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Abstract 

The present paper introduces two sophisticated statistical modeling techniques that allow 

researchers to analyze systematicity, individual variation, and nonlinearity in L2 development. 

Generalized linear mixed-effects models can quantify individual variation and examine 

systematic effects simultaneously, and generalized additive mixed models allow analysts to 

examine systematicity, individuality, and nonlinearity within a single model. Based on a 

longitudinal learner corpus, this article illustrates their utility in the context of the L2 accuracy 

development of English grammatical morphemes. This paper discusses the strengths of each 

technique and the ways in which these techniques can benefit second language acquisition 

research, further highlighting the importance of accounting for individual variation in modeling 

L2 development. 
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Modeling systematicity and individuality in nonlinear L2 development: The case of English 

grammatical morphemes 

Methodological Challenges in Modeling Individual Variation and Nonlinearity in SLA 

Systematicity and Individuality in SLA Research 

For many years, second language acquisition (SLA) research has focused on revealing 

systematicity in second language (L2) development. The problem with searching for 

systematicity alone is that the identification of systematic patterns often necessitates statistical 

averaging, and averaging conceals individual patterns (Dörnyei, 2009). Indeed, in psychology, it 

is well-known that the averaged pattern can differ from the individual patterns that constitute the 

data (e.g., Heathcote, Brown, & Mewhort, 2000). Therefore, there has recently been a growing 

interest in SLA in understanding the performance of individual learners (van Geert & van Dijk, 

2002; Verspoor, Lowie, & van Dijk, 2008). 

However, studying individual variation requires appropriate analytical tools. 

Conventional statistical techniques in SLA, such as ANOVA, cannot appropriately disentangle 

between- and within-learner variability. With recent developments in statistical modeling, 

however, we can now model and analyze group-level and individual-level features 

simultaneously. The technique, called mixed-effects modeling, is now widely used in (applied) 

linguistics, including SLA (e.g., Kozaki & Ross, 2011; Tremblay, Derwing, Libben, & Westbury, 

2011; see also Cunnings, 2012 and Linck & Cunnings, 2015). In most studies employing mixed-

effects models, however, the technique has been used to control for individual differences in 

testing the significance of predictors or to study the sources of these differences. While this is 

certainly useful, mixed-effects models can also provide information about the amount and 

pattern of individual variation (Dingemanse & Dochtermann, 2013; Kliegl, Wei, Dambacher, 
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Yan, & Zhou, 2011). The present paper not only tests the effect of predictors but also focuses on 

individual variation disclosed by mixed-effects models, and through the process, it demonstrates 

that this technique can model systematicity and individuality simultaneously. 

Nonlinearity in SLA 

Another recent trend in SLA is that it emphasizes the process of learning than on the 

product (Atkinson, 2011). The learning process, however, is never linear. There is ample 

empirical evidence that demonstrates nonlinearity in L2 development. Perhaps the best-known 

nonlinearity in SLA is U-shaped development (e.g., Lightbown, 1983) and power-law 

development (e.g., DeKeyser, 1997; Ellis & Schmidt, 1998). In U-shaped development, accuracy 

is high at the beginning, and temporarily decreases before becoming high again. In power-law 

development, decrement in error becomes progressively smaller as the learner develops. Because 

power-law development covers the entire span of development and does not exhibit a systematic 

decrease in accuracy in the process, U-shaped and power-law development are mutually 

exclusive. 

Despite the prevalence of nonlinearity in SLA, researchers are not fully equipped with 

appropriate statistical tools to analyze it. Classical statistical analysis is generally incapable of 

analyzing the learning process, including nonlinearity (Larsen-Freeman, 2011; see also Baayen, 

2010b). For instance, if we want to investigate the effect of a treatment on the linguistic 

complexity of learners’ writings while controlling for their proficiency, there is no sufficient 

evidence to assume a particular functional form between proficiency and linguistic complexity; 

thus it is not straightforward to statistically control proficiency. As in individual differences 

analysis, however, recent development in statistics allows analysts to model nonlinearity. 

Although the technique — the generalized additive model (Hastie & Tibshirani, 1990) — is new 
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in SLA, it has been used in other areas of (applied) linguistics including psycholinguistics (e.g., 

Baayen, 2010a; Baayen, Milin, Ðurđević, Hendrix, & Marelli, 2011) and sociolinguistics 

(Wieling, Nerbonne, & Baayen, 2011). The present paper illustrates its utility in SLA. 

Aim and Research Questions 

This paper aims to introduce to the SLA community two types of statistical modeling 

techniques that take into account systematicity, individual variation, and nonlinearity. I do so by 

modeling the accuracy of L2 English grammatical morphemes. Grammatical morphemes were 

targeted in this exposition because their acquisition has been extensively studied in SLA since its 

early days (e.g., Dulay & Burt, 1973), and we already know much about the variables that affect 

their accuracy. This enables us to focus on what the new techniques can contribute to the field. 

The status of the morpheme has been challenged as a functional unit of representation 

(e.g., Baayen et al., 2011; Ellis & Schmidt, 1998; Plaut & Gonnerman, 2000). Bybee (1985, 

2010), for instance, demonstrates the essentially gradient nature of grammatical morphemes. The 

historical account further shows that the word, and not the morpheme, has been regarded as the 

smallest unit of a grammatical system (Blevins, 2013). Given the methodological focus of this 

paper, however, the issue is rather marginal. 

This paper poses two demonstrative research questions: 

1. How large is individual variation in the developmental pattern of morphemes? 

2. Do their cross-sectional and longitudinal developmental patterns vary depending on 

morphemes and on whether learners’ native languages (L1s) have an equivalent 

morpheme? 

The background of Research Question 1 is that while SLA has identified prototypical 

developmental patterns, individual learners are hypothesized to exhibit a variety of learning 
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curves. This paper investigates the extent to which individual variation is observed in the 

developmental patterns of morphemes. 

With regard to Research Question 2, in addition to individual variation, the present paper 

addresses the systematic effect of L1, which is known to affect nearly every aspect of L2 

development (Jarvis & Pavlenko, 2007; Odlin, 1989), including grammatical morphemes (Luk & 

Shirai, 2009; Murakami & Alexopoulou, in press). It is not clear, however, how L1 influence 

emerges or changes during the acquisitional process (Jarvis, 2000). 

The paper further investigates whether the developmental pattern differs across 

morphemes. Prior research often draws distinctions between free vs bound and verbal vs nominal 

morphemes (e.g., Brown, 1973; Goldschneider & DeKeyser, 2001). Slobin (1996) further 

distinguishes between the morphemes that encode language-independent concepts (e.g., number 

as expressed by plural -s) and those that encode language-dependent concepts (e.g., definiteness 

as expressed by articles). It is, therefore, natural to observe differences in developmental patterns 

between morphemes as well. By modeling both systematicity and individuality simultaneously, 

this paper aims to gain a more comprehensive view of morpheme accuracy development. 

This paper presupposes no knowledge of generalized additive (mixed) models. It, 

assumes, however, that readers are familiar with the basic ideas of regression modeling including 

generalized linear models and model comparison based on information-theoretic measures such 

as AIC. It further assumes that readers have a basic knowledge of mixed-effects models. Online 

Supporting Document 1 provides an introduction to general ideas in regression modeling that are 

necessary for this paper. 

Data Source and Analysis 

Corpus 
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This paper employed EF-Cambridge Open Language Database (EFCAMDAT; 

Alexopoulou, Geertzen, Korhonen, & Meurers, 2015). The learner corpus includes writings at 

Englishtown, an online school run by Education First. A course in Englishtown consists of 16 

levels with eight units each. Although learners are free to go back or skip units, they usually 

progress from lower to higher levels unit by unit. A placement test suggests an appropriate level 

at which learners begin their coursework. At the end of each unit is a free composition task on a 

variety of topics (e.g., self-introduction, making requests). A sample writing is provided for each 

writing task, and learners can consult the sample and other external resources such as 

dictionaries in the process of writing. Each writing task specifies length, with assignments 

ranging from 20-40 words in Level 1 Unit 1 to 150-180 words in Level 16 Unit 8. Teachers 

provide feedback on writings, including the correction of erroneous grammatical morphemes. 

The present study used teacher feedback as error tags and collected necessary information to 

calculate accuracy by exploiting them. Error tags are not annotated in all of the writings, 

however. Apart from learners’ writings, EFCAMDAT includes, for each writing, such metadata 

as the ID of the learner, his/her country of residence, and the date and time of submission. This 

information allows researchers to track the longitudinal development of individual learners. 

EFCAMDAT is publicly available at http://corpus.mml.cam.ac.uk/efcamdat/. 

Target morphemes. The initial target was six English grammatical morphemes: articles, 

past tense -ed, plural -s, possessive ’s, progressive -ing, and third person -s. These are the 

morphemes that have often been targeted in SLA literature (cf. Goldschneider & DeKeyser, 

2001). However, possessive ’s was dropped as it did not occur frequently enough to allow for the 

investigation of individual variation or longitudinal development. Furthermore, progressive -ing 

and third person -s were dropped because their accuracy was close to 100% throughout learners’ 



MODELING INDIVIDUAL NONLINEAR DEVELOPMENT 8 

development. High accuracy rates make the inspection of development difficult because we 

cannot distinguish learners who barely achieve 100% accuracy from those who do so effortlessly 

(i.e., the ceiling effect). Thus, the final set of target morphemes was composed of articles, past 

tense -ed, and plural -s. Articles included both definite and indefinite articles. Past tense -ed 

included only regular past tense forms (e.g., opened) and not irregular ones (e.g., thought). 

Similarly, plural -s included only regular forms (e.g., cups) and not irregular ones (e.g., mice). 

Target L1 groups and proficiency levels. The present paper targeted the following 10 

L1 groups with the largest amount of data in EFCAMDAT: Brazilian Portuguese, Mandarin 

Chinese, German, French, Italian, Japanese, Korean, Russian, Spanish, and Turkish. As 

EFCAMDAT does not provide direct information as to learners’ L1s, such information was 

inferred from the countries in which learners reside as a close approximation. Accordingly, L1 

Brazilian Portuguese, German, French, Italian, Korean, Russian, and Turkish learners correspond 

to those living in Brazil, Germany, France, Italy, Korea, Russia, and Turkey, respectively. L1 

Mandarin Chinese learners included those living in Mainland China and in Taiwan, and L1 

Spanish learners included those living in Spain and Mexico. L1 Mandarin Chinese is referred to 

as L1 Chinese and L1 Brazilian Portuguese as L1 Brazilian to save space. Englishtown Levels 

are aligned with the Common European Framework of Reference (CEFR), as shown in Table 1. 

Subcorpus. The present paper only targeted learners whose sum of obligatory contexts 

and overgeneralization errors in error-tagged texts was 10 or more for each of the three 

morphemes. In addition, due to the high computational cost of part of the analysis, it was 

necessary to limit the data to a maximum of 20 learners from each L1 group. The 20 learners 

selected were those with the largest number of writings within the L1 group. Because the L1 

French, L1 Japanese, L1 Korean and L1 Turkish groups included 20 or fewer learners after 
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applying the first selection criterion (i.e., obligatory contexts plus overgeneralization errors ≥ 

10), the second criterion was not relevant to the four groups. 

Figure 1 shows the distribution of learners and error-tagged writings across L1 groups 

and Englishtown levels. Learner level was operationalized as the learner’s mean level in 

Englishtown. Note that the Total panel has a different y-axis scale from the other panels. In all, 

there were 3,323 writings by 158 learners. The subcorpus included 315,141 words in total, and 

the average number of words per writing was 94.8 (SD = 50.0). 

Accuracy Measure and Data Extraction 

As a measure of accuracy, this paper employed the ratio between correct uses and errors. 

The number of correct uses was obtained by subtracting the number of omission and 

misformation errors from that of obligatory contexts. Obligatory contexts were operationalized 

as morpheme use in the corrected text, which is the text wherein erroneous portions were 

replaced with the corresponding corrected forms based on error tags. For instance, if a learner 

wrote, She has a big nose and small mouth, and it was corrected to read, She has a big nose and 

a small mouth, there are two obligatory contexts of articles as the article occurs twice in the 

corrected sentence. Errors combined omission, misformation, and overgeneralization errors. This 

accuracy measure is conceptually equivalent to target-like use scores (TLU; Pica, 1983). In 

visualizing accuracy, the study used TLU scores, which are calculated by dividing the number of 

correct uses by the sum of the numbers of obligatory contexts and overgeneralization errors. R 

scripts were written to count the frequency of obligatory contexts and each type of errors in 

error-tagged texts.1 

There is no guarantee that errors are exhaustively annotated in EFCAMDAT. However, a 

manual given to Englishtown teachers asks them to be complete in providing feedback, and it 
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explicitly raises articles, plural -s, and verb tense among the features teachers should pay 

attention to. This briefing should make error annotation of the target morphemes fairly 

comprehensive and reliable. While the use of teacher feedback as error annotation can introduce 

noise to the data, the information provided by the annotation leads to intriguing insights into 

patterns of accuracy development, as will be discussed later. 

Variables and Analysis 

In this paper, I modeled accuracy as a function of several variables and explored the 

models to address the research questions. The dependent variable was accuracy in the form of 

odds. In the variants of logistic regression models employed in this study, the number of correct 

uses was entered as the number of successes, and the number of errors was entered as the number 

of failures. 

There were four independent variables: proficiency, writing number (writingnum), 

morpheme, and L1 type (L1type): 

• Proficiency was represented by the average Englishtown level in terms of unit at which 

the learner submitted his/her writings. The value is unchanged within learners, and the 

variable is meant to capture between-learner, cross-sectional development. Proficiency 

was standardized to facilitate interpretation. The mean and standard deviation of 

proficiency were 51.8 (Level 7 Unit 4) and 22.6, respectively. 

• Writing number represented the within-learner writing order. One indicates the first 

writing of a learner, two indicates the second writing, and so forth. Writing numbers were 

assigned to both error-tagged and untagged writings so that we can interpolate 

development over untagged writings. This variable was meant to capture within-learner, 

longitudinal development, and was standardized over learners after its values were 
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centered within each learner. Accordingly, zero in the standardized writing number 

indicates the mean writing number within each learner. The standard deviation of the 

writing number was 15.6. 

• Morpheme was a categorical variable with three levels: one for each morpheme with 

articles as the reference level. 

• L1 type was a dichotomous variable representing L1 influence and indicating whether an 

L1 has an equivalent morpheme. The L1 type had two levels: ABSENT and PRESENT. 

The ABSENT group was the reference level. The ABSENT group include L1 groups that 

lack the equivalent linguistic features in their L1s, and L1 groups wherein the marking of 

the feature is optional. By contrast, the PRESENT group must mark equivalent features. 

For instance, L1 Japanese was considered to be in the ABSENT group in the article 

because it is not obligatory in Japanese to express definiteness, the central concept of the 

English article system. Conversely, Japanese was considered to belong to the PRESENT 

group in past tense -ed because a Japanese morpheme, -ta, roughly corresponds to past 

tense -ed in English, and it is difficult to express past-ness without the use of this 

morpheme in Japanese. This approach to representing the effect of L1 is rather crude and 

oversimplified, but as will be shown, it is useful to capture L1 influence. The ABSENT 

group included L1 Chinese, Japanese, Korean, Russian, and Turkish for articles; L1 

Chinese for past tense -ed; and L1 Chinese, Japanese, and Korean for plural -s. The rest 

were included in the PRESENT group. 

In addition to these variables, some of their interactions were entered into the model as well in a 

stepwise manner. Treatment contrasts were used for categorical variables throughout this paper. 



MODELING INDIVIDUAL NONLINEAR DEVELOPMENT 12 

Before running the analyses, observations without any obligatory contexts or 

overgeneralization errors were removed. There were 7,247 non-zero observations across the 

three morphemes. Table 2 shows the average number and standard deviation of non-zero 

observations, obligatory contexts, omission errors, and overgeneralization errors per learner. 

Naturally, the data size is larger for articles and for plural -s than for past tense -ed due to their 

higher frequency. 

All of the statistical analyses in this paper were performed with R (version 3.2.1; R Core 

Team, 2015; cf. Mizumoto & Plonsky, in press). The R codes and data used in this paper are 

available at the following repository at the Open Science Framework: https://osf.io/dbuh4. 

Before moving on to the main analysis, a cross-sectional view of the data is presented herein. 

Cross-Sectional View of Morpheme Development 

Figure 2 illustrates the cross-sectional development of the three morphemes across L1 

types. Each line shows the cross-sectional development in each L1 type. Unlike typical cross-

sectional data, however, a learner contributes multiple data points to the figure as he/she 

produces multiple writings. C2 level was dropped out of the figure due to its small data size but 

is included in modeling that follows. 

The fluctuation of accuracy in the graph, which is partially due to the small data size of 

several observations, makes the close examination of the data difficult. Employing variants of 

logistic regression models that weigh each observation according to its data size, the present 

paper investigates whether we can observe a significant difference in the developmental pattern 

across groups and the extent to which individual variation is present in the development. 

Taking into Account Individual Variation: Generalized Linear Mixed-Effects Models 
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This section analyzes the extent to which accuracy developmental patterns vary across 

individual learners. To quantify individual variation, the paper employs a generalized linear 

mixed-effects model (GLMM). Mixed-effects models can handle both systematicity and 

individuality because they can deal not only with usual within- and between-learner fixed-effects 

variables such as morphemes and proficiency (i.e., systematicity) but also remaining variance 

across and within learners (i.e., individuality). Partly for this reason, mixed-effects models have 

been widely used in longitudinal data analysis (Long, 2012), including in SLA (Barkaoui, 2014; 

Kozaki & Ross, 2011). 

Model Specification and Model Selection 

The study employed a mixed-effects logistic regression model to analyze the relationship 

between accuracy, proficiency, longitudinal development, and morpheme. The model included 

L1 and learner as random-effects factors. Writings were nested within individual learners, who 

were in turn nested within L1 groups. The model thus had nested random-effects structure where 

variance was partitioned into between-L1, between-learner, and between-writing levels (cf. Gries, 

2015). Although it was possible to construct yet another level by viewing data points as nested 

within writings, this was not attempted to avoid further complexity of the model. By-L1 random 

intercepts allow overall accuracy to vary across L1 groups. Variables can also be entered as 

random contrasts and random slopes. By-L1 random contrasts and random slopes, however, were 

not entered because the small number of L1 levels (10) may result in unstable models. 

The role of each random-effects parameter is as follows. When the by-morpheme random 

contrasts are present, the by-learner random intercepts allow article accuracy to vary across 

individual learners. By-morpheme random contrasts represent individual variation in the 

accuracy difference between morphemes. The by-writingnum random slope similarly represents 
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individual variation in morpheme-independent learning rates implying whether some learners are 

naturally quicker in learning than others. We are interested in the extent to which we can observe 

such individual differences and whether — and to what extent — systematic variables (e.g., 

proficiency) can account for these differences. 

The study constructed multiple models and found the most plausible model by comparing 

them. There has been no agreement on how best to perform model selection in mixed-effects 

modeling (Gries, 2013). It has been suggested that we should start with the maximal model, or 

the model with all possible predictors and the largest random-effects structure, and drop the 

variables and/or the random-effects component that are not supported by the data (Barr, Levy, 

Scheepers, & Tily, 2013; Gelman & Hill, 2007; see Bates, Kliegl, Vasishth, & Baayen, 

submitted for a counter-argument). However, because the present model only had 10 L1 groups, 

I opted for an approach where initially the simplest model was built and predictors were added to 

the model one at a time only if it improves the model. More specifically, the following forward 

selection approach was used (cf. James, Witten, Hastie, & Tibshirani, 2013). I first built the so-

called unconditional model (Bates, 2010) that only includes by-L1 and by-learner random 

intercepts but no fixed-effects predictor. I then added a predictor one by one that decreases the 

model’s AIC the most, repeating the procedure until no predictor could improve the model 

further (but see Whittingham, Stephens, Bradbury, & Freckleton, 2006 for criticisms of the 

stepwise approach in general). Interaction terms were considered only when the model already 

included the main effects constituting the interactions. Random contrasts were considered only 

when the variable was already in the fixed-effects component of the model. Although restricted 

maximum likelihood (REML) procedures are often used for linear mixed-effects models, the 

present study employed maximum likelihood estimation because REML does not allow for the 
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comparison of models with different fixed-effects structure (Bolker et al., 2009) and also because 

REML estimates are not well-defined for GLMMs (Bates, 2009). All of the statistical analyses in 

this section were carried out with the lme4 package (version 1.1-8; Bates, Mächler, Bolker, & 

Walker, submitted) in R. To avoid convergence failure, the BOBYQA algorithm was used as the 

optimizer, as suggested by Bolker (2014). 

Let us call the unconditional model Model 1. Model 2 added morpheme to the fixed-

effects part because the predictor most dramatically decreased the AIC. A comparison between 

Model 1 and Model 2 tested whether different morphemes are of different accuracy levels. 

Model 3 added by-morpheme random contrasts to Model 2. A comparison between Model 2 and 

Model 3 tells us whether it is worth allowing the accuracy difference between morphemes to 

vary across learners. Likewise, Model 4 and Model 5 tested the effects of L1type and 

writingnum, respectively. Model 6 further added the by-writingnum random slope. Models 7 

through 9 examined the effects of proficiency, morpheme-proficiency interaction, and L1type-

writingnum interaction, respectively. 

Table 3 shows the summary of model comparison. The first three columns give the model 

number and the variables included in the fixed effects and random effects of the model. The 

fourth column lists the AICs of the model, and the fifth column shows the difference of AIC in 

comparison to the previous model. A negative value means that this model has better predictive 

accuracy than the model above. The last two columns show the results of likelihood ratio tests 

comparing the model with the previous model. The table indicates that AIC categorically 

decreased until Model 9, and likelihood ratio tests similarly suggested steady improvement until 

the same model. No other term (e.g., morpheme-writingnum interaction) further decreased AIC. 
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Although Model 9 may appear to be the most plausible model, Model 8 was selected as 

the final model because the decrease of AIC from Model 8 to Model 9 (-2.8) is fairly small and 

the p-value of the added parameter (0.029 for the L1type-writingnum interaction) is not as low as 

the p-values of other parameters, either. Given that both models are already highly complex and 

that AIC tends to prefer more complex models in general (Held & Bové, 2014), I opt for the less 

complex model herein. As a reference, I also constructed a model that has the same structure as 

Model 8 but does not include L1type, proficiency, or any interaction terms involving them. A 

comparison between Model 8 and this reference model informs us of the extent to which L1 type 

and proficiency explain the variance. 

The forward-selection procedure employed above may result in underspecified models 

because there can be a model that is better than the final model and includes a combination of 

parameters untested in the model selection procedure. To mitigate the potential effect of the 

procedure, a series of models were built in the following manner2. Instead of adding one variable 

at a time, I added two variables that sequentially decreased AIC the most. I then deleted one 

variable that resulted in the minimum increase in AIC. This procedure was repeated until no 

further iteration decreased AIC further. This process partially alleviates the potential 

underspecification issue because the procedure explores part of the parameter combination space 

that is not tested in the pure forward-selection procedure. This 2-in-1-out procedure resulted in 

Model 9 as the final model, thereby partially confirming the robustness of our model. For the 

reason described above, however, we take Model 8 as the final model. 

Interpretation of the Model 

Interpreting random effects. Table 4 presents the random-effects components of the 

mixed-effects model. It also shows the random effects of the Reference Model, against which the 
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effects of predictors in Model 8 are tested. In Table 4, the intercept rows represent the standard 

deviation of random intercepts for L1 and learner, and the other rows show the standard 

deviation of by-morpheme random contrasts and by-writingnum random slopes. 

The Reference Model tells us that the standard deviation of the by-L1 random intercept 

(Row 2 in the table) is 0.300, which indicates the dispersion of L1 groups in absolute accuracy in 

the logit scale. Similarly, the by-learner random intercept (Row 4) is 0.495, which is the 

magnitude of individual differences in article accuracy within each L1 group after progressing 

the mean number of writings (i.e., standardized writingnum = 0). The standard deviations of the 

by-morpheme random contrasts (Row 5-7) are 0.716 for past tense -ed and 0.582 for plural -s, 

and denote individual differences in the accuracy difference between articles and the morphemes. 

The standard deviation of the by-writingnum random slope (Row 8) is 0.192, which represents 

the magnitude of individual variation in the overall learning rate. When the values in Model 8 are 

examined, we notice a fair amount of decrease in the by-learner random intercept (0.495 → 0.412, 

or -20.0%). This shows the extent to which learners’ overall proficiency and L1type explain 

individual variation in article accuracy. The by-morpheme random contrast similarly decreases in 

Model 8 (0.716 → 0.613, or -16.8%, for past tense -ed and 0.582 → 0.481, or -21.1%, for plural -

s). This represents the degree to which proficiency (but not L1type due to the absence of L1type-

morpheme interaction in the fixed-effects structure) explains individual variation in between-

morpheme accuracy difference. 

Surprisingly, the by-writingnum random slope increases from the Reference Model to 

Model 8 (0.192 → 0.197, or +2.3%). This is rooted in the fact that some of the within-learner 

variance can be reflected as between-learner variance in mixed-effects modeling (Hox, 2002; 

Snijders & Bosker, 1994). As a result, a within-learner predictor may explain both within-learner 
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and between-learner variance. Maximum likelihood estimation (MLE) generally corrects this. 

However, when a predictor is centered or standardized within learners as in the present case, it 

results in smaller between-learner variation in the average predictor value than embedded in the 

correcting mechanism of MLE. This invites overcorrection by MLE, and random effects may 

increase as a result. This, therefore, does not mean model misspecification. 

Because the value is larger in past tense -ed random contrast than in plural -s random 

contrast, a larger individual variation remains in the accuracy difference between articles and 

past tense -ed than in the accuracy difference between articles and plural -s. Note the caveat, 

however, that because between-learner and within-learner variability are not completely 

independently quantified even in mixed effects models, random-effects components of different 

models are not strictly comparable. Comparison, however, is a common practice (e.g., Hox, 

2002) and is still a useful strategy by which to examine the effect of predictors on random-effects 

components. 

Interpreting fixed effects. Let us now turn to the fixed-effects part (Table 5). P-values 

indicated by asterisks are only approximate, but a parametric bootstrap — a resampling 

technique that compares the target model with the reduced model that does not include the 

interested parameters (Pinheiro & Bates, 2000) — agreed with the significance of parameters in 

the table with the significance level of p < 0.05 based on 1,000 samples. We can thus make the 

following observations. 

• The main effect of morpheme (Row 2-4 in the table) is significant. At the mean 

proficiency level, the accuracy of plural -s is generally higher than that of articles. 

• The main effect of the L1 type (Row 5-6) is also significant. The PRESENT group 

overall outperforms the ABSENT group at standardized writingnum = 0. 
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• The main effect of writing number (Row 7) is significant. As learners write, morpheme 

accuracy increases. 

• The main effect of proficiency (Row 8) is significant and positive. Article accuracy tends 

to be higher in learners of higher proficiency. 

• The morpheme-proficiency interaction (Row 9-11) shows that the accuracy increase over 

proficiency is smaller in plural -s than in articles. In plural -s, accuracy increase per 

standard deviation of proficiency is nearly negligible (0.238 - 0.224 = 0.015)3. 

Let us further examine some of the terms that did not turn out to be significant. 

• The L1type-proficiency and L1type-writingnum interactions were not present in the final 

model. This means that there is no evidence showing different cross-sectional or 

longitudinal developmental patterns between the PRESENT and ABSENT groups. This 

is interesting because the PRESENT group generally outperforms the ABSENT group 

and they could be more likely to have approached the ceiling. 

• The morpheme-writingnum interaction was not retained in the final model. This outcome 

shows that the rate of longitudinal development is similar across morphemes. 

To look into the magnitude of individual variation, it is interesting to compare random 

effects in Table 4 with the corresponding fixed effects in Table 5. The fact that the random 

contrast for past tense -ed is 0.613 and its estimate in the fixed effects structure is 0.141 means 

that at the mean proficiency level, the standard deviation of individual variation in the accuracy 

difference between articles and past tense -ed is much larger than the mean accuracy difference 

between the two morphemes, which in turn indicates that although past tense -ed is more 

accurate than articles on average in this sample, the accuracy order between the two morphemes 

depends heavily on learners. The case of the by-writingnum random slope is similar. The 
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standard deviation in Table 4 is 0.197, while the coefficient in the fixed effects 0.082. This 

indicates that while on average learners’ longitudinal development is characterized by increased 

accuracy, a great proportion exhibits a decreased accuracy overall. This is not the case for the 

difference between articles and plural -s, however. Because its random slope (0.481) is smaller 

than the fixed-effects coefficient (0.787), plural -s is usually (though not necessarily always) 

more accurate than articles in individual learners. At higher proficiency levels, however, the 

mean difference between the two morphemes decreases, as reflected on the negative coefficient 

of the interaction between proficiency and plural -s. The proportion of the learners whose 

accuracy is higher in articles than in plural -s is expected to increase. The discussion here 

illustrates that it is possible to quantify individual variation through GLMMs. 

Summary of the GLMM Approach  

The present section demonstrated systematicity (e.g., plural -s is on average more 

accurate than articles) and individual variation in the L2 accuracy of grammatical morphemes. In 

addition to its ability to model systematicity and individuality simultaneously, a particular 

strength of the GLMM is its feature of quantifying individual variation through random effects. 

Variance in random effects is informative as to (i) the extent to which individual variation is 

present in a certain effect (e.g., the standard deviation of the individual variation in article 

accuracy is 0.412 in logit scale), (ii) whether it is larger or smaller compared to individual 

variation in another effect (e.g., individual variation in accuracy difference between articles and 

past tense -ed is larger than the variation in the difference between articles and plural -s), and (iii) 

the degree to which predictors explain variation (e.g., proficiency decreases the accuracy 

difference between articles and plural -s by 21.1%).4 

Accounting for Nonlinearity and Individuality: Generalized Additive Mixed Models 
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In the previous section, the analysis assumed a linear change of accuracy in both cross-

sectional and longitudinal development. The assumption, however, is unwarranted, particularly 

in light of prior SLA research demonstrating nonlinear learning curves (DeKeyser, 1997; 

Lightbown, 1983). The present section examines whether the developmental path varies 

depending on learners’  L1 types and on morphemes when nonlinear development is assumed. 

Brief Overview of Generalized Additive Models 

Generalized additive models (GAMs) extend generalized linear models (GLMs) and 

model nonlinear relationships between independent and dependent variables. They achieve 

nonlinearity through the use of splines. The following explanation of splines is largely based on 

James et al. (2013) and Hastie, Tibshirani, and Friedman (2009). 

A traditional way of modeling nonlinearity is by using polynomial functions. However, 

they cannot model flexible shapes without spending a large number of degrees of freedom, and 

doing so renders the resulting model unstable. In regression splines, one polynomial function 

models only part of the data, and multiple functions are used to cover the entire data. Those 

functions are smoothly connected so that there is no wide jump in the predicted value. This point 

is illustrated in the upper two panels in Figure 3. Figure 3A demonstrates morpheme 

development in hypothetical learners. The dashed line represents the predicted values of 

accuracy based on a cubic function of proficiency (i.e., 𝑇𝑇𝑇𝑇𝑇𝑇 =  𝛽𝛽0 +  𝛽𝛽1  ×  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 +

 𝛽𝛽2  ×  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 +  𝛽𝛽3  ×  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖3, where 𝛽𝛽’s are estimated from the data) 5. Here, 

we observe relatively large differences between observed (i.e., small circles) and fitted (i.e., 

dashed line) values. A cubic function is thus inadequate for modeling accuracy development in 

this dataset. The solid line is a piecewise cubic function. Data points were horizontally divided 

into five equally spaced regions, and a cubic function was fitted to each region. We see that the 
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predicted function is absurd as a whole: The lines are not connected and there are jumps in the 

fitted value as a result. Thus, simply employing multiple piecewise polynomial functions is 

insufficient for modeling nonlinearity.  

To achieve more natural modeling of nonlinearity, certain constraints can be imposed on 

the piecewise polynomial functions. Specifically, it is common to constrain piecewise cubic 

functions so that the values of the function and its first and second derivatives are continuous at 

knots, the points at which cubic pieces connect. This way, the function is not only continuous 

throughout but also smooth at the knots (Zuur, Ieno, Walker, Saveliev, & Smith, 2009). In Figure 

3B, the same data points are modeled by a smoothing spline. Though conceptually somewhat 

different, it is mathematically a variant of the cubic splines discussed above. Based largely on 

cubic functions, the smoothing spline models the data well in the present case. 

The spline balances difference between fitted and observed values and the roughness or 

wiggliness of the curve. If it is allowed to be infinitely wiggly, it goes through all of the observed 

data points and would clearly overfit the data by modeling noise in addition to the underlying 

shape, thereby making it difficult to generalize to new datasets. If, on the other hand, the spline is 

not allowed to be wiggly at all, it would end up being a straight line that models nonlinearity 

poorly. The smoothing spline achieves this bias-variance trade-off through a procedure called 

generalized cross validation, which is an approximation of leave-one-out cross validation 

commonly employed to evaluate statistical models. Conceptually, it fits to all but one data point 

a spline function with a certain degree of smoothness, and calculates the difference between the 

observed value of the omitted data point and its predicted value based on the spline (i.e., error). 

This process is repeated as many times as there are data points. The average error in this 

procedure indexes the goodness of the degree of smoothness. This whole process is then repeated 
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for a wide range of smoothness values, and the optimal wiggliness is found in which the average 

error is minimized (Wood, 2009; Zuur et al., 2009). 

GAMs are a semi-parametric technique that combines the smooths discussed above with 

parametric terms, thereby allowing a statistical test of the significance of some terms while 

controlling for the nonlinear effects of other terms. The lower two panels of Figure 3 illustrate 

the importance of accounting for nonlinearity through GAMs. These two figures show 

hypothetical accuracy development in two L1 groups: L1 Japanese and L1 Spanish. Both groups 

show clear U-shaped developmental patterns, but the data for L1 Spanish learners were 

generated to mark higher accuracy overall than those for L1 Japanese learners throughout 

development. In Figure 3C, the pattern is modeled by a linear function. It forces linearity on the 

nonlinear shape, resulting in large differences between observed and predicted values. Because 

the model hardly explains variance and residuals are large, the accuracy difference between the 

two L1 groups is non-significant (t = 1.643, p = 0.102) when proficiency is (mis)controlled for, 

despite the consistently higher accuracy of the L1 Spanish learners. Figure 3D models the same 

data with a GAM based on a thin plate regression spline (Wood, 2003), an approximation to a 

thin plate spline (Wood, 2010), which is a generalized form of the cubic spline discussed earlier. 

The model was constructed with the mgcv package (version 1.8-6; Wood, 2006) in R. Here, 

without pre-specifying shape, the GAM accurately models the U-shape. This in turn results in 

much smaller residuals than in Figure 3C, and this time, the effect of L1 is correctly identified (t 

= 7.858, p < 0.001). Therefore, the GAM was able to model the usual parametric term (L1) and 

nonparametric smooth (nonlinear effect of proficiency) simultaneously. 

An exciting recent development is the incorporation of random effects into GAMs, 

making the model capable of accounting for nonlinear patterns of individual learners. The model, 
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referred to as a generalized additive mixed model (GAMM; Baayen, 2014, in preparation, 

Chapter 8; Wood, 2004, 2006), can construct separate wiggly curves for each learner by 

penalized factor smooths, which achieve the interaction between smooths and factors with the 

same degree of smoothness across learners (Wood, 2014). GAMMs have been used in 

psycholinguistics (e.g., Balling & Baayen, 2012; Mulder, Dijkstra, Schreuder, & Baayen, 2014), 

sociolinguistics (Wieling, Montemagni, Nerbonne, & Baayen., 2014), and SLA (Ning, Shih, & 

Loucks, 2014). 

Model Specification and Model Selection 

Models assumed binomial error distribution and employed a logit link function. The 

dependent variable and the potential independent variables were the same as the GLMM’s, 

except that nonlinear terms were also considered. The interaction between two nonlinear terms 

(i.e., proficiency-writingnum) was entered as a tensor product smooths. Tensor product smooths 

extend nonlinearity to more than one dimension and model wiggly surfaces between the 

variables of naturally different scales (Hastie et al., 2009; Wood, 2010). 

A separate smooth was constructed for each factor level when L1 type or morpheme 

interacted with proficiency and/or writingnum. For example, in the specification of L1type-

proficiency interaction, separate proficiency curves were created for each L1 type. Thus, unlike 

interactions in typical regression models, factor-smooth interactions in GAMs also account for 

the main effects of the continuous variables included in the interaction. Due to a centering 

constraint, factors need to be specified in the model separately. 

Due to the high computational cost of GAMMs, building a model takes a relatively long 

time, and it was impractical to run the forward selection process in model selection that requires 

building multiple models at each step. Instead, I started with a model that was conceptually 
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equivalent to the final GLMM constructed earlier, and tested whether all of the parameters 

included in the model were necessary and whether including additional terms improved the 

model. Model 1, thus, included 

• L1type and morpheme as fixed effects, 

• as random effects by-L1 random intercepts, by-learner random intercepts, and by-

morpheme random contrasts at the level of individual learners, 

• (standardized) writingnum and by-morpheme (standardized) proficiency as smooth terms 

to capture their potentially nonlinear effects, and 

• by-writingnum random wiggly curves at the learner level. 

Smooth terms were specified with thin plate regression splines. Random wiggly curves are 

similar to random slopes but also allow nonlinearity in the longitudinal developmental patterns 

of individual learners. Maximum likelihood estimation was employed. This model is different 

from the final GLMM in that nonlinear effects are assumed in proficiency and writingnum, and 

random wiggly curves are assumed instead of random slopes for individual learners. 

With this model as the starting point, I first tested whether any additional terms improve 

the model. For this purpose, five candidate models were built: 

1. Model 1 + L1type-morpheme interaction in the fixed-effects structure (B = -0.004, p = 

0.985 for PRESENT - past tense -ed; B = -0.125, p = 0.355 for PRESENT - plural -s) 

2. Model 1 - writingnum smooth + writingnum smooth for each morpheme (i.e., 

writingnum-morpheme interaction; 𝜒𝜒2 = 0.115, p = 0.735 for the writingnum curve for 

articles; 𝜒𝜒2 < 0.001, p = 0.999 for the writingnum curve for past tense -ed; 𝜒𝜒2 = 0.011, p 

= 0.915 for the writingnum curve for plural -s) 
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3. Model 1 + proficiency smooth for each L1 type (𝜒𝜒2 < 0.001, p = 0.999 for the proficiency 

curve for the ABSENT group; 𝜒𝜒2 = 0.029, p = 0.864 for the proficiency curve for the 

PRESENT group) 

4. Model 1 + proficiency-writingnum interaction realized as a tensor-product interaction (𝜒𝜒2 

= 5.327, p = 0.419)  

5. Model 1 + - writingnum smooth + writingnum smooth for each L1type (i.e., writingnum-

L1type interaction; 𝜒𝜒2 = 0.027, p = 0.871 for the writingnum curve for the ABSENT 

group; 𝜒𝜒2 = 19.416, p < 0.001 for the writingnum curve for the PRESENT group) 

The model selection procedure, based on p values in the parentheses (Wood, 2013a, 2013b), 

suggests that Candidate Model 5 is better than Model 1, and AIC-based model comparison 

supports the decision as well (∆AIC = -8.2). This model is referred to as Model 2. 

The next step is to test whether it is worth adding further terms. The same procedure was 

again followed, except that candidate terms were added to Model 2 this time. The added terms 

were the same as Candidate Models 1 through 4 above. The process indicated that none of the 

terms improves the model (p > 0.105 for all of the terms). 

I then examined whether we need all of the terms in Model 2. The p values of Model 2 

parameters indicated that while some parameters were non-significant (e.g., 𝜒𝜒2 = 2.668, p = 

0.102 for the proficiency curve for past tense -ed), they were restricted to the levels of the factors 

or the levels of the interaction terms involving the factors whose other levels were significant 

(e.g., 𝜒𝜒2 = 21.869, p < 0.001 for the proficiency curve for articles). This indicates that all of the 

terms should be kept in the model. 

Model 2, however, suggested that the effect of proficiency is linear (EDF = 1.000 for all 

of the morphemes). The proficiency term, therefore, was moved to the parametric part: Model 3 
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included L1type, proficiency, morpheme, and the proficiency-morpheme interaction as fixed-

effects parametric terms. This did not affect AIC (∆AIC = -0.002). To further test whether 

random wiggly curves are necessary, another model was constructed in which random wiggly 

curves in Model 3 were replaced with by-writingnum random slopes. In other words, the model 

assumes linear effects of writingnum at the level of individual learners. Model comparison 

indicated that we need to keep random wiggly curves (∆AIC = 112.5), suggesting that the 

learning curve is nonlinear at the level of individual learners. 

The above did not directly tell us whether we need separate writingnum curves for the 

two L1 types. To analyze this, a separate curve was estimated on top of the curve for the 

reference level. In other words, to examine whether L1 type affects the longitudinal 

developmental pattern, two separate curves were constructed: one for the ABSENT learners and 

the other for the PRESENT learners on top of the curve for the ABSENT group (Baayen, in 

preparation, Chapter 8; Wieling, 2015; Wood, 2014). If the latter is significant, it suggests that it 

is worth having an additional curve for the PRESENT group on top of the ABSENT group curve, 

which in turn means that the longitudinal developmental pattern differs across L1 types. The 

results suggested that we need a separate writingnum curve for the PRESENT group (𝜒𝜒2 = 

13.472, p = 0.012). I, thus, select Model 3 as our final model and will explore it below. 

Interpretation of the Model 

Tables 6 through 8 show the results of the final model. Parametric terms (Table 6) 

suggest that (i) PRESENT learners generally outperform ABSENT learners (Row 3), (ii) higher 

proficiency learners tend to be more accurate in using articles than lower proficiency learners 

(Row 4), (iii) learners are more accurate in the use of plural -s than articles at the mean 

proficiency level (Row 7), and (iv) cross-sectional accuracy increase is smaller in plural -s than 



MODELING INDIVIDUAL NONLINEAR DEVELOPMENT 28 

in articles (Row 10). The non-significance of L1type-proficiency interaction indicates that the 

cross-sectional developmental pattern can be assumed to be similar across L1 types. Table 7 

shows estimated degrees of freedom (EDF), reference degrees of freedom (Ref.df), 𝜒𝜒2, and p-

values for the splines. If the EDF is close to one as in the effect of writingnum in the ABSENT 

group, the relationship between independent and dependent variables is close to linear in logit 

scale (Baayen, 2010a), and the larger its value, the wigglier the curve is. The table shows 

linearity in the partial effect of writingnum for the ABSENT group (EDF = 1.001 at Row 2) but 

nonlinearity for the PRESENT group (EDF = 3.503 at Row 3). The table also indicates 

significant individual variation in longitudinal development (Row 4). Table 8 indicates the 

standard deviation of random effects.6 As in the GLMM, we can observe between-L1 variation in 

absolute accuracy and individual variation in the accuracy difference between articles and other 

morphemes. Drawing inferences from the above tables, however, is not necessarily 

straightforward: Smooth terms in Table 7 make interpretation especially difficult. I turn now to 

one strategy that can assist us in drawing inferences from the results: visualizing the fitted values. 

Figure 4 shows the fitted nonlinear accuracy development in individual learners. The 

upper panel represents adjustments to logit TLU scores for individual learners across 

standardized writing numbers. If there is no individual variation within each L1 type, morpheme, 

and proficiency level, all of the lines should completely overlap. As we can see, however, large 

individual variation is present both in terms of absolute accuracy and developmental shape. The 

figure demonstrates large individual variation well, but it does not show how learners develop in 

the scale of TLU scores in a particular morpheme. The bottom four panels in Figure 4, therefore, 

show the fitted values of article accuracy in individual learners divided into two proficiency 

groups (higher vs lower) and two L1 types (ABSENT vs PRESENT). The cut-off proficiency 
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level for the two proficiency groups was learners’ mean proficiency. The thick lines in each 

panel are locally weighted scatterplot smoothing lines (LOESS; Larson-Hall & Herrington, 2010; 

Singer & Willett, 2003) showing the overall trend. Although the parametric terms in Table 6 

indicate that the PRESENT group outperforms the ABSENT group, this is hardly visible in 

Figure 4 due to individual variation within each L1 type. Furthermore, whereas higher 

proficiency learners use articles more accurately than lower proficiency learners on average, this 

is merely a tendency and only characterizes the development of the hypothetical ‘average’ 

learner. Individual variation definitely outweighs the typological difference in L1 and can also 

have a larger impact than general proficiency. Moreover, the developmental pattern slightly 

differs between the ABSENT and PRESENT groups, as Table 7 indicates. However, the figure 

also suggests that this difference is marginal compared to the scale of individual variation. 

Summary of the GAMM Approach 

The GAMM took into account individual variation and nonlinearity and modeled 

accuracy development as a function of proficiency, longitudinal development, and L1 type. The 

final model demonstrated (i) individual variation in absolute accuracy and in nonlinear 

development, (ii) systematic L1 influence and proficiency effects on absolute accuracy, and (iii) 

L1 influence on longitudinal developmental patterns. The empirical and quantified 

demonstration of nonlinearity, individual variation, and systematicity was only achievable 

through GAMMs. 

Contrasting GLMM/GAMM with GLM/GAM 

Now that both types of models have been explored, they are compared against each other 

and against GLMs and GAMs, the models that do not account for individual variation. The only 

difference between the GLMM and the GAMM is that the GAMM includes the L1type-
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writingnum interaction while the GLMM does not. Recall that the term was at the borderline in 

the model selection process of GLMMs. As mentioned earlier, Figure 4 based on the final 

GAMM also shows that the difference in the developmental curve between the two L1 types is 

minute, especially in view of large individual variation. Thus, although it is worth including the 

interaction term in the model when nonlinearity is accounted for, I conclude that its effect is 

nearly negligible from a practical perspective. 

It is also interesting to compare GLMM/GAMM with GLM/GAM as such a comparison 

highlights the importance of taking individual variation into account when modeling L2 

development. As in the GLMM, GLMs and GAMs were constructed based on the forward 

selection approach. Both GLMs and GAMs used the logit link function and assumed binomial 

error distribution. The final GLM included morpheme, L1 type, proficiency, writingnum, 

morpheme-proficiency interaction, and proficiency-L1type interaction. The final GAM included 

morpheme and L1 type as parametric terms, and as smooths terms separate wiggly proficiency 

curves for each morpheme, separate writingnum curves across L1 types, and a proficiency-

writingnum wiggly surface.7 

The results showed a few disputed findings between GLMM/GAMM and GLM/GAM. 

More specifically, the GLM supported the L1type-proficiency interaction and the GAM included 

the proficiency-writingnum interaction, while GLMM and GAMM supported neither. In addition, 

the GAM suggested nonlinear cross-sectional development, while the GAMM demonstrated 

linear development. Notice that the findings of the GLMM/GAMM were more conservative than 

those of the GLM/GAM: The GLM/GAM either pointed toward more significant parameters 

than the GLMM/GAMM or suggested nonlinear effects when the GAMM indicated linear effects. 

These are all likely to be rooted in whether individual variation is taken into account (GLMM 
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and GAMM) or not (GLM and GAM). Generally speaking, ignoring the nested structure of data 

results in unfairly small standard errors (Hox, 2002; Long, 2012), leading to narrower confidence 

intervals (cf. McKeown & Sneddon, 2014; Wieling, 2015). In the present context, because the 

GLM and the GAM ignore the dependency of data within individual learners, their standard 

errors turned out to be unfairly small, inviting spurious significant results. 

The difference between the models is illustrated in Figure 5. The figure visualizes the 

predicted cross-sectional and longitudinal development of article accuracy in two learners: one 

L1 Russian and one L1 Brazilian who contributed the largest number of error-tagged writings 

among the ABSENT and PRESENT learners, respectively. The point of the figure is the 

magnitude of uncertainty represented by the width of shaded 95% confidence intervals, which 

are clearly wider in the GLMM and the GAMM panels than in the GLM and the GAM panels. 

The wider confidence intervals of the GLMM and GAMM are brought about by their ability to 

account for individual variation. The GLM suggested that cross-sectional developmental patterns 

vary across L1 types because models are (erroneously) certain of the trajectory of each L1 type 

and the trajectories differ, while the GLMM and the GAMM are much less certain that the two 

trajectories are different. Similarly, the GAM judged cross-sectional developmental patterns to 

be nonlinear because the narrow confidence intervals and a relatively fixed trajectory as their 

results suggest nonlinearity, while the wide confidence intervals of the GAMM and the resulting 

uncertainty in the trajectory do not support it. Thus, the GLMM/GAMM results are more 

trustworthy, and the illustration here demonstrates the significance of accounting for individual 

variation in modeling L2 development. 

Discussion 
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GLMMs and GAMMs in this paper demonstrated nonlinearity and individual variation in 

the L2 development of English grammatical morphemes. SLA researchers have shown interest in 

these phenomena but were previously unequipped with the analytical tools to investigate them. 

With sophisticated statistical models of the type employed in this paper, however, we can model 

complex phenomena such as L2 development while losing much less information than traditional 

statistical techniques. 

More specifically, the present paper showed that (i) plural -s is more accurate than 

articles in general, (ii) learners with an equivalent feature in their L1 outperform those whose 

L1s lack the feature, (iii) article accuracy increases as learners’ proficiency rises, (iv) cross-

sectional developmental patterns vary across morphemes, and (v) large individual variation is 

present in absolute accuracy, the accuracy difference between morphemes, and longitudinal 

developmental patterns. There was no disagreement in the above findings between GLMM and 

GAMM. Thus, we can safely conclude them. 

The cross-sectional developmental pattern varies between articles and past tense -ed on 

the one hand and plural -s on the other. Articles and past tense -ed undergo more rapid increase 

in accuracy than do plural -s, whose accuracy remains relatively unchanged throughout 

development. This difference is likely due to the higher accuracy of plural -s and, as a result, the 

ceiling effect. It is interesting, however, that we did not observe a significant difference in the 

developmental pattern between articles and past tense -ed despite the fact that the article is a 

nominal free morpheme that encodes a language-dependent concept (i.e., definiteness) and past 

tense -ed is a verbal bound morpheme that encodes tense, a fairly language-independent concept. 

This finding shows that the classic distinctions between morphemes may not strongly influence 
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the developmental trajectory of morpheme accuracy. Because the paper targeted only three 

morphemes, this observation is merely suggestive rather than conclusive. 

This paper demonstrated systematicity, individuality, and nonlinearity in L2 development. 

L1 type consistently exerted influence on accuracy in the present paper, demonstrating that 

accuracy is not determined randomly. However, as has been repeatedly emphasized throughout 

the paper, large individual variation was present as well both in the absolute accuracy and 

developmental patterns of morphemes. Together with the complex nonlinear patterns discussed 

earlier, I echo Baayen (2014, p.361): 

The results obtained with GAMs can be embarrassingly rich, in the sense that the results 

are far more complex than expected given current models. GAMs will often challenge the 

state of the art of current theories, and the author’s intuition is that they may force the 

field to move more into the direction of dynamic systems approaches to language. 

Although the claim was made in the context of GAMs and GAMMs, it fully applies also to 

GLMMs. 

I now briefly summarize features of the models discussed in this paper and note their 

potential weaknesses. The defining property of GLMMs is that they incorporate both fixed-

effects and random-effects variables. This allows us to model systematicity and individuality 

simultaneously. GLMMs, however, are not very flexible in modeling nonlinearity. GAMMs can 

model nonlinearity and individual variation simultaneously. They cannot, however, currently 

handle a correlation parameter in random effects (Wieling, 2015). A further potential drawback 

is that they are less interpretable than other simpler models like GLMs/GLMMs (cf. James et al., 

2013). It is worth noting, however, that interpretability of simpler models may come at the cost 

of less precision. 
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The present paper is not without its limitations. Accuracy in this paper was calculated by 

aggregating all error types. However, different mechanisms may operate between omission, 

misformation, and overgeneralization errors or between definite and indefinite article uses. 

Ideally, error type should be incorporated into the model. Additionally, models in this paper only 

included developmental measures (i.e., proficiency and writing number) and L1-related variables 

(i.e., L1 and L1 type) as predictors of accuracy. Many more variables are certain to affect 

accuracy, such as tasks and linguistic contexts. Further investigation into the sources of 

variability should shed light on why cross-sectional and longitudinal developmental patterns take 

the form they do. The dataset itself is also a source of limitations. For example, it is worth 

looking into the potential effects of tasks, teaching materials in Englishtown, and varying 

progress rates across learners on the results (Alexopoulou et al., 2015). 

Conclusion 

The present paper introduced statistical models that capture systematicity, individuality, 

and nonlinearity and illustrated their potential in SLA research with the L2 accuracy 

development of English grammatical morphemes as an example. In light of the nonlinear and 

variable nature of L2 development, these techniques help researchers to better model L2 

development and provide insights into the complex, dynamic, and nonlinear process of 

development. 
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Footnotes 

1 The accuracy of the R scripts is reported in Online Supporting Document 2. 

2 I thank an anonymous reviewer for suggesting this procedure. 

3 The calculation may not look correct due to rounding, but the value is accurate. 

4 There are two further features of GLMMs that merit discussion but the space does not 

allow to elaborate: the correlation structure of random effects and shrinkage. They are 

demonstrated in Online Supporting Document 3. 

5 Although accuracy is proportional, logistic regression was not employed in order to 

avoid confusion between linearity in probability scale and linearity in logit scale. The same 

follows for the remaining panels. 

6 The values were calculated with the getSD.gam function in the paper package of 

Wieling et al. (2014), available at http://openscience.uni-

leipzig.de/index.php/mr2/article/view/41. 

7 The detailed model selection procedure is provided in Online Supporting Document 4. 
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Tables 

Table 1 

Alignment of Englishtown Levels and the CEFR 

Englishtown level number CEFR levels 
1-3 A1 
4-6 A2 
7-9 B1 
10-12 B2 
13-15 C1 
16 C2 
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Table 2 

Data Size per Learner 

Morpheme Non-zero observations (SD) Obligatory contexts (SD) Omission errors (SD) Overgeneralization errors (SD) 
Articles 20.08 (6.01) 140.92 (71.20) 12.23 (8.47) 5.53 (4.17) 
Past tense -ed 6.89 (3.07) 16.09 (7.64) 0.66 (0.96) 1.04 (1.27) 
Plural -s 18.91 (5.92) 90.53 (47.53) 3.44 (3.21) 1.94 (2.00) 
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Table 3 

Comparison of GLMMs 

  Model description     Likelihood ratio test against the previous model 

Model Fixed-effects Random-effects AIC ΔAIC Statistic p value 

Model 1 None By-L1 + by-learner random-intercepts 13799.8        

Model 2 Model 1 + morpheme Same as Model 1 13356.4  -443.4  χ2(2) = 447.39 < 0.001 

Model 3 Same as Model 2 Model 1 + by-morpheme random-contrasts at learner level 13276.5  -80.0  χ2(5) = 89.97 < 0.001 

Model 4 Model 2 + L1type Same as Model 3 13253.7  -22.8  χ2(1) = 24.80 < 0.001 

Model 5 Model 4 + writingnum (standardized) Same as Model 3 13240.3  -13.4  χ2(1) = 15.41 < 0.001 

Model 6 Same as Model 5 Model 3 + by-writingnum random-slope at learner level 13212.7  -27.5  χ2(4) = 35.51 < 0.001 

Model 7 Model 5 + proficiency (standardized) Same as Model 6 13197.9  -14.8  χ2(1) = 16.81 < 0.001 

Model 8 Model 7 + morpheme-proficiency interaction Same as Model 6 13188.3  -9.7  χ2(2) = 13.67 0.001 

Model 9 Model 8 + L1type-writingnum interaction Same as Model 6 13185.5  -2.8  χ2(1) = 4.75 0.029 

Reference Model Morpheme + writingnum (standardized) Same as Model 6 13229.5        
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Table 4 

Random Effects Structure of GLMMs 

Factor Random Effects   SD in Model 8 SD in Reference Model 
L1 

    
 

Intercept 
 

0.295  0.300  
Learner 

    
 

Intercept 
 

0.412  0.495  

 
Morpheme 

   
  

Past tense -ed 0.613  0.716  

  
Plural -s 0.481  0.582  

  Writingnum (standardized) 0.197  0.192  
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Table 5 

Fixed Effects Structure of GLMM Model 8 

Parameter B   SE 
Intercept 

 
1.561  *** 0.123  

Morpheme 
    

 
Past tense -ed 0.141  

 
0.098  

 
Plural -s 0.787  *** 0.063  

L1type 
    

 
PRESENT 0.679  *** 0.123  

Writingnum (standardized) 0.082  ** 0.027  
Proficiency (standardized) 0.238  *** 0.043  
Proficiency (standardized) : Morpheme 

   
 

Proficiency (standardized) : Past tense -ed -0.115  
 

0.089  

 
Proficiency (standardized) : Plural -s -0.224  *** 0.059  

Note: *** p < 0.001; ** p < 0.01; * p < 0.05 
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Table 6 

Parametric Terms of GAMM Model 3 

Parameter B   SE 
Intercept 

 
1.532  *** 0.127  

L1type 
    

 
PRESENT 0.685  *** 0.118  

Proficiency (standardized) 
 

0.236  *** 0.050  
Morpheme 

    
 

Past tense -ed 0.049  
 

0.086  

 
Plural -s 0.741  *** 0.062  

Proficiency (standardized) : Morpheme 
   

 
Proficiency (standardized) : Past tense -ed -0.100  

 
0.084  

  Proficiency (standardized) : Plural -s -0.220  *** 0.059  
Note: *** p < 0.001; ** p < 0.01; * p < 0.05 
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Table 7 

Smooths Terms of GAMM Model 3 

Term EDF Ref.df 𝜒𝜒2 p-value 
Writingnum (standardized) : L1type 

    
 

Writingnum (standardized) : ABSENT 1.001  1.002  0.026  0.872  

 
Writingnum (standardized) : PRESENT 3.503  4.300  19.830  0.001  

By-writingnum random wiggly curve for individual learners 233.053  1415.000  867.258  0.002  
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Table 8 

Random Effects of GAMM Model 3 

Random effects SD p-value 
By-L1 random intercepts 0.285  < 0.001 
By-morpheme random slopes for individual learners 0.176  < 0.001 
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