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Traumatic brain injury (TBI) is a serious problem that causes high morbidity and mortality

around the world. Currently, no reliable biomarkers are used to assess the severity and

predict the recovery. Many protein biomarkers were extensively studied for diagnosis

and prognosis of different TBI severities such as S-100β, glial fibrillary acidic protein

(GFAP), neuron-specific enolase (NSE), neurofilament light chain (NFL), cleaved tau

protein (C-tau), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, none of these

candidates is currently used in the clinical practice, due to relatively low sensitivity,

for the diagnosis of mild TBI (mTBI) or mild to moderate TBI (MMTBI) patients who

are clinically well and do not have a detectable intracranial pathology on the scans.

MicroRNAs (miRNAs or miRs) are a class of small endogenous molecular regulators,

which showed to be altered in different pathologies, including TBI and for this reason,

their potential role in diagnosis, prognosis and therapeutic applications, is explored.

Promising miRNAs such as miR-21, miR-16 or let-7i were identified as suitable candidate

biomarkers for TBI and can differentiate mild from severe TBI. Also, they might represent

new potential therapeutic targets. Identification of miRNA signature in tissue or biofluids,

for several pathological conditions, is now possible thanks to the introduction of new

high-throughput technologies such as microarray platform, Nanostring technologies or

Next Generation Sequencing. This review has the aim to describe the role of microRNA

in TBI and to explore the most commonly used techniques to identify microRNA

profile. Understanding the strengths and limitations of the different methods can aid

in the practical use of miRNA profiling for diverse clinical applications, including the

development of a point-of-care device.

Keywords: traumatic brain injury, biomarkers, microRNA, diagnosis, prognosis, therapy, high-throughput

technology, point-of-care
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MICRORNA SIGNATURE IN TRAUMATIC
BRAIN INJURY

Traumatic Brain Injury
Head injuries are a significant cause of disability and mortality
worldwide and one of the most common reasons of emergency
department visits especially among young males (1), creating a
severe physical, psychological and socioeconomic burden on the
patients, their families and the community (1, 2).

In particular, traumatic brain injury (TBI) is a complex
pathological alteration in the neural homeostasis which is
triggered by an external mechanical force resulting in a broad
spectrum of temporary or permanent injuries and outcomes
(3). Annual TBI incidents are estimated to be more than 10
million patients worldwide (4–6). The most frequent causes
of TBI are falls, road traffic accidents, sport and recreation
activities, military injuries and assault or abuse. TBI pathology
can be classified as primary and secondary brain damage (7).
The primary injury occurs immediately after receiving the
mechanical impact which disrupts the integrity of neuronal,
glial, endothelial cells and dysregulates the cerebral blood flow
(CBF), whereas the secondary brain injury is due to a range of
biochemical and cellular changes that causes neuronal apoptosis
and death, blood-brain barrier (BBB) disruption, etc. (8–15).
Controlling the development of secondary injury is the only
strategy that can be beneficial to improve the outcome of
the primary injury that cannot be managed medically. The
heterogeneity of the disease makes an accurate assessment of
the severity of trauma and the prediction of patient outcome,
challenging. Clinically, head injuries are diagnosed as mild,
moderate, or severe according to the Glasgow Coma Scale
(GCS) score, which uses a motor, eye and verbal responses to
assess the conscious level of the patient. However, this score
might underestimate mild TBI (mTBI) cases (16). Computed
tomography (CT) or magnetic resonance imaging (MRI) scans
are also used to assess TBI according the current guidelines
(17). Although these techniques show limited diagnostic ability
for the detection of mild brain tissue insult with concerns
for radiation risks from CT scans and the escalating costs
of diagnostic imaging techniques (18, 19) in the future,
imaging has the potential to complement molecular diagnostics
(20).

For this reason, mTBI detection remains one of the most
difficult clinical diagnoses, it accounts for 75–90% of the TBI
cases in the United States (21) and 10–20% of the patients remain
symptomatic and complain of post-concussive syndrome (PCS)
symptoms (22). In addition, people such as military, sportive and
children are at risk of repeated concussions and may develop
depression (23) and neurodegenerative conditions in later life,
e.g., Parkinson’s disease, motor neuron disease, and chronic
traumatic encephalopathy (CTE) (24, 25).

Biomarkers of Traumatic Brain Injury
Currently, no TBI biomarkers were identified that could reliably
be used in the clinical practice for diagnosis and prognosis.

Recently, the U.S. Food and Drug Administration reviewed
and authorized for marketing the Banyan Brain Trauma

Indicators which are ubiquitin C-terminal hydrolase-L1 (UCH-
L1) and glial fibrillary acidic protein (GFAP), to evaluate mTBI
in adults. These two proteins are released from the injured
tissue into the blood and can be quantified within 12 h of the
brain injury and can help to predict the patients with detectable
intracranial lesions on the CT scan with 97.5% of accuracy.
However, a biomarker able to accurately diagnose mTBI is still
needed.

In the last decades, many molecules were proposed as
promising TBI biomarkers, but the complicated anatomy of the
brain and the disparate pathology of the TBI make it challenging
to apply into the clinical practice (26).

Biofluid biomarkers would be preferable as they present
various advantages such as cost-effective and minimally invasive
sample collection.

Among the most extensively studied biomarkers in the
serum and cerebrospinal fluid (CSF), there are S-100β and
GFAP. S-100β is an extracellular protein with a short half-
life of <30min (27). However, because of its size, it does
not cross an intact BBB. Besides, S-100β is not a brain-
specific protein and can also be released by other organs
in case of polytrauma (28–31). In 2013, the S-100β serum
level was used to reduce the unnecessary CT scans in the
adult mTBI patients among the Scandinavian population.
However, it remains challenging to find the appropriate cut-
off value of S-100β that correlates with the injury primarily
because of the lower sensitivity in polytrauma patients (32,
33).

On the contrary, GFAP is a structural protein exclusively
expressed in the astroglial cells and plays a pivotal role in
the astrocyte’s cytoskeleton as a component of the intermediate
filament (IF) network (34). GFAP was found to be slightly
elevated in mild TBI and when added to the clinical data, it
improved the power of outcome prediction (35). Animal studies
also showed GFAP to be a promising biomarker, since its cellular
release is correlated to all grades of injury severities (36). The
only limitation in the use of GFAP as a biomarker is related to
the release into the bloodstream or CSF, which is, indeed, strictly
BBB-damage dependent (35, 37).

Neuron-specific enolase (NSE), neurofilament light
polypeptide (NFL), cleaved tau protein (C-tau) and UCH-
L1 were also considered promising biomarkers. However, the
biological significance of these biomarkers cannot be confidently
declared, due to the lack of studies with adequate sample size
and low sensitivity for mTBI in individuals without detectable
structural brain abnormalities. A summary of papers showing the
area under the curve (AUC) of representative TBI biomarkers is
presented in Table 1.

Enolases are glycolytic enzymes composed by three different
subunits (α, β, γ). The two most stable isoforms are γγ

and αγ, which are referred to as NSE, are particularly
abundant in the neuron cytoplasm, however NSE proteins
can also be found in erythrocytes and platelets making
the process of haemolysis a significant extracranial source
when measured in trauma (46, 47). In the context of mild
TBI, NSE can predict the early prognosis of patients when
measured in combination with S-100β (48). However, its slow
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TABLE 1 | Area under the curve (AUC) of representative TBI biomarkers.

Biomarkers AUC Cohort Condition N Controls Reference Timing Comment

S100B 0.87 TBI

all severity

TBI

vs.

non-TBI

50 50 (38) Within 6 h Non-specific

S100B 0.68 mTBI Ice hockey

vs.

pre-season

28 28 (39) Within 1 h Poor performance

NSE 0.82 TBI

all severity

TBI

vs.

non-TBI

50 50 (38) Within 6 h Non-specific

NSE 0.54 mTBI 28 28 (39) Within 1 h Poor performance

NSE 0.64 mTBI Clinically

important injury

25 82 (40) Day 1 Non-specific

Myelin-basic protein 0.66 TBI all severity TBI

vs.

non-TBI

50 50 (38) Within 6 h Poor performance

Cleaved Tau 0.74 mTBI Injury

vs.

pre-season

28 28 (41) At 36 h Late

Total Tau 0.8 mTBI Ice hockey

vs.

pre-season

28 28 (39) Within 1 h Promising

GFAP 0.84 mild-moderate

TBI

Positive CT 209 188 (42) At 4 h Limited sensitivity

UCH-L1 0.87 mTBI GCS 15

vs.

controls

86 199 (43) Within 1 h Promising

UCH-L1 0.73 TBI positive CT N/A 199 (43) Within 1 h Promising

Amyloid-β N/A sTBI TBI

vs.

controls

12 20 (44) Day 1 poor sensitivity

All-Spectrin

break-down

0.76 mTBI Injury

vs.

pre-season

25 N/A (41) At 36 h Late

CTS5 N/A TBI

all severity

sTBI

vs.

orthopedic injury

30 30 (45) Within 1 h Promising

elimination from plasma, leads to difficulties in distinguishing
between primary and secondary insults to the brain (49,
50).

One of the most recently identified biomarkers is NFL. It
was suggested as a potential, sensitive and specific marker in
detecting axonal injury in mTBI (51). One of the advantages
of its clinical use is the relatively long half-life which was
estimated to be ∼3 weeks (52). NFL also plays a vital role in the
neuro-axonal cytoskeleton (53). Therefore, increased NFL levels
were found in the CSF and serum of individuals with a wide
range of neurodegenerative and neuroinflammatory diseases
(54, 55). Another proposed serum marker is C-tau, which is a
microtubule-associated protein (MAP) primarily found in the
neuronal axons and dendrites (49, 56). After an axonal injury, tau
protein can be detected in the extracellular space and diffuses into
the CSF after N- and C- terminals cleavage (56). In 2006, a study
demonstrated that higher levels of post-traumatic CSF C-tau
were associated with a poorer clinical outcome following severe

TBI (sTBI) (57). However, there was no significant correlation
between the levels of C-tau and the outcome following
mTBI (58).

UCH-L1 was identified as highly specific to the human brain
(59) and the increased levels were correlated with the TBI severity
and a worse outcome. Its diagnostic value was found to be
beyond the first 24 h of injury (60–63). It could also distinguish
between the patients with TBI and the uninjured patients
with altered GCS secondary to drugs and alcohol intoxication
(50).

Recently, a new protein Cystatin D (CTS5), which inhibits
lysosomal and secreted cysteine proteases, was also identified
as a potential biomarker to assess the severity of TBI and its
expression at very early time points, makes CTS5, an ideal
biomarker for a point-of-care (PoC) device (45). To the best
of our knowledge, none of the previous protein biomarkers has
been successfully used in the clinical setting for diagnosis and
prognosis of TBI patients.
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MicroRNAs as Emerging Biomarkers in TBI
MicroRNAs (miRNAs ormiRs) are a class of molecular regulators
discovered for the first time in Caenorhabditis elegans in 1993
(64). Then, dozens of miRNAs were identified in worms, flies and
human suggesting that miRNAs represent a previously unknown
group of molecules (65).

miRs are short (∼22 nucleotides) non-coding, single-stranded
RNAs that play key roles in the regulation of several biological
processes such as cell proliferation and differentiation, survival,
and motility via negative feedback mechanism at the post-
transcriptional level by binding to the 3′-untranslated region
(UTR) of the target miRs and leading to either suppression of
the translation process, mRNAs degradation or both. A single
miRNA can regulate multiple mRNAs and vice-versa because
they do not always require a perfect complementarity for target
recognition. Therefore, they can briefly interchange between the
cellular programs (66).

The synthesis of miRs begins in the nucleus with transcription
by the RNA polymerase II or III producing long primary miRNA
transcripts (pri-miRNA) that contain functional secondary
structures, termed stem-loops and carrying mature miRNA
sequences. Maturation of the pri-miRNA transcripts includes
several steps which are initiated by RNase III endonuclease
Drosha and produces the precursor-miR (pre-miR) (67, 68).
Following Drosha processing, a complex of proteins, exportin-5
(EXP5) with GTP-binding nuclear protein Ran-GTP, transports
pre-miR from the nucleus into the cytoplasm where it is
cleaved by Dicer and TAR RNA-binding protein (TRBP) (69,
70). This produces a double-stranded RNA molecule composed
of 20–24 nucleotide miR and a complementary miR∗ of
the same length (71). It has been found that not only the
mature miR strand is biologically active, but also the miR∗

strand is functional and not just degraded as was previously
hypothesized (72). Then, mature miRNAs bind to mRNA
molecules through a process facilitated by the RNA-induced
silencing complex (RISC), which consists of RNase Dicer, TRBP,
PACT (protein activator of PKR) and the Argonaute proteins
(68).

The resulting RISC-miRNA complex binds the
complementary regions of the target mRNAs by partial or
total base-pairing at the 3′ UTR. This interaction, controlled
by nucleotides 2–8 at the 5′ end of the miR and known as
“seed sequence” (73), reduces protein production by translation
inhibition and mRNA degradation (74). However, miRNAs do
not target all mRNAs because there are only binding sites in
one-third of the mRNAs (75).

Currently, in the human genome, over 2,000 miRNAs
were identified and numerous studies were mainly focused
on the miRNA profiling in various tissues and biofluids that
can aid the diagnosis of a wide range of diseases, including
cancer, cardiovascular, nervous system disorders and many other
disorders (76, 77, 147). Since miRs are relatively abundant and
stable in the human biofluids, they are considered to be better
than protein biomarkers and therefore are now being investigated
as the new class of markers for numerous pathologies including
but not limited to neurodegenerative diseases. However, a better

understanding of the biological mechanisms of miRNAs in these
diseases is required to improve their application as biomarkers
(78).

With the discovery of miRNAs and its critical role as
regulators in various diseases, it is now possible to investigate
their role as biomarkers and emerging therapeutic targets.
Based on the antisense technology, very potent oligonucleotides
targeted against miRNA known as anti-miR were developed
(79, 80).

TBI research associated with the changes in miRNA
expression is only at the beginning to be understood. Few studies
showed the miRNA profile in serum plasma and CSF after
different TBI severities and at different time points (81–85).

Redell et al. found a downregulation of miR-16 and miR-
92a in severe TBI patients and an upregulation of miR-765
in mild and severe TBI, within the first 24 h and by using a
microarray approach (81). Bhomia and collaborators analyzed
microRNA profile in serum and CSF of patients grouped in three
different categories, mild-moderate TBI (MM-TBI), severe TBI
and orthopedic injury patients with samples collected within 48 h
from injury and compared to healthy volunteers. Eighteen and 20
miRNAs were observed in MMTBI and sTBI groups respectively
and among these, 10 miRNAs were present at both TBI severities.
Finally, four of these 10 miRNAs were also found in CSF
(85). Di Pietro et al. screened 754 microRNAs using TaqMan
Array Human MicroRNA A+B cards in mTBI+EC (extra-
cranial injury), sTBI+EC, EC only groups and compared the
results to healthy volunteers at different time points. Particularly
interesting were the results obtained within the first hour
from injury, in serum of mTBI+EC. These data reported two
microRNAs, miR-425-5p and miR-502, having high diagnostic
accuracy (AUC > 0.9) in differentiating mTBI from sTBI (84).

Recently, saliva was also explored as potential source of
biomarkers for TBI. Salivary microRNA changes were found to
be associated with prolonged concussion symptoms in pediatrics
(86). Five miRs (miR-320c-1, miR-133a-5p, miR-769-5p, miR-
1307-3p and let-7a-3p) were detected in the patients with
prolonged post-concussive symptoms, and three of them; miR-
320c-1, miR-629, and let-7b-5p were associated with memory
problems, headache and fatigue that were developed 4 weeks after
head injury. The same group has also matched miRNA changes
in saliva and CSF, identifying six miRs (miR-182-5p, 221-3p,
26b-5p, 320c, 29c-3p, and 30e-5p) with similar changes in both
biofluids (87).

A completed list of microRNA detected in different biofluids
in TBI patients can be found in Table 2. Results presented,
were not always consistent. However, it is not always possible
to compare these studies, since sample collection timing or the
different biofluid analyzed, play a relevant role to uniform the
biomarker discovery.

Many microRNAs were also described in the brain of injured
animals by using different models of TBI. Some of these
studies have also investigated the potential pathobiology of the
microRNAs differentially expressed in tissue.

Human miR-21 is one of the most studied miRs in TBI. It
is a polycistronic miR (chromosome 17q23.2), and it overlaps
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TABLE 2 | MicroRNA differentially expressed according the severity of TBI and the different human biofluid.

Sample microRNAs TBI patients References

Plasma miR-765, miR-16, miR-92a Mild and severe (81)

Plasma miR-142-3p, miR-423-3p Mild, moderate, and severe (83)

Plasma miR-23b Severe (88)

Serum miR-1255b, miR-151-5p, miR-194, miR-195,

miR-199a-3p, miR-20a, miR-27a, miR-27b,

miR-30d, miR-328, miR-362-3p, miR-381,

miR-486, miR-505*, miR-625*, miR-638,

miR-92a, miR-451, miR-1291, miR-130b,

miR-19a, miR-20a, miR-296, miR-29c,

miR-339-3p, miR-579, miR-601, miR-660, miR-9*

Mild, moderate, and severe (85)

Serum miR-425-5p, miR-502, miR-21, miR-335 Mild and severe (84)

Serum miR-93, miR-191, miR-499 Severe (82)

CSF mir-9 Severe (89)

CSF miR-451, miR-328, miR-362-3p,

miR-486

Severe (85)

CSF miR-141, miR-257, miR-181*, miR-27b*,

miR-483-5p, miR-30b, miR-1289, miR-431*,

miR-193b*, miR-499-3p, miR-1297, miR-33b,

miR-933, miR-449b

Severe (82)

CSF miR-182-5p, miR-221-3p, miR-26b-5p,

miR-320c, miR-29c-3p, miR-30e-5p

Severe pediatric TBI (87)

Saliva miR-182-5p, miR-221-3p, miR-26b-5p,

miR-320c, miR-29c-3p, miR-30e-5p

Severe pediatric TBI (87)

Saliva miR-320c-1, miR-133a-5p, miR769-5p,

miR1307-3p, let-7a-3p, miR629, let-7b-5p

Children with Post-concussion

symptoms (PCS)

(86)

miRNA* = The RNA strand of the miRNA duplex that is complementary to the mature miRNA is shown with a star symbol (miRNA*).

with the Vacuole Membrane Protein 1 (VMP1) coding gene, also
known as Transmembrane Protein 49 (TMEM49) (90).

Recent studies have demonstrated high miR-21 expression
levels after TBI. Also, it has been found to improve the
neurological outcome through inhibiting apoptosis and targeting
angiogenesis molecules. In particular, the upregulation of miR-
21 was found to reduce brain oedema derived by BBB-leakage.
Hence, ago-miR-21 treatment was proposed as a potential
therapy to decrease BBB damage (91) by inhibiting the loss of
occludin and claudin-5 among other tight junction proteins. It
also increases the levels of Angiopoietin-1 and its Tie-2 receptor,
which maintain the normal BBB condition. MiR-21 was also
found to improve experimental TBI mice cognition after the
running wheel exercise (92, 103). The therapeutic role of miR-
21 might also be due to inhibiting apoptotic cell loss by targeting
the phosphatase and tensin homolog (PTEN)-Akt pathway (91).
In an interesting study, extracellular vesicles (EV) were isolated
from the brain of injured mice and controls, and the expression
of miR-21 was found significantly increased with the injury.
Concomitantly, an increase of miR-21 in neurons was observed,
suggesting miR-21 secretion from neurons by EV cargo (92).
Further support via the upregulation of miR-21 was also found
in the serum of sTBI patients but not of mTBI, at very early time
points and up to 15 days from injury. Also, no increase was found
in the musculoskeletal injured patients, and for this reason, miR-
21 was considered as a potential new TBI biomarker and a future
therapeutic target for TBI (84).

Another exciting miR associated with TBI is miR-16, involved
in the regulation of several biological processes activated after
TBI; such as being involved in apoptosis by targeting BCL-
2 (93) and in the cell cycle by targeting CDK6 (cyclin-
dependent kinase 6), CDC27 (cell division cycle 27) and
CARD10 (caspase recruitment domain 10) (94, 95, 148).
Also, miR-16 was significantly increased within the first 24 h
in the mild TBI patients and significantly decreased in the
severe TBI patients compared to the healthy volunteers (81).
MiR-107 was found to be underexpressed in cortex and
hippocampus of a rat model of severe controlled cortical
impact (CCI) (96). MiR-107 can regulate granulin (GRN)
mRNA, suggesting a role in inflammatory process, energy
metabolism and neuron regeneration (104). MiR-27a and miR-
23a were downregulated in mouse cortex in a moderate
model of CCI and was found to regulate pro-apoptotic Bcl-2
family members (97). Furthermore, miR-711, was upregulated
in hippocampus after severe CCI, (96) and was found to
reduce the neuronal cell death and lesion volume via Akt-
pathway.Let-7i is another exciting biomarker with potential
implications in TBI. It was upregulated in the serum and CSF
of the rodent model of mild to moderate blast overpressure
wave. It might be a potential regulator of many proteins
and inflammatory cytokines, including S-100β and UCH-
L1 (98). A detailed list of the pathobiology for miRNA
differentially regulated in animal models of TBI can be found in
Table 3.
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TABLE 3 | Pathobiology of the main differentially expressed microRNAs in brain of different animal injury models.

microRNAs Tissue Animal injury model Pathobiology References

miR-21 Cortex\ hippocampus FPI/CCI Apoptosis,

dendritic spine

morphogenesis,

Angiogenesis,

alleviating BBB

leakage,

cognition

(90–92, 99–103)

miR-107 Hippocampus CCI Neuron regeneration,

inflammation

(96, 104)

miR-16 apoptosis,

cell cycle

(93–95, 148)

miR-9 Cortex FPI Damaging the

cytoskeleton and

cellular integrity

(105)

mir-27b Cortex FPI Disrupting amino acid

and nucleic acid

metabolic processes,

hindering

macromolecule

complex assembly

(105)

miR290, miR-497 Cortex FPI Intracellular transport (105)

mir-451 Cortex FPI Inflammation (106)

miR-874 Cortex FPI Intracellular transport,

apoptosis,

inflammation

(105, 106)

miR-34a Cortex\ hippocampus FPI Inflammation,

apoptosis,

(106)

mir-144 Hippocampus CCI Synaptic function,

cognition

(107)

miR-153 Hippocampus CCI Cognition (107)

miR-23a, miR-27a Cortex CCI Apoptosis (97)

mir-155, miR-223 Hippocampus CCI Mitochondria

associated miRs,

inflammation

(108)

miR-711 Hippocampus\ cortex CCI Apoptosis (96, 109)

let-7i CSF\ serum Blast Regulator of

inflammatory cytokines

(98)

miR-92a, miR-674, miR-138,

miR-124, let-7c

Cortex CCI Behavior (103)

miR-142-3p,

miR-221

Hippocampus CCI Cell proliferation and

angiogenesis of PDGF

signaling pathways

(110)

miR-23b Plasma\ hippocampus\ cortex WDI Reduce lesion volume

of contused

hemisphere and brain

oedema,

cognition

(88, 97)

BIOMARKER DISCOVERY: MICRORNA
PROFILING

Numerous studies investigated the global profiling of
miRNAs in human diseases with the aim to identify a
variety of biomarkers when compared the normal and
affected tissues, which can further be correlated with the
prognosis or the therapeutic response. MicroRNA can be
extracted from a variety of sources, including cell lines, fresh

tissues, formailin-fixed paraffin embedded (FFPE) tissues
and also biofluids such as plasma, serum, urine, saliva and
CSF.

Many are the techniques used to analyze microRNAs.
Generally, qPCR is suitable to investigate one or two miRNAs,
whereas for larger studies examining multiple miRNAs at
once, platforms such as TaqManTMArray Microfluidic Cards,
miScript miRNA PCR Array or nCounter R© microRNA panels,
are more suitable. Finally, to discover new miRNA variants,

Frontiers in Neurology | www.frontiersin.org 6 June 2018 | Volume 9 | Article 429

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Di Pietro et al. MicroRNA Biomarkers of Traumatic Brain Injury

FIGURE 1 | Decision making chart. MiRNAs can be extracted from different sample types, such as tissues and body fluids. The experimental design determines the

methodology chosen for miRNA detection.

the Next Generation Sequence (NGS) solution results are more
appropriate. In Figure 1 a decision making chart is represented.

Sampling
Sample processing and storage is the first step to performmiRNA
profiling. This step is particularly crucial in order to obtain high-
quality microRNA, especially for the determination of miRNA
expression in biofluids. MiRNAs are stable in biofluids because
of their molecular size and because they are protected within
protein complexes or contained within EVs (microvescicles or
exosomes). However, an immediate separation of cells is required
to prevent lysis of cells and to avoid RNA contamination.

In addition, caution must be taken when collecting plasma or
serum. Heparin-plasma for example, is a potent PCR inhibitor
(111). Differentially, plasma-EDTA does not affect PCR and can
overcome clotting due to platelet activation. In addition, plasma
content of miRNA is higher than serum which is confirmed by
slightly lower Ct value in the plasma (112).

RNA Extraction
Different kits are commercially available for miRNA extraction
from different tissues or biofluids such as miRNeasy (Qiagen),
mirVana TM (Ambion) or PureLink TM (Invitorgen) miRNA.
The most commonly used kits are based on two main steps. The
first one, is a chemical extraction with guanidine thiocynate (e.g.,
Trizol and QIAzol reagents); the second one, is an extraction
procedure based on silica columns. New phenol-free kits were
also recently developed such as ISOLATE II miRNA (Bioline) or
ReliaPrepTMmiRNA (Promega).

Alternative strategies apply magnetic bead–based technology
to purify samples, such as TaqManTMmiRNA ABC Purification
Kit (Thermo Fisher). All these kits differ, compared to

those used for total RNA extraction, for additional steps
to enrich the smallRNA fraction (113). Extraction from
biofluid samples are particularly challenging, compared to
extraction from tissues or cells, because of the lower RNA
content, the possibility of hemolysis or platelet contamination
and presence of serum proteins (such as RNases and PCR
inhibitors). In addition the lack of well-established reference
genes makes it difficult to analyze and interpret the data
(114).

Nevertheless, several strategies can be used to maximize RNA
yield. Among these, RNase-free glycogen, which acts as nucleic
acid carrier can be added during the extraction (112). Similarly,
other RNA carriers, such as the bacteriophageMS2 RNA, can also
help to maximize RNA recovery (115). Therefore, monitoring
the efficiency of the RNA extraction by addition of a known
amount of synthetic miRNA spike-in is recommended (116).
Alternatively, isolation of exosomes from biological fluid can help
to increase the amount of retrieved RNA.

Exosomes are vesicles with diameter between 30 and 100 nm,
originated from multivesiculated body (MVBs) and released
into the extracellular space. The exosomes are able to carry
different molecules as mRNAs, miRNAs, lipids and proteins
and to transfer their contents to recipient cells, therefore
influencing different physiologic and pathologic processes (117).
The current techniques to separate exosomes from biological
fluids include methods based on exosome size differences, as
ultracentrifugation or size exclusion chromatography, or on
identification of specific surface markers as immunoaffinity
capture-based techniques (118). In ultracentrifugation
procedure, the force used ranges from ∼100,000 to 120,000
× g. After the centrifugation step, the exosome pellet is dissolved
in phosphate buffered saline (PBS) and subjected to subsequent
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centrifugation runs with increasing force. Finally, isolated
exosomes can be stored at −80◦C until further analysis or
in Trizol for RNA extraction. Based on their size, exosomes
can also be purified by using membrane filters with 0.2µm
of diameter. This method, although widely used, can result in
samples contaminated by others EVs and a large sample volume
is requested. Other techniques were also developed to isolate
exosomes. The presence of tetraspanins as exosomal surface
markers, for example, is used for immunoaffinity reactions and
different companies have already developed specific kit, based
on affinity spin columns for exosome purification (Invitrogen,
Qiagen).

Quantification and Quality Control
The measurement of RNA concentration by using conventional
spectrophotometers, such as nanodrop, is not possible for
miRNA quantification and quality control (119). However, RNA
integrity can be checked by spectrophotometry and automated
capillary electrophoresis instruments such as the Bioanalyzer
2100 (Agilent) and Experion (Bio-Rad). In particular, the
Bioanalyzer 2100, can also estimate miRNA concentration as the
result of the ratio of 15-40nt RNA fragments and the total RNA,
(120) providing that RNA integrity is very high. For this reason;
it is a common practice to perform the analysis using established
volume and not concentration of RNA extracted from the same
volume of biofluid or tissue. However, accurate strategies to
relatively quantify the sample are still necessary.

miRNA Profiling
The most widely and well established approaches used to
determine microRNA profile can be divided into three main
categories: quantitative real time PCR (qRT-PCR), hybridisation-
based methods (i.e., Microarrays, Nanostring) and high-
throughput next generation sequencing. The main advantages
or disadvantages in using the above techniques are reported in
Table 4.

qRT-PCR
qRT-PCR is the most popular technique to accurately assess
miRNAs.

The single assay is primarily used to efficiently validate
the results of large screening studies or for relatively small
experiments.

The technique is relatively expensive and can be divided
in two main steps: the conversion of miRNA into cDNA and
quantitative polymerase chain reaction.

Because of the length of miRNAs and the lack of a common
sequence such as a poly(A) tail that can be used for reverse
transcription, cDNA synthesis presents its own challenges.

Two main strategies are used to generate cDNA:

1) The use of a stem–loop RT primer which first hybridizes with
the miRNA strand, followed by reverse transcription using
MultiScribe reverse transcriptase. cDNA products are then
amplified using conventional TaqMan PCR.

2) The addition of a poly(a) tail using E. coli poly(A) polymerase
(assay). An oligo-dt primer is then used to pair the miRNA
tailed and allows the retro-transcription of the resulting

cDNA, which is further amplified using specific primers and
detected by the use of a fluorescent dye such as SYBER green.

However, large experiments using qRT-PCR can become quite
laborious to perform. In order to overcome this problem,
reactions can also be carried out in high-throughput form.

Pre-plated PCR primers, for example, are commercially
available and distributed typically across multiwall dishes,
or alternatively microfluidic cards containing nanoliter-scale
wells. However, performing highly parallel qRT-PCR might
present some challenge due to differences in primer annealing
temperatures. However, it is still possible to solve this issue by
using the locked nucleic acids (LNAs) into primers and allowing
the optimal hybridisation conditions for several PCR assays to be
run simultaneously (114).

qRT-PCR allows both absolute and relative quantification. In
the first one, a standard curve from serial dilutions of known
concentrations of synthetic miRNA is generated and used to
calculate the number of copies of a specific miRNA. In the second
case, before setting up the microRNA expression analysis, an
endogenous normalizer (reference gene) has to be chosen, among
several control candidates tested. These candidates offer stable
expression over the whole range of samples, and are selected
based on the literature or pre-existing data.

Hsa-miR-16-5p is widely used in the literature as an
endogenous miR, despite the lack of a panel of endogenous
miRNA consensus (121). Hsa-miR-223 (116) hsa-let-7d-5p (122)
hsa-miR-484 (123), hsa-miR-191-5p (124), and hsa-miR-423
(125) were also described as relatively invariant reference
genes in plasma/serum. MiR-331 and miR-223 were identified
as the most stables in traumatic brain injury patients (84).
MiR-202 was also used as normalizer gene in CSF of TBI
patients (85).

In addition, to identifying the appropriate endogenous
controls, it is also possible to use some software as geNorm
Algorithm (https://genorm.cmgg.be/) and DataAssist v.3
software (Applied Biosystems). GeNorm is used to normalize
the data from a large and unbiased set of miRNAs. DataAssist
is useful to quantify gene expression in samples when using
the comparative CT (11CT) method (126, 127). However, it
is always preferable to add a spike-in control during the RNA
extraction and to normalize the microRNA using an exogenous
control (e.g., cell-miR-39).

Hybridization-Based Methods
Several hybridization-based methods exist to identify microRNA
abundance. In situ hybridization (ISH) is the most used method
to localize DNA or RNA using labeled complementary nucleic
acid probes in tissue section or fixed cells (128). However,
this technique is not suitable for miRNA detection because of
their length, but the introduction of LNA showed a significant
improvement in the sensitivity and specificity of this technique
applied to miRNAs detection (129). Microarray-based technique
is another powerful high-throughput method extensively used
for microRNA profiling, because of their ability to screen large
number of miRs simultaneously in large variety of samples
(from tissue to biofluid). MiRNA microarray is a nucleic
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TABLE 4 | Advantages and disadvantages of the main microRNA profiling methods.

Profiling methods Time Sample input when to use it Advantages Disadvantages

qPCR/Microfluidics ≤6 h 500/10 ng small scale experiments

large experiments also possible

(multiwell dishes or microfluidic

cards)

established protocol,

high sensitivity and specificity,

absolute and relative

quantification,

used for validation of large scale

experiments.

intensive labor,

requires quality miRNAs,

relatively expensive,

cannot identify novel miRNA.

Microarray ∼2 days 100 ng−1 µg large studies established protocols,

easy and fast,

inexpensive.

less sensitive than qPCR,

hard distinguishing similar

sequences,

no absolute quantification.

NextGen Sequencing 1–2 weeks 500 ng−5 µg discovery phase whole content analysis,

single base resolution,

not depending on any prior

sequence knowledge,

can detect low abundance

transcripts,

can detect new miRNAs.

equipment costs,

bioinformatics support,

less sensitive than qPCR,

no absolute quantification.

acid hybridization technique which uses amino-modified 5’
termininal complementary probes immobilized onto glass slides
through covalent crosslinking between the amino-groups and
the self-assembling monolayer (130). After RNA purification,
miRNAs are tagged with fluorophore-labeled nucleotides at their
3′ end. LNAs can also be incorporated into capture probes to
increase specificity and sensitivity (131). The main advantages of
using micrarray are the low costs and the parallel measurements.
Typicallymicroarray involves a comparison between two ormore
groups and cannot be used to determine absolute quantification.
Because of limited specificity, data obtained are typically
validated by a qRT-PCR.

A new technology, the Nanostring nCounter Analysis System,
was recently developed to allow the quantification of more
than 800 RNA molecules in 12 samples, in a single assay. The
nCounter Analysis System is a very new technology which uses
digital color-coded barcode for precise multiplexedmeasurement
of the gene expression (<1 copy per cell). This system is more
sensitive than microarrays and as sensitive and accurate as
qRT-PCR. The combination of color-coded barcode attached
to a single target-specific probe corresponding to a gene of
interest and the single molecule imaging, allows detecting and
counting hundreds of unique transcripts in a single reaction.
Each color-coded barcode represents a single target molecule. No
amplification is required (132).

Finally, to identify the significant differentially expressed
miRNAs in a large genomic data, such as the microarray data
but also the microfluidic card and the RNA sequencing data,
the most frequently used method is the Significance Analysis
of Microarrays (SAM) computed by Multi Experiment Viewer
(MEV) v4.8.1 (http://www.tm4.org).

RNA Sequencing
The introduction of the next generation sequencing has
become increasingly popular in biomedical research, overcoming
the limitations of the microarray analysis (133). While it
cannot quantify miRNA levels with the same resolution of

qPCR, it still has the advantage to detect all known or
unknown miRNAs present in a sample and to precisely
distinguish all isoforms in the absence of background and
cross-hybridization problems. IsomiRNAs, indeed are miRNA
containing sequence variations, typically by shortening or
lengthening of the 3′ end. Over 3,300 miRNA variants were
identified and reported at the following website http://galas.
systemsbiology.net/cgi-bin/isomir/find.pl. However, one or two
isomers contribute to >90% of the signal detected, while
the remaining variants are not abundant enough to be
revealed.

The procedure consists in a small-RNA cDNA library
preparation followed by “massive parallel” sequencing on a single
run. First of all, miRNA fragments are extracted from total
RNA. Running the sample on an agarose gel and cutting out
the band corresponding to the miRNA size is the second step.
Then, the selected RNA fragments are ligated to sequencing
adapters and transcribed into cDNA by ∼12–15 RT-PCR cycles
of amplification and using a reverse transcription primer which
hybridizes to the 3′ adapter.

At this point, another run on agarose gel of the obtained
cDNA library is performed and the band with size corresponding
to the length of adapter sequences plus the miRNA insert of
∼20–30 bases (for a total length of 120 bp) is cut out and
ready for sequencing. The gel size selection is particularly crucial
because of the potential presence of adapter dimer side products
created during the ligation step as well as highermolecular weight
products generated from ligation of other RNA fragments, such
as tRNA and snoRNA, containing 5′ phosphate groups.

Significant computational resources and bioinformatics
expertise are required for data interpretation not only for
known miRs but also for the newly discovered miRs. Initially
all generated reads are aligned to the reference genome of the
sequenced organisms. Short read aligner tools are available to
process the reads such as maq (http://maq.sourceforge.net/maq-
man.shtml), sop (http://soap.genomics.org.com) or bwa (http://
bio-bwa.souceforge.net/). In addition, it is also important to filter
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out reads that align against other non-coding small RNA species
and RNA degradation products which sequences are available on
the University of Santa Cruz (UCSC) Genome Browser.

Another bioinformatics challenge is the relative
quantification. Expression levels are analyzed on the base
of the read counts for each sequenced sample. The number of
reads of each individual molecule is normalized against the total
number of reads produced in the same sample (134).

Different tools are also available to predict novel miRNAs
from generated data. One of the commonly used is mirDeep
(https://www.mdc-berlin.de/8551903/en/) (135).

Although the NGS is one of the most advanced techniques
currently used, other challenges, beside the bioinformatic
support, need to be faced. One of these is the cost required for
equipment, software and consumables. In addition a high quality
of purified RNA and a large amount of RNA, usually 5 µg, are
required for the analysis. Validation is another important aspect
to address in order to use this technology for diagnosis and
prognosis of diseases.

MicroRNA Database and Target Prediction
Since miRNAs control the regulation of several genes and they
are linked to many disorders, it is also possible to reliably
predict potential miRNA targets which can be involved in these
pathologies. The prediction of the mRNA targets is based on
the partial complementary sequences between the mature miR
and the mRNA candidate target. This search is generated by
miRNA target prediction algorithms able to seek for putative
binding sites in the 3′UTRs of the candidate mRNAs (i.e.,
PicTar, TargetScan, DIANA-microT, miRanda, rna22). High
complementarity between the miRNA and the target binding
region results in the degradation of the target, whereas the
presence of mismatches represses the translational process.
However, results of their applications are often not consistent and
must be experimentally validated.Many lab-based techniques can
be used to overcome the challenge of target validation such as
the inverse correlation between the expression of miRNA and
its target, the effect on protein expression /function or a direct
validation by using the luciferase assay or their functional effects
(proliferation, differentiation, apoptosis) on a cell culture system.

In addition, databases such as mirTarBase or miRewcords
collect both predicted and experimentally confirmed miRNA
targets.

Finally, functional analysis of miRNAs or miRNA high-
throughput data sets can also been performed. For example,
Gene Ontology (GO) analysis is commonly used to identify
pathways and processes from a list of genes provided, for example
from results obtained using gene expression microarray (136) or
generated from a target prediction tools in the case of miRNA
(137).

LIMITATIONS IN THE USE OF MIRNAS AS
CIRCULATING BIOMARKERS

The use of miRNA signature as a novel diagnostic/prognostic
tool is still in the descriptive phase. Numerous data have

been collected so far, in various disease states; however their
translation in clinical applicability requires much larger studies
and universally implemented guidelines.

First of all, the lack of methodological details in published
papers makes it difficult to directly compare the results, and lead
to inconsistent or even contradictory results.

Standard protocols must be achieved for the different steps
of miRNA analysis such as sample processing, RNA extraction
and expression measurement/assessment methods as well as
differences in specimen type, for example FFPE vs. fresh frozen
samples, must be considered.

In addition, the research of miRNA profile in biofluids is
particularly challenging as miRNAs, circulate either associated
with proteins, lipoproteins or EVs, and this might require
specific precautions during the extraction or analysis processes.
Moreover, it is good practice to check the presence of small clots
and hemolysis in plasma/serum which may contribute to the
variability in miRNA expression.

Furthermore, we are not aware if miRNA expression varies
at specific conditions such as: fasting or circadian rhythm,
thus, standardization and annotation of these protocol details is
necessary in order to minimize variability of unknown factors.

Data normalization, identification of well-characterized
endogenous miRs specific to biofluid and pathology of interest,
as well as characterization of baseline levels for miRs described
as potential biomarkers are other crucial points in obtaining
accurate results.

Certainly, a common information infrastructure for data
exchange, analysis and protocols used would facilitate research
in the miRNA biomarker discovery.

POINT-OF-CARE DIAGNOSTIC TOOLS TO
DETECT CIRCULATING MICRORNAS AS
BIOMARKERS OF DISEASE

Besides the challenge of biomarker discovery, there lies the
challenge of rapidly detecting them with clinically relevant
sensitivity and specificity using a low-cost and easy point-of-care
injury test.

In the case of traumatic brain injury, a PoC technology would
have several applications. This is particularly true formTBI which
represents a serious problem in military, and contact sports that
has led to reduction in the sport participation in younger age
groups.

The development of a pitch-side or “pre-hospital,” portable
TBI diagnostic devices, would implement the current guidelines
in the management of mTBI (17, 138) in different ways:

1) In the initial pre-hospital assessment to determine whether
patients should be transferred to a Major Trauma Centre or
a local Trauma Unit.

2) In the Emergency Department (ED), to determine the need for
a CT brain scan.

3) Pitch-side, to assist decision making as to removal from play
and assessment of the need to take the player to the ED.

4) In sports clinics, to diagnose a concussive event and guide
return to play.
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5) In combat theaters, to determine the need to dispatch a rescue
team.

So far, proteins were widely explored as biomarkers and
immunoassays are extensively used as method of detection,
although not often very sensitive and prone to false positives
(139).

The PCR amplification method has played an important
role in diagnostics over the last years because of its ability
to detect few molecules (140) and the fact that microRNAs
are particularly stable in biofluids, positions them as a new
valid potential biomarkers to explore. MicroRNAs are also
particularly suitable for these clinical applications as they are
molecular switch regulators and for this reason their early
expression anticipates the molecular mechanisms trigged by
TBI.

Several companies are now working on point-of-care device
that can measure microRNAs in the field. This is quite
challenging, although not insurmountable, as microRNAs are
present in femtomolar and picomolar concentrations and need
to be extracted from the biofluid first.

Micorfluidics is another challenging problem. Transporting
the methodology in a portable device, reducing the volume to
few microliters over a few millimeters and mixing the rinsing
solutions and all reagents are main issues.

Detection is another important point to discuss; various
strategies were developed to improve the detection of miRNA
(141).

Nanoparticles(NPs)-based biosensors, for example, are widely
studied. The use of this biosensor has the potential to
miniaturize the equipment and reduce the cost. In particular,
carbon and metal-based NPs, such as gold nanoparticles
(AuNPs) are excellent miRNA carriers that can be used to
accelerate the signal transduction enhancing a rapid analysis
and lowering the detection limit. Recently, a dual-function
gold nanoparticle biolaben was used to detect miR-21 in
serum (142).

Magnetic nanoparticles are also very popular. Wanunu et al.
(143) developed a protocol using probe:miRNA duplex binded
to p19-functionalized magnetic beads, which are first eluted and
electronically detected using a nanopore (143).

Optical detection in combination with NP probes was also
explored in the development of a novel highly specific and
reproducible platform, the ScanometricMicroRNA (Scano-miR),
to detect low concentrations of miRNAs (144).

Surface plasmon resonance (SPR) biosensors, is another
example of label-free optical biosensing technologies. This
method is based on optical measurement of refractive index
changes given by the binding of analyte molecules present in
samples to specific receptors immobilized on the SPR sensor.
This method showed to be able to detect miRNA in <30min at
concertation down to 2 pM (145).

Finally, enzyme catalytic amplification-based electrochemical
assay are also developed for this purpose (146).

However, hard work is still required to develop a reliable
portable PoC device.

CONCLUSIONS AND PERSPECTIVES

miRNA profiling and detection provide valuable information
on their essential roles in normal cellular function and disease,
projecting their use in the clinical practice for the diagnosis and
prognosis of several pathologies. With this review, our aim was
to provide insights into the miRNA expression in TBI, the main
commonly used detection methods to discover new biomarkers
and the state-of-the art of the PoC development.

Despite their limited use as routine biomarkers, several
companies already offer miRNA-based diagnostic assays.

In addition, there are new emerging classes of non-coding
RNA such as piwi-interacting RNAs, and long non-coding RNA
(lncRNA) that have important role in cellular physiology.

In the future, profiling methods that have the potential
to detect all the RNA classes are likely to improve the
understanding of the whole transcriptome and provide new valid
information for the diagnosis, prognosis and therapy of several
pathologies, including TBI.
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