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Summary  1 

Studies on regulatory T cells (Treg) have focused on thymic Treg as a stable 2 

lineage of immunosuppressive T cells, the differentiation of which is controlled 3 

by the transcription factor Foxp3. This lineage perspective, however, may 4 

constrain hypotheses regarding the role of Foxp3 and Treg in vivo, particularly 5 

in clinical settings and immunotherapy development. In this review, we 6 

synthesise a new perspective on the role of Foxp3 as a dynamically expressed 7 

gene, and thereby revisit the molecular mechanisms for the transcriptional 8 

regulation of Foxp3. Particularly, we introduce a recent advancement in the 9 

study of Foxp3-mediated T cell regulation through the development of the Timer 10 

of cell kinetics and activity (Tocky) system and show that the investigation of 11 

Foxp3 transcriptional dynamics can reveal temporal changes in the 12 

differentiation and function of Treg in vivo. We highlight the role of Foxp3 as a 13 

gene downstream of T cell receptor (TCR) signalling and show that temporally-14 

persistent TCR signals initiate Foxp3 transcription in self-reactive thymocytes. 15 

In addition, we feature the autoregulatory transcriptional circuit for the Foxp3 16 

gene as a mechanism for consolidating Treg differentiation and activating their 17 

suppressive functions. Furthermore, we explore the potential mechanisms 18 

behind the dynamic regulation of epigenetic modifications and chromatin 19 

architecture for Foxp3 transcription. Lastly, we discuss the clinical relevance of 20 

temporal changes in the differentiation and activation of Treg. 21 

  22 
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Introduction: Dynamics of Foxp3 transcription as a key to understanding 1 

regulatory T cell-mediated immune regulation 2 

It is widely considered that regulatory T cells (Treg) constitute a distinct lineage 3 

of CD4+ T cells dedicated for immunosuppression [1]. Key evidence for the 4 

distinct lineage include: (i) Treg development is controlled by the transcription 5 

factor Foxp3 [2]; and (ii) the development of Treg in the thymus is delayed to 6 

after that of other T cells under physiological conditions [3]. However, 7 

accumulating evidence show the simultaneous development of Treg and other 8 

T cells [4, 5] and Treg plasticity is now widely recognised as Treg can lose 9 

Foxp3 expression and become effector T cells (ex-Treg) during inflammation [6, 10 

7]. Thus, studies on dynamic changes in the differentiation and activation status 11 

of Treg – and other T cells – in vivo is essential for understanding Foxp3-12 

mediated T cell regulation. This dynamic perspective is important for not only 13 

basic research but also clinical research and immunotherapy development, 14 

which is illustrated by the catastrophic clinical trial of the superagonistic anti-15 

CD28 antibody TGN1412 in 2006.  16 

 17 

TGN1412 was developed as an immunosuppressive treatment, after an anti-18 

CD28 antibody was found to suppress autoimmune reactions in rodent models 19 

[8]. TGN1412 was thus designed to bind to the CD28 molecule on the surface 20 

of Treg, which would theoretically in turn suppress non-Treg [9]. This trial, 21 

however, resulted in catastrophe where all 6 volunteers given TGN1412 22 

development a ‘Cytokine Storm’ due to stimulation of a significant proportion of 23 

T cells [10]. Later, it was found that CD28 molecules in memory-phenotype T 24 
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cells are downregulated in primates – which does not occur in humans – and 1 

this species difference was deemed to be the major cause of the incident [11]. 2 

Meanwhile, Vitetta and Ghetie pointed out that Treg and non-Treg may not 3 

represent strictly separate lineages, and therefore the assumption of specific 4 

activation of Treg may have been inappropriate [12]. In fact, basic studies later 5 

showed the plasticity of Treg: Treg may lose Foxp3 expression during 6 

inflammation and non-Treg may acquire Foxp3 expression [13]. Summarizing, 7 

the case provides two important lessons: first, the concepts of lineage stability 8 

may constrain hypotheses, which can be detrimental in clinical settings; second, 9 

it is fundamental to investigate the dynamic changes in the differentiation and 10 

activation statuses of Treg and other T cells in vivo, which are still poorly 11 

understood. 12 

 13 

The key evidence of Foxp3 as the lineage-specification transcription factor is 14 

that mutations in the Foxp3/FOXP3 gene can lead to autoimmune disease in 15 

both mice [14] and humans [15]. However, this does not preclude the dynamic 16 

induction of Foxp3 as a negative regulator in response to T cell activation. In 17 

fact, FOXP3 expression can be induced solely by T cell receptor (TCR) signals 18 

in human T cells [16], and although less efficiently, in mice as well [17], and the 19 

induction is enhanced by TGF-b and interleukin (IL)-2 [18]. TGF-b is produced 20 

by activated antigen presenting cells such as dendritic cells [19] and 21 

macrophages [20], while IL-2 is mainly produced by activated T cells, 22 

particularly CD4+ T cells [21]. Since the immunosuppressive Treg population is 23 

commonly identified by the expression of Foxp3 (as Foxp3+ T cells in mice [2], 24 
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and FOXP3highCD45RA+ [22, 23] or FOXP3+CD127-CD25high T cells [24, 25] in 1 

humans), the investigation of Foxp3 dynamics in vivo, especially during immune 2 

responses, will be key for understanding the in vivo dynamics of Treg and T cell 3 

regulation. To this end, we have recently developed a new technology Timer of 4 

cell kinetics and activity (Tocky) system, which allows the investigation of in 5 

vivo dynamics of Foxp3 and Treg during physiological immune responses [26, 6 

27].  7 

 8 

In this article, we will aim to introduce a dynamic perspective to the molecular 9 

mechanisms that account for the transcriptional and epigenetic control of the 10 

Foxp3 gene, and thereby to improve the understanding of Foxp3-mediated T 11 

cell regulation in vivo. 12 

 13 

Development of Timer of cell kinetics and activity (Tocky) for investigating 14 

in vivo dynamics of Treg differentiation 15 

The current understanding of Treg differentiation and function is significantly 16 

based on evidence obtained by Foxp3 fluorescent protein (FP) reporters (such 17 

as EGFP [28, 29] ) and fate mapping systems for the Foxp3 gene (e.g. 18 

Foxp3CreGFP: Rosa26RFP [17] and Foxp3ERT2CreGFP:Rosa26YFP [30]). Notably, all 19 

these systems rely on stable FPs such as GFP, the half-life of which is longer 20 

than 56 hours. Therefore, temporal changes in Foxp3 transcription shorter than 21 

2 – 3 days cannot be investigated by these reporter systems. 22 
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In order to understand in vivo dynamics of those molecular mechanisms 1 

underlying the differentiation and function of Treg, we have recently developed 2 

the Tocky system using Fluorescent Timer protein (Timer). Timer proteins 3 

exhibit a short-lived blue fluorescent form, before maturation to the stable red 4 

state [27, 31]. The half-life of blue fluorescence is ~ 4 hours [26, 27], and that of 5 

the mature red fluorescence is ~ 5 days [26]. Thus, blue and red fluorescence 6 

(Blue and Red) provide a measurement of both the ‘real-time’ activity and the 7 

history of gene transcription [26]. Tocky uses this information to quantitatively 8 

analyse dynamic changes in transcriptional activities during cellular activation 9 

and differentiation [27]. Importantly, we have identified three characteristic 10 

dynamics of transcription in the Tocky system: Blue+Red- cells are those that 11 

have just initiated transcription (New); Blue+Red+ cells along the diagonal line 12 

between Blue and Red axes are those with sustained transcription, 13 

accumulating both blue and red form proteins (Persistent); and Blue-Red+ cells 14 

are those that have recently downregulated gene expression under the 15 

detection threshold of flow cytometry and are inactive in transcription of the 16 

gene (Arrested or Inactive) [27] (Figure 1). 17 

 18 

Foxp3 transcription is controlled mainly by 5’ upstream sequences and 19 

conserved non-coding sequences (CNS) 1-3 in intronic regions [7, 32-34]. 20 

Importantly, while TCR signals (together with TGF-b and IL-2 signals) induce 21 

Foxp3 expression in any T cells in vitro [18], naturally-arising Foxp3 expression 22 

is found mostly in self-reactive T cells in non-inflammatory conditions [1]. Thus, 23 

we will classify the mechanisms for Foxp3 transcription into two groups:  24 
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(i) Mechanisms for the activation of Foxp3 transcription: these are used during 1 

thymic Treg selection and peripheral Treg differentiation and are potentially 2 

involved in the mechanism for tonic TCR signal-mediated activation of Foxp3 3 

transcription.  4 

(ii) Mechanisms for the consolidation and tuning of Foxp3 transcription: these 5 

are used for sustaining Foxp3 transcription over time, which induces effector 6 

Treg differentiation and the dynamic regulation of epigenetic modifications, such 7 

as demethylation of CpG islands in enhancer regions (Figure 2). 8 

 9 

Mechanisms for the activation of Foxp3 transcription 10 

Foxp3 as a TCR signal downstream gene 11 

The differentiation and function of Treg is under the control of TCR signals [35-12 

38]. In the thymus, the recognition of cognate antigen induces not only negative 13 

selection but also the differentiation of CD25+Foxp3+ Treg from CD4-SP cells 14 

using transgenic TCR systems [39-41]. On the other hand, TCR transgenic 15 

mice in the Recombination activating gene (Rag) deficient backgrounds lack 16 

Foxp3+ T cells due to the absence of self-antigen presentation [42, 43]. The 17 

analysis of TCR signals using reporter mice have provided insights into the 18 

mechanism for TCR-mediated Treg differentiation. The Hogquist group showed 19 

that Treg receive strong TCR signals in the thymus and the periphery, when 20 

analysed using a Nur77(Nr4a1)-GFP transgenic reporter [44]. Using Nr4a3-21 

Tocky, we have shown that Foxp3 expression in the thymus occurs in T cells 22 

that have received temporally persistent TCR signals [27]. Furthermore, using 23 



8 
 

Foxp3-Tocky we showed that Foxp3 transcription is initiated in non-Treg cells 1 

during inflammation in the periphery [26]. In humans, activation-induced FOXP3 2 

in conventional T cells suppresses their proliferation and cytokine production in 3 

a cell intrinsic manner [45]. In addition, activated conventional T cells can 4 

express both Foxp3 and CTLA-4 and thereby acquire the suppressive function 5 

that is dependent on CTLA-4 [46]. These suggest that Foxp3 has a role in 6 

negative feedback regulation of T cell activation in cooperation with other 7 

immunoregulatory molecules, including CTLA-4. Foxp3 transcription, therefore, 8 

is thus under the control of TCR signals in both the thymus and the periphery. In 9 

addition, in normal homeostasis, Treg and naturally-arising memory-phenotype 10 

T cells are self-reactive and receive ‘tonic’ TCR signals in the periphery [27, 44]. 11 

Considering this evidence, the biological meaning of TCR signal-induced Foxp3 12 

expression includes two situations: (i) antigen recognition-induced Foxp3 13 

transcription in Foxp3- cells (conventional T cells; non-Treg) in the thymus and 14 

the periphery; and (ii) the effects of tonic TCR signals in Foxp3+ Treg. 15 

In line with the evidence of Foxp3 expression upon TCR stimulation, the gene 16 

regulatory regions of the Foxp3 gene are bound by transcription factors 17 

downstream of major branches of the TCR signalling pathway, including NFAT 18 

and AP1 [47], the NF-kB components c-Rel and p65 [32, 48-50], Cyclic AMP 19 

response element-binding protein (CREB) [51], and Nr4a proteins [52] (Figure 20 

2). 21 

Nr4a proteins (Nr4a1, Nr4a2, and Nr4a3) bind to their target sequences as 22 

homodimers or heterodimers and regulate transcription [53, 54]. Foxp3+ Treg 23 
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differentiation is abolished in Nr4a1/2/3 triple knock out (KO) and Nr4a1/3 1 

double KO, and these mice develop fatal autoinflammatory disease [52]. Nr4a 2 

proteins bind to the Foxp3 promoter upon anti-CD3 stimulation [52], and 3 

retroviral gene transduction of Nr4a2 or Nr4a3 induces Foxp3 transcription [55]. 4 

Importantly, however, Nr4a triple KO lack not only Foxp3+ Treg but also most of 5 

double-positive (DP) cell population [52], which suggests that the Treg reduction 6 

in these KO mice is a consequence of defective regulation of positive and 7 

negative selection. Meanwhile, we have identified Nr4a3 as the gene that is the 8 

most correlated with the effects of TCR signals in the thymus and the periphery, 9 

followed by Nr4a1 [27]. Specifically, using Canonical Correspondence Analysis 10 

(CCA) [56], we analysed the transcriptome dataset of thymic T-cell populations 11 

and that of resting and anti-CD3 stimulated peripheral T cells, and thereby 12 

identified the genes that were correlated with both thymic T-cells under 13 

selection (in vivo TCR signals) and peripheral T cell activation [27]. By 14 

developing Nr4a3-Tocky, we have shown that temporally persistent TCR 15 

signals sustain Nr4a3 transcription and initiate Foxp3 transcription [27]. This 16 

leads to the new model for Nr4a that the recognition of cognate antigen conveys 17 

persistent TCR signals, which induce and accumulate Nr4a proteins and 18 

thereby control thymic selection and differentiation processes including Treg 19 

differentiation. 20 

 21 

Foxp3 transcription-enhancing cytokine signals  22 
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Foxp3 transcription is activated by IL-2 signalling in the presence of TCR 1 

stimulation and TGF-b signalling [18]. It is, however, unknown whether these 2 

cytokine signals can regulate Foxp3 transcription independently from TCR 3 

signalling. 4 

IL-2 signalling is a central cytokine for T cell activation, proliferation and 5 

differentiation [21]. The expression of CD25 (IL-2R a-chain) is induced by TCR 6 

and CD28 signals and forms the high-affinity IL-2R together with IL-2R b-chain 7 

(CD122) and the common g-chain (CD132) [57, 58]. IL-2 binding to IL-2R 8 

triggers phosphorylation of Stat5 by the associated kinases Jak1 and Jak3, 9 

which promotes cell cycle entry and proliferation of TCR stimulated T cells [59]. 10 

In addition to the role in T cell activation, CD25 is a surface marker for Treg in 11 

mice [60] and humans as well [61]. In fact, IL-2 signalling is functional in Treg. 12 

Phosphorylated Stat5 binds to the promoter and CNS2 and activates Foxp3 13 

transcription [62, 63]. KO mice for the genes that are involved in IL-2 signalling 14 

(Il2 [64], Il2ra [64], Il2rb [65], Jak3 [66], and Stat5a /Stat5b [67]) have reduced 15 

Foxp3+ T-cells in the thymus and periphery. Thus, IL-2 signalling is required for 16 

the activation of Foxp3 transcription, most probably both during an early phase 17 

of Treg differentiation as well as the maintenance of both Foxp3 transcription 18 

and the Treg population. Considering the primary role of IL-2 for the activation 19 

and proliferation of T cells [21], this suggests a role of Foxp3 as a sensor for the 20 

IL-2 abundance in the environment surrounding individual T cells. In other 21 

words, when T cells are activated, IL-2 becomes abundant, which enhances 22 

Foxp3 expression in nearby T cells. Given that IL-2R expression in Treg 23 

absorbs IL-2 and suppresses IL-2-mediated T cell proliferation [68], the size of 24 



11 
 

the T cell population may be self-regulated through the feedback mechanism 1 

involving IL-2, CD25, and Foxp3 [38].  2 

TGF-b signalling has multifaceted effects on tissue development and 3 

regeneration, inflammation, and cancer in a context dependent manner [69]. 4 

The importance of TGF-b signalling in T cells is recognised particularly in 5 

mucosal and tumour immunity [70]. The transcriptional response of T cells to 6 

TGF-b signalling is also context-dependent and is illustrated by the reciprocal 7 

differentiation of Th17 and Treg by IL-6 and IL-2, respectively, under the 8 

presence of TGF-b [71, 72]. TGF-b signal-activated Smad3 binds to the CNS1 9 

of the Foxp3 gene [32, 73]. However, the genetic deletion of the Smad-binding 10 

site does not change the frequencies of Treg in the thymus and the periphery, 11 

apart from marginal reductions of Foxp3+ T cells in Peyer’s patches and 12 

Lamina Propria in aged mice [74]. This suggests that TGF-b controls Foxp3 13 

transcription through multiple sites in the Foxp3 gene and/or through the 14 

induction of other factors. While IL-2 signalling is intrinsically required for Treg 15 

differentiation as discussed above, the opposing effects of IL-6 signalling seem 16 

to be reactive and inflammation-dependent, as the genetic deletion of Stat3 17 

does not affect Treg populations, while inhibiting the differentiation of Treg in 18 

the CD45RBhi T cell-mediated colitis model [75].  19 

Veldhoen and Stockinger have proposed the model that TGF-b skews CD4+ T-20 

cell differentiation from Th1 to Th17 [76], and as such, TGF-b may shift T cells 21 

from the Th1-Th2 axis to the Th17-Treg axis. In TGF-b-rich microenvironment, 22 

such as in the intestines, tumour, or destructed tissues with regeneration and 23 
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remodelling, the persistence of pathogen or autoantigen may activate 1 

monocytes and dendritic cells, and thereby repress Foxp3 transcription and 2 

promote Th17 differentiation, as observed in rheumatoid arthritis patients [77]. 3 

In contrast, once the activation of innate immune cells is terminated, Foxp3 4 

transcription may be initiated in antigen-reactive T cells, as observed by Foxp3-5 

Tocky [26], especially when adjacent T cells are proliferating and producing IL-6 

2, inducing the resolution of inflammation. 7 

 8 

Mechanisms for the consolidation and tuning of Foxp3 transcription – the 9 

role of autoregulatory transcriptional circuit for the Foxp3 gene 10 

The maintenance of Foxp3 transcription in Treg requires CNS2, which includes 11 

the widely studied Treg-specific demethylated region, TSDR [33]. The CpG 12 

motifs in the TSDR are methylated in non-Treg cells, and fully demethylated in 13 

thymic Treg [22, 33]. The genetic deletion of CNS2 results in the reduction of 14 

Foxp3 expression in thymic Treg but does not affect Foxp3 induction in vitro 15 

[32]. CNS2 is bound by several key transcription factors, including the 16 

Runx/Cbf-b complex [78-81], Ets-1 [82], which makes an active complex with 17 

Runx1 [83], Foxp3 protein [32], and Stat5 [63]. 18 

Foxp3 binding to CNS2 is dependent on Runx1/CBF-b [32]. Importantly, the 19 

expression of Foxp3 in Treg is reduced in both CBF-b-deficient Treg [78] and 20 

CNS2-deleted Treg [34]. CNS2 is required for maintaining the number of Treg in 21 

the periphery during homeostasis and is also important for sustaining Foxp3 22 

expression during inflammation [7, 34]. CNS2-deleted Treg lose Foxp3 23 
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expression in the presence of proinflammatory cytokines, including IL-4 and IL-1 

6, and become effector T cells to enhance autoimmune inflammation in mice [7]. 2 

Furthermore, analysis of TCR repertoires in human Treg also suggests the 3 

dynamic regulation of both CD25 and Foxp3 on T-cells in rheumatoid arthritis 4 

[84]. These data together suggest that, although Foxp3 expression is commonly 5 

recognised to be stable, it is in fact dynamically regulated in Foxp3+ Treg during 6 

homeostasis and during immune responses.  7 

Our recent investigations using Foxp3-Tocky have shown that, intriguingly, 8 

resting Treg have intermittent Foxp3 transcription, while activated effector Treg 9 

with high expression of immunoregulatory molecules (including CTLA-4 and IL-10 

10) have more sustained Foxp3 transcription across time [26]. The phenotype 11 

of these effector Treg with temporally-persistent Foxp3 transcription is in fact 12 

very similar to those of the effector Treg that are dependent on Myb [85] and the 13 

CD44hiCD62Llo activated Treg that are dependent on TCR signals [35], which 14 

supports the model that TCR signals induce temporally persistent Foxp3 15 

transcription and thereby enhance the suppressive phenotype of Treg. 16 

Furthermore, by analysing female mice with heterozygosity for a hypomorphic 17 

Foxp3 mutant (namely, Scurfy mutation), Foxp3 protein sustains the temporally-18 

persistent Foxp3 transcriptional dynamics that promote effector Treg functions 19 

[26]. In the thymus, the active demethylation of the TSDR occurs only after the 20 

initiation of Foxp3 transcription and when Foxp3 transcription is highly sustained 21 

over time [27]. These indicate that Foxp3 protein and the Foxp3 gene form an 22 

autoregulatory loop that consolidates the Treg-type TSDR demethylation during 23 

thymic differentiation [27], and tunes Foxp3 transcriptional activities and thereby 24 
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activates their suppressive activity during inflammation [26]. Given the critical 1 

roles of the Runx1/ Cbfb complex in the maintenance of Foxp3 expression and 2 

the Foxp3-Runx1 interaction in Treg differentiation and function, it is plausible 3 

that this autoregulatory transcriptional circuit is formed via the binding of Foxp3-4 

Runx1/Cbf-b complex [32] to CNS2 of the Foxp3 gene (Figure 2).  5 

 6 

Dynamic regulation of epigenetic modifications and chromatin 7 

architecture of the Foxp3 gene 8 

TCR-induced Foxp3 transcriptional activities can be opposed by epigenetic 9 

mechanisms for silencing Foxp3 transcription. The SUMO E3 ligase Pias3 binds 10 

to the Foxp3 promoter, and Pias1 KO mice have increased frequencies of 11 

Foxp3+ cells in CD4+ T cells, and reduced methylation of histone H3 at Lys9 12 

(H3K9), which is a hallmark of repressed genes [86]. The DNA 13 

methyltransferase Dnmt1 and the high mobility group transcription factors Tcf1 14 

and Lef1 constitutively repress Foxp3 transcription in CD8+ T cells, as Dnmt1-/- 15 

or Tcf1-/- Lef1-/- double KO permits the differentiation of Foxp3+CD8+ T cells, 16 

which are rarely found in normal mice [87, 88]. In addition, the induction of 17 

Foxp3 expression in Dnmt1-/- T does not require TGF-b [87], suggesting that 18 

TGF-b likely modulates epigenetic mechanisms in normal mice. Strong TCR 19 

signalling in vitro causes the accumulation of Dnmt1 at the Foxp3 promoter, 20 

which can lead to increased CpG methylation and inhibition of Foxp3 21 

transcription [89]. Thus, TGF-b may be important for tuning Dnmt1 expression 22 

during T cell activation. 23 
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Foxp3-Tocky has shed light on the dynamics of Foxp3 epigenetic regulation 1 

following the initiation of Foxp3 transcription. Importantly, Foxp3 transcription 2 

precedes the demethylation of TSDR in the thymus. Both thymic new Foxp3 3 

expressors, which are identified by Tocky [27], and immature 4 

CD24hiFoxp3+CD4SP by Foxp3-EGFP mice [90] have fully methylated TSDR. 5 

The active process for TSDR demethylation occurs only after Foxp3 6 

transcription is sustained over time and the Foxp3 autoregulatory loop is formed 7 

[26]. Collectively, the interactions between Foxp3-inducing and inhibiting factors 8 

occur during the early phase of Treg differentiation when the Foxp3 gene is still 9 

‘silenced’, and we would therefore hypothesise that Foxp3 protein may also 10 

have roles in dynamically regulating the epigenetic modifications of the Foxp3 11 

gene. Future studies could therefore address the role of Foxp3 in the dynamic 12 

regulation of chromatin architecture, which can be investigated by chromatin 13 

conformation capture (3C) and derivative methods (e.g. Hi-C). For example, the 14 

Zheng group showed that, using 3C, NFAT activation induces the interaction of 15 

the TSDR-containing CNS2 with the Foxp3 promoter, which facilitates 16 

enhanced Foxp3 transcription [34]. Using Hi-C and CRISPR-mediated mutation, 17 

the Zhao group showed that the MLL family methyltransferase MLL4 binds to -18 

8.5k upstream enhancer of the Foxp3 gene, and makes a chromatin loop to 19 

promote the monomethylation of histone H3 at Lys4 (H3K4me1) in the promoter 20 

and CNS3, which activates Foxp3 transcription [91]. The chromatin organising 21 

factor Satb1 is also involved in activating Foxp3 transcription in the thymus, as 22 

the genetic deletion of Satb1 results in the marked reduction of Foxp3+ Treg 23 

and the accumulation of thymic CD25+Foxp3- Treg precursors with reduced 24 
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enhancer activity (which are identified by acetylation of histone H3 at Lys27 1 

(H3K27ac)) [92]. Thus, it is likely that chromatin remodelling of the Foxp3 gene 2 

underlies the temporally dynamic Foxp3 autoregulatory loop, suggesting that 3 

the former is also dynamically induced through the interactions between Foxp3 4 

protein and key chromatin organisers and epigenetic regulators. In addition, 5 

since those chromatin organisers and epigenetic regulators control not only the 6 

Foxp3 gene but also other genes, the chromatin remodelling of Foxp3-target 7 

genes may be also dynamically induced in activated Treg and differentiating 8 

Treg. Future studies, therefore, should investigate the role of Foxp3 protein and 9 

its cofactors in the temporally dynamic regulation of chromatin structure within 10 

and outside the Foxp3 gene region. 11 

 12 

Dynamic Foxp3 expression in vivo: perspectives for basic immunology 13 

and clinical relevance 14 

After the emergence of single cell technologies and the Tocky tool, studies on T 15 

cell regulation are shifting from the stability and plasticity of Treg to the 16 

investigation of temporal changes in Foxp3-mediated mechanisms in vivo. Our 17 

analysis of Treg in peripheral immune compartments show that, in the non-18 

inflammatory conditions, Foxp3 transcription is most likely modelled by 19 

intermittent gene activity [26]. This intermittent transcription may offer an 20 

explanation for the low frequency of Treg cells with detectable Foxp3 transcripts 21 

in Treg cells analysed by single cell RNA-seq [93, 94], although these datasets 22 

have limitations due to shallow sequencing depths. Given that the temporal 23 

changes in Foxp3 transcription control Treg function and effector Treg 24 
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differentiation, future work will investigate the molecular mechanisms that 1 

control the real-time transcribing of the Foxp3 gene, which can be analysed by 2 

the Tocky system. In addition, in line with the temporally dynamic regulation of 3 

Foxp3 transcription in vivo, the significance of thymic and peripheral Treg 4 

markers needs to be re-addressed. Our investigation using Foxp3-Tocky has 5 

confirmed that the expression of Neuropilin 1 [95] and Helios [96] are 6 

dynamically regulated in Treg according to Foxp3 transcription dynamics [26], 7 

and therefore are not faithful markers of thymic Treg, as has been previously 8 

noted in the literature [97].  9 

Importantly, clinical studies and immunotherapy development may be benefitted 10 

by the endorsement of the dynamic perspective. Whether targeting Treg or not, 11 

immunotherapy may dynamically change Foxp3 transcription. If these dynamic 12 

responses are clarified, immunotherapy targeting T cells may be better 13 

designed with a more tailored strategy, as we recently showed by manipulating 14 

Foxp3 transcriptional dynamics through targeting inflammation-reactive effector 15 

Treg by OX40 and TNFRII, which are specifically expressed in Treg with 16 

temporally-persistent Foxp3 transcription [26]. We therefore envisage that the 17 

investigation of dynamic changes in molecular mechanisms during T cell 18 

responses in vivo will improve the predictability of preclinical studies and 19 

thereby contribute to the development of new immunotherapies for autoimmune 20 

and cancer patients.  21 

 22 
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Figure Legends 1 

 2 

Figure 1: Comparison of Tools to investigate Foxp3-expressing T-cells in 3 

vivo. 4 

(A) Most Foxp3 reporter mice use stable Fluorescent Proteins (FP), such as 5 

EGFP, the half-life of which is > 56 hours. (B) Foxp3 fate mappers such as 6 

Foxp3GFPCre:Rosa26RFP allow the identification of Treg with Foxp3 expression 7 

and ex-Treg that lost Foxp3 expression. Notably, both GFP and RFP are stable 8 

FPs. (C) Foxp3-Tocky uses Fluorescent Timer, the emission spectrum of which 9 

spontaneously and irreversibly changes from blue to red fluorescence. The half-10 

life of blue fluorescence is ~4 hours, and thus reports the ‘real-time’ activity of 11 

Foxp3 transcription. In contrast, the half-life of red fluorescence is ~120 hours 12 

and thus reports the history of Foxp3 transcription. The Tocky system combines 13 

Blue and Red fluorescence data and identifies characteristic transcriptional 14 

dynamics including New, Persistent, and Arrested (inactive). 15 

 16 

Figure 2: Activation vs. consolidation and tuning of Foxp3 transcription 17 

We propose to classify Foxp3 transcriptional regulation into two major 18 

mechanisms. (A) Activation of Foxp3 transcription is mainly regulated by 19 

TCR signals and enhanced by IL-2, TGF-b, and retinoic acid (RA). This may 20 

lead to thymic Treg selection and peripheral Treg differentiation. In addition, 21 

tonic TCR signals through self-reactive TCRs may use this mechanism to 22 

regulate homeostatic Foxp3 transcription. (B) Consolidation and tuning of 23 

Foxp3 transcription. The maintenance of Foxp3 transcription requires CNS2 24 
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of the Foxp3 gene, which may provide a platform for the Foxp3-Runx1/CBF-b 1 

complex to form the autoregulatory transcriptional circuit (autoregulatory loop) 2 

for the Foxp3 gene. The activity of this loop can be affected by IL-2 signalling 3 

via phosphorylated Stat5. This mechanism may lead to temporally-persistent 4 

Foxp3 transcription, which promotes effector Treg differentiation, and the 5 

dynamic regulation of epigenetic modifications during Treg differentiation. 6 

 7 

  8 
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