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ABSTRACT  

Objectives: Recent studies indicate that glucose metabolism is altered in rheumatoid arthritis 

(RA) fibroblast-like synoviocytes (FLS). Hexokinases (HK) is catalyze the first step in 

glucose metabolism and HK2 constitutes the principal HK inducible isoform. We 

hypothesize that HK2 contributes to the synovial lining hypertrophy and plays a critical role 

in bone and cartilage damage.  

Methods: HK1 and HK2 expression were determined in RA and osteoarthritis (OA) synovial 

tissue by immunohistochemistry. RA FLS were transfected with either HK1 or HK2 siRNA, 

or infected with either adenovirus (ad)-GFP, ad-HK1 or ad-HK2. FLS migration and invasion 

were assessed. To study the role of HK2 in vivo, 10
8
 particles of ad-HK2 or ad-GFP were 

injected into the knee of WT mice. K/BxN serum-transfer arthritis was induced in HK2
F/F

 

mice harboring Col1a1-Cre (HK2
Col1

), to delete HK2 in non-hematopoietic cells.  

Results: HK2 is particular of RA histopathology (9/9 RA; 1/8 OA) and co-localizes with 

FLS markers. Silencing HK2 in RA FLS resulted in a less invasive and migratory phenotype. 

Consistently, overexpression of HK2 resulted in an increased ability to migrate and invade. It 

also increased extracellular lactate production. Intra-articular injection of ad-HK2 in normal 

knees dramatically increased synovial lining thickness, FLS activation and proliferation. HK2 

was highly expressed in the synovial lining after K/BxN serum transfer arthritis. HK2
Col1

 

mice significantly showed decreased arthritis severity, bone and cartilage damage. 

Conclusion: HK2 is specifically expressed in RA synovial lining and regulates FLS 

aggressive functions. HK2 might be an attractive selective metabolic target safer than global 

glycolysis for RA treatment.  

 

 

INTRODUCTION 



Rheumatoid arthritis (RA) is a systemic autoimmune disease that leads to chronic 

inflammation and progressive joint destruction(1). One of the apparent histopathological 

changes of the joint in RA is the hypertrophic synovial lining(2, 3). Fibroblast-like 

synoviocytes (FLS) are stromal cells that give structure to the synovial lining and are 

contributing to RA pathology by invading and promoting cartilage destruction, expressing 

metalloproteases (MMP), and inducing chronic inflammation by secreting cytokines and 

chemokines(2, 4, 5). There is an unmet need to target FLS aggressive phenotype in RA in 

combination with current therapies.  

Different approaches have highlighted underlying mechanisms that explain RA FLS 

behavior, including activation of signaling pathways (6, 7)), and epigenetic modifications (8, 

9). RA FLS metabolism has gained attention as recent studies have pointed out to 

modifications in RA FLS cell metabolism(3, 10). Many key signaling pathways that are 

activated by the inflamed joint microenvironment converge to adapt cell metabolism in order 

to support FLS activation and aggressive phenotype, suggesting that the study of metabolic 

changes in RA FLS and key players could potentially lead to the identification of new 

therapeutic agents(3, 10-12). 

Among other metabolic changes, our recent work and others have highlighted a 

critical role of glucose metabolism in activated FLS(13, 14). The high level of activity in 

glycolytic inflamed tissues is manifested by the use of positron emission tomography (FDG-

PET), which can be observed by PET in swollen joints(15, 16). Also, synovial fluid from RA 

patients has higher levels of lactate and less glucose levels than osteoarthritis (OA) synovial 

fluid(17, 18). This dependency of activated cells on accelerated glucose metabolism could 

render them more vulnerable to the disruption of glucose metabolism and support that 

targeting glucose metabolism might be a reasonable complementary approach for RA patients 

(11). 



Hexokinases (HKs) catalyze the first committed step in glucose metabolism(19, 20). 

By catalyzing the phosphorylation of glucose to G6P, hexokinases promote and sustain a 

concentration gradient that facilitates glucose entry into cells and the initiation of all major 

pathways of glucose utilization. HK1 is constitutively expressed in most mammalian adult 

tissues. HK2, which also has high affinity for glucose and harbors two catalytic domains, 

constitutes the principal inducible isoform (21). The identification of isoform-specific 

contributors to elevated cell glucose metabolism without compromising systemic homeostasis 

or normal metabolic functions could make targeting cell metabolic changes an approach 

feasible.  

Here, we test the hypothesis that HK2 is a specific isoform contributing to elevated 

cell glucose metabolism in RA FLS and is a key regulator of aggressive FLS phenotype. We 

show that HK2 expression is elevated in the RA synovial tissue and overexpression of HK2 

in the murine synovial lining promotes hypertrophy of healthy synovium as well as RA FLS 

activation. HK2 deletion in FLS decreases its aggressive phenotype, and HK2 deletion in 

Col1a1-expressing cells ameliorates disease severity of arthritis. Taken together, our data 

suggest that HK2 is involved in FLS activation and synovial hypertrophy and could play a 

role in RA. 

 

 

 

 

 

 

 

 



Methods 

Human synovium and FLS: Human synovium or FLS were extracted from patients with 

RA or OA undergoing total joint replacement. All RA patients met the American College of 

Rheumatology 1987 revised criteria for seropositive RA as previously described (22, 23). 

FLS were used between p4 and p9 passages.  

More detailed methods are provided as supplementary methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESULTS 

HK2 expression is mainly induced in the inflamed synovial lining of RA patients 

We first studied the expression of both HK isoforms in synovium to determine 

whether or not HK2 is an inducible isoform in synovial tissue. Immunohistochemistry (IHC) 

analysis of HK2 expression in RA synovium revealed that HK2 was detected in RA synovial 

tissue, very predominant in the lining but also in sublining (Fig. 1A). Of interest, while HK2 

expression was abundant in all RA synovial samples tested (9 different RA donors), both 

lining and sublining were negative for HK2 expression in most OA synovial samples (7 out 

of 8 different OA donors) (Fig. 1A). HK1 expression, as expected, was uniformly present in 

both OA and RA synovial tissue (Supplementary Fig. 1A). Of note, when cultured in vitro, 

both RA and OA FLS cell lines expressed HK2 at basal level, although HK2 expression level 

was higher in RA than in OA FLS (Supplementary Fig. 1B).  

We then performed a double-color IHC to determine whether or not FLS expressed 

HK2 in the RA synovium. We identified FLS as cells positive for vimentin, vascular cell 

adhesion protein 1 (VCAM1) or podoplanin (PDPN)(2, 24). As shown in Fig. 1B, HK2 

positive staining co-localized with all the different FLS markers in the lining. Of interest, 

other cells in the sublining of some RA samples, which were negative for FLS markers, did 

expressed HK2, suggesting that other synovial cell types could also upregulate HK2 

expression in RA synovial tissue.  

Effect of HK2 modulation in aggressive functions of human FLS 

 In order to investigate the role of HK2 in RA FLS functions, we conducted in vitro 

studies. We first studied whether inflammatory mediators implicated in FLS inflammatory 

response upregulated HK2 expression. As shown in Fig. 1C and D, stimulation of RA FLS 

with PDGF, LPS, TNF or hypoxia increased the expression of HK2 protein. TNF and 

hypoxia stimulation also increased HK2 protein levels in OA FLS (Supplementary Fig. 1C).  



 We then silenced HK1 and HK2 expression in those cell lines. Supplementary Fig. 2A 

and B, shows HK1 and HK2 expression by qPCR and immunoblotting (IB) after HK 

silencing in RA FLS. As glycolysis inhibition was shown to induce cell death in FLS (25), 

we confirmed that HK1 or HK2 silencing did not change cell viability or shape 

(supplementary Fig. 2C). As shown in Fig. 2A, RA FLS after HK silencing were less 

invasive (HK1: p<0.001; HK2: p<0.05) and migration measured by the length of the scar was 

also diminished (HK1: p<0.0001; HK2 p<0.001). Yet, HK silencing did not modify IL6, IL8 

or MMP expression (supplementary Fig. 2D).  

 We also tested the effect of HK2 overexpression in RA FLS by infecting with 

adenovirus carrying human HK1 or HK2 (Ad-huHK1 or Ad-huHK2). Supplementary Fig. 3A 

and B shows HK1 and HK2 expression by qPCR and IB after Ad-HK infection in RA FLS. 

After HK2 overexpression, RA FLS were more invasive than after HK1 overexpression 

(HK2: p=0.01, Fig. 2B). HK2 overexpression also decreased the length of the scar in the 

migration assay in FLS although did not reach significance (Fig. 2B), and increased RNA 

levels of the pro-inflammatory cytokine IL-6, IL-8 and metalloproteinases (MMP) (Fig. 2C). 

Yet, it did not induce any change in proliferation (Supplementary Fig. 3C) Interestingly, both 

HK1 and HK2 overexpression increased RA FLS extracellular lactate production but only 

HK2 overexpression also increased GLUT1 mRNA levels (Fig. 2D). Yet, inhibition of the 

extracellular lactate transporters after HK2 overexpression by 7AAC, which specifically 

inhibits monocarboxylate transporter 1 and 4 (MTC1/4), did not abolish HK2 invasive 

phenotype in RA FLS (Fig. 2E).  

 HKs can bind to mitochondria through their N-terminal hydrophobic regions. 

Confocal studies were conducted to determine HKs intracellular distribution in FLS. Of 

interest, these studies showed that the distribution of HKs in non-infected FLS was different 

between HK1 and HK2. While HK1 was co-localized with or adjacent to mitochondria, HK2 



was only partially mitochondria-bounded and it also displayed diffuse cytoplasmic 

distribution (Fig. 3A and supplementary Fig. 4A). Notably, after HK1 overexpression, the 

intensity of HK1 co-localization with mitochondria and mitochondria distribution differed 

considerably from HK2 distribution and co-localization after HK2 overexpression, which 

may explain the discrepancies observed after HK1 and HK2 overexpression. (Figure 3A and 

supplementary Fig. 4A) 

 We finally addressed whether HK2 overexpression could induce an inflammatory 

phenotype in OA FLS.  As shown in Figure 3B, overexpression of HK2 induced an increase 

of RNA levels of the pro-inflammatory cytokine IL-6, IL-8 and metalloproteinases (MMP) in 

OA cell lines. Of interest, the overexpression of HK2 also induced an invasive phenotype in 

some OA FLS compared to ad-GFP (Fig.3C; mean± SEM: ad-GFP+PDGF: 1.34±0.12; ad-

HK2+PDGF: 18.86±0.61; p<0.001), but not in all OA cell lines tested (Supplementary Fig. 

5), suggesting that HK2 expression contributes but is not sufficient to completely recapitulate 

the aggressive phenotype of RA FLS. 

HK2 overexpression leads to a synovial lining hypertrophy in murine healthy joints 

In order to assess the effect of HK2 overexpression in synovial tissue in vivo, we 

intra-articularly injected adenovirus carrying murine HK2 (Ad-mHK2) into murine knees, 

and adenovirus carrying GFP (Ad-GFP) as a control in the contralateral knee of wild-type 

(WT) healthy mice. Overexpression of HK2 in the synovial lining was effective since HK2 

expression was increased in Ad-mHK2 injected joints compare to Ad-GFP injected joints 

(Fig. 4A). Interestingly, we observed that intra-articular injection of ad-mHK2 in normal 

knees dramatically increased synovial lining thickness (mean± SEM: ad-GFP: 0.54±0.21; ad-

HK2: 2.91±0.28; p<0.00001) (Fig. 4B). We also observed synovial lining from ad-HK2 

injected knee migrating towards the cartilage compared to ad-GFP-injected knees (mean± 



SEM: ad-GFP: 0.75±0.22; ad-HK2: 2.03±0.29; p=0.0015) (Fig. 4B). Double color IHC with 

vimentin confirmed HK2 expression in FLS after ad-mHK2 injection (Fig. 4C).   

We then tested if HK2 overexpression modified FLS activation and proliferation by 

staining for anti-alpha smooth muscle actin (a-sma), a myofibroblastic marker, MMP3 and 

Ki67, a marker of proliferative cells. Fig. 4D shows that anti a-sma staining was increased in 

ad-mHK2 injected knees when compared with ad-GFP injected knees. MMP3 staining was 

also widely present in the hypertrophic lining in ad-mHK2 synovium (Fig. 4D). Of interest, 

intra-articular injection of ad-mHK2 also increased the number of positive Ki67 cells in the 

synovium (Fig. 4E) mean± SEM: ad-GFP: 16.5±8.7; ad-HK2: 87.14±56.64, p=0.05. Double 

color IHC with vimentin showed some Ki67 positive cells in vimentin positive cells, 

suggesting that HK2 overexpression in FLS induced FLS proliferation in vivo (Fig. 4F). 

We also determined whether the overexpression of Ad-mHK2 in the lining induced 

the recruitment of infiltrating cells. Although the response was more heterogeneous than the 

synovial hypertrophy induction by HK2 overexpression, we observed a mild sublining 

infiltration in 6 out of 13 knees after ad-mHK2 injection, compared to none after ad-GFP 

injection (Mean± SEM: ad-GFP: 0.08±0.08; ad-HK2: 0.92±0.29; p=0.02). (Fig. 4G). When 

observed at higher magnification, most of the infiltrating cells were mononuclear cells (Fig. 

4G). We then stained for F4/80, a marker of monocyte-macrophage lineage, and for iNOS, 

which stains activated myeloid cells. We observed that both sublining infiltrating cells were 

positive for F4/80 and iNOS. Double-color IHC with vimentin and iNOS confirmed that most 

of vimentin-positive cells were negative for iNOS, suggesting that the infiltrating cells were 

indeed activated myelomonocitic cells (Fig. 4H).  

HK2 expression in murine joints is also increased in synovial FLS after arthritis 

induction.  



The effect of HK2 on FLS migration and invasion, led us to evaluate the role of HK2 

in the K/BxN arthritis model. The K/BxN passive serum transfer model is FLS dependent and 

requires only innate immunity(26, 27). PDPN, glycoprotein highly expressed in activated RA 

FLS, is also expressed in the arthritic murine lining (Fig. 5A). As we recently published(14), 

several genes related to glucose metabolism were upregulated early in the course of the 

arthritis, at day 5 after K/BxN serum transfer, in enriched arthritic CD45
neg

PDPN
pos

 cells. We 

confirmed that HK2 expression had higher expression in enriched arthritic CD45
neg

PDPN
pos

 

cells (1.04  0.4 in normal joints vs 1.8  0.3 in arthritic joints: p=0.03; 1.8  0.3 in arthritic 

CD45
neg

PDPN
pos

 cells vs 0.25  0.09 in arthritic CD45
neg

PDPN
neg

 cells: p<0.01) (Fig. 5B). 

HK2 was highly and uniformly expressed in the invasive lining in arthritic joints (Fig. 5C). 

Several glucose metabolism related genes together with other markers of activated FLS, were 

also increased at the peak of the arthritis in CD45
neg

PDPN
pos

 cells compared to 

CD45
neg

PDPN
neg

 (Fig. 5D and E). Specifically, GLUT1, ENO1 but also pyruvate kinase 

muscle isoenzyme 2 (PKM2), Pyruvate Dehydrogenase Kinase (PDK) 1 and 3 were 

upregulated in this population.  

Conditional knockout of HK2 in Col1a1-expressing cells has an ameliorated arthritic 

disease 

As there is no available Cre-recombinase expressing strain that deletes specifically in 

FLS, we generated HK2F/F Col1a1-Cre (HK2
Col1

) mice to delete HK2 in collagen type I 

expressing cells including FLS. As shown in Fig. 6A, HK2 was deleted in HK2
Col1

 joint FLS. 

We then conducted the arthritic model of K/BxN serum-transfer arthritis. Deletion of HK2 in 

Col1a1 expressing cells significantly decreased arthritis severity (clinical score at day 12 was 

9±2.5 in WT mice vs. 6.1±3.2 in HK2
F/F

Col1a1-Cre; p=0.02) (Fig. 6B). Histopathological 

studies at day 12 showed that bone erosion (p=0.04) and cartilage damage (p=0.05), but not 

less cellular infiltration was reduced in HK2
Col1

 mice compared to littermate control (Fig. 6C, 



D). Of note, MMP3 and Ki67 expression that were upregulated in K/BxN arthritis synovium 

were decreased in HK2
Col1

 mice compared to littermate control (Fig. 6 E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



DISCUSSION 

The concept of metabolic reprogramming to improve immunotherapy slowly is being 

translated into autoimmune diseases to complement current therapies(28). Yet, there are little 

data about targeting metabolic changes in RA. We here showed that targeting the first step in 

glucose metabolism could be a potential selective metabolic therapy for RA and regulates 

FLS aggressive behavior.   

Although previous works have demonstrated a role of glucose metabolism in cell 

activation and function (29-31), inhibiting general glucose metabolism is not desirable in the 

overall body. Thus, there is a need of finding specific metabolic targets that are induced in 

activated cells such as FLS. HKs are the first enzymatic step in glucose metabolism. While 

HK1 is a ubiquitously expressed enzyme in all living cells, HK2 is an inducible form and 

only expressed in adulthood in some organs. Our data suggests that HK2 constitutes an 

attractive potential selective target for arthritis therapy. Indirect evidence of HK2 redundancy 

in adulthood is the fact that global HK2 ablation in adult mice was well tolerated, and HK2-

deficient mice were indistinguishable from control mice both morphologically, and in terms 

of growth, body weight and glucose homeostasis(19). Adult tissues that abundantly express 

HK2 also express relatively high levels of HK1, which might play a compensatory or 

redundant role in the absence of HK2.  

Here, we have observed that HK2 is not expressed in most of OA patient’s synovial 

tissue. Consistent with the idea of up-regulation secondary to synovial inflammation, we 

observed that its expression was induced by inflammatory and activation signals including 

LPS, PDGF, TNF and hypoxia. In K/BxN model of mice, its expression is also elevated in 

inflamed joints but not in healthy joints. Interestingly, HK2 mRNA expression levels are also 

increased in TNF or IL-1- stimulated RA FLS as published in Geo Datasets (Array 

GSE49604, GSE516, GSE2676), together with other glucose metabolism related genes. 



Confocal studies revealed that HK1 and HK2 differ in their co-localization within the cell, 

while most of HK1 is co-localized to the mitochondria, HK2 was distributed in both 

cytoplasm and mitochondria. While both HK1 and HK2 silencing reduce migratory and 

invasive phenotype of RA FLS, only the overexpression of HK2 contributes to aggressive 

phenotype of FLS since its overexpression increases the invasiveness of these cells and 

induces IL6, MMPs, and IL8 mRNA expression. Other studies performed in cancer cells 

observed similar effects. When HK2 was silenced, breast cancer cells were less migratory 

after in vitro TNF stimulation(32), and pancreatic cells were less metastatic in an in vivo 

model(33). Although extracellular lactate was shown to be involved in cancer cell invasive 

phenotype(33),  in RA FLS, the inhibition of lactate transportaters (MTC1 and 4) did not 

reverse the HK2-dependent invasive phenotype. Interestingly, although both HK2 and HK1 

similarly increase extracellular lactate, only HK2 and not HK1 overexpression triggers a FLS 

aggressive phenotype, suggesting the involvement of glycolysis independent mechanisms. Of 

note, HK2 deletion was not sufficient to modulate IL6 or TNF expression, which might 

indicate that targeting HK2 will not change pro-inflammatory cytokine profile and could 

potentially complement current immunotherapies. 

 In addition, HK2 overexpression in the synovium of a healthy murine knee 

transformed the thin lining into a hypertrophic synovium and it also enhanced FLS activation 

and migration towards cartilage. HK2, therefore, led a healthy normal synovial lining into a 

hypertrophic and aggressive synovium upregulating a-sma and MMP3 expression, and also 

stimulating proliferation as shown by the presence of Ki-67 cells in vimentin positive cells. 

Yet, HK2 overexpression did not increase proliferation in vitro, suggesting that other 

mediators are involved in the proliferation observed in the in vivo experiments. The 

myofibroblastic marker a-sma might explain the migratory phenotype since a-sma has been 

associated with higher contractile profile in fibroblasts (34). Whether or not HK2 also plays a 



role in synovial macrophage recruitment, activation and differentiation requires further 

studies.  Although, double-color IHC showed that most of HK2 positive cells co-localized 

with vimentin positive cells, suggesting FLS HK2 involvement in recruiting and activating 

synovial macrophages, we cannot rule out a direct activation of macrophages by the Ad-HK2.  

Partial ablation of HK2 in FLS slightly ameliorated the clinical signs of arthritis 

animal model. We did not see a significant effect on inflammation, probably because as 

shown in vitro, deletion of HK2 in FLS was not sufficient to modulate the expression of 

inflammatory mediators. Yet, histological scores of bone and cartilage damage were 

significantly improved in HK2
col1

 mice suggesting a predominant role of HK2 in synovial 

migration and invasion. Col1a1-Cre does not delete only in FLS so the effect of HK2 deletion 

in other cells including chondrocytes and osteoblasts needs further attention. Although our 

conditional mice explains the effect of HK2 in non-hematopoietic cells, double staining IHC 

suggest that human RA synovial cells other than FLS also expresses HK2, so further 

experiments are needed to study the effect of HK2 in other synovial cell types.  

This is the first study to identify an isoform-specific contributor to metabolism 

changes in RA synovial tissue that could be selectively targeted without compromising 

systemic homeostasis or corresponding metabolic functions in normal cells, offering a safer 

and novel additional approach for combination therapy in RA joint disease independent of 

systemic immunosuppression. Given HK2 selective overexpression in RA inflamed 

synovium, and its restricted distribution of expression in normal adult tissues, HK2 

constitutes an attractive potential selective target for arthritis therapy and safer than global 

glycolysis inhibition.  
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FIGURE LEGENDS 

Figure 1. HK2 expression is expressed in the inflamed synovial lining of RA patients. A) 

Representative IHC images of HK2 staining in RA and OA synovium. B) Representative 

IHC images of double-color staining of HK2 (red) and vimentin (black), VCAM1 (black) or 

PDPN (black) in a RA human synovium. C) Immunoblot (IB) of the indicated proteins in RA 

FLS at baseline and after PDGF or LPS stimulation for 24 and 48 hrs.  D) IB and 

quantification of the indicated proteins in RA FLS after TNF or hypoxia (1%) stimulation. 

Results are average of 3 different RA FLS lines. Values are the mean ± SEM * =p<0.05. 

Figure 2. Effect of HK2 modulation in human RA FLS migration and invasion. A) RA 

FLS were transfected with either siRNA control, siRNA HK1 or siRNA HK2 as detailed in 

methods. Representative images of invasion area (upper panels) and migration (lower panels) 

are shown. Quantification, as detailed in methods, of area of invasion and migration after 

PDGF stimulation for 24 hrs are shown. Results are average of 3 different RA FLS lines. 

Values are the mean ± SEM. B) RA FLS were infected with Ad-GFP, Ad-hHK1 or Ad-hHK2 

as detailed in methods. Representative images of invasion area (upper panels) and migration 

(lower panels) are shown. Quantification, as detailed in methods, of area of invasion and 

migration after PDGF stimulation for 24 hrs. are shown. Results are average of 3 different 

RA FLS lines. Values are the mean ± SEM. C) A) qPCR analysis of the indicated genes in 

RA FLS 72 hrs. after ad-GFP, ad-HK1 and ad-HK2 infection. Results are average of 5 

different RA FLS lines. Values are shown as mean ± SEM. * =p<0.05; **=p<0.01. D) left: 

RNA levels of GLUT1 in RA FLS, 72 hrs. after ad-GFP, ad-HK1 or ad-HK2 infection. 

Results are average of 3 different RA FLS lines. Values are the mean ± SEM. Right: RA FLS 



were infected with ad-GFP, ad-HK1 or ad-HK2. Media was changed 48 hrs. after infection 

and lactate was measured in the supernatants at 2 hrs. and at 4 hrs. Data are pooled from thee 

technical replicates, and 3 different RA FLS lines. Values are the mean ± SEM. E) RA FLS 

were infected with Ad-GFP or Ad-hHK2 as detailed in methods. Representing images and 

quantification are shown of area of invasion after PDGF stimulation for 24 hrs. in the 

presence or absence of 10uM 7AAC. Results are average of 3 different RA FLS lines. Values 

are the mean ± SEM. * =p<0.05, **p<0.01, ***p<0.001. 

Figure 3. Intracellular distribution of HKs and OA FLS phenotype after HKs 

overexpression. A) Intracellular distribution of HKs (in green) and mitochondria (Tom20; in 

red) in FLS at baseline (upper panels) and after Ad- infection (lower panels) examined by 

confocal microscopy. Figure shows overlapping images (yellow, co-localization of HKs with 

Tom20). Representative images of three different RA FLS are shown. B) qPCR analysis of 

the indicated genes in OA FLS 72 hrs. after ad-GFP and ad-HK2 infection. Results are 

average of 3 different OA FLS lines. Values are shown as mean ± SEM. * =p<0.05. C) OA 

FLS was infected with Ad-GFP or Ad-hHK2 as detailed in methods. Representative images 

of invasion area are shown. Quantification, as detailed in methods, of area of invasion and 

migration after PDGF stimulation for 24 hrs. is: mean ± SEM, ad-GFP+PDGF: 1.34±0.12 

versus ad-HK2+PDGF: 18.86±0.61; p<0.001). 

Figure 4. HK2 overexpression leads to a hypertrophic synovia in healthy joints. Control 

WT mice (n=13) were injected intraarticularly in one knee with 10
8
 ad-mHK2 and ad-GFP in 

contralateral knee. A) Representative image of HK2 staining of the indicated mice. B)  Upper 

panels: Representative images of hematoxylin & Eosin (H&E) showing hypertrophy (arrow 

indicated synovial hypertrophy), and quantification (mean± SEM: ad-GFP: 0.54±0.21; ad-

HK2: 2.91±0.28; p<0.00001) are shown. Lower panels:  Representative images of 

hematoxylin & Eosin (H&E) showing synovial attachment to cartilage (arrow indicated 



synovial migration), and quantification (mean± SEM: ad-GFP: 0.75±0.22; ad-HK2: 

2.03±0.29; p=0.0015) are shown. C) Representative IHC image of double color staining of 

anti-vimentin (red) and anti-HK2 (black) of the indicated mice. D) Representative IHC image 

of anti-alpha-sma and MMP3 of the indicated mice. E) Representative Ki67 staining of the 

indicated mice and quantification of Ki67 positive cells in the synovium of ad-GFP or ad-

HK2 injected knees (mean± SEM: ad-GFP: 16.5±8.7; ad-HK2: 87.14±56.64, p=0.05, n=6 per 

group). F) Representative IHC image of double color staining of anti-vimentin (black) and 

anti-Ki67 (red) of the indicated mice. G) Representative images of hematoxylin & Eosin 

(H&E) showing sublining infiltration (100x magnification in upper images and 400x 

magnification in lower images) of indicated mice. (quantification: mean± SEM: ad-GFP: 

0.08±0.08; ad-HK2: 0.92±0.29; p=0.02). H) Representative IHC image of F4/80, iNOS and 

vimentin (black) and iNOS (red) staining of the synovial of the indicated mice.  

Figure 5. Specific deletion of HK2 in Col1a1 expressing cells ameliorates arthritis in an 

animal model of inflammatory arthritis. Serum passive K/BxN arthritis was induced after 

intraperitoneally injection of 150 μl of K/BxN mouse serum on day 0. A) Representative IHC 

images at day 9 after serum injection of PDPN expression in synovial tissue of arthritic WT 

mice. B) Gene expression level of HK2 in isolated CD45
neg

PDPN
pos

 cells from control mice 

or KRN induced arthritic mice. HK2 expression is increased in arthritic CD45
neg

PDPN
pos

 

(1.04 ± 0.4 in normal joints vs 1.8 ± 0.3 in arthritic joints; p=0.03). C) Representative IHC 

images at day 9 after serum injection of HK2 expression in synovial tissue of arthritic WT 

mice versus control WT mice. D) Single cells from arthritic joints were enriched for CD45-

PDPN+ as described in methods. Shown sorted populations for further RNAseq analysis. E) 

Heat map of gene expression level of isolated CD45
neg

PDPN
pos

 cells compare to 

CD45
neg

PDPN
neg

 from arthritic joints as described in methods. 



Figure 6. Specific deletion of HK2 in Col1a1 expressing cells ameliorates arthritis in an 

animal model of inflammatory arthritis. Serum passive K/BxN arthritis was induced after 

intraperitoneally injection of 150 μl of K/BxN mouse serum on day 0. A). 

Immunofluorescence of the murine synovium (vimentin in red; HK2 in green; DAPI blue) in 

the indicated mice, showing that HK2
Col1

synovial cells lack HK2 in murine FLS compared to 

control HK2
F/F

 B) Clinical arthritis scores were determined in HK2
F/F

 and HK2
Col1

 mice after 

arthritis induction. Values are the mean ± SEM of 10 mice per group. * =p<0.05. C) Sections 

of the ankle joints of HK2
F/F

 and HK2
Col1

 mice were stained with hematoxylin and eosin 

(H&E) or Safranin O on day 12 after arthritis induction. D) Histologic scores were 

determined on day 12 after serum transfer in HK2
F/F

 and HK2
Col1

 mice. E) Representative 

IHC images of MMP3 and Ki67 of the indicated mice.  

 


