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Abstract—This paper presents an algorithm, based on 

Sequential Monte Carlo Simulation (SMCS), to estimate 

operational states of components connected to a grid??. The 

algorithm determine the optimum size and location of Static 

Var Compensators (SVCs) usingthe Accelerated Quantum 

Particle Swarm Optimization (AQPSO). The approach 

maximizes the level of reliability of the smart grid, utilizing  

voltage regulation. The specific contribution of the paper is 

that it presents the impact of the integration of SVC over the 

system reliability that leads to a comprehensive composite 

system adequacy evaluation for a smart grid environment??. 

Keywords—accelerated quantum particle swarm 

optimization; Markov Chain; Monte Carlo simulation; reliability 

assessment; smart-grids; static var compensator 

I. INTRODUCTION 

 The vision of smart grids is becoming transparent with 
the advances of information and communication 
technologies. Federal Energy Regulatory Commission 
(FERC) and the recently founded in the U.S., the Department 
of Energy (DOE), recognized that one of the trends of this 
vision prevails on reliability [1]. Therefore, the big challenge 
is to secure the continuous operation of power systems, 
meeting high reliability standards. 
 The power systems are frequently affected by electrical 
failures that produce an interruption to supply the demand. In 
order to enhance the generation adequacy for reliability 
evaluation of an electrical grid, recent investigations [2-4] 
proposed the incorporation of distributed generation to the 
electrical grid. However, a line outage produces a bus 
voltage instability and distributed generations cannot deal 
with this situation. The problem is extended since other lines 
will carry more current and some of them may be 
overloaded. This may produce a load curtailment and an 
increment in electric power losses. As a solution,  an 
adequate reactive power reserve is expected to maintain 
system integrity during post-contingency operation [5]. 
Several techniques to evaluate the reliability of power 
systems based on reactive power sources have been 
developed. For instance, [5, 6] present a technique to 
evaluate system and load point reliability of a power system 
considering reactive power shortage due to failures caused 
by reactive power sources such as generators, synchronous 
condensers and compensators. The authors in [7] introduce a 

novel concept of including the effect of reactive power 
failures in Demand Side Management (DSM) reliability 
studies. Reference [8] investigates the effects of reactive 
power limits on composite system reliability indices and 
provides a quantitative measure for reactive power support 
for power system reliability improvement. It is a fact that 
these studies offer an improvement in system reliability, 
nevertheless, a gap on them is that they do not challenge the 
optimization problem based on size and placement of the var 
compensator in order to maximize the system reliability. 
 The field of reliability assessment is dominated by Monte 
Carlo Simulation (MCS), since it allows a reduction in 
complexity to determine a solution in comparison to the 
analytical method. There are several studies that employ it: 
[9] proposes a method for the reliability evaluation of HVDC 
systems using the MC technique, with the emphasis on the 
use of the reliability index distributions, [10] presents a MC 
hierarchical dynamic reliability model for a dynamic change 
of component failure rate and [11] presents a reliability 
assessment to determine the indices loss of energy 
expectation and loss of load expectation by the employment 
of Sequential Monte Carlo Simulation (SMCS). The 
limitation on these investigations is that they do not offer a 
clear pathway for smart grids since the concept of 
optimization is not involved.  This paper proposes the 
employment of Static Var Compensators (SVCs) as a 
contingency measure to increase the reliability of a smart 
power grid. The operational states for all the components 
connected to the smart grid (including the SVCs) are 
determined by using SMCS. In order to maximize the 
reliability of the system based on the size and placement for 
SVCs, an Accelerated Quantum Particle Swarm 
Optimization (AQPSO) is proposed. The combination of 
SMCS and AQPSO brings a new algorithm that allows to 
simulate a smart grid and analyze the impact of the 
integration of SVCs over the power system reliability. 
 This paper is divided into the following sections: Section 
II presents the reliability model for a SVC. Section III 
presents the theory related with MCS and AQPSO. Section 
IV presents the proposed algorithm. In Section V, the 
optimization problem is given. In Section VI, the proposed 
algorithm is tested in a case study. Section VII shows the 
impact of the integration of SVC over the system reliability 
that leads to a smart grid environment. Finally, Section VIII 



brings the conclusion based on the obtained results and the 
applied approach. 

II. RELIABILITY MODEL FOR A STATIC VAR COMPENSATOR 

A. Markov Chain: State Space Diagram 

The reliability model of some components is not easy to 

deal with, since sometimes this may involve differential 

equations. Nevertheless, a simple way to model it is by 

applying Markov chain, which is a representation of all key 

states in a diagram connected between them by variables 

called transition rates. Fig. 1 shows a transition state of a 

repairable component with two possible states: operational 

and failure. 

 
Fig. 1 Space state diagram for repairable component 

 

For components that follow an exponential distribution, 
the failure rate � and the repair rate � are time independent. 
Then, the mean time to failure ������ and the mean time to 
repair ������ can be expressed as [12]: 

1/MTTF λ=  (1) 

1 /MTTR µ=
 

(2) 

 These formulations are convenient for the reliability 
evaluation using SMCS. 

B.  Operational States of a Static Var Compensator 

A SVC primarily has three main components : 1. main 
circuit; 2. auxiliary power supply; and 3. control and 
protection system. In a reliability context, while more 
elements involved in a system, it may become less reliable. 
Hence, applying this criterion to the SVC due to the number 
of components involved, the contribution of forced outages 
may be high. Nonetheless, there is an evidence that the SVC 
have lower failure rates as presented in [13] and for this 
reason, the SVC was selected in this paper rather than other 
var compensators. 

In order to describe the reliability model for a SVC, the 
following notation is used: “Up” the system is in operation, 
“Down” the system is not operating, “A” corresponds to the 
main circuit, “B” is the control and protection system and 
“C” is used to describe the auxiliary power supply. Now, 
applying Markov chain the result is as shown in Fig. 2. 

III. FUNDAMENTAL ALGORITHMS 

A. Sequential Monte Carlo Simulation 

The generation of random numbers of any distribution or 
stochastic process to evaluate numerically, indirect or 
artificial way and estimate their behavior is defined in [12] as 
Monte Carlo simulation. In SMCS, the state of each 
component in the system is obtained by sampled, defined by 
its distribution function. Let the state of a power system be 

the vector
1 2

( , ,.., )
b

w w w w= , where 
s

w  is the state of the 
th

s  component, in such a way that: 

 

1, Up state

0, Down state
s

w


= 
  

(3) 

 

 
Fig. 2 Space state diagram for SVC operation 

 

 The combinations of all components states bring the state 
space 	. Assuming that each system state has the 

probability ( )P w  and the experiment function ( )F w , the 

mathematical expectation of the experiment function of all 
system states is given by (4): [14] 

( ) ( ) ( )
w W

E F F w P w
∈

= ∑
 

(4) 

The estimate of the expected value of the test function in 

terms of the number of sampling NS can be expressed as: 

[14] 

µ( ) ( )
1

1 NS

e

e

E F F W
NS =

= ∑
 

(5) 

These mathematical formulations are used to describe the 
SMCS, as shown in ALGORITHM 1. 

ALGORITHM 1: PSEUDOCODES FOR SMCS ALGORITHM. 

1.   Procedure of SMCS 
2.   For 
 � 1 to 
� 
3.         randomize the states for all components: 
            � � ���, ��, … , ��� → 	�; 
4.   evaluate 	� in experiment function to get ��	��  
            and save the value 
5.   Endfor 
6.   use (5) in order to get the estimate of the expected value; 

B. Accelerated Quantum Particle Swarm Optimization 

Quantum Particle Swarm Optimization (QPSO) is an 

evolutionary computation technique that unlike classical 

PSO, it does not employ the concept of velocity to get the 

optimal solution. Instead, it associates a wave function 



( , )x tψ to each particle, which represents the compress 

information about the particle that depends on the potential 

field that lies in. The scenario of the particle is a quantum 

well. 

 
Fig. 3 Moving model of a particle in a quantum well 

 

On the other hand, each particle has a memory of its 

own best position called personal best �����. However, this 

is not the only particle since there is a number of particles

SS which is greater than one, hence there must be a solution 

of the whole swarm, called global best ( )g k . The particle i  

at search step k initially is in the position ����� and it will 

move to a position defined by the local attractor ( )
i

p k . Based 

on a trajectory analysis the authors in [15] proposed a local 

attractor following the coordinates: 

( ) ( ) ( ) ( )( ) ( )

( ) ( )1 1 1 1 2 2

1

/

i ip k k D k k g k

k c r c r c r

ϕ ϕ

ϕ

= + −

= +

 (6) 

where 
1r and 

2r are random numbers uniformly distributed 

between [0,1], 
1c and 

2c  are the acceleration coefficients, 

such that
1 2

0 , 2c c≤ ≤ . 

Since the particle is treated as a quantum particle, its 

position can be estimated using its time independent wave 

function. In quantum mechanics, the probability density 

function is defined as: 

( ) ( )
2

Q x xψ=  (7) 

For a particle in a quantum well the probability density 

function that the particle appears at position 
i

x∆  relative to 

( )
i

p t  is [16]: 

( ) ( )
2 2 /1

i ix L

i i

i

Q x x e
L

ψ − ∆
∆ = ∆ =  (8) 

The probability density function give a number between 

0 and 1 /
i

L . Hence: 

( ) ( )
2 1

; 0,1
i i i

i

x u u rand
L

ψ ∆ = =  (9) 

Since (8) and (9) are equal, then: 
2 /i ix L

u e
− ∆

=  (10) 

Solving for 
i

x∆ : 

1
ln

2
i

L
x

u

 
∆ = ±  

 
 (11) 

where L is a parameter control given by [16, 17]: 

( ) ( )
1

2
i i

L
x k D k

SS
α= − ∑  (12) 

A comprehensive representation of the model is given in 

Fig. 3, from which: 

( ) ( )1i i ix x k p k∆ = ± + −  (13) 

 
Fig. 4 Updated position of the particle using AQPSO 

 

By replacing (11) and (12) in (13) and solving 

for	���� � 1�: 

( ) ( ) ( ) ( )
1 1

1 lni i i ix k p k x k D k
SS u

α
 

+ = ± −  
 

∑  (14) 

The position of the particle is in a multi-state (like the 

Schrödinger cat [18]) and it is not possible to determine the 

updated position until an observation take place. Given that 

the position of the particle is ( )
i

x k , at step 1k + , the particle 

may appear in the zone ( ( 1), ( 1))
i i

x k x k− + + + . The probability 

for each state is 0.5 determined by the observation 

( )0,1obs rand=  [16]. The traditional QPSO employs one 

observer to define the next position of the particle. 

Nonetheless, in order to accelerate the convergence and 

enhance the accuracy of the results, this paper proposes to 

increase the number of observers to an odd natural number

U , which is greater than one, in such a way that the set of 

observers is: 

{ }

{ } { }
1 2, ,...,

all 0.5 ; all 0.5

U
A B obs obs obs

A obs B obs

∪ =

= ≥ = <
 (15) 

The number of elements in a set is known as cardinality 

and its operator is defined as ‘card’, then the observer is 

chosen based on the following formulation: 

( ) ( )

( ) ( )

card card 0.5

card card 0.5

if A B Obs

if A B Obs

> ⇒ ≥

< ⇒ <
 (16) 

 

ALGORITHM 2: PSEUDOCODES FOR AQPSO ALGORITHM. 

1.   Procedure of AQPSO 
2.   For � � 1 to swarm size ���� 
3.       randomize the position of each particle ���0�; 
4.       ���0� � ���0�; 

5.       Evaluate the objective function � ���0�!; 

6.   Endfor 

7.   min� ���0�! → g; 

8.   For � � 1 to maximum number of iterations �&'� 
9.       For � � 1 to �� 

10.            calculate (���� with (6); 

11.            Get )*+ based on (16) 

12.            update ����� with (17); 

13.            Evaluate the objective function � �����!; 

13.            If � �����! , � �����! 

14.                  ����� � �����; 

15.                  If min� �����! → g- , g	 
16                         g � g- 



17.                  Endif  

15.            Endif 

16.      Endfor 

17. Endfor 

Then (14) can be written as: 

( )
( ) ( ) ( )

( ) ( ) ( )

1 1
ln , 0.5

1
1 1

ln , 0.5

i i i

i

i i i

p k x k D k if Obs
n u

x k

p k x k D k if Obs
n u

α

α

  
+ − ≥ 

  
+ = 

  − − <   

∑

∑

 
(17) 

A graphical representation of the updated position of the 

particle is as shown in Fig. 4. The procedure for 

implementing the AQPSO is given in ALGORITHM 2. 

IV. PROPOSED ALGORITHM FOR 

 OPTIMUM RELIABILITY ASSESSMENT 

The proposed algorithm has two main parts. The first one 
called Algorithm ‘OF’, regards about the evaluation of the 
objective function. The reliability index adopted for the 
whole system is the Expected Energy Not Supplied (EENS). 
In order to estimate, it is necessary to work with the SMCS, 
so in that way, the operational state of a component at certain 
time . can be determined. To represent the operational state, 
“1” is used to describe that the component is in operation and 
“0” to describe that the component is in failure. This part of 
the algorithm starts by defining the maximum number of 
experiment	
�, the time of simulation � and all reliability 
data related with the power system.  

At a time	' � 0, it is assumed that all components are in 
operation (state “1”) and the Energy Not Supplied (ENS) is 
considered as zero. For the next hour, a random number 
generation based on their failure distribution function takes 
place. The data is recorded and before going to the next hour, 
if there is a component in state “0”, to simulate its restoration 
a random number generation based on the renewal 
distribution function takes place. This process will be 
repeated until reaching the time simulation	�. 

  

 
Fig. 5 Algorithm ‘OF’ to evaluate the objective function 

 

 The next step is to verify if the total generation  /01! is 

greater than the total demand	�/21�, if it is so no load 
curtailment �34�  is needed, otherwise a load curtailment 
takes place and this value will represent the ENS. The load 
curtailment is based on two criteria [12]: 1. Loads are 
curtailed at buses which are as close to the elements on 
outage as possible; 2. loads are classified according to their 
importance. The least important load should be curtailed 
first, then the next least important, and at the last the most 
important load. Continuing with the process, to estimate the 
currents and voltages on the grid at a time	., a power flow 
based on the decoupled Newton Raphson method is 
performed. The power flow takes as an input just the 
components that are in state “1”. If any constraint is violated 
or if there is any overloaded line	��3�, load curtailment will 
be applied and added to the ENS, otherwise, the experiment 
is finished and the value of ENS for experiment 
 is saved. 
Finally, the whole process is repeated 
� times and the 
EENS is calculated using (5). More details about the 
algorithm go to Fig. 5. 

The next stage of the proposed algorithm is the 

optimization problem, which cannot be solved employing 

basic mathematical methods since it requires of the power 

flow analysis (which is based on iterative process) to 

evaluate the objective function. As a result, AQPSO 

algorithm is applied.  Regardless of the fact that this method 

cannot assure to obtain the global solution, it is able to 

provide a sufficiently good solution that is close to the 

global one. The input for the algorithm is the system data 

such as line voltage, daily power consumption, line 

impedances etc. Next, the maximum number of iterations &' 
and the swarm size �� is defined.  



 

 
Fig. 6 Algorithm for optimum reliability assessment 

The swarm �� is defined as the combination of the 

different SVCs installed at bus 5 with capacity	6789 . Then, 

���0�  is gotten by the generation of discrete random 

numbers such that 1 : 5 : ; and	6<�= : 6789 : 6<>?, 

where ; is the total number of buses of the grid and 6<�= 

and 6<>? are the minimum and maximum reactive power 

that the SVC can supply. Since the analysis is for � � 0 

then	���0� � ���0�. The next step is to add ���0� as part of 

the power system, then the process described in the 

Algorithm OF (Fig. 5) is used to determine the EENS. g�0� 
is obtained based on the particle that has the minimum value 

of EENS. At this point, the first iteration for the AQPSO 

take place and the particles start moving following (16) and 

(17). The process is repeated &' times and the result is the 

best ���&'� that minimize the EENS. For more details about 

the algorithm, Fig. 6 is presented. 

V. PROBLEM FORMULATION 

The main objective of this paper is to maximize the 

power system reliability by minimizing the EENS. An 

hourly time-slotted system with slot index ' is considered 

for this formulation. The optimization problem can be 

defined as: 

( )minimize EENS  (18) 

Subject to: 

1 1

( ) ( , ) ( , ) , 1,2,...,

, 1, 2,...,

n n

gen losses load

a a

P t P a t P a t a n

t T

= =

− = =

=

∑ ∑
 (19) 

1 1 1

( ) ( , ) ( , ) ( , ),

1, 2,..., ; 1, 2,...,

n n n

grid DSVC losses load

a a i

Q t Q a t Q a t Q a t

a n t T

= = =

+ − =

= =

∑ ∑ ∑  
(20) 

min max
( ) ( , ) ( ), 1,2,..., ; 1,2,...,

SVC
Q a Q a t Q a a n t T≤ ≤ = =  (21) 

. . min . . . . max( , ) , 1, 2, ..., ; 1, 2, ...,p u p u p uV V a t V a n t T≤ ≤ = =  (22) 

0 d n≤ ≤  (23) 

The constraints shown in (19) and (20) indicate that the 

power (active and reactive) carried by the generation must 

satisfy the load and the electrical power losses.  The reactive 

power produced by an installed SVC is constrained by (21), 

since it has a minimum and maximum defined power. The 

constraint given in (22) provides a voltage regulation for 

each bus. Finally, constraint (23) is employed to control the 

number d of installed SVC. Note that only one SVC is 

allowed to be installed per node. 

VI. CASE STUDY 

The study incorporates the IEEE 24 bus reliability test 

system [19]. The reliability index used for the whole system 

performance assessment was the Expected Energy Not 

Supplied (EENS). Two scenarios are evaluated: no SVCs 

installed and SVCs installed. To simplify the analysis, the 

assumptions are: 1. all components are initially operating 

and their reliability model follows an exponential 

distribution; 2. reliability model of the SVCs is as described 

in section II, with the failure and repair rate are as given in 

TABLE I; 3. SVCs available is as shown in TABLE II.4. Bus 

voltages must be between 0.95 and 1.05 p.u.  
TABLE I. FAILURE AND REPAIR RATE FOR SVC’S COMPONENTS 

 
� 

[failure per year] 

@ � 1/� 

[repair hours] 

Main 

Circuit [20] 
0.0906 1802 

Control & 

protection [13] 
0.2100 30 

Auxiliary power 

supply [13] 
0.4904 60 

 
TABLE II. SVC AVAILABLE 

SVC Capacity 

[MVAr] 
5 10 20 30 40 50 

VII. RESULTS AND DISCUSSION 

A. Scenario 1: No SVCs installed 

This case is used as a benchmark case in order to 

observe the effects of the installation of the SVCs over the 

power system reliability. The EENS was estimated using the 

algorithm described in Fig. 5, resulting  128.816 GWh/year.  

B. Scenario 2: SVCs installed 

To bring the vision of a smart grid, in this scenario the 

algorithm described in Fig. 6 is used. The optimal size and 

placement of the SVC are shown in Fig. 7. With the 

implementation of the SVCs, the EENS is reduced to 71.898 

GWh/year, showing an improvement in the power system 

reliability.  



C. Computational efficiency 

The results are obtained using a computer with a RAM 

of 8.00 GB and processor Intel Core i7-6700 of 3.40 GHz. 

In order to show the efficacy of the proposed algorithm, the 

same optimization problem is solved using PSO and 

classical QPSO. In addition, AQPSO with three (AQPSO3), 

five (AQPSO5) and seven (AQPSO7) observers are used. 

The convergence and average time simulation per 

experiment are presented in Fig. 8 and Error! Reference 

source not found., respectively.  

The results reveal that although the PSO possesses the 

fastest convergence, it has the largest average time 

simulation. Moreover, the solution is not accurate enough as 

the other optimizations. On the other hand, the AQPSO3, 

AQPSO5 and AQPSO7 require more time simulation than 

the QPSO. This is logical since more observers imply more 

operations to develop in the simulation. In terms of  

convergence achievement, AQPSO3 is slower than the 

QPSO. However, the convergence is enhanced as the 

number of observer increases. The fastest convergence was 

achived from AQPSO5 and AQPSO7. 

 
TABLE III. ROBUSTNESS OF THE EMPLOYED ALGORITHMS 

Algorithm 
Average time simulation 

per experiment [s] 

Convergence 

iteration 

PSO 10.67 34 

QPSO 11.04 37 

AQPSO3 11.20 36 

AQPSO5 11.25 30 

AQPSO7 11.26 30 

 

 
Fig. 7. Optimal size and placement of available SVCs 

 

 
Fig. 8. Convergence of the employed algorithms 

 

VIII. CONCLUSIONS 

This paper proposes an approach to maximize reliability 

of a power system based on optimization of placement and 

size of SVCs in a smart grid environment. The approach 

incorporates AQPSO, which proved to be superior in 

convergence and efficiency in comparison with the 

conventional QPSO and PSO. The proposed algorithm can 

also be extended to estimate the cost-benefit of SVCs in a 

Smart Grid Environment. 
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