
 
 

University of Birmingham

Modeling systematicity and individuality in
nonlinear second language development
Murakami, Akira

DOI:
10.1111/lang.12166

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Murakami, A 2016, 'Modeling systematicity and individuality in nonlinear second language development: The
case of English grammatical morphemes', Language Learning, vol. 66, no. 4, pp. 834-871.
https://doi.org/10.1111/lang.12166

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 03. May. 2024

https://doi.org/10.1111/lang.12166
https://doi.org/10.1111/lang.12166
https://birmingham.elsevierpure.com/en/publications/00d348c4-adaf-4b32-8fb2-25656e079609


Supporting Information for: Murakami, A. Modeling systematicity and individuality in 
nonlinear second language development: The case of English grammatical morphemes. 
Article accepted in Language Learning on 4 September 2015. 

Appendix S1: General Issues in Regression Modeling 

 

Some General Issues in Regression Modeling 

The modeling techniques introduced in the paper are all variants of regression models. In this 

document, some general issues in regression modeling are briefly discussed. They are all 

relevant to the models discussed in the paper, and the present document lays the foundation for 

more complex models introduced in the main text of the paper. 

Regression Modeling with Continuous Independent Variables 

A basic form of regression models estimates the relationship between one dependent variable 

and one or more independent variables (or predictors). Independent variables can be continuous 

or categorical. Figure 1A shows a simple linear regression in which a dependent variable (L2 

proficiency) is modeled by a continuous independent variable (number of years learning L2). 

Each observation, denoted by a circle, represents one learner, and the same follows for the rest of 

the panels. The regression line is drawn to minimize squared residuals. Residuals are squared 

differences between the observed (i.e., circles) and the predicted (the regression line) values and 

are indicated by dashed lines in the figure. 

This regression model has two parameters, or values to be estimated from the data; the 

intercept and the slope of the regression line. The intercept (0.950 in this case) denotes the value 

of the dependent variable when the value of the independent variable is zero. In the present case, 

it shows the value of L2 proficiency when the number of years learning L2 is zero. The slope of 

the regression line (0.731 in this case) represents the size of the predicted change of the 
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dependent variable per unit change of the independent variable. In the present context, L2 

proficiency increases by 0.731 units in a year of learning the language. 

We build regression models that explain maximum variance. Explaining variance means 

decreasing the squared residuals. Figure 1B shows the predicted values of the regression model 

that only has one parameter, the intercept. The model has a poor fit because the residuals are 

large, particularly at the beginning and the end of the horizontal axis. This so-called intercept-

only model constitutes the model against which explained variance is calculated in the other 

regression models fitted to the same data. A common measure of explained variance, R2, is 

defined as follows: 1 −  sum of squared residuals in the target model
sum of squared residuals in the intercept−only model

. What matters is the ratio 

between the sum of the squared residuals in the target regression model (e.g., the regression 

model in Figure 1A) and that in the intercept-only model. If the former is close to zero (i.e., if 

there is little difference between observed and predicted values) and the variance of the 

dependent variable is large (i.e., the intercept-only model fits poorly), the value will be close to 1. 

If, however, the target model fits poorly and the residuals are nearly as large as those in the 

intercept-only model, the R2 will be small. It is, therefore, the difference between the target 

regression model and the intercept-only model that is important in evaluating the fit. 

There can be more than one predictor in regression models. In Figure 1C, the test score is 

modeled by two continuous independent variables; L2 experience (operationalized as the number 

of years learning L2) and the results of an aptitude test. Note that this time we have a regression 

surface (or regression plane) rather than a regression line because we used two independent 

variables. Similar to the regression line, the surface is drawn such that the squared difference 

between the observed values (i.e., small spheres) and the predicted values (i.e., the surface) is 

minimized. Here, the surface goes up as the value of L2 experience increases, thus suggesting 
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that increased L2 experience leads to increased test scores. This model has three parameters; the 

intercept and two slopes, one for each independent variable. The intercept is the predicted value 

when both L2 experience and aptitude are zeros, while the slopes, as before, represent the change 

of the predicted value per unit change of the independent variables. 

Regression Modeling with Categorical Independent Variables 

In regression modeling, categorical independent variables are expressed with dummy variables. 

If a factor has two levels (e.g., male and female), we need one dummy variable whose values are 

zero for one level (e.g., male) and one for the other (e.g., female). In Figure 1D, the test score is 

modeled by a factor called group with two levels, control and experimental. Herein, the control 

group was assigned zeros, and is called the reference level or baseline level because all the other 

levels (in this example, the experimental group) are compared against it. Because the 

independent variable is categorical, it can only take two values and there is no data point 

between the two factor levels. The regression line is drawn in the same way as in Figure 1B. The 

intercept of the line (3.41) is the test score of the reference-level group (i.e., control group, 

whose value of the group variable is zero), and the slope (or contrast) corresponds to the 

difference in the mean test score between the control and the experimental groups because they 

are a unit apart in the dummy variable. Note that what is called treatment contrast is assumed in 

the above coding of the dummy variable, and using other contrasts (e.g., zero-sum contrast that 

assigns -1 and 1 rather than 0 and 1 to two factor levels) would require a slightly different 

interpretation. When independent variables only include categorical variables, as in the example 

just given, the analysis is essentially the same as a t-test or ANOVA. In other words, a t-test or 

ANOVA is just a special case of a regression model. 
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Figure 1E illustrates a case where there is one independent variable of a factor with three 

levels (L1 Japanese, L1 Russian, and L1 Spanish). The factor is represented by two dummy 

variables, one denoting whether the value of the factor of an observation is L1 Russian and the 

other denoting whether it is L1 Spanish. The reference-level group, L1 Japanese, is assigned 

zeros for both variables. Following the notation of (L1 Russian, L1 Spanish), the values of the 

two dummy variables are (0, 0) for L1 Japanese, (1, 0) for L1 Russian, and (0, 1) for L1 Spanish. 

This is quite similar to having two independent variables. More generally, if we have a factor 

with k levels, the factor is expressed by k - 1 dummy variables. The resulting figure is naturally 

similar to the previous figure with two independent variables. The intercept represents the mean 

value of the dependent variable by the reference-level group (i.e., L1 Japanese). The slope of L1 

Spanish is equal to the difference in the mean test score between the reference-level group and 

L1 Spanish, while that of L1 Russian indicates the difference between the reference-level group 

and L1 Russian. 

Interaction, Centering, and Standardization 

Regression models are much more flexible and expressive when they include interactions. The 

presence of an interaction indicates that the effect of one variable depends on the value of 

another. Figure 1F illustrates this point. Herein, the test score is regressed against L2 experience 

(operationalized as the number of years learning L2) and a factor L1 that has three levels - L1 

Japanese as the reference level, L1 Russian, and L1 Spanish. A factor with three levels is 

expressed by two dummy variables, and together with the continuous variable of L2 experience, 

the model produces a three-dimensional regression plane (i.e., one dimension higher than the 

two-dimensional regression surface in Panel C and E in Figure 1), which cannot be readily drawn 

as a figure. The figure, therefore, draws separate regression lines for the three levels of the factor. 
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In the figure, an interaction between L1 and L2 experience is evidenced in that the effect of the 

latter (i.e., the slope of the number of years learning L2) depends on the values (i.e., levels) of L1. 

Including the interaction terms, there are six parameters in the model; an intercept, two 

coefficients for the dummy variables representing L1 Russian and L1 Spanish, one coefficient 

for L2 experience, one coefficient for the interaction between L1 Russian and L2 experience, and 

one for the interaction between L1 Spanish and L2 experience. The coefficients of the interaction 

terms represent the adjustments to the main effects. In the present case, the main effect of L2 

experience is 0.329, which shows the amount of change per year of learning L2 for L1 Japanese 

learners (the reference group). The interaction coefficient between L1 Russian and L2 experience 

is 0.739. This means that the slope of L1 Russian is calculated by adding this value to the main 

effect (0.329), thus resulting in 1.068. 

An oft-used technique in regression modeling is centering and standardization. In the 

model just discussed, the main effect of L1 examines whether there are differences in the test 

score between L1 Japanese and the other two L1 groups. However, in the current form of the 

model, it does so where L2 experience = 0. In other words, and more generally, the main effect 

indicates the magnitude of the effect when the other coefficients are zeros. This is not a problem 

if the model does not include interaction terms, as the differences between L1 groups do not vary 

across L2 experience. However, with the interaction between L1 and L2 experience, it may be 

more reasonable to compare L1 groups when the other variables take their average values. This 

is what centering does. In centering, the mean value of the variable is subtracted from all of the 

values of the variable. In this way, the value of the centered variable is zero when its original 

value equals the mean, and the main effect of the other variable indicates the effect when the 

other variables take their mean value. Standardization not only centers the variable but also 
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divides each value by the standard deviation, thus allowing different variables to have the same 

scale (i.e., a mean of zero and a standard deviation of one) and to be comparable. Figure 1G 

demonstrates the case where L2 experience is standardized. Notice that the figure is nearly 

identical to the one before, the only difference being the values of the horizontal axis. The main 

effect of L1 is significant for both L1 groups in Figure 1F because both L1 Russian and L1 

Spanish groups mark moderately different scores from the L1 Japanese group when L2 

experience = 0. However, when L2 experience is standardized in Figure 1G, the main effect is 

non-significant for both L1 groups because between-L1 differences are small at the average point 

of L2 experience (i.e., standardized L2 experience = 0). It is often sensible to do this as it makes 

the coefficients more meaningful. 

Generalized Linear Models 

In the regression models discussed thus far, the dependent variable and the independent variables 

were linearly related in the scale of the dependent variable. This, however, is at times 

inconvenient. Suppose that we want to model the accuracy of a linguistic feature as a function of 

L2 experience and that the accuracy is measured as the percentage of correctness in obligatory 

contexts. If we build a regression model similar to the one discussed previously, the predicted 

accuracy may exceed 100% or go below 0% at large and small values of L2 experience. As 

percentage can only fall between 0 and 100, this would not be an appropriate model. To avoid 

this issue, we build a generalized linear model (GLM) with a non-identity link function and non-

normal error distribution. A GLM is a regression model whose dependent variable is transformed 

by what is called a link function, and it assumes error distribution in any of the exponential 

family such as normal, binomial, or Poisson distribution (Hoffmann, 2004). When a GLM 

employs the identity link function and assumes normal error distribution, it is identical to the 
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type of regression models discussed earlier. In other words, the regression model we have 

discussed thus far is a special case of a GLM. A GLM covers a variety of models, and in 

modeling accuracy, we can use the logit link function and binomial error distribution. The logit 

link function transforms probability (e.g., accuracy) such that the transformed value can take any 

value between +∞ and −∞ while maintaining a monotonic relationship. Or perhaps more 

commonly, an inverse-logit function can be applied to convert predicted logit values into 

probability so that large or small values in the predictors still fall between 0 and 1 of the 

dependent variable. Binomial error distribution is assumed because probability dependent 

variables often follow binomial distribution. This model has also been known as the logistic 

regression model. 

This point is illustrated in Figure 1H, where accuracy is modeled by L2 experience. If a 

normal regression model is employed, the regression line (dashed line) falls below 0% and 

exceeds 100%. If a GLM is employed, however, the increment or decrement of accuracy levels 

off in the probability scale as the value of the independent variable becomes either large or small. 

The logistic regression line is linear in the logit scale where the independent variable linearly 

exerts influence, but it becomes nonlinear when the value is back-transformed into the 

probability scale (i.e., the original scale) by applying the inverse-logit function. In this way, 

independent variables retain the same form as before but the dependent variable only takes the 

value between 0 and 1. 

Another feature of logistic regression modeling is that it weighs each observation 

according to its data size. For instance, suppose that a learner was supposed to use a linguistic 

feature 100 times and correctly supplied it 50 times, while another learner was supposed to use 

the feature four times and correctly used it twice. Although the accuracy of the feature is 50% for 
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both learners, the former case is much more reliable. In other words, in the former, the true 

ability of the learner is likely to be within the small region around 50%, while the region is much 

larger for the latter learner. Logistic regression takes this into account as it weighs each 

observation by the number of attempts. Logistic regression thus weighs the former case much 

more than the latter when estimating the parameter in the model. 

Unlike simple and multiple regression models discussed earlier, where parameters were 

estimated by minimizing squared residuals, GLMs estimate parameters through what is called 

maximum-likelihood estimation (Myung, 2003). Maximum likelihood is an iterative process that 

maximizes the likelihood that observed data are obtained given the coefficients. It gradually 

shifts the values of the coefficients, computes how likely the observed data are obtained given 

the new set of coefficients, compares the likelihood with the likelihood previously obtained, and 

shifts the coefficient values into the direction that is likely to increase the likelihood of observing 

the data given the new coefficients. Through this process, parameter values converge on the 

optimal values that are most likely to have generated the observed data. 

Model Comparison 

A common way to tell whether an independent variable influences the dependent variable is by 

comparing multiple models and testing whether the best model includes the variable of interest 

(Long, 2012). Two ways have often been used to compare models; likelihood ratio tests (LRTs) 

and information-theoretic measures such as Akaike Information Criterion (AIC). The LRT 

examines whether a model has a significantly better fit to the observed data than another model. 

The test, however, is limited in two ways. First, it is unclear in what sense the model chosen by 

LRTs is “better” because LRTs do not directly relate to the inference one can draw from models, 

such as predictive accuracy (Burnham & Anderson, 2002). Second, LRTs can generally only be 
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used in nested models. A model is nested if it is a subset of another model. For instance, a 

regression model with x1 as the sole independent variable (𝑦𝑦� =  𝛽𝛽0 +  𝛽𝛽1  ×  𝑥𝑥1, where 𝛽𝛽0 and 

𝛽𝛽1are estimated from the data) is nested within a regression model with x1 and x2 as the 

independent variables (𝑦𝑦� =  𝛽𝛽0 +  𝛽𝛽1  ×  𝑥𝑥1 + 𝛽𝛽2  ×  𝑥𝑥2) because the second model would be 

identical to the first if 𝛽𝛽2 = 0. 

AIC overcomes both of these weaknesses. It has been mathematically shown that AIC is 

a measure of how close the model is to the true model that generated the sample data on which 

the built model is based (Harrell, 2001; Long, 2012). Put another way, AIC is an index of 

predictive accuracy, or how well the model generalizes to new data. In general, the more 

parameters a model has, the better fit it has to the data. The fit never worsens when the number 

of independent variables increases. Having independent variables that are unrelated to the 

dependent variable, however, deteriorates prediction accuracy, as the model with irrelevant 

predictors may overfit the observed data and capture the randomness or noise that does not 

generalize to new data (Myung, 2000; Pitt & Myung, 2002; Venables & Dichmont, 2004). What 

AIC does is to balance the complexity (i.e., the number of parameters) and the goodness of fit of 

the model. The model with lower AIC values (often referred to as a more plausible model) is 

more likely to make better predictions regarding new data. Moreover, AIC can also be used to 

compare non-nested models. 

Mixed-Effects Models 

The regression models discussed thus far assume independent observations. However, in 

longitudinal studies, data are correlated within learners. This paper addresses the dependency of 

data through mixed-effects models. As mentioned earlier, the purpose of regression modeling in 

general is to explain the variance in the dependent variable using a set of predictors. The mixed-
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effects model partitions the variance into multiple levels (Baayen, 2008; Baayen, Davidson, & 

Bates, 2008; Cunnings, 2012; Dingemanse & Dochtermann, 2013; Hox, 2002). In this paper, the 

total accuracy variance between writings is divided into three levels; (i) L1-level variance (i.e., 

certain L1 groups are more accurate in morpheme use than other groups in general), (ii) learner-

level variance (i.e., some learners in an L1 group are more accurate than others in the same L1 

group), and (iii) writing-level and morpheme-level variance (i.e., accuracy changes within 

individual learners as they develop and also across morphemes). Why is it necessary to divide 

the total variance into separate levels? An important point here is that the data are correlated 

within L1 groups and within learners. A highly proficient learner, for example, is likely to 

achieve high accuracy throughout, while a low proficiency learner is likely to show a reverse 

pattern. This means that observations are not independent from each other because accuracy can 

be more or less predicted based on which learner composed the writings the accuracy is 

calculated in or which L1 group the learner belongs to. Ignoring the assumption of independent 

observations leads to unjustifiably small standard errors, which in turn invites spurious 

“significant” results (Hox, 2002). To account for data dependency, we need to capture the 

between-L1, between-learner, and between-writing (and between-morpheme) accuracy 

differences separately. This alone explains accuracy variance to a certain extent. 

For the sake of simplicity, the following example assumes a two-level model that divides 

accuracy variance into learner-level and morpheme-level variance. The mixed-effects model 

takes into account individual variation by allowing the intercept and the slope of the regression 

line to vary across learners. The intercept here represents the accuracy of the reference-level 

morpheme, or articles, while in the context of this paper there are two slopes or contrasts 

representing the accuracy difference between articles and the past tense -ed and the accuracy 
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difference between articles and the plural -s. Allowing the intercept to vary across learners is 

called random intercepts and allowing the slope to vary is called random slope or random 

contrast. By adding these random effects, it is possible to model the relationship between 

morpheme and its accuracy when the variance at the learner level is accounted for. 

Predictors can explain both learner-level and morpheme-level variance. To explain 

variance at the level of learners, learners’ L1 might be a good predictor to account for intercept 

differences (i.e., learners with a particular L1 background outperform those with another L1 in 

the reference-level morpheme). Notice that the value of L1 is unchanged across morphemes in 

the same learner. This is why it explains between-learner variance and not within-learner 

variance. To explain variance within learners, the morpheme is a good predictor because its 

value changes within learners. In this example, the learner is called a random-effects variable, 

and L1 and morpheme are called fixed-effects variables. The term mixed-effects stems from the 

feature of the model that the two effects are put into a model simultaneously. 

It is not always easy to decide whether a variable is a fixed effects or random effects. The 

basic idea is that in random effects, we assume that the levels (e.g., learners) are randomly drawn 

from a normally distributed large population, and while they differ in many ways, we are not 

necessarily certain of or interested in why and how they differ (Crawley, 2007). Whereas we 

know that individual learners vary, we are not necessarily interested in how each of them 

performs. Rather, we often want to make general inferences that are not dependent on the 

particular group of learners. It is appropriate, then, to have learners as a random-effects variable 

and not a fixed-effects variable (cf. Pinheiro & Bates, 2000). 

Figure 2 visualizes the point of random contrasts and how predictors reduce variance 

based on hypothetical data. The vertical axis represents the TLU score, and the horizontal axis 
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represents morphemes (articles and plural -s). Here, let us suppose that Figure 2A represents the 

accuracy of articles and plural -s in a number of learners, each represented by one line. In this 

case, the accuracy difference between the two morphemes (i.e., contrast) is constant across 

learners. What differs is the absolute accuracy of each learner. A learner marks the TLU score of 

0.4 in articles, while another marks 0.8, and the rest in between. These differences in the absolute 

accuracy between learners should be taken into account in modeling, which is what random 

intercepts do. Random intercepts make adjustments to the mean accuracy on an individual basis 

and allow learners to be of different overall accuracy. The accuracy of the learners at the 

intercept (where morpheme = articles) is {0.80, 0.76, 0.73 . . . 0.44, 0.40}, and the variance is 

0.017. This is the variance between learners at the intercept, and one question we can ask is how 

much of it can be explained by the predictors. Let us say that the learners, in fact, had two 

different L1s, L1 Spanish and L1 Japanese, and in Figure 2B L1 Spanish learners are represented 

by dashed lines and L1 Japanese learners by solid lines. Here, L1 explained some portion of the 

variance in the random intercept. Now between-learner variance at the intercept should be 

computed within each L1 group, and the value (0.005 for both groups) is much smaller than the 

original variance (0.017). The reduction is achieved by taking L1 into account. 

The lower two panels illustrate an example of random contrasts. Let us suppose here that 

the accuracy of articles was the same across learners, but the accuracy of plural -s varied. As a 

result, the accuracy difference between the two morphemes ranges from 0.350 to -0.350 

depending on learners, and its variance is 0.053. This is called by-morpheme random contrasts 

because the morpheme contrast (i.e., the accuracy difference between morphemes) varies across 

learners. Introducing random contrast takes the difference into account in modeling the data: It 

makes adjustments to the accuracy difference between morphemes on an individual basis. Again, 
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this difference can be explained by L1. However, this time, it is not L1 that explains the accuracy 

difference between morphemes but the interaction between L1 and morpheme. L1 as a predictor 

only allows the overall accuracy to vary depending on learners’ L1s while other variables are 

held constant. This was fine for explaining random intercepts because random intercepts only 

take care of the overall accuracy and are not related to between-morpheme accuracy difference. 

However, varying accuracy difference across learners means a varying effect of morpheme 

depending on learners’ L1s. This type of effect can only be captured by cross-level interactions 

of predictors, which are the interactions between learner-level and morpheme-level predictors 

(Hox, 2002). Introducing the L1-morpheme interaction allows the contrast to vary depending on 

learners’ L1s, which is exactly what we want in order to capture random contrast variance. When 

the interaction is introduced into the model, the variance of the accuracy difference between the 

two morphemes reduces to 0.014, indicating that the between-morpheme accuracy difference is 

partially explained by L1. 

Although random effects models make adjustments to the mean, the adjustments (called 

conditional mode; Bates, 2010) are not the parameters of the model. The model instead estimates 

the variance of the adjustments based on the assumption that they are normally distributed. In 

addition to the variance parameters, mixed-effects models often estimate correlations between 

random effects within individual learners (Baayen, 2008; Kliegl, Masson, & Richter, 2010). 

When both random intercept and random contrast are simultaneously entered in a model, the 

correlation tells us whether those with higher accuracy in articles tend to have higher or lower 

between-morpheme contrast values. 
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Figure 2 is, of course, a highly idealized scenario and real data are much messier. 

Hopefully, however, the point is clear as to what random effects mean and how they can be 

explained. GLMMs are an extension of mixed-effects models. In the same way that simple and 

multiple regression models are extended to GLMs as discussed earlier, GLMMs can have non-

identity link functions and handle non-normal errors (Barr, 2008; Bolker et al., 2009; Dixon, 

2008; Gelman & Hill, 2007; Hox, 2002; Jaeger, 2008; Quené & van den Bergh, 2008). 
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Appendix S2: Accuracy of the R Scripts Used to Identify Errors 

 

The accuracy of R scripts used to identify the errors of the target morphemes was 

manually verified against error annotation as the gold standard. That is, I checked accuracy on 

the assumption that the error tags are exhaustive and accurate. A hundred errors were manually 

identified in each morpheme such that the number of identified errors in each Englishtown level 

is proportional to the total number of words of all of writings submitted at that level. Errors were 

identified in a different set of writings from those used to tune the script. Table 1 shows the 

results. Precision refers to the percentage of correct hits, while recall refers to the degree to 

which the script captures what it is intended to capture. For example, if a script to count article 

errors identified 70 instances of errors and 60 out of the 70 included errors, the precision rate is 

86% (60/70). If, however, there are 100 instances of article errors, the recall rate is 60% (60/100) 

because only 60 out of the 100 cases that should have been captured were indeed captured. F1 is 

the harmonic mean of precision and recall, and represents the total accuracy of the script. It is 

calculated by 

𝐹𝐹1 =  
2

1
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +  1

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
= 2 ×  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ×  𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑛𝑛 + 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

 

Overall, script accuracy is fairly high in all of the three morphemes; thus results based on 

these scripts should be generally reliable. 
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Table 1 Accuracy of the scripts used to retrieve errors 

Morpheme Precision Recall F1 

Articles 90% 98% 0.94 

Past tense –ed 76% 85% 0.80 

Plural –s 75% 88% 0.81 

  

Page 18 of 40 



Appendix S3: Correlation Parameter and Shrinkage in Mixed-Effects Models 

 

In mixed-effects models, we can gain insights into systematic individuality by looking 

into within-learner correlations between random effects. Based on the final GLMM (Model 8) 

constructed in the main text, Table 2 shows the within-learner correlation between conditional 

modes (i.e., adjustments to individual intercepts and slopes). The negative correlation between 

the random intercept and the random contrast of past tense -ed (-0.397) means that when fixed-

effects variables are accounted for learners with higher accuracy in articles (represented by 

random intercepts) tend to have a more negative contrast between article accuracy and the 

accuracy of past tense -ed (represented by the random contrast), or, put more simply, lower 

accuracy in past tense -ed. Because the overall accuracy of past tense -ed is higher than that of 

articles as indicated by fixed effects (cf. Table 4 in the main text), this means that the accuracy 

difference between articles and past tense -ed tends to be smaller if a learner marks relatively 

high accuracy in articles. This is natural because past tense -ed is closer to the ceiling and higher 

article accuracy cannot always be accompanied by higher past tense -ed accuracy. The 

correlational structure can inform us of systematic individual differences in this manner. A 

parametric bootstrap indicated that based on 1,000 samples this was the only significant 

correlation parameter at p < 0.05, and thus I will not interpret the other correlations in the table. 

Shrinkage in Mixed-Effects Models 

Although mixed-effects models make adjustments to intercepts and slopes at the individual level, 

the adjustments are not made to minimize the difference between observed and predicted values 

due to a notable feature of mixed-effects models called shrinkage (Baayen, 2008; Gelman & Hill, 

2007; Kliegl, Masson, & Richter, 2010). The idea is that the data points of individual learners 
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may be unreliable owing to their small sample size. Therefore, when mixed-effects models make 

predictions, the values shrink toward the population mean because it is presumably more reliable. 

The degree of shrinkage is larger in the learners when (i) their values are extreme, (ii) their 

number of observations is small, and (iii) their variance is large (Kliegl et al., 2010). 

Figure 1 illustrates shrinkage. The figure demonstrates the longitudinal development of 

article accuracy in L1 Chinese learners. Each panel shows the longitudinal development of one 

learner. Each bubble represents the TLU score of a writing, and its size corresponds to the 

reliability of the value indicated by the number of obligatory contexts and overgeneralization 

errors. The three lines are the predicted values based on the GLMM (solid line, based on Model 8 

in the main text), the GLM on all the data (dotted line, based on Model 7 of the GLM discussed 

in Online Supporting Document 4), and the GLMs on individual learners’ data (dashed line). For 

the individual GLMs, I built for each learner a logistic regression model including (standardized) 

proficiency and (standardized) writing number as the predictors. Each individual GLM only 

targeted the data in one learner, and shrinkage is not in effect, as the GLM does not know the 

population mean. The overall GLM was constructed without taking into account individual 

variation, and thus shrinkage is not in effect in this model, either, as the GLM does not know 

data dependency within individual learners. 
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Figure 1 GLMM versus GLM in the longitudinal development of article accuracy in L1 Chinese learners

Page 21 of 40 



 

We can see that while the three approaches make similar predictions in many learners, we 

can also observe some prominent differences where the individual GLMs make the predictions 

that are closer to the observed values but are more different from the overall pattern than the 

GLMM, which in turn is more flexible than the overall GLM because it makes adjustments for 

individual learners while the GLM does not. In Panel 20, for example, because this learner’s 

observed accuracy tends to be low at the beginning, the individual GLM predicts relatively low 

accuracy at the beginning. The GLMM, however, draws on the overall mean and predicts higher 

scores. It believes that the observed low accuracy occurred by chance because it differs 

considerably from the population mean (i.e., mean of all of the learners) and that therefore the 

true ability of the learner is likely to be higher than the observed performance. It, however, still 

predicts that his/her true accuracy is lower than the average represented by the overall GLM. By 

making individual adjustments, the GLMM strikes a balance in this manner between what can be 

inferred from the average and observed data points. Similar is the case in Panel 11. In Panels 8 

and 9, the reverse is true. While the observed accuracy is on a decreasing trend in these learners, 

the GLMM’s predicted values show less extreme patterns. This, again, occurs because the overall 

longitudinal developmental pattern in the population is accuracy increase, and the adjustments by 

the GLMM are made toward the overall pattern. 
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Table 2 Correlation between random effects 

 

Morpheme (past tense –ed) Morpheme (plural –s) Writingnum (standardized) 

Learner 

   

 

Intercept –0.397  –0.264  0.028 

 

Morpheme (past tense –ed) 0.408  –0.062 

 

Morpheme (plural –s) 

 

0.022 
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Appendix S4: Generalized Linear Models and Generalized Additive Models 

 

Generalized Linear Models (GLMs) 

Model Specification and Model Selection 

The models assumed binomial error distribution and used a logit link function. In other words, 

logistic regression models were constructed. As in the GLMM/GAMM, the dependent variable 

was accuracy in the form of odds. The potential independent variables were L1 type, morphemes, 

standardized proficiency, standardized writing number (writingnum), and their interactions. As 

in the GLMM, I employed maximum likelihood for estimation and the AIC-based forward-

selection procedure for model selection: A variable was entered into the model only when it 

reduced AIC. 

Table 1 shows the model selection procedure. 

1. Model 1 is the intercept-only model without any predictors. 

2. Model 2 added morpheme and this improved the model. It indicates that different 

morphemes are of different accuracy. 

3. Model 3 additionally included proficiency, leading to further model improvement. 

4. Model 4 likewise added L1type. 

5. Model 5 entered the morpheme-proficiency interaction, indicating that the accuracy 

difference between morphemes varies across proficiency levels and that cross-sectional 

developmental patterns vary across morphemes. 

6. Model 6 further included writingnum. This means that accuracy changes as learners develop. 

7. Model 7 added the proficiency-L1type interaction, which suggests that cross-sectional 

developmental patterns differ between the ABSENT and the PRESENT learners. 
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While adding the proficiency-writingnum interaction to Model 7 very marginally decreased AIC 

(∆AIC = -0.16), the parameter was not included in the final model as the reduction was too small. 

A likelihood ratio test did not support the inclusion, either (𝜒𝜒2 (1) = 2.16, p = 0.142). Thus, I 

consider Model 7 as the final model, and the model included morpheme, proficiency, L1type, 

writingnum, the morpheme-proficiency interaction, and the proficiency-L1type interaction. 

Interpretation of the Model 

Table 2 shows the summary of Model 7. The main effect of morpheme (Row 2-4) indicates that 

both past tense -ed and plural -s are more accurate than articles. The morpheme-proficiency 

interaction (Row 9-11), however, suggest that this is only the case at the mean proficiency level, 

and the difference shrinks as learners’ proficiency rises. The main effect of proficiency (Row 5) 

suggests that article accuracy increases as learners’ proficiency gores up in the ABSENT group. 

However, the morpheme-proficiency interaction again shows that accuracy increase in the other 

two morphemes is much smaller. In fact, on average, the cross-sectional development of plural -s 

is better characterized by very marginal accuracy decrease rather than accuracy increase (0.203 - 

0.217 = -0.014). Proficiency further interacts with L1type (Row 12-13). The interaction suggests 

that the rate of accuracy increase is higher in the PRESENT group than in the ABSENT group. 

The main effect of L1type (Row 6-7) indicates that the PRESENT group outperforms the 

ABSENT group. Its interaction with proficiency shows that the accuracy difference between the 

two groups is larger at higher proficiency levels. Finally, the main effect of writingnum (Row 8) 

supports accuracy increase as learners develop. 

Figure 1 visualises the predicted cross-sectional development based on Model 7 across 

the morphemes and across the L1 types at writingnum = 0. The shaded area represents the 95% 

confidence interval. It can be seen that, as Table 2 suggests, cross-sectional developmental 
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patterns differ depending on morphemes. Accuracy increase is the steepest in articles, less steep 

in past tense -ed, and least steep in plural -s possibly because plural -s is the most accurate 

morpheme and learners have reached the ceiling. The figure also demonstrates that the accuracy 

difference between the ABSENT and the PRESENT group increases as the proficiency goes up. 

Given the relatively high accuracy in all the three morphemes, the accuracy increase is slower in 

the ABSENT group possibly because they have reached the ceiling that is difficult to surpass 

without the assistance of L1 (Jiang, Novokshanova, Masuda, & Wang, 2011). 

 

Generalized Additive Models (GAMs) 

Model Specification and Model Selection 

The models assumed binomial error distribution and used a logit link function. The dependent 

variable was accuracy in odds. The potential independent variables were L1 type, morphemes, 

standardized proficiency, standardized writing number (writingnum), and their interactions. For 

proficiency and writingnum, both linear and nonlinear terms were considered. Once a variable 

was entered as a smooth, the interaction terms that include the variable were also turned into 

smooths. I will explain this in more detail in the model selection part. 

All of the nonlinear terms were first entered with thin plate regression splines. However, 

the final model turned out to have a proficiency-writingnum nonlinear interaction as a tensor 

product smooths. When smooths are nested, as in the case where a model includes both the 

proficiency-writingnum interaction and the main effect of proficiency as smooths terms, it is 

better to use the same bases for smooths (Wood, 2010). The present analysis thus employs tensor 

product smooth throughout the process. A separate smooth was constructed for each factor level 

in the interaction between a factor and a smooth.  
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As in the GLMMs, maximum likelihood estimation was generally employed for 

parameter estimation. It is, however, more desirable to use restricted maximum likelihood 

(REML), a variant of maximum likelihood, to compare two models with the same parametric 

terms but different smooth terms (Wieling, 2015). The present analysis followed this practice: 

When testing whether to add a smooth term to the model, the analysis used REML to build both 

models that are compared. 

Table 3 shows the constructed models and the results of the comparison between them. 

AIC (ML) shows the AIC of the models based on maximum likelihood estimation, while AIC 

(REML) shows that of the models based on REML. The results of likelihood ratio tests are not 

presented in the table due to space limitations, but they agree with the AIC-based comparison 

with p = 0.05 as the significance level. The point of the comparison is whether the most plausible 

model includes the L1type-proficiency interaction or the L1type-writingnum interaction. If it 

does, it shows that L1 type affects cross-sectional and/or longitudinal development, and we can 

explore the model to analyze how L1 influences changes throughout development. 

1. Models 1 through 5 are GLMs without any smooth terms. Model 1 is the intercept-only 

model that does not include any predictors. In Models 2 through 5, morpheme, proficiency, 

L1type, and morpheme-proficiency interaction were sequentially added to Model 1, and 

improvement of the model was observed at each step. 

2. Model 6 additionally included nonlinear writingnum smooth, leading to a further 

improvement of the model. The nonlinear effect of writingnum improves the model 

marginally more than the linear effect (-11.8 vs -11.0 ∆AIC). 

3. Model 7 further added a proficiency-writingnum wiggly surface. Introducing this nonlinear 

interaction automatically allows the main effect of proficiency to be nonlinear as well. To 

Page 27 of 40 



 

be consistent with it, the morpheme-proficiency interaction was also replaced with separate 

by-morpheme wiggly proficiency curves. 

4. By-L1type separate wiggly writingnum curves were entered in Model 8. Comparison with 

Model 7 supported the difference in the longitudinal developmental pattern between the 

ABSENT and PRESENT group. 

Although further adding by-L1type separate wiggly proficiency curves marginally reduced AIC 

(∆AIC (REML) = -2.4), the model was not considered more plausible than Model 8 due to the 

small size of ∆AIC. We thus take Model 8 as the most plausible model. This model includes 

morpheme and L1 type as parametric terms, and as smooths terms separate wiggly proficiency 

curves for each morpheme, separate writingnum curves across L1 types, and a proficiency-

writingnum wiggly surface. 

Interpretation of the Model 

Interpreting Parametric Terms 

Table 4 shows the parametric terms of Model 8. When the nonlinear effects of proficiency and 

writingnum and their interaction are controlled for, both past tense –ed and plural -s are 

significantly more accurate than articles. The L1 type parameter indicates that the PRESENT 

group outperforms the ABSENT group when nonlinear effects are taken care of. 

Interpreting Smooth Terms 

Table 5 shows estimated degrees of freedom (EDF), reference degrees of freedom (Ref.df), 𝜒𝜒2, 

and p-values for the splines. The presence of the L1type-writingnum (Row 6-8) interaction 

indicates that the general, morpheme-independent longitudinal developmental pattern varies 

across L1 types. 
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Smooth terms are generally not easy to interpret, especially when they participate in 

multiple interactional terms as in the present case. An appropriate way to explore the model in 

GLM AND GAM 7 such a case is through the visualization of fitted (or predicted) values. Figure 

2 illustrates the fitted values with wiggly surfaces. It visualizes the nonlinear cross-sectional and 

longitudinal development across the three morphemes and two L1 types. In each panel, the 

horizontal axis represents the overall proficiency of learners (i.e., cross-sectional development), 

and the vertical axis represents centered writing number (i.e., longitudinal development). Each 

writing is represented by a small dot, and the part of the graph with denser dots is likely to be 

more reliable. Although a few learners produced more than 62 writings (= mean ±2 SDs), the 

figure only shows the fitted value of the development over 62 writings, which captures 94.5% of 

the data. Shade indicates accuracy. Darker gray corresponds to lower accuracy and lighter gray 

represents higher accuracy. A contour line is drawn by 0.025 TLU score. In other words, the 

accuracy between two lines differs by 0.025. The figure does not display the part that is far from 

the regions where predictors lie. In the article PRESENT panel, the color tends to become lighter 

from left to right, which indicates that as learners’ overall proficiency goes up, so does the 

accuracy of articles. If we look at the same panel from the bottom to top, the shade changes from 

dark to light at lower proficiency levels. This indicates that as learners produce more writings, 

the accuracy of articles increases. 

We can make three observations about the figure. First, both cross-sectional and 

longitudinal developmental patterns are nonlinear in the probability scale. For example, at lower 

proficiency (e.g., proficiency = 4) in the article PRESENT panel, contour lines are not drawn 

equidistantly. There are more lines towards the bottom, which indicates that accuracy increase 

slows down as learners produce more writings, just like power-law development. A similar 

Page 29 of 40 



 

pattern is observed in the article ABSENT panel as well. Furthermore, we can also observe 

nonlinear cross-sectional development. If we look horizontally at the centered writing number of 

approximately -20 in the past tense -ed PRESENT panel, we can again see that there are more 

contour lines at early stages of development (e.g., up to proficiency seven) than at later stages 

(e.g., proficiency of 10). Second, the nonlinear developmental pattern interacts with overall 

proficiency. In the article PRESENT panel, accuracy at lower proficiency levels tends to increase 

as learners produce more writings. However, at higher proficiency levels, accuracy remains 

relatively unchanged. This indicates that the developmental pattern differs across the overall 

proficiency of learners. Third, the two nonlinear effects further interact with morpheme. 

Accuracy tends to be more stable in plural -s than in articles and past tense -ed both cross-

sectionally and longitudinally, perhaps due to the ceiling effect. This is particularly the case at 

lower proficiency levels. 

Although the fitted figure as a contour plot is comprehensive and informative, it can be 

cognitively demanding to determine precise accuracy transition with it. To complement the 

figure, Figure 3 illustrates the fitted cross-sectional and longitudinal development across the 

three morphemes and the two L1 types at the mean writing number (upper panels) and the fitted 

longitudinal development at Level 4 Unit 1 (lower panels). In the upper panels, the horizontal 

axis represents learners’ proficiency, and the vertical axis represents fitted TLU scores. The 

curves in each panel are the predicted TLU score for each L1 type, and the shaded area 

corresponds to the 95% confidence interval. Each tick mark at the bottom of the panels 

represents one learner (upper panels) or one writing (lower panels). Regions with denser marks 

are where the fitted value is likely to be more reliable. The lower panels are similar to the upper 

panels except that the horizontal axis represents centered writing number. 
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We can make a few observations here as well. First, the cross-sectional developmental 

pattern is relatively linear, while longitudinal development is nonlinear, at least for the 

PRESENT group. Although the GAM supports nonlinearity in logit TLU in both proficiency and 

writingnum effects, the nonlinearity in proficiency effect does not look very strong. On the other 

hand, relatively clear nonlinearity is observed in longitudinal development at a low proficiency 

level, especially in the PRESENT group. It is difficult to draw a straight line from left to right 

without going outside of the shaded region, indicating nonlinear developmental patterns. Here, as 

was suggested in the contour plot presented earlier, we can see that accuracy increase slows 

down as learners progress. Second, the longitudinal developmental pattern differs across L1 

types but the cross-sectional developmental pattern does not (cf. Table 3). This means that the 

strength of L1 influence does not change much across proficiency levels. Longitudinal 

developmental patterns, however, clearly differ between the ABSENT and PRESENT group. 

The PRESENT group exhibits wigglier learning curves than the ABSENT group. Third, as the 

GAM suggests, we can observe differences in the cross-sectional developmental patterns across 

the morphemes. Accuracy increase is more rapid in articles and in past tense -ed than in plural -s, 

whose accuracy is relatively unchanged throughout the development. Fourth, although the 

longitudinal development of the PRESENT group is somewhat reminiscent of power-law 

development, the developmental pattern in Figure 3 generally does not exhibit typical U-shaped 

or power-law learning curves. 
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Table 1 Comparison of GLMs 

        Likelihood ratio test against the previous model 
Model Parameter AIC ∆AIC Statistic p value 
Model 1 None 14454.6        
Model 2 Morpheme 14023.9  -430.7  𝜒𝜒2 (2) = 434.73 < 0.001 
Model 3 Model 2 + proficiency (standardized) 13906.0  -117.9  𝜒𝜒2 (1) = 119.89 < 0.001 
Model 4 Model 3 + L1type 13852.5  -53.5  𝜒𝜒2 (1) = 55.49 < 0.001 
Model 5 Model 4 + morpheme-proficiency interaction 13835.1  -17.4  𝜒𝜒2 (2) = 21.40 < 0.001 
Model 6 Model 5 + writingnum (standardized) 13824.1  -11.0  𝜒𝜒2 (1) = 12.98 < 0.001 
Model 7 Model 6 + proficiency-L1type interaction 13819.7  -4.4  𝜒𝜒2 (1) = 6.41 0.011 
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Table 2 Summary of GLM Model 7 

Parameter B   SE 
Intercept (Intercept) 1.769  *** 0.029  
Morpheme 

    
 

Past tense -ed 0.157  * 0.069  

 
Plural -s 0.786  *** 0.042  

Proficiency (standardized) 0.203  *** 0.027  
L1type 

    
 

PRESENT 0.269  *** 0.036  
Writingnum (standardized) 0.062  *** 0.018  
Morpheme : Proficiency (standardized) 

   
 

Past tense -ed : Proficiency -0.111  
 

0.069  

 
Plural -s : Proficiency -0.217  *** 0.042  

Proficiency (standardized) : L1type 
     Proficiency : PRESENT 0.091  * 0.036  
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Table 3 Comparison of GAMs 

  Model description   AIC 

Model Parametric terms Smooths   AIC (ML) ∆AIC (ML) AIC (REML) ∆AIC (REML) 

Model 1 Intercept-only model None 
 

14454.6    14454.6  
 

Model 2 Model 1 + morpheme None 
 

14023.9  -430.7  14023.9  -430.7  

Model 3 Model 2 + proficiency (standardized) None 
 

13906.0  -117.9  13906.0  -117.9  

Model 4 Model 3 + L1type None 
 

13852.5  -53.5  13852.5  -53.5  

Model 5 Model 4 + morpheme-proficiency interaction None 
 

13835.1  -17.4  13835.1  -17.4  

Model 6 Same as Model 5 writingnum (standardized) 
 

13823.7  -11.4  13823.3  -11.8  

Model 7 Model 6 - proficiency - morpheme-proficiency interaction Model 6 + proficiency-writingnum interaction + proficiency for each morpheme 
 

13812.6  -11.1  13808.4  -14.9  

Model 8 Same as Model 7 Model 7 - essaynum + writingnum for each L1type 
 

13803.3  -9.3  13799.7  -8.8  
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Table 4 Parametric terms of GAM Model 8 

Parameter B   SE 
Intercept 

 
1.777  *** 0.028  

Morpheme 
    

 
Past tense -ed 0.141  * 0.069  

 
Plural -s 0.788  *** 0.042  

L1type 
      PRESENT 0.278  *** 0.036  

Note: *** p < 0.001; ** p < 0.01; * p < 0.05; . p < 0.10 
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Table 5 Smooths terms of GAM Model 8 

Parameter EDF Ref.df 𝜒𝜒2 p value   
Proficiency (standardized) : Writingnum 
(standardized) 

10.50
7  

13.29
4  

25.43
4  0.023  * 

Proficiency (standardized) : Morpheme 
     

 
Proficiency (standardized) : Articles 1.000  1.000  

13.75
1  

< 
0.001  

**
* 

 

Proficiency (standardized) : Past tense -
ed 1.662  2.053  8.403  0.016  * 

 
Proficiency (standardized) : Plural -s 1.009  1.017  3.036  0.083  . 

Writingnum (standardized) : L1type 
     

 
Writingnum (standardized) : ABSENT 1.002  1.003  0.717  0.398  * 

 
Writingnum (standardized) : PRESENT 3.151  3.570  

12.23
2  0.012  

 Note: *** p < 0.001; ** p < 0.01; * p < 0.05; . p < 0.10 
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Figure 1 Fitted values of GLM Model 7.
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Figure 2 Fitted values of GAM Model 8 
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Figure 3 Nonlinear cross-sectional and longitudinal accuracy development 
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