

volcanic seafloor.  We develop a 3D model for ultraslow seafloor spreading, in which 68 

detachment faulting controls both virtually amagmatic seafloor spreading (VASS), exhuming 69 

the mantle of the smooth seafloor, and much of the neighbouring expanses of volcanic 70 

seafloor formed by partially magmatic seafloor spreading (PMSS).  Our results have 71 

profound implications not just for the spreading mechanism operating at ultraslow ridges but 72 

also for the development of oceanic core complexes found along most of the slow-spreading 73 

Mid-Atlantic Ridge, and thus in total perhaps one third of the active spreading ridge system.    74 

 75 

2. The Southwest Indian Ridge 76 



The SWIR, spreading at an ultraslow full rate of 14 mm/yr, exhibits irregular bands in the 77 

flowline direction, of “smooth seafloor” - dominantly exhumed mantle - separated by rougher 78 

bands of dominantly volcanic seafloor (Sauter et al., 2013).  Sparse wide-angle data suggest 79 

that the volcanics are up to a few km thick, and widely-spaced Moho reflections a couple of 80 

km deeper (Minshull et al., 2006 – Figure 3A), whereas the  smooth seafloor exhibits 81 

pervasive but downward-decreasing serpentinisation to a depth of 6 km below seafloor 82 

(Momoh et al., 2017) where the Moho marks a transition to unserpentinised mantle.  Most 83 

seismic activity occurs along a continuous band that can be traced from 20±5 km depth 84 

beneath the smooth seafloor to ~5 km as volcanic centres are approached, tracking just 85 

above the 700°C isotherm thought to mark the downdip extent of brittle faulting (Schlindwein 86 

and Schmidt, 2016 – Figure 3A).  The lack of shallower seismicity may result from 87 

serpentinisation and hydration of the fractured mantle by the passage of water along the 88 

faults (Reston and Perez-Gussinye, 2007); serpentinites form up to temperatures between 89 

400 and 500°C (Emmanuel and Berkowitz, 2006), consistent with the upper limit of the 90 

seismicity.  Schlindwein and Schmidt (2016) suggest that the considerable thickness of the 91 

brittle layer results from cooling by the circulation of the serpentinising water. 92 

The smooth seafloor on both sides of the spreading axis (Figure 3B) exhibits a series of 93 

axis-parallel elongate highs, with both inward- and outward-facing flanks formed by exhumed 94 

slip surfaces of major faults (Sauter et al., 2013).  Inward-facing faults can be traced from the 95 

top of each elongate high down to the base of the inward-facing flanks where they are cut by 96 

outward-dipping faults (forming the outward flank of the high immediately inboard) which 97 

pass into the subsurface.  The pattern was interpreted by Sauter et al., (2013) in terms of 98 

successive detachment faults of alternating polarity (Reston and McDermott, 2011 – Figure 99 

4C).  We start by considering the kinematics of these faults, given the constraints imposed 100 

by the observed seismicity (Schlindwein and Schmidt, 2016) on the depths at which faults 101 

root, and the seafloor observations of fault extent and orientation. 102 

 103 



3. A kinematic model for amagmatic spreading    104 

The concept of mantle exhumation and VASS through successive detachments (Reston and 105 

McDermott, 2011) is based on three assumptions: divergence is amagmatic (magmatism 106 

may thicken the lithosphere but does not accommodate significant horizontal 107 

displacements), divergence is symmetric about a deep rift axis, and successive faults 108 

propagate up from that rift axis, exploiting weakness of the footwall where it has been flexed 109 

and faulted near the rolling hinge.  (We use the term “rift axis” to describe the axis of 110 

divergence at the depth of fault initiation, distinct from the surface expression of divergence, 111 

the spreading axis). As extension proceeds and the footwall is pulled out from beneath the 112 

hanging wall, the fault root migrates with the hanging wall away from the rift axis at half the 113 

spreading rate until the next fault propagates up from the rift axis through the footwall (Figure 114 

2).  The footwall, including the breakaway, migrates at the same half-spreading rate in the 115 

opposite direction.   116 

The kinematic model can be presented in two ways: a simple geometrical approach (Figure 117 

4C), based on reducing the curvature of the flexing footwall to a sharp hinge and assuming 118 

that the system is kinematically stable, i.e. a fixed rift axis, and a graphical approach (Figure 119 

4A and B) that explores the implications of seafloor observations.  The graphical approach 120 

(Figure 4B) defines the linear extrapolation of the fault root to the surface as the edge of the 121 

original hanging wall, a parallel line through the breakaway as the edge of the original 122 

footwall prior to divergence and flexure, and the midpoint of the two as the location of the 123 

original fault and hence the rift axis at the depth of fault initiation, assuming symmetric 124 

spreading.  125 

To analyse the detachments graphically, we must first reconstruct them (Figure 4D) from the 126 

seafloor observations, revealing the heave of each detachment immediately prior to its 127 

truncation, and where each detachment was truncated by the next.  A seismic study at the 128 

SWIR (Momoh et al., 2017) imaged basement reflections interpreted as from the detachment 129 



root dipping at 60° and, but the Kirchhoff time migration used does not handle steep dips 130 

well and the depth conversion by vertical stretch does not include ray-path bending.  131 

Furthermore, the image is only to a depth of 5-6 km below the seafloor, and as rolling hinge 132 

detachments are flexed to be convex-up, the detachment is likely to steepen towards the 133 

depth of the brittle-ductile transition close to the 700°C isotherm (Schlindwein and Schmidt, 134 

2016; Figure 3).  We thus suspect that the image significantly underestimates the dip of the 135 

detachment at depth.  The depth of fault initiation is constrained by the depth of seismicity 136 

observed (Schlindwein and Schmidt, 2016), and the fault dip θ is constrained by the 137 

geometry of oceanic detachments elsewhere: in Figure 4D, we assumed that at depth faults 138 

dip at 75°, similar to the dip observed at the MAR at TAG (deMartin et al., 2007), meaning 139 

that for four of the six detachments interpreted in Figure 3, the original fault position and the 140 

new fault intersect at the rift axis at a depth of ~10 km below the seafloor (Figure 4D), 141 

somewhat shallower than the observed SWIR seismicity.   For the same 75° fault dip, the 142 

small heaves of two detachments (ε and φ) however predict an even shallower initiation 143 

depth for the next fault (Figure 4D): we discuss the possible explanations below.        144 

Parameters such as heave, truncation point and fault dip are more efficiently analysed using 145 

the geometric model.  While considerably simpler than numerical models (e.g., Buck et al., 146 

2005; Tucholke et al., 2008; Behn and Ito, 2008), the geometrical approach allows testing of 147 

the key controlling parameters and hence provides insight into the processes occurring at 148 

ultraslow spreading ridges.  From the model in Figure 4C, and defining e as divergence (= 149 

heave h for amagmatic divergence along a single fault), c as the distance between the 150 

idealised surface trace  of the old fault and where it is truncated by the new fault, θ as the 151 

fault dip, and z as the depth of fault initiation, we have: 152 

 (e/2) – c =  2z/tanθ [1] 153 



relating the observable timing (in terms of divergence) and location of the truncation point to 154 

the fault parameters of dip and initiation depth.  This equation can be rewritten to give the 155 

fault initiation depth: 156 

 tanθ.((e/2) – c)/2 =  z [2] 157 

Plotting heave (divergence e for amagmatic spreading) against fault initiation depth for a 158 

wide range of fault dips, and two different truncation distances (3 and 5 km in broken and 159 

solid lines respectively) shows that as the heave or the fault dip increases, so does the depth 160 

of fault initiation (Figure 4E).  Comparing the results for the range of fault heaves observed 161 

along the smooth 64.5°E transect (Table 1) with the 15-25 km depths of seismicity observed 162 

just to the east (Schlindwein and Schmidt, 2016) suggests that the faults must have initiated 163 

as steep structures dipping at least 80°.      164 

Location 
SWIR at 

64.5°E 

SWIR at 

64.5°E 

SWIR at 

64.5°E 

SWIR at 

64.5°E 

SWIR at 

64.5°E 

SWIR at 

64.5°E 5°S 

MAR at 

TAG 

Detachment β χ δ ε ϕ γ 5S TAG 

dip of root °  ? ?  ?  ?  ?  ?  75° 73° 

polarity: down 

to N S N S N S E W 

heave [km] 24 17 18 10 11 20 23 12 

truncation [km] 6 3 4 2 3 4 6 3 assumed 

Table 1: Detachment parameters 165 

The specific truncation points and heaves of the detachments observed (Table 1) can also 166 

be used to predict fault depth vs dip (Figure 4G), effectively duplicating the analysis in Figure 167 

4D but over a wide range of fault angles.  The β, χ, δ and γ detachments plot in virtually the 168 

same space, despite different heaves and truncation points (Table 1), suggesting a common 169 

depth and dip of formation; for all four an initial dip of 80-83° predicts that the detachments 170 

initiated at the 15-25 km depths of seismicity observed at magma-starved portions of the 171 



SWIR (Figure 3).   This dip is the same as the best constrained dip at depth of an oceanic 172 

detachment fault, traced to ~10 km below the seafloor using microseismicity at 13°20’N 173 

(Parnell-Turner et al., 2017), but is considerably greater than that expected from simple 174 

Mohr-Coulomb criteria and may indicate that faults partly follow sub-vertical dikes (Olive et 175 

al., 2010) or hydrofractures weakened by serpentinisation; while it is generally recognised 176 

that serpentinites allow normal slip at low-angles, they also allow slip on pre-existing 177 

structures at angles steeper than optimum.  Sauter et al. (2013) note that  the exhumed slip 178 

surfaces are cut and offset by minor high-angle faults and fissures that act as conduits for 179 

shallow magma intrusion and eruption of lavas that cover parts of the seafloor even in the 180 

smooth sections of the SWIR.   181 

 182 

3.1 Incorporating asymmetry 183 

The small heaves of the ε and φ detachments would appear (Figure 4D) to suggest that the 184 

succeeding fault would either have to initiate much shallower than the other detachments, or 185 

if also initiating at the depth of the seismicity, would need to have developed from near-186 

vertical fissures or dikes (Olive et al., 2010).  The anomalous heaves of the ε and φ 187 

detachments may alternatively involve a departure from the assumption that rifting is 188 

symmetric about a deep rift axis and that all faults root on this axis.  A degree of asymmetry 189 

can be introduced by allowing the rift axis to move by a proportion K of the divergence.  190 

Positive values of K move the rift axis in the direction of the hangingwall, negative values in 191 

the direction of the footwall, giving us new expressions for the distance from the original 192 

edge of the footwall to the rift axis of   193 

 e.K   +   e/2 [3] 194 

which means that the distance c from the HW cutoff to the truncation point becomes 195 

 c = e  -  (0.5.e  +  e.K) -  2z/tanθ   =    e(0.5 – K)    -  2z/tanθ [4] 196 



 K = 0.5 - (c +2z/tanθ)/e 197 

The depth of initiation can be found from: 198 

 z = tanθ.(0.5e – e.K – c)/2 [5] 199 

and the amount of divergence before the new fault develops by: 200 

 e = (c + 2z/tanθ)/(0.5-K) [6] 201 

For a given angle and depth of fault initiation, positive K either reduces the distance c 202 

between the truncation point and the HW cutoff, or means that the new fault only develops 203 

later in the cycle, i.e. at larger heaves (Figure 4F).  In one scenario, where the rift axis is 204 

controlled by the location of the detachment root, the rift axis moves with that root, K = 0.5, 205 

the detachment is never abandoned, and no new fault develops.  In this manner a fault that 206 

runs the whole length of a segment  - and thus controls the location of the rift axis - might 207 

develop very large offsets, as observed for the OCC within the Ascension double transform 208 

system (Grevemeyer et al., 2013), and for the Godzilla OCC (Tani et al., 2015).   209 

Conversely, a negative K would result in the fault developing earlier in the cycle (i.e. at a 210 

smaller heave – Figure 4F)):  a K of -0.3 would suffice to shift the initiation point of the ε to 211 

depths similar to the other four detachments.   212 

It does not, however, seem likely that a generally stable rift axis would suddenly jump 213 

several km to the footwall for the initiation of one fault and then back by the same amount for 214 

the initiation of the next fault.  A simpler way of looking at the same events is to suggest that 215 

the rift axis stayed fixed but that a single fault, the ε detachment, rooted off axis on the 216 

footwall side, and propagated up through the φ detachment before that had achieved the 217 

expected heaves.  The subsequent δ detachment propagated up from the rift axis, located 218 

well back in the footwall of the developing ε detachment, thus also truncating ε at relatively 219 

low heaves.  To illustrate this interpretation we have reconstructed the evolution of the 220 

smooth seafloor along the 64.5˚ E transect (Figure 5).  All faults initiate at the same depth, 221 



and apart from the ε detachment, all faults initiate at the rift axis, about which spreading is 222 

symmetric.  Given that we have simply adopted the seafloor interpretation of Sauter et al. 223 

(2013), the stability of the reconstruction is remarkable, with the off-axis formation of a single 224 

detachment (ε) being the proverbial “exception that proves the rule”.  We thus conclude that 225 

development of successive flip-flop detachments, initiating at 15-20 km depth and at an 226 

angle of ~80˚ during overall symmetric VASS produced the smooth seafloor along the 64.5˚ 227 

E transect. 228 

 229 

3.2 Incorporating magmatic divergence 230 

In the kinematic model for VASS developed above, we have related four parameters: the 231 

depth of fault initiation (constrained by seismicity), the dip of fault initiation (partially 232 

constrained by observations elsewhere), the point where a detachment cuts the preceding 233 

one and the amount of divergence accommodated by each detachment (both from seafloor 234 

observations).   However, we observe the current extent of the detachment, not how it may 235 

have formed, and crucially ignore any contribution of magmatism to plate divergence.  This 236 

assumption would appear reasonable for smooth-seafloor parts of the SWIR where mantle 237 

dominates and the fraction of magmatic divergence M may be close to 0, but is probably less 238 

valid where the amount of volcanics increases.   239 

The interplay between magmatism and faulting is likely complex (e.g. Olive et al., 2010), with 240 

faults providing conduits for magma and dikes potentially evolving into faults as discussed 241 

above, and increased magmatism accompanied by a hotter, thinner lithosphere, and a 242 

shallower brittle-ductile transition (Behn and Ito, 2008).  For this kinematic analysis we 243 

distinguish between magmatism that does not contribute directly to plate divergence but may 244 

thicken the crust, and magmatism that actually extends rather than thickens part of one plate 245 

(Figure 6A, B), taking up a proportion M of the divergence (Buck et al., 2005; Behn and Ito, 246 

2008).   Magma is likely to be trapped deep in the ductile asthenosphere (Olive et al., 2010) 247 



or beneath the footwall (Kelemen et al., 2007; Dick et al., 2008; MacLeod et al., 2009) as it is 248 

uplifted beneath the detachment and migrates across the deep rift axis; this magma 249 

increases crustal thickness but does not actually extend the system.  How much magma is 250 

trapped in this way is the subject for another debate, but may range from very little (e.g. 251 

during truly amagmatic spreading) to considerable, trapped by upside-down magmatic 252 

growth faulting beneath the footwall (Kelemen et al., 2007; Dick et al., 2008), but if intrusion 253 

accommodates some divergence (partially magmatic seafloor spreading, PMSS) we need to 254 

modify the kinematic model. 255 

The kinematic model for VASS (Figure 4C) is easily modified for PMSS (Figure 6C).  As the 256 

amount of magmatic divergence by intrusion of the hanging wall increases, the proportion of 257 

divergence taken up on the fault drops and the active fault no longer follows the original 258 

edge of the hanging wall but is closer to the rift axis; when M reaches 0.5 (Behn and Ito, 259 

2008), the active fault is at the rift axis (Tucholke et al., 2008) and follows the original fault 260 

position, halfway between the original HW and FW edges.  The kinematically stable depth of 261 

initiation z (i.e. above a fixed rift axis during symmetric spreading) can be related to the 262 

divergence e, the truncation distance c and the angle of fault initiation θ by  263 

z = tanθ.((e/2) – c – e.M)/2 [7] 264 

Or from a process perspective: 265 

((e/2) – c – e.M)  = 2z/tanθ [8] 266 

which is the equivalent of equations [1] and [2] when M = 0.  Note that these relationships 267 

are the same as for the element of asymmetry in [3-6], only replacing the asymmetric 268 

proportion K with M and noting that unlike K, M can only be positive. 269 

The above analysis can be applied to oceanic core complexes such as 5°S (Reston et al., 270 

2002) where the detachment was abandoned following the migration of the fault root beyond 271 

the rift axis.  The heaves, truncations points, and a suitable fault dip (Table 1) can be 272 



compared with the seismicity observed nearby to estimate the amount of magmatic 273 

divergence in these systems.   At 5°S, the few days seismicity recorded (Tilmann et al., 274 

2004) is insufficient to map out fault dips but does suggest a maximum seismogenic depth of 275 

~7 km below the seafloor.  Inputting the detachment parameters into the kinematic model, 276 

suggests an M factor of ~0.15 for 5°S (although there is considerable uncertainty - Figure 277 

6D), which is not unreasonable since for the fault to migrate across the rift axis M < 0.5 278 

(Tucholke et al., 2008). 279 

Although the oceanic detachment at TAG (deMartin et al., 2007) is still active, the same sort 280 

of analysis is instructive there.  In map view (Figure 1D) the TAG OCC bulges markedly 281 

across the median valley.  Taking a narrow box linking the well-defined neo-volcanic zones 282 

to the NE and SW as the rift axis, the active magmatism deflects to the northwest around the 283 

OCC.  The rift axis is closer to the breakaway identified by deMartin et al. than it is to the 284 

root zone (Figure 1E), requiring an impossible negative M value or markedly asymmetric 285 

spreading.  Instead we propose that the deMartin breakaway is the edge of a rafted rider 286 

block rafted with the true breakaway at the next scarp to the east.  The rift axis now lies 287 

approximately halfway between the root and the breakaway, implying that M must be small 288 

unless spreading is slightly asymmetric.  We speculate that bands of seismicity identified as 289 

antithetic faulting (deMartin et al., 2007) may be compressional related to the bending of the 290 

exhuming footwall; if this band of seismicity were to mark an incipient fault cutting across the 291 

active detachment near the hanging wall cutoff, the dimensions would imply an M of about 292 

0.05. 293 

 294 

3.3 Incorporating magmatism for successive detachments 295 

The OCCs at TAG and 5°S each formed by slip on a single detachment fault.  When 296 

successive detachments are present, intrusion (magmatic divergence) in the hanging wall of 297 

the active fault is in the footwall of the immediately preceding fault (Figure 6E).  Where the 298 



active fault dips in the opposite direction to the preceding fault, the magmatic divergence 299 

increases the distance between the breakaway of that fault and the point where that fault 300 

was cut (Figure 6E); in the rarer case where the active fault dips in the same direction as its 301 

predecessor, the magmatic divergence extends the structurally deeper portion of the 302 

preceding footwall between the root zone and the point where that fault was cut.  By 303 

affecting the geometry and dimensions of the preceding detachment, in both cases the 304 

magmatic divergence influences the relative positions of the rift axis and the root zone and 305 

hence affects the next fault’s initiation depth.  Thus to analyse the kinematics of successive 306 

detachments in the presence of magmatism, the effect of magmatic extension of the 307 

preceding fault must be estimated and removed from the observed geometries before the 308 

kinematics of the original detachment can be analysed.  The truncation distance c (Figure 6) 309 

is given for each numbered phase of faulting by: 310 

 c1 = e1(1 - M1) – (2z1/tanθ1) – e1/2 [9] 311 

which can be re-arranged to express divergence e in terms of c, z, θ and M: 312 

 e1 = (c1 + 2z1/tanθ1)/(0.5 - M1) [10] 313 

and for the next phase of faulting: 314 

 e2 = (c2 + 2z2/tanθ2)/(0.5 - M2) [11] 315 

and the measured heave h (based on current geometry), extended by the subsequent 316 

magmatic divergence e2.M2 is given by: 317 

 h1 = e1 – e1.M1 + e2.M2   = e1(1-M1) + e2.M2 [12] 318 

which indicates that the measured heave is the divergence reduced by the magmatic 319 

divergence occurring at the same time as the fault slip, but increased by the subsequent 320 

magmatic divergence that lengthened the exposed slip surface and footwall through diking.  321 

Substituting in [12] for e (equations [10] and [11]) gives an expression relating the measured 322 



heave h of a fault to the measured truncation distance c, z (fault initiation depth), θ (the fault 323 

dip) and M (the proportion of magmatic divergence) of that fault and of the next fault: 324 

 h1  = (c1 + 2z1 /tanθ1)(1-M1)/(0.5-M1)  +  (c2 +2z2 /tanθ2).M2/(0.5-M2) [13] 325 

For the sake of simplicity, in Figures 6F and 6G we have assumed that M, h, e, z, c and θ 326 

are the same for successive faults, and have investigated the effect of varying M and heave 327 

(Figure 6F) and of varying M, fault dip and the truncation distance c (Figure 6G) on the fault 328 

initiation depth.  The results are consistent with thermal and rheological expectations (Behn 329 

and Ito, 2008): for a given heave (Figure 6F) or fault dip (Figure 6G) as M increases, the 330 

kinematically stable (i.e. above a fixed rift axis) depth of fault initiation decreases, but in a 331 

manner also related to c, meaning that lateral variations in temperature and rheology and 332 

hence the depth of fault initiation, can be accommodated in part by variation in the place 333 

where the new fault cuts the old.   334 

Moving along the axis of the SWIR from smooth seafloor towards the volcanic centres, the 335 

observed shallowing of the seismicity (Figure 6H), controlled by rheology and temperature, 336 

(Figure 3) is kinematically compatible with an increase of M from close to zero beneath the 337 

smooth seafloor to 0.25, or to 0.4 if the truncation point migrates closer to the hinge, as the 338 

volcanic centres are approached.  As these values remain below M=0.5, flip-flop kinematics 339 

remain viable, and together with the continuity in the seismicity raises the possibility that the 340 

same basic tectonic system may continue laterally beneath more volcanic seafloor.  To 341 

consider this idea further, we return to the structure and morphology of seafloor created at 342 

the SWIR.  343 

 344 

4. Volcanic and smooth seafloor   345 

The SWIR and Gakkel Ridge (in the Arctic) are not amagmatic: between broad expanses of 346 

smooth seafloor, corresponding mainly to unroofed mantle and characterised at the SWIR by 347 



outward-facing faults, are rougher regions where dredges mainly recover basalts and 348 

gabbros (Sauter et al., 2013) and where at the SWIR inward- rather than outward-facing fault 349 

scarps dominate, suggesting a very different style of spreading.  Indeed the volcanic seafloor 350 

and the dominance of inward-facing faults is reminiscent of normal slow-spreading crust 351 

(Sinton and Detrick, 1992), formed by magmatic processes and only moderately affected by 352 

faulting as that magmatic crust is lifted up and out of the median valley.  The 353 

magmatic/amagmatic dichotomy appears long-lived as both the rough, magmatic seafloor 354 

and the smoother, long-wavelength, ridge-parallel topography of the exhumed mantle can be 355 

traced off axis for > 100 km (Cannat et al., 2006; Sauter et al., 2013).   356 

The amagmatic and volcanic swathes are not obviously separated by transform faults or by 357 

non-transform discontinuities (Figure 3B), and several lines of evidence suggest that there is 358 

considerable structural continuity between them.  First, the seismicity observed beneath 359 

peridotitic seafloor continues beneath volcanic seafloor, climbing steadily from >20 km to 360 

<10 km as the volcanic centre is approached, but is only absent 10 km either side of the 361 

volcanic centre (Schlindwein and Schmidt, 2016 – Figure 3A).  The continuity of the 362 

seismicity suggests that faulting remains important except actually at the volcanic centres; 363 

the observed shallowing of the seismicity is compatible with an increase from amagmatic to 364 

moderate amounts of magmatic divergence (Figure 3A).   Second, the magnetic anomalies 365 

(Figure 3B) continue along strike from smooth to rough seafloor with no obvious distortion 366 

reflecting a change in spreading mechanism.  Third, sub-parallel to the magnetic anomalies, 367 

ridges can be traced across the boundary between the rough and smooth seafloor, including 368 

some of the prominent ridges that mark the breakaways of successive detachments in the 369 

smooth regions (Figure 3B).     370 

The continuity of the magnetic anomalies, of some of the long wavelength seafloor 371 

topography and of the band of seismicity at depth all suggest that the tectonic process 372 

forming the smooth seafloor may extend laterally beneath the rougher volcanic seafloor.  But 373 

such continuity is apparently in conflict with the switch from smooth exhumed mantle to 374 



rough volcanic seafloor, and from outward-facing to inward-facing faults.  To resolve this 375 

paradox, it is necessary to consider possible variants on the rolling hinge models and the 376 

controls on the mode of detachment faulting that develops. 377 

 378 

4.1 Rolling hinge models 379 

There are two variants of the rolling hinge model for detachment faulting: that in which the 380 

footwall and slip surface are exhumed to the seafloor (Lavier et al., 1999), and that in which 381 

both are covered with a series of fault blocks, sliced off the hanging wall by successive faults 382 

and rafted up and out of the median valley with the footwall (Buck, 1988).  Reston and 383 

Ranero (2011 – Figure 7A) suggested that at slow-spreading ridges, the increase in volcanic 384 

fill and in fault strength moving from segment end to segment middle resulted in a switch 385 

from “exhumation detachments” to “rafting detachments” as the point where the fault was 386 

rotated sufficiently to lock up migrated from above to below the seafloor.  From numerical 387 

modelling Choi and Buck (2013) concluded that weak faults (low cohesion and low friction 388 

coefficient) would favour riderless exhumation detachments that form oceanic core 389 

complexes, but increasing the fault strength or increasing the amount of fill (or volcanic cover 390 

in a ridge setting) would favour the development of fault-bound riders above a rafting 391 

detachment, as observed at the Atlantis Massif (Reston and Ranero, 2011).  The large rider 392 

block we have identified through our kinematic analysis in the TAG area (Figure 1) may have 393 

formed in this way. 394 

If an exhumation detachment at an OCC such as the Atlantis Massif can transition laterally 395 

into a rafting detachment, the same along strike transition might be expected at ultraslow 396 

ridges.  The breakaway ridges of the smooth seafloor detachments can be traced some 397 

distance into the volcanic domains, raising the question whether these flip-flop detachments 398 

also continue laterally, changing from exhumation to rafting detachments as the volcanism 399 

increases.  400 



Using Choi and Buck’s results as the template, as divergence progresses successive slices 401 

are carved off the volcanic-fill in the hanging wall and transferred to the footwall to be rafted 402 

up and out of the median valley (Figure 7 A,B).  At the same time, the active root zone 403 

migrates beyond the axis (Figure 7B), until a new fault propagates up from depth, cutting 404 

through the footwall close to the point of maximum curvature, the part of the footwall most 405 

flexurally strained and thus likely weakest (Figure 7B,C) and crucially on the ridgeward side 406 

of the array of rafted blocks.  A new rafting system with the opposite polarity then initiates, 407 

and a new set of fault blocks are produced, all bounded by ridgeward dipping faults (Figure 408 

7D).  As the new fault cuts the preceding system near the preceding hinge, virtually all rafted 409 

blocks are bounded by inward-dipping faults, producing a seafloor structure in marked 410 

contrast to seafloor produced by the laterally equivalent exhumation detachments and 411 

characterised by widely spaced ridges of smooth seafloor bounded by faults rooting 412 

outwards.   413 

The smooth seafloor of the SWIR is marked by patches of rafted volcanics (Sauter et al., 414 

2013); we suggest that the same process also occurs on a largescale, so that the majority of 415 

the volcanic seafloor is allochthonous, transported up and out of the ridge axis by successive 416 

rafting detachments.  Similarly, patches of smooth seafloor within the volcanic regions 417 

(Figure 3B) are unlikely to have formed by vastly different processes to their surrounds but 418 

are instead simply windows to the underlying detachment.    To illustrate the concept, we 419 

have interpreted the section through the rough volcanic seafloor at 64°E (Figure 3D; Figure 420 

8) to illustrate the possibility that successive detachments may continue beyond the smooth 421 

seafloor into the rougher, volcanic regions.  Although we have used basement ridges and 422 

magnetic anomalies as a guide, it is unlikely that each detachment on the 64.5°E transect 423 

can be traced 50 km to the south, and so in each case assign the interpreted detachments a 424 

different letter.  Although the detachment roots dip outward, the majority of the faults are 425 

inward-facing as predicted, but an outward-dipping fault near anomaly C3A corresponds to 426 

an exposure of dominantly peridotites within the volcanic segment.  The presence of 427 



peridotites is further evidence that some form of detachment fault does occur even in the 428 

volcanic segments, and is specifically consistent with the unroofing of mantle rocks in the 429 

footwall of an outward-dipping detachment.   430 

The reconstruction in Figure 8 is necessarily interpretative: we do not know the geometry 431 

and spacing of the detachments here, the thickness of the volcanics, or the magmatic 432 

divergence.  We simply assume the same basic structure as on the smooth transect, that the 433 

volcanics are ~3km thick (Minshull et al., 2006) and a magmatic divergence of 4.5 km for 434 

each detachment; this magmatism, although represented in the reconstruction as a simple 435 

block added to the crust, is likely to have been through numerous dikes feeding the 2-3 km 436 

of lavas that form the fault blocks rafted with successive detachments (Figure 9).  The 437 

results are however instructive. Although not as kinematically stable as the amagmatic 438 

reconstruction (Figure 5) as the rift axis is wider, that axis is still only ~5 km wide and could 439 

be narrowed by varying the amount of magmatism, the fault dip or the truncation point.  The 440 

inward-facing faults between the volcanic blocks are completely compatible with outward-441 

dipping detachment roots.  Incorporating magmatism requires the detachments to either be 442 

steeper still or, more probably, to root at shallower depths than for amagmatic spreading 443 

(Figure 5), a result compatible with the rise in the brittle-ductile transition expected to 444 

accompany laterally increasing magmatism and temperature, but probably not at the same 445 

rate.  As small variations in the location of fault truncation and in the dip of the faults have a 446 

large effect on the depth of kinematically stable fault initiation, we suggest that these may 447 

vary along strike to reconcile the kinematics with the controlling rheology.  448 

 449 

5. Discussion and conclusions 450 

In this paper, we have explored the kinematics of detachment faulting at the Southwest 451 

Indian Ridge and abandoned OCCs at the Mid-Atlantic Ridge, and tested the predictions 452 

against observations.  The model, summarised in Figure 9, is fundamentally based on the 453 



initiation of successive faults at a fixed rift axis midway between the two diverging plates, 454 

allowing simple kinematic analysis in terms of heave, the point where one faults cuts the 455 

previous one, initial fault dip and the proportion of divergence taken up by magmatism.  An 456 

amagmatic kinematic model of successive detachment faulting successfully duplicates the 457 

observations made over the smooth, mantle-dominated seafloor:   458 

1. Symmetric divergence about a fixed rift axis and the initiation of successive 459 

detachment faults, in a flip-flop alternation, explains the formation of the smooth 460 

seafloor observed along the 64.5°E transect. 461 

2. Apart from two detachments affected by a single fault forming off axis, the heaves 462 

occur in a narrow range (24-17 km, with a mean of 20 km and a standard deviation 463 

of 3 km). 464 

3. For a given dip, the depth of fault initiation is remarkably constant; for a given depth, 465 

the fault dip is remarkably constant; applying the best constrained detachment dip at 466 

depth of ~80°, indicates a depth consistent with the seismicity observed beneath the 467 

least magmatic portions of the SWIR.  We thus consider the model robust and a 468 

valid representation of the processes occurring at the most magma-poor regions of 469 

the SWIR. 470 

We are now in a position to consider the primary controls on the process of ultraslow 471 

seafloor spreading.  Point 2 confirms the basic premise of the model that increasing heave 472 

and distance between the fault root and the rift axis is the primary control on the 473 

abandonment of each detachment.   However, given the consistency of fault/seismicity depth 474 

(and the relationship of the latter to temperature), the primary control on the formation of the 475 

new detachment would appear to be rheology.  The consistently steep fault dip indicated by 476 

the analyses also appears important, and presumably constrained by the mechanics of 477 

fracture propagation towards the surface.  Perhaps surprisingly, the analyses suggest that 478 

the location of the truncation point is the least important control; although truncation 479 

generally occurs where the footwall has been fractured and weakened by bending, there is 480 



considerable variation in the precise location of that truncation, accommodating variation in 481 

the other parameters.  The whole process is thus driven by processes at depth not near the 482 

surface. 483 

Incorporating magmatism predicts that the depth of fault initiation should shallow if all other 484 

parameters stay the same; conversely if the fault initiation depth remains constant, 485 

increasing the amount of magmatic divergence towards M=0.5 will allow the detachment to 486 

remain active longer. 487 

 Applied to abandoned OCCs at the MAR, the detachment geometries can be 488 

combined with observed seismicity to deduce that the OCC at 5°S had an M value of 489 

~0.15.  After re-interpretation of the structure of the TAG detachment system, we 490 

suggest that the previously identified breakaway is a rider block, that the actual 491 

breakaway is further to the SW, and that the detachment will soon be cut by one 492 

propagating up from the rift axis and dipping to the southeast.       493 

 the continuity of basement ridges, of magnetic anomalies, and observed axial 494 

seismicity, coupled with the lack of obvious transform and other ridge normal 495 

discontinuities, raises the possibility that the detachment systems also continue 496 

laterally beneath the volcanic cover of the rougher volcanic seafloor, evolving from 497 

exhumation detachments to rafting detachments as increasing amounts of volcanics 498 

are transported up and out of the median valley 499 

 For successive detachments accompanied by a component of magmatic divergence, 500 

the kinematic model predicts that increasing magmatism results in shallower fault 501 

initiation.  As thermal and rheological constraints also predict such a shallowing, 502 

further evidenced by the shallowing of seismicity observed at the SWIR moving 503 

along strike from smooth to volcanic seafloor, to within ~10 km of volcanic centres 504 

(Figure 3A), the kinematic shallowing may be essential in allowing detachments to 505 

continue laterally. As temperature and rheology are likely to remain the primary 506 



control on fault initiation depth, it is likely that the fault dip and especially the cut 507 

point will vary to accommodate the changing kinematics as magmatism increases. 508 

 moving from mantle-dominated smooth seafloor to rougher volcanic seafloor, a 509 

lateral change from virtually amagmatic spreading by successive exhumation 510 

detachments to partly magmatic spreading by successive rafting detachments and 511 

diking explains the apparent paradox of outward- vs inward-facing faults, the overall 512 

symmetrical spreading of the SWIR, the along strike continuity of structures and 513 

magnetic anomalies, and the shallowing of the axial seismicity. 514 

 Within ~10 km of the volcanic centres, where 80° faults initiate at 5-10 km below the 515 

seafloor, magmatic divergence may be between 25 and 40% of the total divergence.  516 

While the volcanic centres influence the spreading of volcanic seafloor through dike 517 

injection and the emplacement of lava flows, subsequently dissected by faulting and 518 

rafted out of the median valley (Figure 9), detachment tectonics dominate ultra-slow 519 

seafloor spreading.    520 

In conclusion, rigorous kinematic analysis has shown that successive detachments operating 521 

in a flip-flop manner not only explain the unroofing of mantle to form smooth seafloor, but 522 

intriguingly also explain the majority of the rougher volcanic seafloor, even where dominated 523 

by inward-facing fault blocks.  Combined with evidence for their importance along 50% of the 524 

length of slow-spreading ridge system (Escartin et al, 2008), we estimate that detachment 525 

faulting controls perhaps one third of spreading ridges. The kinematics require the 526 

deepening of the detachment root moving towards cooler more amagmatic sections of the 527 

ridge, consistent with the observed seismicity and inferred temperature structure.  We thus 528 

conclude that successive detachment faults (Figure 9) are the fundamental mechanism in 529 

ultraslow seafloor spreading, as well as at the magma-poor margins where they were initially 530 

proposed.  Ultraslow seafloor spreading may thus be more akin to the model advocated by 531 

Hess (1962) than to that of Dietz (1961).  532 

 533 
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Figure 1:  The formation of oceanic core complexes by the rolling hinge model.  A: a steep 639 

fault develops rooting on the axis of the rift.  As extension continues, the footwall flexes 640 

under its own weight: at small offset the flexure is minor (B), but at large offsets, the fault 641 

flexes to sub-horizontal (C).  The deep crustal and mantle rocks in the footwall of this 642 

exhumation detachment form a domal oceanic core complex.  If extension is symmetric and 643 

amagmatic, the active part of the fault migrates with the hangingwall across the rift axis, 644 

whereas the breakaway (bky) migrates in the opposite direction at the same rate.  The 645 

original steep edge of the footwall (prior to flexure) and of the hangingwall (tangential to the 646 

active fault), are symmetrically disposed about the original fault position, rooting on the rift 647 

axis.  The system terminates when either a new fault or a dike propagates up from the rift 648 

axis across the footwall.  If a fault, it will probably cut through the strained flexed portion of 649 

the footwall close to the hangingwall cutoff (bold broken line in C).  At the MAR at TAG 650 

(deMartin et al., 2007), we suggest that the rift axis corresponds to the extrapolation of the 651 

neovolcanic zone north and south of the core complex.  The antithetic normal faulting 652 

identified from a linear cluster of microseisms are probably associated with the bending of 653 

the exhuming footwall, and may in future develop into a fault rooting on the rift axis at the 654 

base of the seismicity.  Once an OCC is split in this way, a new spreading axis develops, 655 

isolating a fragment of the OCC as observed at 5°S. 656 

Figure 2:  The concept of mantle exhumation on successive detachments (Reston and 657 

McDermott, 2011).  As a new fault develops (A) it cuts the previous detachment in two, an 658 

upper exhumed part including the old breakaway, and a lower root zone, dipping away from 659 

the ridge axis. Continued slip exhumes a second expanse of mantle, with the new fault 660 

migrating over the ridge axis as it moves with the hangingwall until eventually a third fault 661 

develops (B, C), propagating up from the rift axis up through the flexed and fractured 662 

footwall.  Multiple repetitions of the process produce a series of abandoned and cut 663 

detachment systems (D – Reston and McDermott, 2011), each with a root zone dipping 664 

away from the ridge on the opposite side of the axis from the breakaway.  The seafloor 665 



generally youngs symmetrically towards the spreading axis, but for the short root zone 666 

segments locally youngs away from the axis.  In contrast, if large expanses of seafloor were 667 

unroofed along a single detachment (E) and subsequently dismembered (F), the younging 668 

direction would be asymmetric.  669 

Figure 3: Maps and sections of part of the Southwest Indian Ridge (SWIR) all at the same 670 

scale. A: Geophysical section running to the north from the edge of the bathymetric map (B). 671 

700°C isotherm marks the bases of a continuous band of seismicity (grey shading with black 672 

outline) that shallows towards the volcanic centre (Schlindwein and Schmidt, 2016). We 673 

propose that this band is the root of detachment faults.  Other shallow seismicity (no outline) 674 

may be related to diking.  Crustal structure (after Minshull et al., 2006) showing inferred 675 

layers 2 & 3, the limited raypath control (dark shading) and Moho reflections (bright green).  676 

B: high resolution bathymetry (Sauter et al., 2013; Cannat et al., 2006) over strips of rough 677 

(volcanic) and smooth (exhumed mantle) seafloor, running ~N-S (left-right) for up to 100km 678 

away from the current spreading axis (red dashes).  White profiles highlight seafloor 679 

topography along two transects, fault geometries are those at the seafloor (Sauter et al., 680 

2013 and 2018). Magnetic anomalies are marked by coloured dotted lines, showing that 681 

spreading is largely symmetric in both the volcanic and smooth domains.  Broken white lines 682 

mark elongated highs: many can be traced from the smooth seafloor into the rougher, 683 

volcanic domains, suggesting that the detachment breakaways and by implication the 684 

detachment themselves can be traced laterally from the smooth domain to beneath volcanic 685 

fault blocks of the volcanic domain.  C: Top: detail of seafloor observations and interpretation 686 

(modified after Sauter et al., 2013) along smooth seafloor transect at 64.5°E.  Velocity model 687 

of Momoh et al (2017) and 7.5 km/s contour (black) showing approximate Moho, the limit of 688 

intense serpentinisation.  D: detail of seafloor observation (Sauter et al., 2018) and possible 689 

interpretation across volcanic domain at 64°E. Interpretations discussed in sections 3 and 4. 690 

Figure 4:  Kinematic model for flip-flop non-volcanic detachment faulting.   A: As extension 691 

proceeds, the space beneath the uplifting footwall is filled by a combination of upwelling 692 



mantle and magma produced by decompression melting.  Substantial volumes of magma 693 

may be emplaced in the footwall even if divergence is entirely fault controlled (A, B) and 694 

apparently amagmatic (M=0).  The resulting kinematics can be summarised as in C: as 695 

successive detachments simply cut the preceding one, the kinematics of each detachment 696 

can be considered separately. Asymmetry is incorporated by shifting the rift axis towards the 697 

hanging wall (positive K) or footwall (negative K).  D: Graphical approach to the same 698 

kinematic analysis assuming 75° initial dip (= 90-θ, see section 3 for description): note that 699 

the exhumed part of the ε and φ detachments are considerably smaller than the other 700 

detachments, meaning that the cut point is close to the rift axis, apparently requiring a 701 

shallow fault initiation for the next fault. E: Depth of fault initiation vs heave for detachments 702 

forming at dips ranging from 60° to 83° for amagmatic divergence, and a truncation point 5 703 

km (solid) or 3 km (dashed) from root projection.  For the heaves observed on the non-704 

volcanic transect, only faults much steeper than 70° predict seismicity at the depths 705 

observed for non-volcanic portions of the SWIR . F: plot of the heave vs fault initiation depth  706 

(truncation point 3 km) for different degrees of asymmetric spreading, represented by K.  707 

Bold lines (K=0) correspond to bold lines in E. Circles show initiation depth of detachment χ 708 

for different fault dips, block arrows the asymmetry necessary to shift the initiation depth of ε 709 

or φ to similar depths.  G:  Depth of fault initiation vs fault dip for amagmatic detachments 710 

(coded by dying detachment) observed on the 64.5E transect: only faults initiating at >80 ° 711 

predict the observed seismicity; the ε and φ detachments predict anomalously shallow 712 

initiation depths for their successor.  Stars are parameters of dying detachments obtained 713 

graphically (D) for comparison.  Block arrow shows the shift in initiation depth arising from 714 

asymmetry K of -0.3.  715 

  716 

 Figure 5: A: Evolution of the magma-poor transect, interpreting all faults as forming at the 717 

same angle and the same depth, showing how all but one faults initiate along the line of 718 

symmetry, the rift axis.  A:  current situation.  B-G: reconstruction of successive phases of 719 



detachment faulting during overall symmetric spreading (indicated by black block arrows).  720 

Only detachment ε (initiating in C and abandoned in D) initiated away from the rift axis, 721 

cutting detachment φ off at a relatively small heave.  The small heave of the ε detachment 722 

itself prior to its abandonment results from the initiation point of the following detachment 723 

jumping back to the rift axis.  Thus both anomalous heaves (φ and ε) result from one fault (ε) 724 

initiating off axis; the other five faults analysed all initiated within a km or so of the rift axis. 725 

The reconstruction shows that spreading is symmetrical about an axis and that nearly all 726 

detachments initiate as steep structures propagating up from this axis.  Red: emplacement 727 

of volcanics to produce magnetic anomalies. 728 

Figure 6: Kinematic model and results incorporating magmatic divergence (M>0).  If magma 729 

is emplaced as dikes into the HW, it must accommodate some of the divergence, even if 730 

most of the divergence is taken up on the detachment (A,B).  The rate of migration of the 731 

fault root across the axis is reduced, and would reach zero if half the divergence is taken up 732 

by magmatism.  C: kinematic model relating magmatic divergence, expressed as M, to 733 

detachment location and initiation. D: Using the model in C and assuming 75° fault dip, the 734 

observed detachment parameters (heave, cut point, depth of seismicity) can be used to 735 

estimate M (proportion of magmatic divergence) for the truncated OCC at 5°S  (solid lines), 736 

and to predict the future development of the TAG OCC (dashed lines). E: For successive 737 

detachments, during the next phase of spreading, the purple detachment in C is lengthened 738 

between breakaway and cut point by the component of magmatic divergence occurring in 739 

the following phase. The process repeats with the earlier system being retrospectively 740 

lengthened by magmatic divergence during the succeeding phase. F, G: The kinematic 741 

model shown in E is used to test the key factors controlling the initiation and growth of 742 

detachments during magma-limited spreading. F: Depth of fault initiation increases with 743 

heave but decrease as M increases (cut distance of 4, fault assumed to dip at 80°). G: 744 

Depth of fault initiation vs M for fault dips ranging from 63° to 83°.  Cut point 0 km 745 

(continuous line, the new fault cuts the hinge of the previous fault) and 4 km (dashed) from 746 



hinge or root projection, total divergence 25 km (fault heaves 12.5-25 km depending on M).  747 

As M increases, the predicted depth of fault initiation decreases, but more gradually for 748 

smaller values of c.  H: calibration of the depth of seismicity in terms of M value, assuming 749 

truncation point at the hinge (right hand axis, perhaps more appropriate near the volcanic 750 

centres) and 4 km inside the hinge (left-hand axis, based on observations from smooth 751 

seafloor) and 25 km divergence during each fault phase.  These results are used (Figure 3A) 752 

to calibrate the SWIR seismicity depths (25 km heave and cut point of 4 km used) in terms of 753 

M number: the seismicity beneath the smooth portions of the ridge implies M <0.1; that 754 

beneath the volcanic transects M may approach 0.4.  Even beneath the volcanic seafloor, 755 

faulting not magmatic divergence dominates except at the volcanic centres themselves.  756 

Figure 7:  Rolling hinge models revisited.  If the flexing fault remains active until the slip 757 

surface is exhumed (an exhumation detachment), a large expanse of footwall (plutonic and 758 

mantle rocks) will be exposed to form an oceanic core complex (A).  However, if the fault 759 

locks up in the subsurface, new fault may propagate up from the steep root zone, 760 

transferring a slice of the hangingwall to the footwall (B). Continued slip does not expose an 761 

oceanic core complex but rather a series of wedges sliced off the hangingwall and moving 762 

with the footwall A, C).  Such a rafting detachment system is favoured if the half-graben is 763 

filled with volcanics and if the fault is not too weak (Choi and Buck, 2013), both likely to 764 

occur towards the centre of a segment.  Thus as seafloor magmatism increases away from 765 

the segment end, there may be a switch from exhumation detachments (OCC formation) to 766 

rafting detachments (small fault blocks) along strike (Reston and Ranero, 2011 - A). D, E: 767 

successive, flip-flop rafting detachments, generating a broad expanse of volcanic blocks 768 

bounded by inward-dipping faults, but underlain by outward-dipping detachment roots.  769 

Lenses (open where new) show schematic  intrusion into the detachment footwall and 770 

subsequent upward transport in the footwall. 771 

Figure 8:  Illustrative possible reconstruction of the evolution of the 64˚E volcanic transect 772 

during symmetric divergence about a fixed rift axis.  During each detachment phase, 4.5 km 773 



of horizontal divergence are taken up by magma intruding around the footwall tip, bringing 774 

the length of the previous detachment system up to its present-day length.  The magmatic 775 

divergence means that the active fault is less distance from the rift axis (dashed line box) 776 

and also changes the relative distance between the breakaway and HW cutoff of each 777 

detachment. The consequence is that the point where each detachment is cut by the next is 778 

close to the rift axis, meaning that each fault initiates at shallow depth (circles).  A: 779 

reconstruction at the end of movement on the ϖ detachment.  Note that the ϖ detachment 780 

has yet to be lengthened by intrusion.  B: the end of movement on the π detachment: the ϖ 781 

detachment system has now been extended to its full length by magmatic activity. C: end of 782 

movement on the ζ detachment.  D: end of movement on the σ detachment.  E: end of 783 

movement on the ξ detachment.   F: end of movement on the μ detachment. G: the final 784 

section, during movement on the current λ detachment.  785 

Figure 9: Tectonic model of ultraslow seafloor spreading, summarising the findings of the 786 

paper.  Background: mantle is exhumed to form smooth seafloor by slip on successive 787 

detachments with alternating polarity: yellow/brown then purple then blue.  Block arrows 788 

show movement direction; outline arrows where detachments are no longer active.  The 789 

detachments root at steep angles at ~20 km depth, but continue laterally beneath rafted 790 

volcanic blocks (foreground); increasing magmatic contribution to divergence accompanies a 791 

shallowing of the detachment towards the volcanic centres (e.g. towards the foreground at 792 

the right edge).  For clarity and to emphasise the geometry of the successive detachments, 793 

the plutons beneath the detachment and the volcanic centres themselves are omitted for 794 

clarity, only the most recent diking is shown, and the mantle is shown transparent. 795 

 796 


