

University of Birmingham

From signatures to monads in UniMath
Ahrens, Benedikt; Matthes, Ralph; Mörtberg, Anders

DOI:
10.1007/s10817-018-9474-4

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Ahrens, B, Matthes, R & Mörtberg, A 2019, 'From signatures to monads in UniMath', Journal of Automated
Reasoning, vol. 63, no. 2, pp. 285-318. https://doi.org/10.1007/s10817-018-9474-4

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 12/07/2018

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1007/s10817-018-9474-4
https://doi.org/10.1007/s10817-018-9474-4
https://birmingham.elsevierpure.com/en/publications/ad3c894d-13cf-43f3-a6ab-f214d3f87e2a

J Autom Reasoning
https://doi.org/10.1007/s10817-018-9474-4

From Signatures to Monads in UniMath

Benedikt Ahrens1 · Ralph Matthes2 ·
Anders Mörtberg3,4

Received: 20 November 2016 / Accepted: 8 June 2018
© The Author(s) 2018

Abstract The term UniMath refers both to a formal system for mathematics, as well as a
computer-checked library of mathematics formalized in that system. The UniMath system
is a core dependent type theory, augmented by the univalence axiom. The system is kept as
small as possible in order to ease verification of it—in particular, general inductive types are
not part of the system. In this work, we partially remedy the lack of inductive types by con-
structing some set-level datatypes and their associated induction principles from other type
constructors. This involves a formalization of a category-theoretic result on the construction
of initial algebras, as well as a mechanism to conveniently use the datatypes obtained. We
also connect this construction to a previous formalization of substitution for languages with
variable binding. Altogether, we construct a framework that allows us to concisely specify,
via a simple notion of binding signature, a language with variable binding. From such a spec-
ification we obtain the datatype of terms of that language, equipped with a certified monadic
substitution operation and a suitable recursion scheme. Using this we formalize the untyped
lambda calculus and the raw syntax of Martin-Löf type theory.

This material is based upon work supported by the National Science Foundation under Agreement Nos.
DMS-1128155 and CMU 1150129-338510. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation. This work has partly been funded by the CoqHoTT ERC Grant 637339.

B Anders Mörtberg
anders.mortberg@cse.gu.se

Benedikt Ahrens
B.Ahrens@cs.bham.ac.uk

Ralph Matthes
ralph.matthes@irit.fr

1 School of Computer Science, University of Birmingham, Birmingham, UK

2 IRIT (CNRS and Université de Toulouse), Toulouse, France

3 School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

4 Department of Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-018-9474-4&domain=pdf
http://orcid.org/0000-0002-7299-2411

B. Ahrens et al.

Keywords Univalent mathematics · Initial algebra semantics · Inductive types · Represen-
tation of substitution

1 Introduction

The UniMath1 language is meant to be a core dependent type theory, making use of as few
type constructors as possible. The goal of this restriction to a minimal “practical” type theory
is tomake a formal proof of (equi-)consistency of the theory feasible. In practice, theUniMath
language is (currently) a subset of the language implemented by the proof assistant Coq.
Importantly, the UniMath language does not include a primitive for postulating arbitrary
inductive types. Concretely, this means that the use of the Coq Inductive vernacular is
not part of the subset that constitutes the UniMath language. The purpose of avoiding the
Inductive vernacular is to ease the semantic analysis of UniMath, that is, the construction
of models of the UniMath language. Another benefit of keeping the language as small as
possible is that it will be easier to one day port the library to a potential proof assistant
specifically designed for univalent mathematics.

In the present work, we partially remedy the lack of general inductive types in UniMath
by constructing datatypes as initial algebras. We provide a suitable induction principle for
the types we construct, analogous to the induction principle the Inductive scheme would
generate for us. This way we can construct standard datatypes, for instance the type of lists
over a fixed type, with reasonable computational behavior as explained in Sect. 6.1.

Intuitively, datatypes are types of tree-shaped data, and inductive datatypes limit them to
well-founded trees; here we exemplify two use cases:

– Structured collections of homogeneous data, e. g., lists of elements of a fixed type:

Inductive list (X : Type) :=
| nil : list X
| cons : X -> list X -> list X.

There are alsomany kinds of branching data structures for organizing homogeneous data.
– Representations of mathematically interesting objects, e. g., natural numbers and lambda

terms (see Example 14 for a categorical presentation)where the type parameter represents
the names of the variables that may occur free in them:

Inductive LC (X : Type) :=
| Var : X -> LC X
| App : LC X * LC X -> LC X
| Abs : LC (option X) -> LC X

Here option X is X together with one extra element. This is an example of a “nested
datatype” (see Sect. 4.5).

There are two ways to characterize (or specify) inductive datatypes: either externally, via
inference rules, or internally, via a universal property. The relationship between the two ways
was studied in [7]. There, the authors do not ask whether (some) inductive types are derivable

1 The UniMath library can be found at: https://github.com/UniMath/UniMath. A summary file related to
this paper can be found at: https://github.com/UniMath/UniMath/blob/master/UniMath/SubstitutionSystems/
FromBindingSigsToMonads_Summary.v.

123

https://github.com/UniMath/UniMath
https://github.com/UniMath/UniMath/blob/master/UniMath/SubstitutionSystems/FromBindingSigsToMonads_Summary.v
https://github.com/UniMath/UniMath/blob/master/UniMath/SubstitutionSystems/FromBindingSigsToMonads_Summary.v

From Signatures to Monads in UniMath

in univalent mathematics. Instead, they start with a basic type theory with the axiom of
function extensionality, and present two extensions of that type theory by axioms postulating
inductive types, in two different ways: first by axioms mimicking the inference rules, that is,
by an internal variant of an external postulate, and second by axioms postulating existence
of initial algebras for polynomial functors. The authors then show that those extensions are
(logically) equivalent. In the present work, we are interested in an internal characterization
of datatypes, as initial objects, and we construct suitable initial algebras.

An inductive datatype has to come with a recursion principle (a calculational form of
the universal property) which ought to be mechanically derived together with the datatype
itself. Doing this by hand on a case-by-case basis means doing similar tasks many times.
For the research program that tries to avoid this “boiler plate” of multiple instances of the
same higher-level principles, the name “datatype-generic programming” has been coined by
Roland Backhouse and Jeremy Gibbons—nicely indicating in what sense genericity is aimed
at.

In this work we focus on a particular class of datatypes that represent languages with
variable binding. Those datatypes are families of types that are indexed over the type of
free variables allowed to occur in the expressions of the language. Variable binding modifies
the indexing type by adding extra free variables in the scope of the binder, as seen in the
motivating code example LC of representations of lambda terms above.

Still within the target area of datatype-generic programming (and reasoning), but more
specifically, the datatypes we focus on in the present work are canonically equipped with
a substitution operation—itself defined via a variant of the recursion principle associated
to the datatypes (recursion in Mendler-style [23]). This substitution satisfies the laws of
the well-known mathematical structure of a monad—an observation originating in [6,8,10].
In this work, we not only construct the datatypes themselves, but also provide a monadic
structure—both the operations and the laws—on those datatypes.

The datatypes representing languages with binders are specified via a notion of signature.
A signature abstractly describes the shape of the trees by specifying

– the type of nodes and
– the “number” of subtrees of a node.

In the present work, we consider two notions of signatures, and relate them by constructing
a function from one type of signatures to the other. One notion is that of a binding signature
(cf. Definition 1), a simple notion of signature for which we know how to construct their
associated datatypes. The other notion is that of a signature with strength (cf. Definition 4),
introduced in [22]. The latter is a more general notion of signature which comes with infor-
mation on how to perform substitution on the associated language (or, more generally, on
any “model” of the signature—even including coinductive interpretations of languages with
non-well-founded trees. Coinductive datatypes, however, are not studied in the present work).

Outline of the paper The present work is built on top of existing work. Here, we list previous
work as well as work done for this article, in order to give a coherent picture:

(i) Section 2 introduces the notions from univalent foundations that we use in the paper. It
also describes the UniMath language and its implementation in the Coq proof assistant.

(ii) In Sect. 3, we construct a signature with strength from a binding signature. This involves
constructing an endofunctor on the category of endofunctors on a base category C from
a family of lists of natural numbers, as well as a strength (a natural transformation with
extra properties) between suitable functors.

123

B. Ahrens et al.

(iii) Instantiating the base category C of the previous section toSet, we construct the datatype,
as an initial algebra of the endofunctor on endofunctors on the category of sets that is
specified by a binding signature, using just the type constructors available in theUniMath
language. In particular, we do not use the Coq vernacular Inductive. This work is
reported on in Sect. 4.

(iv) In previous work [4,22], a model (“substitution system”) of a signature with strength was
constructed on a hypothetical initial algebra. This construction was carried out over an
arbitrary base category, which, by hypothesis, is sufficiently well-behaved. In particular,
right Kan extensions were required to exist. In the present work, we base the needed
scheme of generalized iteration in Mendler-style on another theorem in [11] that is based
on cocontinuity assumptions instead of the existence of right Kan extensions. We apply
this modified construction to the datatype constructed in (iii), where the base category
is the category of sets. We hence have to provide the prerequisites for that general con-
struction, in particular, we show that precomposition with a functor preserves colimits
of any kind (while only preservation of initial objects and colimits of chains is required
for the iteration scheme). This work is reported on in Sect. 5.1.

(v) In previous work [4,22], a monad was constructed from any substitution system over an
arbitrary base category—thus showing that the substitution constructed in (iv) satisfies
widely recognized minimum requirements on substitution. The modified construction
of the present work can be applied to our more specific situation without any further
conceptual work, see Sect. 5.2.

The construction of (indexed) set-level datatypes described in item (iii) is done by combining
two results:

– a classical category-theoretic result saying that an initial algebra of an ω-cocontinuous
functor can be constructed from a colimit of a certain chain (i. e., a countably infinite
linear diagram) [1];

– the constructibility of colimits in the category of sets (a.k.a. discrete types) in UniMath
as a consequence of the constructibility of set quotients.

The construction of set quotients was done by Voevodsky [30]. It is an example of the new
possibilities that the univalence axiom and its consequences provide for the formalization of
(set-level) mathematics compared to the type theories implemented byCoq orAgdawithout
the univalence axiom.

The reason our construction only works for constructing set-level datatypes is first of all
that general types and functions between them do not form a category (as defined in Sect. 2.6).
The problem is that the function type A → B does not generally form a set for arbitrary
types A and B. Second, it is not clear how to construct colimits (in particular, coequalizers)
of general types in UniMath (recall that there are no higher inductive types in UniMath). It
is hence not clear if it is possible to directly generalize our construction to arbitrary types.

An alternative approach, not relying on cocontinuity, to constructingW-types in univalent
type theory with propositional resizing is presented in [25]. There, the author first constructs
non-well-founded trees as in [2], and then carves out the well-founded ones as those trees
that satisfy the desired induction principle. This approach does work for arbitrary types, not
just for sets. We hope that this work will eventually be formalized in UniMath.

Since we are mainly interested in applying this construction to study languages with
binders, the set-level datatypes are sufficient. As explained in point (iv) the theory of cocon-
tinuous functors proved to be useful for other constructions than the construction of datatypes.

On the way to our results, we also deepened the degree of categorical analysis, e. g., we
organized the signatures with strength into a category, constructed certain limits and colimits

123

From Signatures to Monads in UniMath

in that category, and identified pointed distributive laws as a means to construct signatures
with strength.

The results presented in this article are not surprising—it is our hope, however, that their
formalization will be useful and that its underlying ideas extend to richer notions of datatypes
and type families. One envisioned use of the library formalized in the present work is outlined
in Sect. 6.2.3.

2 About Univalent Foundations and UniMath

The UniMath language is a variation of intensional Martin-Löf type theory [20]. More
precisely, there are several versions of the UniMath language: a desired one, used in pen-
and-paper reasoning, and one implemented as a ‘subsystem’ of the proof assistant Coq, used
for computer-certified proofs in UniMath. The latter provides an approximation of the first,
with the long-term goal of closing the gap. Below, we describe the desired theory, and point
out the differences to the actual implementation.

The UniMath language is a type theory with

– dependent function types (also called Π-types) satisfying the η-rule definitionally;
– dependent pair types (also called Σ-types) satisfying the η-rule definitionally;
– intensional identity types;
– coproduct types;
– two universes, one contained in the other, U0 : U1; universes are closed under the type

formers above; more universes can be added as necessary;
– base types: empty, unit, booleans, natural numbers, living in U0;
– strong resizing rules for propositions, see Sect. 2.2;
– the univalence principle for the universes and its consequences, see Sect. 2.3.

Details on the last two items are given in Sects. 2.2 and 2.3 below. Propositional truncation,
often assumed as an abstract type former, is implemented in UniMath via impredicativity,
cf. Sect. 2.4. Before looking into these points in detail, we fix some vocabulary in Sect. 2.1.

2.1 Fundamental Concepts of Univalent Foundations

In UniMath, types are stratified according to their homotopy level: we say that a type is
contractible if it has exactly one element/inhabitant. A type is a proposition if any two of its
inhabitants are identical (there need not be any inhabitant, corresponding to an unprovable
proposition). A type is a set if all of its identity types are propositions. The hierarchy of
homotopy levels continues with groupoids, 2-groupoids and so on, but in the present work
these higher levels are not used.

A function f : A → B is an equivalence if its fiber over any b : B,
∑

a:A f (a) = b, is
contractible.We denote by A � B ≡ ∑

f :A→B isequiv(f) the type of equivalences between
types A and B. For details we refer to [26, Chapter 2.4].

2.2 Resizing

We distinguish between two kinds of resizing rules:

Strong resizing denotes resizing rules that change, or specify, the universe a given type
lives in. We consider two such rules, formulated by Voevodsky [27]:

RR1 Any type X that is a proposition lives in the lowest universe.

123

B. Ahrens et al.

RR2 For any universe U , the Prop(U) = ∑
X :U , isProp(X) lives in the lowest

universe.

In [27], Voevodsky sketches a model of some type theory that satisfies these two rules.
However, that model does not satisfy the univalence principle. It is currently an open
problem whether these rules can consistently be added to a univalent type theory. Fur-
thermore, there is currently no proof assistant implementing these rules.

Weak resizing denotes rules that state that a given type is equivalent to one in a lower
universe.Weakversions of RR1 andRR2 are readily formulated, and are indeed validated
in the simplicial set model [18]: there, using classical logic, any proposition is equivalent
to either 1 or 0, and the type of propositions of some universe is equivalent to 2. These
weak rules would be easy to postulate, as axioms added to the context, in a proof assistant
such as Coq. It might, however, be quite cumbersome to work with them in practice.
Moreover, weak resizing impedes computation, while good computational behavior even
of proofs is amajor quality criterion of formalizations inUniMath. This iswhyVoevodsky
preferred strong resizing, as mentioned in his comments to his first implementation of
the Foundations Library (the precursor of UniMath)2 and to be seen from the focus on
strong resizing in [27].

In practice, the UniMath language based on the Coq proof assistant currently lacks any
resizing rule (while the design and implementation of a proof assistant based on a universe
polymorphic type system with resizing rules was one of the four main goals of the special
year on univalent foundations at the Institute for Advanced Study in Princeton3). Instead, it
is assumed that all the types are elements of a universe U—for sake of simplicity, and while
waiting for a satisfying universe mechanism (that supports resizing rules besides universe
polymorphism), we even assume the inconsistent typing rule U : U . This means that the Coq
system does not provide us with a validation of our usage of universes, and we have to do
these checks ourselves instead. We claim that we do not exploit the inconsistent typing rule,
i.e., that our formalization translates to the theorywith strong resizing rules straightforwardly.
Throughout the article we point out whenever a construction makes use of the strong resizing
rules and we write U for the universes (so the universe level is implicit).

2.3 Univalence

An important part of UniMath is the univalence principle, which characterizes the identity
type on the universe U . It asserts that the type of identities between types is equivalent to
the type of equivalences between those types, and, more precisely, it asserts that the map
from identities between types to equivalences between types that is specified by sending the
reflexivity to the identity equivalence is an equivalence itself. In particular this means that this
map is invertible. In the UniMath library, univalence is added to the context as a Coq axiom.

In the present work, we crucially use some consequences of the univalence axiom that are
not provable in pure Martin-Löf type theory. Details are described in Sect. 6.1.

2.4 Propositional Truncation

We call propositional truncation a type transformation that associates to any type A the
proposition ‖A‖. Intuitively, ‖A‖ is empty when A is, and contractible otherwise—though

2 https://raw.githubusercontent.com/vladimirias/Foundations/master/hlevel1/hProp.v.
3 https://www.math.ias.edu/sp/univalent/goals.

123

https://raw.githubusercontent.com/vladimirias/Foundations/master/hlevel1/hProp.v
https://www.math.ias.edu/sp/univalent/goals

From Signatures to Monads in UniMath

this is not provable in the theory, as that would require a use of the law of excluded middle.
Note that propositional truncation, often postulated as a Higher Inductive Type (HIT) [26,
Chapter 6], is implemented in UniMath via a universal quantification, in the style of a
generalized double negation:

‖A‖ :=
∏

P:Prop(U)

(A → P) → P ,

where we write Prop(U) to indicate that we are quantifying over all types of U that are
propositions. It is a theorem by Voevodsky that ‖A‖, thus defined, is again a proposition—
however, a proposition living in a universe higher thanU unless we use propositional resizing;
for a discussion of this issue we refer to [30, Section 4].

The propositional truncation is used to define existential quantification: we write ∃a :
A, B(a) for ‖Σa:A B(a)‖. This allows us to distinguish between structures and properties
given byΣ and ∃. This is also reflected in our use of the vocabulary ‘Problem&Construction’
vs. ‘Theorem & Proof’. Indeed, whenever we describe the construction of a structure, that
is, when we construct a term of a type that is not a proposition in the above sense, we use
the terminology ‘Problem & Construction’. The pair ‘Theorem & Proof’ is reserved for the
construction of inhabitants of a proposition.

2.5 On General Inductive Datatypes

As explained above the general scheme to define strictly positive inductive types and fami-
lies in Coq, using the Inductive vernacular, is not part of UniMath. Indeed, while the
types above are, for technical reasons, implemented in UniMath using the Inductive
vernacular, its use is not permitted outside a “preamble” that introduces those types. In this
way we simulate a theory in which the above types are primitive rather than an instance
of a general type definition mechanism. It is the purpose of the present work to construct
some of the inductive types that could otherwise be defined using the Inductive scheme.4

Consequently, the experimental HITs are not part of the UniMath language either.

2.6 Category Theory in UniMath

The UniMath library contains a significant amount of category theory, for details see [3]. A
category C in UniMath is given by:

– a type C0 of objects;
– for any two objects A, B : C0, a set C(A, B) of morphisms;
– for any three objects A, B, C : C0, a composition operation

◦ : C(B, C) → C(A, B) → C(A, C)

– for any object A : C0, an identity arrow 1A : C(A, A),

subject to the usual axioms of category theory. Functors, natural transformations, etc. are
defined in the usual way.

The category Set has as objects sets and as morphisms from X to Y the set of (type-
theoretic) functions from X to Y . Given categories C andD, we denote by [C,D] the category
of functors from C to D, with natural transformations as morphisms.

4 This is similar in spirit to the datatype mechanism of the Isabelle proof assistant where the datatypes are
constructed inside a core theory; thus the recursion and induction principles do not form part of the “trusted
code base” of Isabelle while they do constitute a part of the Coq kernel. We go beyond the justification in
Isabelle in having the base category as parameter.

123

B. Ahrens et al.

The article [3] calls “precategory” the notion here introduced as category, and reserves
the word “category” for precategories with an additional property, called “univalence (for
categories)”. This property is not relevant for the work reported here. We will occasionally
remark on what would be guaranteed in addition for a univalent base category. The category
Set is univalent, and univalence is inherited from the target categoryD of a functor category
[C,D].

We assume the reader to be familiar with the concepts of category theory. Here, we only
point to the specific but rather standard notations and conventions we will use throughout.

Instead of writing that F is an object of the functor category [C,D], we often abbreviate
this to F : [C,D], but also to F : C → D. Given d : D, we call d : C → D the functor that is
constantly d and 1d on objects and morphisms, respectively. This notation hides the category
C, which will usually be deducible from the context. We write Id for the identity endofunctor
on C. We also let (co)product denote general indexed (co)products and explicitly write if they
are binary.

The category Ptd(C) has, as objects, pointed endofunctors on C, that is, pairs of an end-
ofunctor F : C → C and a natural transformation η : Id → F . We write id for the identity
functor with its trivial point and let U be the forgetful functor from Ptd(C) to [C, C] (that
forgets the point).

Categories, functors and natural transformations constitute the prime example of a 2-
category. We write ◦ for vertical composition of natural transformations and · for their
horizontal composition. If one of the arguments to horizontal composition is the identity on
some functor, we just write the functor as the respective argument. The corner casewhere both
arguments are the identity on some functors X and Y is just functor composition that is hence
written X ·Y (on objects andmorphisms, this is X applied afterY , hence (X ·Y)(A) = X (Y A)

and likewise for morphisms). Horizontal composition of μ : F → G and ν : F ′ → G ′ has
μ · ν : F · F ′ → G · G ′ provided F, G : D → E and F ′, G ′ : C → D. The order of vertical
composition ◦ is the same as of functor composition: if F, G, H : C → D and μ : G → H
and ν : F → G, then μ ◦ ν : F → H is defined by object-wise composition in D.

Given a functor F : [A,B] and a category C we define the functor · F on functor
categories:

· F : [B, C] → [A, C]

This functor takes a functor X : [B, C] and precomposes it with F , that is, X 	→ X · F , and
likewise with the morphisms, i. e., the natural transformations. Once again the category C is
hidden, but it can often be deduced from the context.

We follow [4] in making explicit the monoidal structure on functor category [C, C] that
carries over toPtd(C): letαX,Y,Z : X ·(Y ·Z) � (X ·Y)·Z ,ρX : 1C ·X � X andλX : X ·1C � X
denote themonoidal isomorphisms.Notice that all thosemorphisms are pointwise the identity,
but making them explicit is needed for typechecking in the implementation [4].

3 Two Notions of Signatures

As outlined in the introduction, a signature abstractly specifies a datatype by describing the
shape of elements of that type. We give two notions of signatures suitable for the description
of languages with variable binding, such as the untyped lambda calculus. We first describe
a rather syntactic notion of signature: binding signatures. We then proceed with a descrip-
tion of a semantic notion of signature: signatures with strength. We give constructions to

123

From Signatures to Monads in UniMath

obtain signatures with strength and finally associate a signature with strength to each binding
signature.

3.1 Binding Signatures

A binding signature is given by simple syntactic data that allows one to concisely specify
a language with variable binding. Binding signatures are less expressive than the signatures
with strength that will be presented in the next section. On the other hand, they are easier to
specify.

Definition 1 (Arity, binding signature) An arity is a (finite) list of natural numbers. A bind-
ing signature is a family of arities, more precisely, as set I and a function ar : I → List(N).

Intuitively, the type I of a binding signature indexes the language constructors, and the
functionar associates an arity to each constructor. Note thatwe do not need decidable equality
on the indexing type.

In UniMath we define this as a nested Σ-type (with UU for the universe U):
Definition BindingSig : UU :=
 (I : UU) (h : isaset I), I → list nat.

We also define functions for accessing the components of a BindingSig and a constructor
function for constructing one:

Definition BindingSigIndex : BindingSig → UU := pr1.
Definition BindingSigIsaset (s : BindingSig) : isaset (BindingSigIndex s) :=
pr1 (pr2 s).

Definition BindingSigMap (s : BindingSig) : BindingSigIndex s → list nat :=
pr2 (pr2 s).

Definition mkBindingSig {I : UU} (h : isaset I) (f : I → list nat) : BindingSig :=
(I„(h„f)).

This way we can mimic the behavior of Coq’s Record types which are not part of
UniMath as they are defined using Inductive.

We can take the coproduct of two binding signatures by taking the coproduct of the
underlying indexing sets, and, for the function specifying the arities, the induced function on
the coproduct type.

Example 2 (Binding signature of untyped lambda calculus) The binding signature of the
untyped lambda calculus is given by I := {abs,app} and the arity function is

abs 	→ [1] , app 	→ [0, 0] .

This is to be read as follows: there are—besides variables that are treated generically in
Sect. 5.1—two constructors. The first constructor abs, corresponding to lambda abstraction,
has just one argument (as ar(abs) is a one-element list), and this argument can make use of
1 extra variable being bound by the constructor. The second constructor app, corresponding
to application, has two arguments, and there is no binding involved.

Example 3 (Binding signature of presyntax of Martin-Löf type theory) The binding signature
of Martin-Löf type theory is given in Sect. 5.2, as part of an extended example that uses an
infinite index set. Using the coproduct of binding signatures, it can easily be decomposed, in
particular, using the binding signature of the untyped lambda calculus as one ingredient.

123

B. Ahrens et al.

3.2 Signatures with Strength

The next, more semantic, notion of signature was defined in [22, Definition 5]; there, it was
merely called “signature”. In order to explicitly distinguish them from binding signatures, we
call them “signatures with strength” here. As a new contribution, we organize the signatures
with strength as a category.

Definition 4 (Signatures with strength) Given a category C, a signature with strength is
a pair (H, θ) of an endofunctor H on [C, C], called the signature functor, and a natural
transformation θ : (H−) · U∼ → H(− · U∼) between bifunctors [C, C] × Ptd(C) → [C, C]
such that θ is ‘linear’ in the second component.

In more detail, the bifunctors applied to a pair of objects (X, (Z , e)) with X : [C, C] and
(Z , e) : Ptd(C) (X for the argument symbolized by− and (Z , e) for the argument symbolized
by ∼) yield H X · Z and H(X · Z), thus θX,(Z ,e) : H X · Z → H(X · Z). By ‘linearity’ of θ

in the second argument we mean the equations

θX,id = H(λ−1
X) ◦ λH X

(note that λH X : H X · 1 → H X and H(λ−1
X) : H X → H(X · 1), using the monoidal

isomorphism λ introduced in Sect. 2.6) and

θX,(Z ′·Z ,e′·e) = H(α−1
X,Z ′,Z) ◦ θX ·Z ′,(Z ,e) ◦ (θX,(Z ′,e′) · Z) ◦ αH X,Z ′,Z ,

as illustrated by the diagram

H X · (Z ′ · Z)
θX,(Z ′ ·Z ,e′ ·e)

αH X,Z ′,Z

H(X · (Z ′ · Z))

(H X · Z ′) · Z
θX,(Z ′,e′)·Z

H(X · Z ′) · Z
θX ·Z ′,(Z ,e)

H((X · Z ′) · Z)

H(α−1
X,Z ′,Z

)

Definition 5 (Morphism of signatures with strength) Given two signatures with strength
(H, θ) and (H ′, θ ′), a morphism of signatures with strength from (H, θ) to (H ′, θ ′) is
a natural transformation h : H → H ′ such that the following diagram commutes for any
X : [C, C] and (Z , e) : Ptd(C).

H X · Z
θX,(Z ,e)

h X ·Z

H(X · Z)

h X ·Z

H ′ X · Z
θ ′

X,(Z ,e)
H ′(X · Z)

Composition and identity morphisms of signatures with strength are given by composition
and identity of natural transformations. This defines the category of signatures with strength.

Examples of signatureswith strength are given in [22].Anotherwayof producing examples
is the map defined in Construction 13, which associates a signature with strength to any
binding signature.

The signatures with strength do not distinguish between arities and signatures. As devel-
oped in [4], there is a way to build a new signature by taking the coproduct of two signatures.
Intuitively, and just as for binding signatures, this corresponds to constructing a new language
by taking the disjoint union of the language constructors of two given languages. What is

123

From Signatures to Monads in UniMath

new here compared to [4] is the explicitly categorical treatment (i. e., taking into account
morphisms of signatures with strength). The construction generalizes easily to the coproduct
of an arbitrary family of such signatures:

Definition 6 (Coproduct of signatures with strength) If C has coproducts, then the coproduct
of a family of signatures with strength is defined as follows:

– the signature functor is given by the coproduct in the endofunctor category on [C, C]
induced by that on C;

– the strength is induced by coproduct of arrows.

The strength laws are simple consequences of the strength laws of each member of the family
of signatures, and the universal property is readily established.

Definition 7 (Binary product of signatures with strength) If C has binary products, then the
binary product of two signatures with strength has, as signature functor, the binary product of
the functors of the given signatures. The strength is then induced analogously to coproducts.

By way of iteration, binary products will be used to model multiple arguments of a datatype
constructor.

Definitions 6 and 7 entail that the forgetful functor from signatures with strength to end-
ofunctors on [C, C] lifts and preserves coproducts and binary products.

3.3 Signatures with Strength from Binding Signatures

Constructing suitable signatures with strength for a language seems like a daunting task.
Fortunately, it is often sufficient to specify the binding signature. The generic solution to the
following problem then yields the corresponding signature with strength.

Problem 8 Let C be a categorywith coproducts, binary products and a terminal object. Given
a binding signature, the problem consists in the construction of a signature with strength on
C. This task is naturally divided into

(i) the construction of the signature functor H as endofunctor on [C, C] and then
(ii) the construction of a strength for H .

The problem will be solved where the condition on coproducts for C is reduced to binary
coproducts and I -indexed coproducts, for I the respective index set of the binding signature.

Construction 9 (Part (i) of Problem 8) Let (I,ar) be a binding signature. Let i : I . To the
list ar(i) = [n1, . . . , nk] we associate the functor defined on objects by

A 	→
∏

1� j�k

(X · optionn j)(A)

Here, the functor option : C → C is defined on objects by option(A) := 1+ A. The product
is implemented as an iterated binary product. Put differently, we define a functor

[C, C] → [C, C]
X 	→

∏

1� j�k

X · optionn j

123

B. Ahrens et al.

The functor associated to the signature (I,ar) is then obtained as the coproduct of the functors
associated to each arity,

H : [C, C] → [C, C]
X 	→

∐

i :I

∏

1� j�length(ar(i))

X · optionar(i) j

For the construction of this functor over the category of sets (i. e., when C = Set), it is
essential for I to be a set.

As we have just seen, the signature functors H that arise from binding signatures are of
a special shape, where the argument X only enters in the form of X · optionn . This can be
exploited in the construction of the strength θ for H . The right level of generality of this
pattern is signature functors H that are given by precomposition with a fixed endofunctor G
on C, i. e., with H X = X · G. Pointed distributive laws for G to be introduced next will lift
to strengths for H , hence providing signatures with strength from a simpler input.

Definition 10 (Pointed distributive law) Let C be a category and G : [C, C]. A pointed
distributive law for G is a natural transformation δ : G · U∼ → U∼ · G of functors
Ptd(C) → [C, C] such that

δid = 1G

and

δ(Z ′·Z ,e′·e) = αZ ′,Z ,G ◦ Z ′ · δ(Z ,e) ◦ α−1
Z ′,G,Z ◦ δ(Z ′,e′) · Z ◦ αG,Z ′,Z ,

where the second equation is commutation of the following diagram:

G · (Z ′ · Z)
δ(Z ′ ·Z ,e′ ·e)

αG,Z ′,Z

(Z ′ · Z) · G

(G · Z ′) · Z
δ(Z ′,e′)·Z

(Z ′ · G) · Z
α−1

Z ′,G,Z
Z ′ · (G · Z)

Z ′·δ(Z ,e)
Z ′ · (Z · G)

αZ ′,Z ,G

Note that, in analogy with the definition of signature with strength, we symbolize the sole
argument of the functors as ∼. Note that setting δid to ρ−1

G ◦λG instead of the identity would
be to emphasize the monoidal structure on [C, C], but our implementation did not run into
problems with our simplified definition (that, anyway, is pointwise identical).

The prime example is with G = option, where

δ(Z ,e)(A) = [eoption(A) ◦ inl1,A , Z(inr1,A)] : option(Z A) → Z(option(A)) ,

with the injections inl1,A and inr1,A into option(A).
The following lemma is obtained by easy calculations.

Lemma 11 Let C be a category, G : [C, C] and δ a pointed distributive law for G. Let H be
precomposition with G, then

θX,(Z ,e) := αX,Z ,G ◦ X · δ(Z ,e) ◦ α−1
X,G,Z ,

123

From Signatures to Monads in UniMath

as illustrated by the diagram

(X · G) · Z
θX,(Z ,e)

α−1
X,G,Z

(X · Z) · G

X · (G · Z)
X ·δ(Z ,e)

X · (Z · G)

αX,Z ,G

yields a natural transformation, and (H, θ) is a signature with strength.

Also the next lemma is obtained by easy calculations.

Lemma 12 Let C be a category, G, G ′ : [C, C] with pointed distributive laws δ and δ′,
respectively. Then, the following is a pointed distributive law for G · G ′:

δ·
(Z ,e) := α−1

Z ,G,G ′ ◦ δ(Z ,e) · G ′ ◦ αG,Z ,G ′ ◦ G · δ′
(Z ,e) ◦ α−1

G,G ′,Z ,

visualized as follows:

(G · G ′) · Z
δ·
(Z ,e)

α−1
G,G′,Z

Z · (G · G ′)

G · (G ′ · Z)
G·δ′

(Z ,e)
G · (Z · G ′)

αG,Z ,G′
(G · Z) · G ′ δ(Z ,e)·G ′

(Z · G) · G ′

α−1
Z ,G,G′

Construction 13 (Part (ii) of Problem 8) Let (I,ar) be a binding signature. It suffices to
define the signature with strength associated to any ar(i) for i : I . The signature with strength
associated to (I,ar) is then obtained by taking the coproduct of all the signatureswith strength
associated to ar(i) as in Definition 6.

Let i : I . Thanks to Definition 7 for binary products, used repeatedly in order to account
for multiple arguments (i. e., multiple elements in the list ar(i)), it suffices to define the
strength associated to the endofunctor on [C, C], expressed by the term X · optionnk in the
above construction. However, this is an instance of Lemma 11, with G = optionnk , and the
latter is an iterated composition of option for which the pointed distributive law has been
given above. So, Lemma 12 provides a pointed distributive law for optionnk .

Example 14 (The signature with strength for the untyped lambda calculus) Consider the
binding signature of Example 2. The signature functor obtained from that binding signature
via the map defined in Construction 9 is given by

X 	→ X · option + X × X

We also obtain a strength law for this functor by Construction 13. For more details about this
see [22].

The next section is dedicated to the construction of initial algebras for the signature
functor associated to a binding signature by Construction 9, culminating in Theorem 43 and
Construction 46. In Sect. 5 we then equip those initial algebras with a monad structure.

4 Construction of Datatypes as Initial Algebras

Given a category D, we define the datatype specified by a functor F : D → D to be any
initial algebra of F . Note that by this definition, such datatypes are only defined up to unique

123

B. Ahrens et al.

isomorphism. A given endofunctor F on D might or might not admit initial algebras. In this
section, we construct initial algebras for signature functors as in Sect. 3, with D instantiated
to the category of endofunctors on the category of sets, hence with category C of the previous
section fixed to Set. However, the results of this section are stated and proved for arbitrary
categories C equipped with suitable structure, and only instantiated to Set in the end.

Our main tool for the construction of initial algebras is Construction 26. That construction
yields an initial F-algebra for an ω-cocontinuous endofunctor F from a certain colimit. It
hence reduces our task of constructing datatypes (i. e., initial algebras) to the construction of
certain colimits (see Sect. 4.3) and to showing that various functors preserve these colimits
(see Sects. 4.4 and 4.5).

4.1 Colimits

In our formalization, colimits are parametrized by diagrams over graphs, as suggested by
[19, p. 71].

Definition 15 (Graph) A graph is a pair consisting of

– a type vertex : U representing the vertices and
– a family edge : vertex → vertex → U representing the edges as a dependent family

of types.

A diagram, accordingly, is a map from a graph into the graph underlying a category.

Definition 16 (Diagram) Given a graph G made of vertexG and edgeG and a category C,
a diagram of shape G in C is a pair consisting of

– a map dob : vertexG → C0 and
– a family of maps dmor : ∏

u,v:vertexG
edgeG(u, v) → C(dob(u),dob(v)).

Henceforth, we will abbreviate u : vertexG by u : G. These definitions are also con-
veniently represented in UniMath using Σ-types with suitable accessor and constructor
functions:

Definition graph :=
 (D : UU), D → D → UU.

Definition vertex : graph → UU := pr1.
Definition edge {g : graph} : vertex g → vertex g → UU := pr2 g.
Definition mk graph (D : UU) (e : D → D → UU) : graph := tpair D e.

Definition diagram (g : graph) (C : precategory) : UU :=

 (f : vertex g → C), Π (a b : vertex g), edge a b → C�f a, f b�.

Definition 17 (Cocone) Given a diagram d of shape G in C made of dobd and dmord , and
an object C : C0, a cocone under d with tip C is given by

– a family of morphisms a : ∏
v:G C(dobd(v), C) and

– a family of equalities
∏

u:G,v:G,e:edgeG (u,v) a(v) ◦ dmord(e) = a(u).

Let Cocone(d, C) be the type of cocones under d with tip C .

The equalities in the definition can be depicted as:

dobd(u)
dmord (e)

a(u)

dobd(v)

a(v)

C

123

From Signatures to Monads in UniMath

We often omit the equalities, denoting a cocone just by its family of morphisms.

Definition 18 (Colimiting cocone) A cocone a under d (of shape G) with tip C is called
colimiting if for any cocone a′ under d with tipC ′ there is exactly onemorphism f : C(C, C ′)
such that f ◦ a(v) = a′(v) for any v : G. Let iscolimiting(d, C, a) denote this property.

This definition can be illustrated by the following diagram:

dobd(u)

a(u)

a′(u)

dobd(v)

a(v)

a′(v)

C ∃! f
C ′

In UniMath we represent this by:

Definition isColimCocone {g : graph} (d : diagram g C) (c : C)
(a : cocone d c) : UU := Π (c’ : C) (a’ : cocone d c’),
iscontr (
 x : C�c,c’�, Π v, coconeIn a v ;; x = coconeIn a’ v).

Here iscontr is a predicate saying that the type is contractible, in other words that it has
only one inhabitant which exactly captures the unique existence of f .

Remark 19 (Uniqueness of colimits) If C is a univalent category [3], and d is a diagram of
shape G in C, then the type of colimits of d ,

∑

C :C

∑

a:Cocone(d,C)

iscolimiting(d, C, a) ,

is a proposition.

Given a functor F : C → D, a diagram d in C and a cocone a of d with tip C : C0, then
Fa is a cocone under Fd with tip FC in D, where Fa and Fd are defined in the obvious
way.

Definition 20 (Preservation of colimits) Fix a graph G. We say that F preserves colimits
of shape G if, for any diagram d of shape G in C, and any cocone a under d with tip C , the
cocone Fa is colimiting for Fd whenever a is colimiting for d .

A functor is called cocontinuous if it preserves all colimits. In UniMath:

Definition preserves colimit {g : graph} (d : diagram g C) (L : C)
(cc : cocone d L) : UU :=
isColimCocone d L cc → isColimCocone (mapdiagram d) (F L) (mapcocone d cc).

Definition is cocont := Π {g : graph} (d : diagram g C) (L : C)
(cc : cocone d L), preserves colimit d L cc.

A functor is called ω-cocontinuous if it preserves colimits of diagrams of the shape

A0
f0

A1
f1

A2
f2

. . .

that is, diagrams on the graph where objects are natural numbers and where there is a unique
arrow from m to n if and only if 1 + m = n. We refer to diagrams of this shape as chains.

123

B. Ahrens et al.

Actually, in the formalization, the type of arrows from m to n is defined to be the type of
proofs that 1 + m = n, exploiting the fact that the type of natural numbers is a set:

Definition nat graph : graph := mk graph nat (λ m n, 1 + m = n).

Notation "’chain’" := (diagram nat graph).

Definition is omega cocont {C D : precategory} (F : functor C D) : UU :=
Π (c : chain C) (L : C) (cc : cocone c L), preserves colimit F c L cc.

Definition omega cocont functor (C D : precategory) : UU :=

 (F : functor C D), is omega cocont F.

Lemma 21 (Invariance of cocontinuity under isomorphism) Let F, G : C → D be functors,
and let α : F ∼= G be a natural isomorphism, then G preserves colimits (of a certain shape)
if F does.

Note that, as preservation of colimits is a proposition, it suffices for the natural isomor-
phism α to merely exist for the lemma to hold.

Next, we construct colimits in the functor category from colimits in the target category:

Problem 22 (Colimits in functor categories) Let C be a category, and let D be a category
with all (specified) colimits of a given shape. The problem consists in the construction of
colimits of the same shape in the functor category [C,D].
Construction 23 (Solution to Problem 22) The construction of colimits in a functor category
is pointwise: the colimit C of a diagram is given, at point c : C0, as the colimit in D of the
diagram obtained by evaluating the diagram in c : C0.

Limits have been formalized in the same way as colimits, that is, parametrized by graphs
and diagrams. We have implemented a similar construction for lifting limits to functor cate-
gories. We omit the details of the dualization.

In the formalization some (co)limits (e. g., pullbacks and pushouts) are also implemented
directly, in addition to them being formalized as a colimit over a specific graph. For instance,
binary coproducts are formalized as a type parametrized by two objects in a category, instead
of by a diagram on the graph 2 with two objects and no non-trivial morphisms. We provide
suitable maps going back and forth between the different implementations of (co)limits.

The advantage of formalizing the ‘special’ (co)limits as instances of general ones is that
results such as the lifting of (co)limits to functor categories restricts immediately to these
(co)limits of special shapes.

On the other hand, the direct formulation is more convenient to work with in practice. In
particular, we experienced some performance issues in the compilation of our library when
we attempted to replace the direct lifting of binary (co)products to functor categories by a
specialization of the general lifting of (co)limits. Those performance issues are related to
a ‘structure vs. property’ question: the lifting should happen in such a way that the binary
product of two functors F, G : C → D, evaluated in an object C : C0, computes (that is, is
judgmentally equal) to the binary product of FC and GC , the latter of which was given by
hypothesis as a structure.

4.2 Initial Algebras from Colimits of Chains

The construction of initial algebras as colimits of chains was first described byAdámek in [1].
It is a purely categorical construction and the formalization presented no surprises.

123

From Signatures to Monads in UniMath

Problem 24 (Initial algebras of ω-cocontinuous functors) Let C be a category with initial
object 0, and let F : C → C be ω-cocontinuous. Let c be a colimiting cocone with tip C of
the chain chnF given as follows:

0
!

c0

F0
F !

c1

F20
F2!

c2

. . .

C

Equip C with an F-algebra structure α : C(FC, C) and show that (C, α) is an initial F-
algebra.

To motivate the solution to the problem, we recall Lambek’s well-known lemma that we
also formalized.

Lemma 25 (Lambek) Given F : C → C and an initial algebra (A, a) of F, then a :
C(F A, A) is an isomorphism.

Proof The inverse arrow to a is obtained as the unique algebra morphism to the algebra
(F A, Fa). ��

Thanks to this result, we are bound to find an α : C(FC, C) above that is even an isomor-
phism.

Construction 26 (Solution to Problem 24) In order to construct an isomorphism α : FC ∼=
C , we use that we obtain an isomorphism between any two objects that are colimits for the
same diagram. It hence suffices to show that FC is the tip of a colimit of the above diagram.
But FC is a colimit of the diagram FchnF obtained by applying F to each object and arrow
of chnF , by ω-cocontinuity of F . At the same time, the colimit of FchnF is the same as of
chnF , since the colimit of a chain remains the same under the “shift” of a chain, or, more
generally, under the removal of a finite prefix of a chain (this is due to the fact that the cocones
can always be “completed leftwards” by pure calculation).

Given an algebra (A, a), we have to construct a cocone under chnF with tip A in order
to obtain a morphism from C to A. The cocone is defined by induction on natural numbers:
the morphism of index 0 is the one from the initial object. The morphism at index n + 1 is
constructed by composing a with the image of that at index n under F . This forms a cocone,
which induces a morphism f : C(C, A). This morphism is also a morphism of algebras from
(C, α) to (A, a). Its uniqueness is a consequence of it being unique as a morphism out of the
tip C of the colimit.

4.3 Colimits in Set

The construction of colimits in the category of sets we present in this section requires two
consequences of the univalence axiom: function extensionality and univalence for proposi-
tions.

It is well-known that the construction of colimits can be split into the construction of
coproducts and the construction of coequalizers (see [19, p. 113] for the dual situation with
limits). Using this point of view, it is the construction of coequalizers that is not possible in
pure Martin-Löf type theory (see, e.g., [13]) and requires the aforementioned consequences
of the univalence axiom.

123

B. Ahrens et al.

4.3.1 Set Quotients in UniMath

Set-level quotients were constructed by Voevodsky in his Foundations library (which is now
a part of UniMath); a brief overview can be found in [30]. None of the work described in
this section is our own.

Given a type X , we call eqrel(X) the type of equivalence relations R : X → X → Prop,
that is, reflexive, symmetric, and transitive relations. For such an equivalence relation R, the
set quotient X/R, together with the canonical surjection pr : X → X/R, has the following
universal property: for any set S andmap f : X → S such that R(x, y) implies f (x) = f (y),
there is a unique map f̂ : X/R → S such that the following diagram commutes.

X
f

pr

X/R
f̂

S

Note that, for any x, y : X , we have

R(x, y) � (pr(x) = pr(y)) (1)

The construction Voevodsky gives of the set quotient X/R is in terms of equivalence
classes of R. Concretely, each element of X/R is a tuple, consisting of

– a predicate P : X → Prop (specifying a subset of X),
– a proof of ∃x, P(x) (the existence of an element satisfying P),
– a proof of ∀x∀y, R(x, y) → P(x) → P(y) (P is compatible with R), and
– a proof of ∀x∀y, P(x) → P(y) → R(x, y) (elements of P are related by R).

The definition uses resizing rules to ensure that X/R is in the same universe as X , and the
verification that this is indeed a set quotient uses function extensionality and univalence for
propositions.

4.3.2 Construction of Colimits in Set

The goal of this section is a solution to the following problem:

Problem 27 (Colimits inSet) Given a graph G and a diagram d of shape G inSet, construct
a colimit of d .

Construction 28 (Solution to Problem 27)We define an object C , to be the tip of the desired
colimit of d , as

C :=
(

∑

v:G
dobd(v)

)

/ ∼

with ∼ being the smallest equivalence relation containing the relation ∼0, defined by

(u, A) ∼0 (v, B) iff ∃e ∈ edgeG(u, v) with dmord(e)(A) = B .

The colimiting cocone under C is given by composing the projection pr with the injection
maps C(

d(u),
∑

v:G dobd(v)
)
. The fact that the family of maps thus obtained constitutes a

cocone makes use of the equivalence of (1). The (unique) map to any cocone is obtained by
the universal property of the set quotient. Showing uniqueness of that map makes use of the
fact that the projection is surjective, and hence an epimorphism in the category of sets.

123

From Signatures to Monads in UniMath

Note that in the above formula, we use the existential ∃ instead of the proof-relevant Σ .
This is necessary in order to give∼0 the target typeProp, and hence to apply the construction
of quotients described in Sect. 4.3.1.

Note also that for the above construction to be correct, we need the type of vertices of G
to be small. In the present work, we are ultimately interested in colimits of chains, that is, of
diagrams where the set of vertices is given by the set of natural numbers—a small set.

In order to construct the smallest equivalence relation containing a relation R0, we need
to close R0 under reflexivity, symmetry and transitivity:

Definition 29 Let R0 : X → X → Prop be a relation on a type X . Its closure is defined to
be the relation x ∼ y given by

x ∼ y :=
∏

R:eqrel(X)

(R0 ⊆ R) → R(x, y)

Here, we denote by R0 ⊆ R that R0(x, y) implies R(x, y) for any x, y : X . Note that
this definition requires impredicativity for propositions: the fact that x ∼ y : Prop is a
consequence of R(x, y) being a proposition for any equivalence relation R. This definition
also relies on resizing in order for the relation ∼ to be in the same universe as R0.

Lemma 30 The relation defined in Definition 29 is the smallest equivalence relation con-
taining R0.

Proof Minimality is direct by the impredicative definition;∼ is itself an equivalence relation
because equivalence relations are closed under arbitrary intersections. ��
4.4 Functors Preserving Colimits

In this section, we prove results on functors preserving colimits, in particular colimits of
chains. The first is a classical result about preservation of colimits by left adjoints [19,
p. 119].

Lemma 31 If F : C → D is a left adjoint with right adjoint G : D → C, then it preserves
colimits.

Proof Call φ the (natural) family of isomorphisms φC,D : D(FC, D) � C(C, G D) of the
adjunction. We omit the subscripts in what follows. Given a colimiting cocone (ai)i :I with
tip L for some diagram d , we need to show that the right-hand cocone is colimiting for the
diagram Fd .

Ai
f

ai

A j

a j

L

F Ai
F f

Fai

F A j

Fa j

F L

We hence need to show that, for any cocone (ei)i under Fd with tip M , the type∑
x :D(F L ,M)

∏
i :I x ◦ Fai = ei is contractible. We show that it is equivalent to a contractible

one, and hence contractible itself:
∑

x :D(F L ,M)

∏

i :I
x ◦ Fai = ei �

∑

y:C(L ,G M)

∏

i :I
φ−1(y) ◦ Fai = ei

�
∑

y:C(L ,G M)

∏

i :I
φ−1(y ◦ ai) = ei

123

B. Ahrens et al.

�
∑

y:C(L ,G M)

∏

i :I
y ◦ ai = φ(ei)

� 1

The last equivalence is given by hypothesis for the cocone
(
φ(ei)

)
i with tip G M :

Ai
f

ai

φ(ei)

A j

a j

φ(e j)

L y G M

��
In what follows we write C I for the I -indexed product category of a category C. Given a

family of categories Di and functors Fi : C → Di , indexed by i : I , we write F I : C → D I

for the functor that applies Fi at each index.

Lemma 32 (Examples of preservation of colimits)

(i) The identity functor preserves colimits.
(ii) Any constant functor d : C → D preserves colimits of chains.
(iii) If C has specified products, the diagonal functor � : C → C I mapping an object X to

the constant I -indexed family 〈X〉i :I preserves colimits.
(iv) If C has specified coproducts, the functor � : C I → C, mapping I -indexed families of

Xi to their coproduct, preserves colimits.

Proof The points (i) and (ii) are direct. The other two points follow by Lemma 31. Indeed,
under the assumptions specified in each case we have adjunctions:

� � � � Π

where Π : C I → C is the functor that maps I -indexed families of Xi to their product. ��
The next results state that various functors preserve cocontinuity of all kinds. By this,

we mean that if the input functors preserve colimits of shape G for a graph G, then so does
the output functor, in particular, this yields preservation of ω-cocontinuity (which does not
follow from preservation of cocontinuity).

Lemma 33 (Examples of preservation of cocontinuity)

(i) The composition of two functors preserves colimits of a certain kind, if the input functors
do.

(ii) Given a family of categories Di and functors Fi : C → Di indexed by i : I . If all the Fi

preserve colimits of a certain kind, then the functor F I : C → D I preserves colimits of
that kind.

(iii) Given a family of functors Fi : C → D indexed by i : I , where I has decidable equality.
If all the Fi preserve colimits of a certain kind, then the functor (Fi)i :I : C I → D I

preserves colimits of that kind.

123

From Signatures to Monads in UniMath

Proof The first point is direct. For (ii) note that a cocone in D I is colimiting if each of its
components are. This means that we can look at F I at each index i : I and these functors
preserve colimits of the certain kind by assumption.

For (iii) we sketch the binary case: We first prove that the projection functors preserves
colimits. For the first projection, π1 : C2 → C, we are by assumption given a colimiting
cocone

(Ai , Bi)

(ai ,bi)

(A j , B j)

(a j ,b j)

(L , M)

and need to show that the cocone (ai) with tip L is colimiting. Given a cocone (a′
i) with tip

X this can be illustrated constructing the map f in:

Ai

ai

a′
i

A j

a j

a′
j

L ∃! f
X

From the cocone (a′
i) we can form

(Ai , Bi)

(a′
i ,bi)

(A j , B j)

(a′
j ,b j)

(X, M)

and by assumption obtain a uniquemap from (L , M) to (X, M). This then gives us the desired
map f : L → X .

The proof that the second projection functor preserves colimits is analogous. For this
we need to construct a cocone over (L , X) from a cocone (b′

i) with b′
i : Bi → X instead.

Decidable equality on I is needed for the general case for proving that πi : C I → C preserves
colimits. Indeed, we need to be able to decide equality on the indices to construct the cocone
whose tip contains X at index i .

Using that the projection functors preserve colimits it is direct to show that the pair
(F1, F2) : C2 → D2 preserves colimits of a certain kind if F1 and F2 do so. Given a
colimiting cocone (Ai , Bi) with tip (L , M) we obtain the colimiting cocones (Ai) with tip
L and (Bi) with tip M by the above proofs. As F1 and F2 preserve colimits we get that
(F1L , F2M) is the colimit of (F1Ai , F2Bi). ��

It was quite cumbersome to formalize the proof of point (iii) above as we needed to define
cocones where the type of the tips depends on the decidable equality of I . The interested
reader may consult the formalization for details. However, point (iii) is not needed for our
work on binding signatures in this paper; to recall, binding signatures are based on index sets
whose equality need not be decidable.

123

B. Ahrens et al.

Using what we have defined so far we can define the coproduct of an I -indexed family of
functors Fi : C → D by:

⊕

i :I
Fi = � ◦ F I

If all the Fi are (ω)-cocontinuous this is also (ω-)cocontinuous as it is the composition of
(ω-)cocontinuous functors.

We now turn our attention to the binary version of the product functor, which we denote
by × : C2 → C. In order to show that this functor is ω-cocontinuous we need more structure
on the category C.

Definition 34 (Exponentials) Let C have specified binary products. An exponential structure
for C is, for any A : C0, a right adjoint for the functor A×− given on objects by X 	→ A× X .
Given an exponential structure on C, we denote the right adjoint of A × − by (−)A. That is,
on objects it acts as B 	→ B A.

Example 35 The exponential structure on the category Set is given, for the functor A × −,
by the functor given on object B by B A = A → B.

The functor − × A is defined analogously for each A : C0. The functors A × − and − × A
are naturally isomorphic, so if one of them has a right adjoint the other does as well. Hence
the choice of which argument is fixed in Definition 34 is not crucial. The following lemma
is another instance of Lemma 31:

Lemma 36 Let C have (specified) binary products and exponentials, and let A : C0. The
functors A × − and − × A preserves colimits.

Only the next result is specifically aboutω-cocontinuity.A search for proofs of this theorem
in the literature only revealed a sketch in an online resource [24]; however, we have not found
a precise proof of it. Here, we give a direct proof of this theorem. While the proof idea is
simple, writing out all the details in the formalization is quite complicated. Our outline here
is not more detailed than the one in [24], but we have the advantage of being able to refer to
the formalization for details.

Theorem 37 Let C be a category with specified binary products such that A ×− and −× B
are ω-cocontinuous for all A, B : C0. Then the functor × : C2 → C is ω-cocontinuous.

Proof Given a diagram

(A0, B0)
(f0,g0)

(A1, B1)
(f1,g1)

(A2, B2)
(f2,g2)

. . .

with colimit (L , R) (we omit the cocone maps), we need to show that L × R is the colimit
of

A0 × B0
f0×g0

A1 × B1
f1×g1

A2 × B2
f2×g2

. . .

123

From Signatures to Monads in UniMath

To this end, we consider the grid

(A0, B0)
(f0,1)

(1,g0)

(A1, B0)
(f1,1)

(1,g0)

(A2, B0)
(f2,1)

. . .

(A0, B1)
(f0,1)

(1,g1)

(A1, B1)
(f1,1)

(A2, B1)
(f2,1)

. . .

...
...

...
...

The idea is to first take the colimit in each column, and then to take the colimit of the
chain of colimits thus obtained. In slightly more detail, by hypothesis, the colimit of the i th
column is given by Ai × R. This gives rise to a chain Ai × R → Ai+1 × R, the limit of
which is given by L × R. The difficult part of the proof is actually the handling of the arrows
involved, something we completely omitted in this sketch. ��

Note that if C has exponentials then the conditions of the lemma are fulfilled. Hence it applies
in particular to Set, or any other cartesian closed category.

Using what we have defined so far, it is possible to construct many datatypes, for example
lists or binary trees over sets.

Example 38 (Lists of sets) Lists over a set A can be defined as the initial algebra of the
following endofunctor on Set (using our notation for constant functors):

L A = 1 + A × Id

which, when evaluated at a set X , is L A(X) = 1 + A × X . In UniMath this is written as:

Definition L A : omega cocont functor HSET HSET := ’1 + ’A × Id.

Here HSET is the category Set. This definition directly produces an ω-cocontinuous
functor by exploiting the Coq notation mechanism and the packaging of functors with a
proof that they are ω-cocontinuous.

By Constructions 26 and 28 this has an initial algebra consisting of μL A : Set (repre-
senting lists of A) and a morphism α : L A(μL A) → μL A. If we expand the type of the
morphism we get

α : 1 + A × μL A → μL A

and by precomposing with the injection maps into the coproduct we obtain:

nil map : 1 → μL A

cons map : A × μL A → μL A

Wewrite nil for nil map tt of typeμL A (here tt denotes the canonical element of the
terminal set 1) and cons for the curried version of cons mapwhose type is A → μL A →
μL A. As their names indicate, they correspond to the standard constructors for lists where
nil is the empty list and cons adds an element to the front of a list.

Given a set X , an element x : X and a function f : A × X → X we can construct another
L-algebra by (X, [λ .x, f])where [λ .x, f] is the coproduct of the constant map to x with f
and hence of type 1+ A × X → X . By initiality of (μL A, α) we get an L-algebra morphism

123

B. Ahrens et al.

foldr : μL A → X satisfying:

1 + A × μL A
α

L A(foldr)

μL A

foldr

1 + A × X
[λ .x, f]

X

Byprecomposingwith the injectionmaps this commutative diagramgives us the equations:

foldr nil = x

foldr (cons y ys) = f (y,foldr ys)

These are the usual computation rules (modulo currying and implicit arguments) of the
foldr function as defined, for example, in Haskell. Hence this defines a recursion princi-
ple. We can also obtain an induction principle:

Lemma listIndhProp (P : List → hProp) :
P nil → (Π a l, P l → P (cons a l)) → Π l, P l.

Using all of this we can define standard functions on these lists, for example map and
length, and prove some of their properties:

Definition length : List → nat := foldr natHSET 0 (λ (n : nat), 1 + n).

Definition map (f : A → A) : List → List :=
foldr nil (λ (x : A) (xs : List), cons (f x) xs).

Lemma length map (f : A → A) : Π xs, length (map f xs) = length xs.

Note that the foldr function in the formalization takes a curried function as opposed to the
one above.

The computation rules for these lists do not hold definitionally, this make them a little
cumbersome to work with as one has to rewrite with the equations above explicitly instead
of letting Coq do the simplifications automatically. This is discussed further in Sect. 6.1.

We have also defined binary trees analogously to lists as the initial algebra of the functor
that maps X to 1 + A × X × X . It is hence possible to introduce various homogeneous
datatypes using what has been developed so far.

For nested datatypes, such as the introductory example of lambda terms, we can just try
to use [C, C] instead of the base category C. While this is the right solution in principle, there
are some technical details to be addressed to make this work. This is done in Sect. 4.5; the
results described there allow us to define heterogeneous nested datatypes representing syntax
of languages with binders.

4.5 The Datatype Specified by a Binding Signature

In the introduction, we showed the motivating code example of a representation of lambda
terms by the family LC of types that we qualified as nested datatype, a name due to [9]. In
general, nested datatypes are datatypes that consist of a family of types that are indexed over
all types and where the constructors of the datatype relate different family members. The
homogeneous lists are indexed over all types, but are no nested datatype since each list X
can be understood individually, while LC has the constructor Abs that relates representations
of lambda terms with different sets of free variables. Being indexed “over all types” needs
to be specified properly. For us, it means that the indexing parameter of the family runs
through the objects of the same category C that serves to represent the family members. In

123

From Signatures to Monads in UniMath

particular, there is no inductive definition of a suitable maximal indexing set, such as the
natural numbers to represent a countably infinite supply of “fresh” variable names.

From the point of view of category theory, nested datatypes are endofunctors on a category
C that arise as fixed points (up to isomorphism) of endofunctors on [C, C]. In the present work,
we exclusively study fixed points given by initial algebras. We do not insist on the datatype to
be truly a nested datatype in the above sense of relating different family members through the
constructors. Nonetheless, we want to capture the general situation where indices of family
members in the arguments of datatype constructors are calculated by an arbitrary functor
F . As illustrated in Example 14, this calculation is done by using precomposition with that
functor, in the example with F = option that represents “context extension”. Indeed, looking
at the example, we see that variable binding is indicated by a summand in the signature functor
that maps an endofunctor X to X · option.

So, in order to construct nested datatypes in our setting, we would like to show that
functors on functor categories of the form · F : [B, C] → [A, C] (with F : [A,B]) are
ω-cocontinuous, i.e., preserve colimits of chains. Ultimately, we are interested in the case
where A = B = C, but we prove a more general theorem below.

First, we need some auxiliary results.

Lemma 39 Let G be a graph and D be a diagram of shape G in C. Given two cocones with
tips C and C ′, respectively, such that the cocone with tip C is colimiting, then the cocone
with tip C ′ is colimiting if and only if the induced morphism from C to C ′ is an isomorphism.

Theorem 40 Fix a graph G and assume C has colimits of shape G. Given a diagram D of
shape G in the functor category [A, C] and a cocone with tip F, then this cocone is colimiting
if and only if for any object A : A0 the “pointwise” cocone with tip F A is colimiting for the
pointwise diagram D A in C.

Proof In the proof we only mention the tip F of the cocone, but formally we have to handle
the whole cocone.

First, suppose that F is a colimit. For any A : A0, we have the colimit, say F ′ A, of D A in
C. Via Construction 23, the pointwise colimits F ′ A yield a functor F ′ that is a colimit of D.
Since both F and F ′ are colimits of D, we obtain an isomorphism F ′ ∼= F by Lemma 39,
and hence an isomorphism F A ∼= F ′ A for any A : A0. Since F ′ A is a colimit for D A, so is
F A.

On the other hand, suppose that F A is a colimit of D A for any A : A0. Lifting those
colimits to the functor category, we obtain a functor F ′, that is definitionally equal to F on
objects, and that is a colimit of D. The induced natural transformation from F ′ to F is an
isomorphism F ∼= F ′ that is pointwise the identity. By Lemma 39, since F ′ is a colimit of
D, so is F .

��
Using this we can now prove the main technical contribution of this section.

Theorem 41 (Precomposition functor preserves colimits) Fix a graph G and suppose C has
specified colimits of shape G. Let F : A → B be a functor, then the functor · F : [B, C] →
[A, C] preserves colimits of shape G.

Proof Let D be a diagram of shape G in [B, C], and let C be its colimit. We need to show
that C · F is the colimit of the diagram G · F in [A, C]. By Theorem 40, it suffices to show
that for any A : A0, the object (C · F)A ≡ C(F A) is a colimit of (G · F)A ≡ G(F A) in C.
By the other implication of Theorem 40, instantiated to F A, this is indeed the case. ��

123

B. Ahrens et al.

Example 42 Putting together results 41, 32(iv) in the binary case, 33(ii), and 37, we obtain
that the functor for the untyped lambda calculus of Example 14 defined on objects as

X 	→ 〈X, X〉
	→ 〈X · option, X × X〉
	→ X · option + X × X

is ω-cocontinuous, being the composition of ω-cocontinuous functors. Hence initial algebras
can be constructed for it by Construction 26. Note that we have not taken into account the
variables yet. This will be done below.

More generally, any signature functor over a category C obtained from a binding signature
via Construction 9 preserves colimits of chains:

Theorem 43 Let C be a category with coproducts, binary products, terminal object and
colimits of chains such that F×− is ω-cocontinuous for every F : C → C. Then, the signature
functor over C associated to a binding signature via Construction 9 is ω-cocontinuous.

By Lemma 31, the last requirement on C is satisfied if C has exponentials, thus the theorem
applies to C = Set. We also remark that the theorem uses the lifting of colimits to functor
categories (Construction 23). Finally, we remark that the condition on C having coproducts
can be reduced to binary coproducts and I -indexed coproducts for I the respective index set
of the binding signature.

The binding signatures studied in Sect. 3 are incapable of expressing that the free variables
in the language are considered as legal expressions, as we will argue now. Had we also
var : I in Example 2, any element of ar(var) would mean a lambda-term as argument to the
constructor, and if ar(var)were the empty list, this would generate one constant only. On the
level of signature functors, however, we just have to replace the H found byConstruction 9 by
Id+H . Indeed, for any (Id+H)-algebra (T, α), the natural transformation α : Id+H T → T
decomposes into two [C, C]-morphisms η : Id → T , τ : H T → T defined by

η = α ◦ inlId,H T and τ = α ◦ inrId,H T .

In case (T, α) is an initial algebra, the first component η can then be considered as the
injection of variables into the well-formed expressions, i. e., for every object C : C, ηC :
C → T C injects C as “variable names” into T C , the “terms over C”. The second component
τ represents all the other constructors of T together, hence those specified by the binding
signature we started with.

Definition 44 The datatype specified by a signature functor H over C (and hence by a binding
signature) is given by an initial algebra of Id + H .

Combining Theorem 43 with Adámek’s Theorem (Construction 26), we obtain

Problem 45 (Datatypes specified by binding signatures) Let C be a category with initial and
terminal objects, binary products, binary and I -indexed coproducts, and colimits of chains
such that F × − is ω-cocontinuous for every F : C → C. For any binding signature (I,ar),
construct the datatype specified by the signature functor H over C obtained from (I,ar).

Construction 46 (Solution to Problem 45) Using Theorem 43 we can construct the ω-
cocontinuous signature functor H . As Id+ H is also ω-cocontinuous, we can then construct
the datatype over C as an initial algebra, where we get the required colimiting cocone of

123

From Signatures to Monads in UniMath

Construction 26 from C having specified colimits of chains. In particular, denoting the carrier
of the algebra by T : C → C, this yields η : Id → T , τ : H T → T such that [η, τ] is an
isomorphism.

Once again, for C = Set, the prerequisites of the construction are met, in particular thanks
to the construction of colimits in the category of sets (Construction 28).

5 From Binding Signatures to Monads

In this section we combine the results of the previous sections with the construction of a
substitution operation on an initial algebra in order to obtain a “substitution” monad from a
binding signature. We end the section with two examples: the untyped lambda calculus and
a variation of Martin-Löf type theory.

5.1 A Substitution Operation on the Datatype of a Binding Signature

The results of the previous section permit the construction of initial algebras of signature
functors. The purpose of this section is to construct a substitution operation on such initial
algebras. To this end, we apply Theorem 48 (a variant of a theorem from previous work,
stated below) to our specific situation. The goal of this section is hence to recall the previous
results and discuss some necessary modifications.

Even if not only initial algebras are considered (e. g., one might aim at inverses of final
coalgebras tomodel coinductive syntax, as was one of themotivations for [22]), the following
abstract definition of the existence of a substitution operation makes sense.

Definition 47 (Matthes and Uustalu [22]) Given a signature with strength (H, θ), we call an
(Id+ H)-algebra (T, α) a heterogeneous substitution system (or “hss” for short) for (H, θ),
if, for every Ptd(C)-morphism f : (Z , e) → (T, η), there exists a unique [C, C]-morphism
h : T · Z → T , denoted � f �, satisfying

Z + (H T) · Z
1Z +θT,(Z ,e)

α·Z
T · Z

hZ + H(T · Z)

1Z +Hh

Z + H T
[f,τ]

T

i.e., Z
η·Z

f

T · Z

h

(H T) · Z
τ·Z

θT,(Z ,e)

H(T · Z)

Hh

T H T
τ

We remark that (T, α) being an hss for given (H, θ) is a proposition. Nevertheless, we may
also consider the triple (T, α, �−�), including the (uniquely existing) operation f 	→ � f �.

The following is a variant of a theorem from [22], formalized in [4]. The original theorem
required a right adjoint for the functor · Z : [C, C] → [C, C] for every Ptd(C)-object (Z , e).
The present variant replaces that hypothesis on right adjoints by suitable assumptions on
ω-cocontinuity.

Theorem 48 (Construction of a substitution operation on an initial algebra) Let C be a cat-
egory with initial object, binary coproducts and colimits of chains. Let (H, θ) be a signature
over base category C. If H is ω-cocontinuous, then an initial (Id + H)-algebra can be con-
structed via Construction 26, and this initial algebra is a heterogeneous substitution system
for (H, θ).

123

B. Ahrens et al.

The proof is done by generalized iteration in Mendler-style (in the category-theoretic form
introduced by [11, Theorem 1]), both for the existence and the uniqueness of � f �. Here,
unlike in the previous work [4,22], the initial algebra has to come from ω-cocontinuity of
the signature functor. The previous condition on existence of the right adjoint in the theorem
would not allow us to apply it to the category Set.

Theorem 49 (Construction of a monad from a substitution system [22], formalized in [4])
Let C be a category with binary coproducts and (H, θ) a signature with strength over base
category C. If (T, α) is an hss for (H, θ), then T , together with the canonically associated
η : Id → T as unit and �1(T,η)� : T · T → T as multiplication, form a monad.

Functional programmers normally do not considermonadmultiplicationwhen studyingmon-
ads but rather the operation called bind. It is well-known that the formulations of monads
with unit and multiplication and those with unit and bind are equivalent. Given A, B : C
and a substitution rule f : A → T B, the effect of a parallel substitution with f , is then
�1(T,η)�B ◦ T f : T A → T B, which is the bind operation for argument f . For C = Set, this
just means that, for an argument t : T A, each free variable occurrence of a variable a : A in t
is replaced by the term f a : T B. The monad laws then become conditions for substitution,
and they are guaranteed by the theorem.

5.2 Binding Signatures to Monads

We now recall the results presented in the paper and explain how to combine them in order
to obtain a monad from a binding signature.

In the rest of this section we let C be a category with both binary products and coproducts
and sig be a binding signature with index set I . By Constructions 9 and 13 we obtain a
signature with strength (H, θ). In UniMath:

Definition BindingSigToSignature (TC : Terminal C)
(sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C) :
Signature C hsC.

Note that we here require that C has both binary and I -indexed coproducts, we could
instead assume that C has all indexed coproducts (as in the statement of Problem 8).

Theorem 43 tells us that H is ω-cocontinuous:

Lemma is omega cocont BindingSigToSignature
(TC : Terminal C) (CLC : Colims of shape nat graph C)
(HF : Π (F : [C,C]), is omega cocont (constprod functor1 F))
(sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C) :
is omega cocont (BindingSigToSignature TC sig CC).

Here constprod functor1 F denotes the functor that sends G to F × G. Construction 26
allows us to construct an initial algebra for Id + H under suitable hypotheses on C:
Definition SignatureInitialAlgebra
(IC : Initial C) (CLC : Colims of shape nat graph C)
(H : Signature C hsC) (Hs : is omega cocont H) :
Initial (FunctorAlg (Id H H)).

By Theorem 48 we then obtain an initial heterogeneous substitution system:

Definition InitialHSS
(IC : Initial C) (CLC : Colims of shape nat graph C)
(H : Signature C hsC) (Hs : is omega cocont H) :

123

From Signatures to Monads in UniMath

Initial (HSS H).

Finally we can obtain a monad from a heterogeneous substitution system by Theorem 49:

Definition Monad from hss (H : Signature C hsC) : HSS H → Monad C.

Combining all of this gives us the desired map from binding signatures to monads:

Definition BindingSigToMonad
(TC : Terminal C) (IC : Initial C) (CLC : Colims of shape nat graph C)
(HF : Π (F : [C,C]), is omega cocont (constprod functor1 F))
(sig : BindingSig) (CC : Coproducts (BindingSigIndex sig) C) :
Monad C.

We see that if the category C has both binary coproducts and products, initial and ter-
minal objects, colimits of chains, I -indexed coproducts and the functor G 	→ F × G is
ω-cocontinuous then we can obtain a monad from a binding signature using our framework.
All of the assumptions on C are satisfied by Set. In the formalization we have implemented
special functions instantiated with Set taking fewer arguments, in particular:

Definition BindingSigToMonadHSET : BindingSig → Monad HSET.

We end by showing how the framework developed in this paper can be used to conveniently
obtain monads from binding signatures for two well-known languages.

Example 50 (Untyped lambda calculus) As explained in the beginning of the paper the
binding signature for the untyped lambda calculus is given by I := {app,abs} and the arity
function

app 	→ [0, 0] , abs 	→ [1] .

In UniMath we implement this as a bool-indexed family:

Definition LamSig : BindingSig :=
mkBindingSig isassetbool (fun b ⇒ if b then 0 :: 0 :: [] else 1 :: []).

From this we obtain a signature with strength:

Definition LamSignature : Signature HSET has homsets HSET :=
BindingSigToSignatureHSET LamSig.

Using thiswe can add variables in order to get a representation of the complete syntax of the
untyped lambda calculus.We also get an initial algebra from this functor by Construction 26:

Definition LamFunctor : functor HSET2 HSET2 := Id H LamSignature.

Lemma lambdaFunctor Initial : Initial (FunctorAlg LamFunctor).

Here HSET2 is notation for [Set,Set]. Using this we can define constructors and proposi-
tional computation rules as for lists. We omit these due to space constraints but the interested
reader can consult the formalization. Finally we also get a substitution monad:

Definition LamMonad : Monad HSET := BindingSigToMonadHSET LamSig.

Example 51 (Raw syntax of Martin-Löf type theory) We have also implemented a more
substantial example: the raw syntax of Martin-Löf type theory as presented in [21]. This
syntax has Π-types, Σ-types, coproduct types, identity types, finite types, natural num-
bers, W-types and an infinite hierarchy of universes. See Table 1 for a summary of this
language.

Because there are both infinitely many finite types and universes the syntax has infinitely
many constructors. This is the reason why we above consider families of lists of natu-
ral numbers and indexed coproducts. Note that all of the operations take finitely many

123

B. Ahrens et al.

Table 1 This is the syntax as presented on page 158 of [21]

Types Concrete syntax Binding arities

Pi types (�x:A)B, (λx)b, (c)a [0,1], [1], [0,0]

Sigma types (
x:A)B, (a,b), (Ex,y)(c,d) [0,1], [0,0], [0,2]

Sum types A + B, i(a), j(b), (Dx,y)(c,d,e) [0,0], [0], [0], [0,1,1]

Id types I(A,a,b), r, J(c,d) [0,0,0], [], [0,0]

Fin types Ni , 0i · · · (i − 1)i , Ri (c,c0,…,ci−1) [], [] · · · [], [0,0,…,0]

Natural numbers N, 0, a’, (Rx,y)(c,d,e) [], [], [0], [0,0,2]

W-types (Wx∈A)B, sup(a,b), (Tx,y,z)(c,d) [0,1], [0,0], [0,3]

Universes U0, U1, … [], [], …

arguments which is why we do not need to also consider infinite arities and indexed prod-
ucts.

We define the binding signatures for each of these types separately. Below is the code for
Π- and Σ-types:

Definition PiSig : BindingSig :=
mkBindingSig (isassetstn 3) (three rec [0,1] [1] [0,0]).

Definition SigmaSig : BindingSig :=
mkBindingSig (isassetstn 3) (three rec [0,1] [0,0] [0,2]).

Here the function three rec a b c performs case analysis on the finite type with 3 ele-
ments and returns one of a, b or c. We then combine all of these binding signatures by taking
their sum:

Definition MLTT79Sig := PiSig ++ SigmaSig ++ SumSig ++ IdSig ++
FinSig ++ NatSig ++ WSig ++ USig.

Finally we also obtain a substitution monad on Set for this language as the term Bind-
ingSigToMonadHSET MLTT79Sig of type Monad HSET.

6 Conclusion and Future Work

6.1 Conclusions

We have formalized some classical category-theoretic results on the construction of initial
algebras, as well as on cocontinuity of functors. Maybe surprisingly, the formalization of
results yieldingω-cocontinuous functors as input to the construction of initial algebras proved
to be much more difficult than the construction of colimits in Set.

Our formalization has been integrated into the UniMath library. Statistics related to the
contributions of this paper have been summarized in Table 2.5 The first three columns show
lines of code and the last two show the number of vernacular commands.

Our datatypes come with a recursion principle, defined via the universal property of the
datatype as an initial algebra. This recursion principle allows us to define maps such as
foldr for lists. Those maps satisfy the usual computation rules judgmentally, provided that

5 To reproduce these numbers run the following script on this branch and fork of UniMath: https://github.
com/mortberg/UniMath/tree/locscript/loc.

123

https://github.com/mortberg/UniMath/tree/locscript/loc
https://github.com/mortberg/UniMath/tree/locscript/loc

From Signatures to Monads in UniMath

Table 2 Statistics for the formalization

Specification Proof Comments Definition Lemma and Theorem

4009 6244 1559 717 548

(i) the output type is one of the predefined types of UniMath; and
(ii) the computation is done lazily.

An instance of this is the length function for lists, the output type of which is the type nat
of natural numbers, defined as an inductive Coq type. Maps whose output type is a datatype
constructed via our framework do not compute to a normal form. An example of such a map
is the function concatenating two lists into one list. Trying to compute the normal form of
such a concatenated list leads to memory exhaustion. However, we can still reason about such
maps by rewriting, that is, by replacing computational steps by a suitable lemma stating this
step as a propositional equality. This is precisely how many recursive maps are handled in
SSReflect [15]. There, computation of recursive maps is deliberately blocked for efficiency
reasons in order to avoid too much unfolding. Instead, computation steps are simulated by
applying suitable rewriting lemmas. This indicates that the lack of a computable normal form
for the inhabitants of our datatypes is not an obstacle for mathematical reasoning about the
maps that we define on those datatypes.

In the proofs and constructions presented here, the univalence principle is only used in a
restricted form:

• function extensionality, a consequence of univalence, is used in many places;
• the construction of set-level quotients by Voevodsky makes use of the univalence prin-

ciple for propositions: two propositions are equal when they are logically equivalent.
Consequently, our construction of colimits in the category of sets also depends on the
univalence axiom for propositions.

An alternative to the use of these axioms (by admitting the univalence axiom) would have
been to work with setoids. There, the idea is to abandon the identity type; instead, each type
comes equipped with its own equivalence relation, reflecting the intended “equality”. This
would have been quite cumbersome, since in that case, one needs to postulate respectively
prove that any operation respects the equivalence in the source and target. For the identity
type, on the other hand, this respectfulness is automatic.

Another alternative would be to work in a system where these are provable, and hence
not axioms anymore, like Cubical Type Theory [14]. The additional judgmental equalities in
such a system could potentially simplify some proofs, but that needs to be studied further.

6.2 Future Work

In this section, we lay out some plans for future work and connections to other work.

6.2.1 Initiality for the Constructed Monad

As illustrated in Sect. 5.2, we have formalized a mechanism that, when provided with a
binding signature, yields the associated “term monad” and a suitable recursion principle
for defining maps from the term monad to other (families of) sets. This recursion principle
stems from the universal property of initiality that the functor underlying the monad satisfies.

123

B. Ahrens et al.

However, the constructed monad itself has not, in the present work, been equipped with a
universal property.

Hirschowitz and Maggesi [16,17] equip the term monad of a signature S with a universal
property by considering a category of representations of a given signature. A representation
of S is given by any monad T and a family of module morphisms of suitable type over T . We
should be able to formalize Hirschowitz and Maggesi’s initiality theorem using the monad
we have constructed in the present work.

6.2.2 Generalization to Multi-sorted Binding Signatures

The notion of binding signature considered in this paper does not incorporate a notion of
typing. Suitable generalizations to typed (or multi-sorted) signatures have been considered,
for instance, in [5]. In general, a multi-sorted signature contains not only information about
the number of bound variables, but also of their types. Furthermore, it specifies an output
type for each constructor. Multi-sorted binding signatures allow to specify languages such
as the simply-typed lambda calculus and PCF (Dana Scott’s language for “Programming
Computable Functions”). We are currently working on extending our notions of signature,
as well as the construction of initial algebras, to the multi-sorted setting.

6.2.3 Connection to Voevodsky’s C-Systems

Voevodsky studied Cartmell’s contextual categories [12], under the name of “C-system”,
for a mathematical description of type theories (see, e.g., [28,29], but quite a few more
papers came out of this study). In particular, one of Voevodsky’s goals was to give a precise
construction of the C-system formed by the syntax of a given type theory. One step of this
construction is given in [28], where he constructed a C-system from a pair of a monad on
Set and a module over that monad with values in Set. Such a pair can be constructed from
a monad on Set2 and a choice of a set.

It is our goal to formalize this construction inUniMath, and to apply it to the termmonads
of 2-sorted signatures obtained via the generalization envisioned in 6.2.2.Wewill thus obtain,
for any suitable 2-sorted signature, a C-system of raw syntax of that signature.

Acknowledgements We are thankful to Dan Grayson and Vladimir Voevodsky for helpful discussions on
the subject matter. Our sorrow is that, with his untimely death, we have lost Vladimir as a remarkable guide
to the realm of univalent foundations. We are much obliged to Paige North for pointing to a size problem in
an earlier version of one of our categorical constructions during the writing phase of this article. The authors
are also very grateful to Peter LeFanu Lumsdaine for providing a simpler proof, with fewer hypotheses, that
some functors are ω-cocontinuous. Much of the formalization work on this article was done at the Institute for
Advanced Study, Princeton. We thank the Institute for providing a pleasant and productive work environment.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Adámek, J.: Free algebras and automata realizations in the language of categories. Comment. Math. Univ.
Carol. 015(4), 589–602 (1974)

2. Ahrens, B., Capriotti, P., Spadotti, R.: Non-wellfounded trees in homotopy type theory. In: Altenkirch,
T. (ed.) 13th International Conference on Typed Lambda Calculi and Applications, TLCA 2015, July

123

http://creativecommons.org/licenses/by/4.0/

From Signatures to Monads in UniMath

1–3, 2015, Warsaw, Poland, volume 38 of LIPIcs, pp. 17–30. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik (2015)

3. Ahrens, B., Kapulkin, K., Shulman, M.: Univalent categories and the Rezk completion. Math. Struct.
Comput. Sci. 25, 1010–1039 (2015)

4. Ahrens, B., Matthes, R.: Heterogeneous substitution systems revisited. In: Uustalu, T. (ed.) 21st Interna-
tional Conference on Types for Proofs and Programs (TYPES 2015), volume 69 of Leibniz International
Proceedings in Informatics (LIPIcs), pp. 2:1–2:23, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2018). https://doi.org/10.4230/LIPIcs.TYPES.2015.2

5. Ahrens, B., Zsidó, J.: Initial semantics for higher-order typed syntax in Coq. J. Formal. Reason. 4(1),
25–69 (2011)

6. Altenkirch, T., Reus, B.: Monadic presentations of lambda terms using generalized inductive types. In:
Flum, J., Rodriguez-Artalejo, M. (eds.) Computer Science Logic: 13th International Workshop. CSL’99,
8th Annual Conference of the EACSL Madrid, Spain, September 20–25, 1999, pp. 453–468. Springer,
Berlin (1999)

7. Awodey, S., Gambino, N., Sojakova, K.: Inductive types in homotopy type theory. In: Proceedings of
the 27th Annual IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June
25–28, 2012, pp. 95–104. IEEE Computer Society (2012)

8. Bellegarde, F., Hook, J.: Substitution: a formal methods case study using monads and transformations.
Sci. Comput. Program. 23, 287–311 (1994)

9. Bird, R., Meertens, L.: Nested datatypes. In: Jeuring, J. (ed.) Mathematics of Program Construction: 4th
International Conference. MPC’98, Marstrand, Sweden, June 15–17, 1998 Proceedings, volume 1422 of
Lecture Notes in Computer Science, pp. 52–67. Springer, Berlin (1998)

10. Bird, R., Paterson, R.: De Bruijn notation as a nested datatype. J. Funct. Program. 9(1), 77–91 (1999)
11. Bird, R., Paterson, R.: Generalised folds for nested datatypes. Formal Aspects Comput. 11(2), 200–222

(1999)
12. Cartmell, J.: Generalised algebraic theories and contextual categories. Ann. PureAppl. Logic 32, 209–243

(1986)
13. Chicli, L., Pottier, L., Simpson, C.:Mathematical quotients and quotient types in Coq. In: Types for Proofs

and Programs, Second InternationalWorkshop, TYPES 2002, Berg enDal, TheNetherlands, April 24–28,
2002, Selected Papers, volume 2646 of Lecture Notes in Computer Science, pp. 95–107. Springer (2002)

14. Cohen, C., Coquand, T., Huber, S., Mörtberg, A.: Cubical type theory: a constructive interpretation of the
univalence axiom. In: Uustalu, T. (ed.) 21st International Conference on Types for Proofs and Programs
(TYPES 2015), volume 69 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 5:1–5:34,
Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2018). https://doi.org/10.4230/
LIPIcs.TYPES.2015.5

15. Gonthier, G., Mahboubi, A., Tassi, E.: A small scale reflection extension for the Coq system. Research
report RR-6455, Inria Saclay Ile de France (2016). https://hal.inria.fr/inria-00258384

16. Hirschowitz, A., Maggesi, M.: Modules over monads and linearity. In: Logic, Language, Information
and Computation, 14th International Workshop, WoLLIC 2007, Rio de Janeiro, Brazil, July 2–5, 2007,
Proceedings, volume 4576 of Lecture Notes in Computer Science, pp. 218–237. Springer (2007)

17. Hirschowitz, A., Maggesi, M.: Modules over monads and initial semantics. Inf. Comput. 208(5), 545–564
(2010)

18. Kapulkin, K., Lumsdaine, P.L.F.: The simplicial model of univalent foundations (after Voevodsky). ArXiv
e-prints (2016). Also earlier versions from 2012 onwards are available at https://arxiv.org/abs/1211.
2851v4

19. Mac Lane, S.: Categories for the Working Mathematician, volume 5 of Graduate Texts in Mathematics,
2nd edn. Springer, New York (1998)

20. Martin-Löf, P.: Intuitionistic Type Theory, volume 1 of Studies in Proof Theory. Bibliopolis, Boston
(1984)

21. Martin-Löf, P.: Constructive mathematics and computer programming. In: Logic, Methodology and Phi-
losophy of Science VI, volume 104 of Studies in Logic and the Foundations ofMathematics, pp. 153–175.
North-Holland (1982)

22. Matthes, R., Uustalu, T.: Substitution in non-wellfounded syntax with variable binding. Theor. Comput.
Sci. 327(1–2), 155–174 (2004)

23. Mendler, N.P.: Inductive types and type constraints in the second-order lambda calculus. Ann. Pure Appl.
Logic 51(1–2), 159–172 (1991)

24. Métayer, F.: Fixed points of functors. https://www.irif.univ-paris-diderot.fr/~metayer/PDF/fix.pdf. a PDF
created in April 2003

25. Rech, F.: Strictly Positive Types in Homotopy Type Theory. Bachelor thesis, Saarland University (2017).
https://www.ps.uni-saarland.de/~rech/bachelor.php

123

https://doi.org/10.4230/LIPIcs.TYPES.2015.2
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://hal.inria.fr/inria-00258384
https://arxiv.org/abs/1211.2851v4
https://arxiv.org/abs/1211.2851v4
https://www.irif.univ-paris-diderot.fr/~metayer/PDF/fix.pdf
https://www.ps.uni-saarland.de/~rech/bachelor.php

B. Ahrens et al.

26. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics.
http://homotopytypetheory.org/book. Institute for Advanced Study (2013)

27. Voevodsky, V.: Resizing rules. Talk at TYPES workshop 2011, Bergen, Norway. https://www.math.ias.
edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf

28. Voevodsky, V.: C-system of a module over a monad on sets. ArXiv e-prints (2014). arXiv:1407.3394
29. Voevodsky, V.: A C-system defined by a universe category. Theory Appl. Categ. 30(37), 1181–1214

(2015)
30. Voevodsky, V.: An experimental library of formalized mathematics based on the univalent foundations.

Math. Struct. Comput. Sci. 25, 1278–1294 (2015)

123

http://homotopytypetheory.org/book
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
https://www.math.ias.edu/vladimir/sites/math.ias.edu.vladimir/files/2011_Bergen.pdf
http://arxiv.org/abs/1407.3394

	From Signatures to Monads in UniMath
	Abstract
	1 Introduction
	2 About Univalent Foundations and UniMath
	2.1 Fundamental Concepts of Univalent Foundations
	2.2 Resizing
	2.3 Univalence
	2.4 Propositional Truncation
	2.5 On General Inductive Datatypes
	2.6 Category Theory in UniMath

	3 Two Notions of Signatures
	3.1 Binding Signatures
	3.2 Signatures with Strength
	3.3 Signatures with Strength from Binding Signatures

	4 Construction of Datatypes as Initial Algebras
	4.1 Colimits
	4.2 Initial Algebras from Colimits of Chains
	4.3 Colimits in Set
	4.3.1 Set Quotients in UniMath
	4.3.2 Construction of Colimits in Set

	4.4 Functors Preserving Colimits
	4.5 The Datatype Specified by a Binding Signature

	5 From Binding Signatures to Monads
	5.1 A Substitution Operation on the Datatype of a Binding Signature
	5.2 Binding Signatures to Monads

	6 Conclusion and Future Work
	6.1 Conclusions
	6.2 Future Work
	6.2.1 Initiality for the Constructed Monad
	6.2.2 Generalization to Multi-sorted Binding Signatures
	6.2.3 Connection to Voevodsky's C-Systems

	Acknowledgements
	References

