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Optimization of SLM Process Parameters for Ti6Al4V Medical Implants 

 
 
 
Abstract 

Ti6Al4V alloy has received a great deal of attention in medical applications due to its 
biomechanical compatibility. However, the human bone stiffness is between 10 and 30 GPa 
while solid Ti6Al4V is significantly stiffer, which would cause stress shielding with the 
surrounding bone which can lead to implant and/or the surrounding bone’s failure. In this 
work, the effect of SLM process parameters on the characteristics of Ti6Al4V samples, such 
as porosity level, surface roughness, elastic modulus and compressive strength (UCS), has 
been investigated using Response Surface Method (RSM). The examined ranges of process 
parameters were 35-50 W for laser power, 100-400 mm/s for scan speed and 35-120 µm for 
hatch spacing. The results showed that the porosity % of a SLM component could be 
increased by reducing the laser power and/or increasing the scan speed and hatch spacing. It 
was also shown that there was a reverse relationship between the porosity level and both the 
modulus of elasticity and UCS of the SLM part. In addition, the increased laser power 
resulted in a substantial decrease of the surface roughness of SLM parts. The process 
parameters have been optimized to obtain structures with properties very close to that in 
human bones. Results from the optimization study revealed that the interaction between laser 
process parameters (i.e. laser power, laser speed, and the laser spacing) have the most 
significant influence on the mechanical properties of fabricated samples. The optimized 

values for the manufacturing of medical implants were 49 W, 400 mm/s and 99 m for the 
laser power, laser speed and laser spacing, respectively. The corresponding porosity, surface 
roughness, modulus of elasticity and UCS were 23.62%, 8.68 µm, 30 GPa and 522 MPa, 
respectively.  

Keywords: Selective laser melting (SLM); Design of Experiment; Ti-6Al-4V; Medical 
Implants 

1. Introduction 

Selective laser melting (SLM) is an additive manufacturing technique that produces near 
fully dense metal parts directly from a CAD design by adding layer upon layer [1-4]. The 
main concept is based on a laser beam that passes over a thin layer of powder and diffuses it 
selectively to the desired shape. Next, a new layer of powder is spread, the platform is 
lowered according to the required layer thickness and then the melting process is repeated 
until the full part is obtained [5,6]. SLM has many advantages such as producing complex 
shapes that are difficult to fabricate via conventional methods, short time from design to 
market, and near net shape production which minimizes waste of materials [7,8]. For these 
reasons, the SLM process is used in aerospace and biomedical applications such as implants 
and prostheses [9,10]. Examples of metal powder used in SLM processes are: titanium alloys, 
steels, cobalt, chromium and aluminum alloys [11]. On the other hand, SLM has some 
limitations that include the stair step effect which increases surface roughness, and balling 
phenomenon which increases both the surface roughness and the porosity of SLM parts [12]. 
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(laser power = 110 W, scan speed = 400 mm/s, scan spacing = 40 µm, and layer thickness = 
50 µm). Sun et al. [24] used the Taguchi method to optimize four process parameters: layer 
thickness, linear energy density, hatch spacing and scanning strategy. They reported that 80 
W laser power, 200 mm/s scan speed, 60 μm hatch spacing, a 20 μm layer thickness and X-Y 
inter-layer for scanning strategy was sufficient to achieve fully dense, good quality Ti6Al4V 
components. In another study Murr et al. [25] have produced Ti6Al4V parts via SLM for 
biomedical implants. It was indicated that SLM was capable of producing good quality parts 
with mechanical properties better than wrought and cast Ti6Al4V parts. Vandenbroucke and 
Kruth [26] also produced medical and dental parts fromTi6Al4V alloy and tested their 
mechanical and chemical properties. The Ti6Al4V produced had achieved 99.98 % density.  

However, it should be noted that in the earlier studies such as those by Murr [25] and 
Vandenbroucke and Kruth [26], the objective was mainly to produce SLM parts with 
minimum porosity in order to achieve mechanical properties that could reach, or even 
exceed, those of bulk material. In the work reported by Vandenbroucke and Kruth [26], a 
tensile young's modulus of about 94 GPa was obtained. Nevertheless, the elastic modulus of 
bones in human body ranges from 10 to 30 GPa. The large difference in moduli between 
titanium implants and bones, known as stiffness mismatch, can result in stress shielding, 
which has been held responsible for implant loosening and consequently could cause the 
patients to require a revision surgery. Two solutions were found to this problem: the first one 
was developing new types of titanium alloys that have modulus closer to bones and the 
second one was developing porous structure instead of solid structures which reduces 
material modulus [27-30].Titanium alloys that have 30% volume porosity can have modulus 
similar to human bones. One problem of porous structures is that it decreases toughness and 
creates stress concentration around the pores [31].  

Furthermore, a medical implant should have high compressive strength to prevent 
fractures and improve functional stability. High strength is also required to impede 
spring-back both during and after the operation procedure [32,33]. Finally, an implant should 
have sufficient surface roughness to improve the ingrowth of the human tissues into it. 
Compared to smooth surfaces, textured implants surfaces exhibit more surface area for 
integrating with bone via osseointegration process. It was suggested that a surface roughness 
in the range from 1 to 10 microns would be required to enhance both the osteoconduction 
(in-migration of new bone), and osteoinduction (new bone differentiation) processes [34-36]. 

  
Previous investigations related to additive manufacturing of Ti alloys have focused on 

producing fully dense and high integrity structures. There is a clear gap in literature regarding 
the simultaneous enhancement and adjustment of pore fraction, surface and mechanical 
properties of Ti6Al4V SLM components towards biomedical implants. In the present work, 
artificial pores have been created in Ti6Al4V parts fabricated via SLM by controlling the 
process parameters to achieve surface and mechanical properties suitable for biomedical 
applications. The influence of processing parameters by means of laser power, scan speed 
and hatch spacing on the surface roughness, porosity content and mechanical properties of 
Ti6Al4V components produced by SLM will be investigated. Statistical analysis by means of 
Design of Experiments (DoE) and Analysis of Variance (ANOVA) will be adopted to 
optimise the SLM process parameters and fabricate custom parts with elastic modulus, UCS 
and surface roughness sufficiently close to that of human bones. 
 
 
  



 

2. Experimental Methods 

2.1 Materials 

Ti6Al4V gas atomized alloy powder was supplied by LPW Technology. Most of the 
powder particles had a size range between 19-45m as measured using a laser diffraction 
analyzer (Microtrac) following the ASTM B822 standard. The size distribution of powder 
used is shown in Table 1. 

Table 1. Ti6Al4V powder size distribution 

Particle size 
(m) 

<16 16-22 22-31 31-44 >45 

Percentage 
(%) 

5 10 28 46 11 

2.2. Statistical design of experiment (DoE) using response surface 

In this study the design of experiment RSM was carried out to generate an experimental 
plan with minimum possible trials. ANOVA was utilized to find a relationship between the 
input and output parameters, identify the most significant parameters, and find the optimal 
setting of those parameters that can achieve the intended objective function. The response 
surface “Y” can be expressed by a second order polynomial (regression) equation as shown 
in Equation 2: 

Y 	b ∑b x ∑b x ∑b x x 																								(2) 

 
where xi are the factors input parameters. The terms b0, bi, bii, and bij are the model 

coefficients that depend on the main and interaction effects of the process parameters. 
Method of least squares is used to determine the constant coefficients. To perform the design 
of experiment, Design-Expert Software Version 7.0.0 (Stat-Ease Inc., Minneapolis, USA) 
was used.  
 
The procedure adopted in this study was as the following: 
1. Identification of the key process parameters, and setting the upper and lower bound for 

each. 
2. Selection of the output response. 
3. Developing the experimental design matrix. 
4. Carrying out the experiments according to the design matrix, and recording the output 

response. 
5. Developing a mathematical model to correlate the process parameters to the output 

response. 
6. Optimizing that model using genetic algorithm. 

 

In the current study three factors (process parameters) were considered which are the laser 

power, scan speed and hatch spacing. According to the central composite design, and as 

described above, each parameter was varied over 5 levels (-α, -1, 0, 1 and α). See Fig 1. In 

this work α was considered to be 2 in order to change each factor over five equal levels. Table 

2 shows the levels of each factor in this investigation. As shown -α and α represent the 

minimum and maximum levels respectively, of each factor. Also, three center points (at the 0 

level (middle) of all factors, see Fig1) were considered. The center points are used to provide 



 

information about the experimental error. This resulted in the identification of 17 parametric 

combinations for testing, as shown in Table 3. Porosity content, surface roughness, elastic 

modulus and compressive strength (UCS) were measured as outputs to better understand the 

quality characteristics of the fabricated samples. 

2.3. Sample build and characterization  

SLM components were fabricated using the SLM system (ProX 100TM) from 3D 
systems at Texas A&M University, USA. All specimens were built using a Z-increment 
(vertical) of 30 µm. All processing was carried out in an Argon atmosphere with an 
oxygen-content of less than 0.1%. A small coupon with rectangular cross-section of 6 mm x 6 
mm, and with a height of 12 mm was fabricated for each parametric condition. 

 

Table 2. The range of matrix building parameters. 

Parameter Units 
Levels 

-2 -1 0 1 2 
Laser Power W 35 39 43 46 50 
Scan Speed mm/s 100 175 250 325 400 

Hatch 
Spacing 

µm 35 56 78 99 120 

 
The surface roughness of fabricated coupons was measured by surface profilometer 

(Taylor Hobson Form Talysurf 120L). In this work, the surface quality of the parts was 
mostly expressed by the arithmetic mean surface roughness (Ra). Four measurements were 
carried out for each sample, two at the top surface and another two at the side. The Ra was 
measured over a length of 4 mm. The mean value of these four center-line average surface 
roughness was considered to express the surface roughness of each sample.  

The samples were prepared for microscopic examination using standard mechanical 
grinding and polishing using SiC paper down to a 0.05 µm finish. Polished surfaces were 
examined using a Zeiss AxioVert A1 optical microscope equipped with AxioVision 4 image 
analysis software. Eight frames captured for each sample (each with a size of 800 µm x 600 
µm) and the area fraction of the pores was evaluated using ImageJ image analysis software. 
The compression tests were conducted using a WDW-100E universal testing machine using a 
constant loading speed of 2 mm/min. The resulting compression test’ stress-strain curves 
were analyzed to obtain the ultimate compressive strength and the elastic modulus for each 
specimen. Table 3 shows the 17 parametric conditions used in this investigation and the 
corresponding quality characteristics. 

3. Results and Discussion  

The measured values for surface roughness, porosity %, elastic modulus and ultimate 
compressive strength along with the parametric combinations are presented in Table 3. 

 
 
 
 
 
 



 

Table 3. Matrix building parameters with resulting surface roughness, porosity %, elastic 
modulus and ultimate compressive strength. 

Run 
Laser 
Power 
(W) 

Scan 
Speed 
(mm/s) 

Hatch 
Spacing 

(µm) 

Surface 
Roughness 

(µm) 
Porosity % 

Elastic 
Modulus 

(GPa) 

Ultimate 
Compressive 

Strength 
(MPa) 

1 46 325 99 10.12 20.03 24.07 492 
2 35 250 78 20.34 14.56 31.35 748 
3 43 100 78 16.03 5.29 63.91 1631 
4 39 325 56 16.99 9.91 46.80 1114 
5 39 325 99 17.11 25.43 17.12 388 
6 46 175 56 12.41 2.94 74.98 1749 
7 46 325 56 12.27 4.39 66.93 1665 
8 39 175 56 20.33 2.63 71.58 1501 
9 43 250 78 15.15 7.65 54.48 1243 
10 43 400 78 14.94 23.09 20.81 467 
11 50 250 78 9.10 3.86 66.43 1636 
12 43 250 78 14.58 7.80 48.93 1212 
13 43 250 120 14.58 21.70 21.63 427 
14 39 175 99 16.51 6.18 59.18 1342 
15 46 175 99 11.81 3.01 69.64 1540 
16 43 250 78 15.11 7.77 53.04 1258 
17 43 250 35 13.42 3.57 68.83 1537 

 

3.1. ANOVA results 

In statistical analysis, Least square fitting R2 is used to describe the model fit. RSM method 
suggested that both surface roughness and modulus of elasticity fit linear models with R2 of 
92% and 87% respectively. Additionally, porosity content fits a quadratic model with R2 of 
98% while UCS fits a two-factor interaction model with R2 of 95%. The predicted versus 
actual plots for modulus of elasticity, porosity, surface roughness and UCS are shown in Figs 
2 (a) to (d), respectively. The observed points on all plots reveal that the actual values are 
distributed relatively near to the straight line in all cases. This could suggest that each of the 
models reasonably described the relationship between the process parameters and the 
different responses evaluated in this study. The four models can be represented as functions 
of laser power (P), scan speed (v) and hatch spacing (h) which could be described using the 
general empirical model (Equation 3). 
   

Response 	 b b P b ν b h b Pν b Ph b νh b P
b ν b h           (3) 

 

Where bo is the average response, and b1, b2. . .,b9 are the model coefficients that depend on 
the main and interaction effects of the process parameters. Least Squares Fitting, which is a 
mathematical procedure for finding the best-fitting curve to a given set of points by 
minimizing the sum of the squares of the offsets of the points from the curve, was applied to 



 

analyze the data presented in Table 3 and to determine the constant coefficients. The values 
of the model coefficients for the four quality characteristics are shown in Table 4.  
 

Table 4.Response surface model coefficients for the surface roughness and porosity fraction. 

Coefficient 
Surface 

roughness 
model 

Porosity 
model 

Elastic 
modulus 
model 

Ultimate 
compressive 

strength 
model 

bo +14.76 +7.17 +50.57 +1173.38 

b1 -2.92 -2.20 +6.94 +179.93 

b2 -0.42 +5.04 -12.92 -300.16 

b3 -0.26 +4.44 -11.54 -280.50 

b4 0 -1.01 0 +26.03 

b5 0 -0.42 0 -62.18 

b6 0 +3.44 0 -191.22 

b7 0 +0.30 0 0 

b8 0 +1.54 0 0 

b9 0 +1.15 0 0 

 
In statistical significance testing the p-value is the probability of obtaining a test statistic 

at least as extreme as the one that was actually observed, assuming that the null hypothesis is 
true. The null hypothesis (which assumes that all parameters have no significant effect) is 
rejected when the p-value is less than the predetermined significance level which is 0.05 
(95% confidence level). This means that any factor has p-value less than 0.05 is considered to 
be a significant model parameter [37]. Table 5 shows the p-value for each parameter and 
interaction. In this study the ANOVA results indicated that, within the investigated range of 
parameters, the most significant parameters influencing the surface roughness was the laser 
power while the modulus of elasticity was mainly affected by laser power, scan speed and 
hatch spacing. Finally, both the porosity % and UCS were significantly affected by the three 
process parameters as well as the interaction between scan speed and hatch spacing. 

 
 
 
 
 
 
 
 
 
 
 
 
  

 
 



 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Fig 2. Design-Expert plot. Predicted vs actual data for different properties of SLM part, 

(a) modulus of elasticity, (b) porosity, (c) surface roughness and (d) UCS. 
 

Table 5.ANOVA p-values for each of the parameters and parameter interactions for the Ra, 
porosity %, elastic modulus and UCS. 

Model 
Parameter 

P-value 

Surface 
roughness

Porosity 
% 

Elastic 
modulus 

Ultimate 
compressive 

strength 
P < 0.0001* 0.0016 0.0051 0.0004 
V 0.1108 < 0.0001 < 0.0001 < 0.0001 
H 0.3144 < 0.0001 < 0.0001 < 0.0001 
Pv N.A. 0.1519 N.A. 0.6030 
Ph N.A. 0.5239 N.A. 0.2285 
vh N.A. 0.0009 N.A. 0.0028 
P2 N.A. 0.4855 N.A. N.A. 
v2 N.A. 0.0065 N.A. N.A. 
h2 N.A. 0.0243 N.A. N.A. 

             *Bold values indicate statistically significant process parameters (p-value<0.05) 

(c) (d) 

(b) (a) 



 

3.1.1. Surface roughness analysis  

As indicated before, only the laser power was found to have a significant effect on the surface 
roughness and that relationship between them follows a linear model. Fig 3 shows the effect 
of laser power on surface roughness. It can be seen that increasing the laser power from 35 to 
50 W, at constant scan speed and hatch spacing of 250 mm/s and 78 µm respectively, resulted 
in a significant drop of the Ra value from 21 to 9 µm.  

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

Fig 3. Effect of laser power on the surface roughness. 
 
This suggests that increasing the laser power could significantly reduce the roughness of 

both top and side surface of the SLM parts. Higher laser power generates large recoil 
pressures which cause the melt pool to flatten resulting in a better quality of the top surface 
[38]. In addition, the increased laser power increases the energy density which improves the 
wettability of the melt pool, eliminating the differences in surface tension and in turn 
decreasing the chance of encountering the balling phenomenon which dramatically decreases 
the side surface roughness [2]. In a study by Yasa and Kruth [39], the surface roughness of 
Ti6Al4V SLM parts fabricated using 40 W laser power, 225 mm/s scan speed and 74 µm 
hatch spacing (optimized parameters for maximum density) was measured to be 15 µm. In 
the current study, and as could be inferred from Fig 3, the surface roughness at 40W laser 
power, 250 mm/s scan speed and 78 µm hatch spacing is about 16.5 µm, which shows good 
agreement with the result obtained by Yasa and Kruth [40]. Again, for biomedical 
application, implants with rough surfaces are preferred to allow tissues to grow inside and 
integrating them to the hosting bones. This can be achieved by using low laser power. 

3.1.2. Porosity analysis 

Figs 4 (a), (b) and (c) show the effect of laser power, scan speed and hatch spacing on the 
porosity content using quadratic model as suggested by the RSM. It can be seen that the 
porosity content in the SLM fabricated coupons decreased consistently with increasing the 
laser power and/or decreasing the scan speed and hatch spacing. High laser power and/or low 
scan speed will increase the energy density applied to the powder and improve the diffusion 
process. Additionally, when high energy is applied, pores are closed under surface tension 
and capillary forces which increase the density of SLM samples. Also, low scan speed 
ensures that continuous tracks can be obtained. Small hatching spacing would increase the 
overlapping area of adjacent scanning lines, resulting in a complete melting of the powder 

Scan Speed=250 mm/s 

Hatch Spacing=78 µm 



 

between scanning lines. In this way, the subsequent melting pool would grow on the 
solidified scanning lines and the preceding solidified layer, causing the scanning line to 
proceed stably from melt to solid [41]. Finally, the model suggests that the interaction 
between the hatch spacing and scan speed is also significant, as shown in Fig 4 (d). At higher 
hatch spacing the effect of scan speed on porosity formation is more considerable. This 
phenomenon was also reported by Hassanin and co-workers during the fabrication of 
Ti6Al4V micro-components using selective laser melting [42]. 

Figs 4 (e) and (f) show micrographs of samples 15 and 2, respectively (See Table 3). The 
porosity content of sample 15 and sample 2 was 3.01% and 14.56%, respectively. It could be 
noticed that when relatively low scan speed and high laser power are used (sample 15), the 
material was considerably denser (Fig 4 (e)). On the other hand, when high scan speed and 
low laser power are used, the energy density was not enough to consolidate the powder, 
which leads to porous structures (Fig 4 (f)). In biomedical applications, a Ti implant with 
structure similar to that in sample 2 is recommended as it has low elastic modulus. 
Additionally, the pores will help tissues to easily grow and integrate with the implant. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 
 

 
 
 
 
 

 

 

 

 

   

 
 
 
 
 
 
 
 
 

Fig 4. Effect of (a) laser power, (b) scan speed, (c) hatch spacing and (d) the interaction 
between speed and hatch spacing on the porosity; (e) and (f) are micrographs of samples 15 

and 2 respectively. 
 

3.1.3. Analysis of Elastic modulus 

All the three process parameters were found to have significant effect on the elastic 
modulus of fabricated samples as shown in Figs 5. Elastic modulus was found to be a linear 
function of the three parameters. The modulus of elasticity was shown to increase by 
increasing the laser power, as shown in Fig 5 (a). The same effect on properties could be 

Scan Speed=250 mm/s 

Hatch Spacing=78 µm 

(a) 
Laser Power=43 W 

Hatch Spacing=78 µm 

(b) 

Laser Power=43 W 

Hatch Spacing=56 µm 

Laser Power=43 W 

Hatch Spacing=99 µm 

(d)(c) 

Laser Power=43 W 

Scan Speed=250 mm/s 

(e) 

100 µm 

(f)

100 µm 



 

achieved by decreasing the scan speed and/or the hatch spacing, as could be inferred from 
Figs 5 (b) and (c) respectively. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
Fig 5. Effect of (a) laser power, (b) scan speed and (c) hatch spacing on the elastic modulus. 

3.1.4. Analysis of UCS 

Similar to the elastic modulus, the UCS was suggested by the model to have a direct 
relationship with the laser power and reverse relationship with both the scan speed the hatch 
spacing (See Figs 6 (a), (b) and (c)). In addition, the interaction between scan speed and hatch 
spacing was found also to significantly affect the UCS. At the same laser power, increasing 
the hatch spacing resulted in a steeper slop of the relationship between the scan speed and the 
UCS, as seen in Fig 6 (d). However, UCS was suggested to be represented as a two-factor 
interaction (2FI) model of the SLM process parameters. 

 
 
 
 
 
 
 
 
 

 
 

(c) 
Laser Power=43 W 

Scan Speed=250 mm/s

Laser Power=43 W 

Hatch Spacing=77.5 µm 

(b)
Scan Speed=250 mm/s 

Hatch Spacing=77.5 µm 

(a) 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

Fig 6. Effect of (a) laser power, (b) scan speed, (c) hatch spacing and (d) the interaction 
between speed and hatch spacing on the UCS. 

 
From the results presented in Table 3 and those shown in Figs 4 to 6, it could be indicated 

that a strong correlation was shown between the results of the porosity % and both the elastic 
modulus and UCS results. It has been suggested that the porosity is known to significantly 
control the mechanical properties [43]. This could be easily shown by comparing samples 
number 5 and 6 of the parametric combinations shown in Table 3. Decreasing the porosity % 
from 25.43 to 2.94 resulted in a significant increase in the elastic modulus from 17 to 75 GPa, 
and a comparable rise in the UCS from 388 to 1749 MPa. 

3.4. Rationalizing the porosity formation using the energy density 

Fig 7 (a) shows a plot of porosity versus the energy density form the data shown in Table 
3. It should be noted that unless the energy density is sufficient to melt and diffuse the 
powder, the final build would end with pores as a result of the incomplete melting. Increasing 
the scan speed and hatch spacing and/or a decrease in the laser power shall reduce the melt 
pool and lead to incomplete consolidation. This would result in entrapment of the voids 
among the powder particles under the solidified hatch lines, increasing the porosity content 
and in turn reducing the overall density of the SLM part (See also Fig 4) which is an 
important requirement for Ti implants. As shown in Fig 7 (a), the porosity content 
consistently decreases with increasing the energy density, which is expected due to the 
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resistance and specific strength [47]. Despite their attractive properties, some Ti6Al4V 
implants suffer an instability during service due to stress shielding and the weak interfacial 
bond between the insert and the surrounding tissues [48]. The elastic modulus of Ti6Al4V is 
around 119 GPa while it is ranging from 10 to 30 GPa for human bone and henceforth parts 
produced using Ti6Al4V have considerably higher stiffness than natural bone [49]. Such 
stiffness mismatch is recognized as one reason of stress shielding of the bone. Stress 
shielding prevents the needed stress being transferred from the implant to adjacent bone, 
which might result in bone loss in the near-vicinity of implants. The usage of porous 
structures is one of the approaches used to overcome this problem. The materials in this case 
possesses significantly lower elastic modulus and hence lower stiffness when compared to a 
the dense one [50]. Likewise, a permeable insert gives a fabulous organic environment to the 
body fluid or medication to transport productively through the porosity. Therefore, the 
encompassing tissues can grow inside the implant and consequently improve its interfacial 
bonding with natural bone [51]. Also, and described above, a microtopographic profile of an 
implant with a surface roughness in the range from 1-10 µm would be appropriate to improve 
the osteocondusction through variations in surface topography, and osteoinduction along the 
implant surface by employing the implant as a carrier for local transport of bio active agents 
such as bone morphogenic Protein [35]. However; relatively higher surface roughness may 
result in an increase in ionic leakage as well as peri-implantilis [36]. Again high compressive 
strength of an implant is essential for better endurance against service conditions[32]. 

Therefore, an optimization study has been carried out to explore the optimum setting of 
processing parameters necessary to SLM of a Ti6Al4V component with characteristics 
suitable for orthopaedic surgery. The objective function was set to obtain an elastic modulus 
in the range from 10 to 30 GPa, and a surface roughness between 1 and 10 micron while 
achieving the highest corresponding UCS and porosity %. The experimental data was 
analyzed by the Design-Expert software and the genetic algorithm was used to predict the 
process parameters that satisfy the objective function. The response equations describing the 
porosity, surface roughness, elastic modulus and UCS in terms of the key process parameters 
(shown in Equation (3) and the related coefficients listed in Table 4) were solved 
simultaneously. 

The prediction results given in Fig 8 show the contour plot for the optimization function 
of elastic modulus, porosity, surface roughness and UCS, for a range of laser power (35-50 
W) and scan speed (100-400 mm/s). The model suggests that the optimized values of the 
process parameters would be 49 W laser power, 400 mm/s scan speed and 99 m hatch 
spacing. This is equivalent to an energy density of 45 J/mm3. At these values of process 
parameters; the predicted modulus of elasticity, porosity, surface roughness and UCS of a 
SLM part would be 30 GPa, 23.62%, 8.68 µm, and 522 MPa, respectively. 

Several researchers have reported the use of SLM for controlling porosity during 
fabrication of Ti6Al4V medical implants [43,52,53]. Their results showed that creating pores 
in a Ti6Al4V part had a significant role in reducing its stiffness, which could allow the 
implant to have an elastic modulus that is close to that of human cortical bone. During the 
manufacturing of Ti6Al4V open-porous scaffolds using SLM, Weißmann and co-authors 
[43] concluded that a structure with a porosity % between 43 and 80 experienced an elastic 
modulus in the range from 26.3 to 3.4 GPa and an UCS in the range from 750 to 100 MPa. In 
the current study it was predicted that at 23.62% porosity the elastics modulus and UCS of 
the SLM part would be 30 GPa and 522 MPa, respectively. Such variation might be attributed 



 

to the fact that in the current work a solid part containing a certain amount of porosity was 
produced while in the study by Weißmann lattice structures were fabricated. In another study 
by Oh et al. [54], porous titanium compacts were prepared by powder sintering. The results 
of this study showed that a Ti part with a porosity level of about 28% had an elastic modulus 
of about 30 GPa which was too close to the model prediction in the current study. 

It should be emphasized that the obtained results are only valid within the examined 
process window. Outside that window, other phenomena, such as melt pool turbulence or 
evaporation, might take place. This shall affect the characteristics of melt pool, which could 
influence the formation of porosity, hence affects the mechanical properties. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

Fig 8. Predicted optimum laser power and scan speed (at a hatch spacing of 90 µm) for 
desirable properties of a SLM part suitable for medical implants; (a)elastic modulus (10-30 

GPa), (b) maximum porosity %, (c)surface roughness (1-10 µm) and (d) highest UCS. 

3.6. Model Validation  

To examine the results predicted by the model, 3 identical Ti6Al4Vparts with a square 
cross-section of 6x6 mm and with a height of 12 mm were SLM fabricated using the 
optimum setting of process parameters i.e. 49 W laser power, 400 mm/s scan speed and 99 
µm hatch spacing using the same layer thickness of 30 µm. The samples are shown in Fig 9. 
Table 6 shows the measured values of the properties of the three samples. As shown, the 
average values of the modulus of elasticity, porosity %, surface roughness and UCS of the 
three samples were 27.14 GPa, 24.90, 9.55 μm and 509 MPa, respectively.  

(c) 

(b)(a) 

(d)



 

 
 
 
 
 
 
 
 

Fig 9. SLM coupons fabricated using the optimized process parameters 
 

Table 6. Elastic modulus, porosity%, surface roughness and UCS of the three samples 
produced using optimized process parameters. 

Sample 
Elastic Modulus 

(GPa) 
Porosity % 

Surface Roughness 
(µm) 

Ultimate Compressive 
Strength (MPa) 

1 30.33 24.74 9.63 512 

2 26.20 25.10 9.43 487 

3 24.89 24.86 9.59 527 

Av. 27.14 24.90 9.55 509 
 
Figs 10 (a), (b) and (c) show a micrograph, an experimental stress-strain diagram and the 

measured surface roughness profile of the side surface, respectively, of a sample number 2 of 
the three samples produced using the optimized process parameters. 

 
From the results of the 17 experiments carried out during the DoE, shown in Table 3, the 
lowest elastic modulus was 17.12 GPa and the corresponding surface roughness was 17.11 
μm. On the other hand, the lowest surface roughness was found to be 9.1 μm and the 
corresponding elastic modulus was 66.43 GPa, which is too difficult to be used for medical 
implants. The results of the process optimisation showed that the predicted optimum elastic 
modulus that could be achieved within the investigated process window was 30, which is 
suitable for medical applications. In addition, the corresponding surface roughness was 9.55 
μm, which also falls within the range suitable for medical implants. 
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3. Setting the process parameters at 49 W laser power, 400 mm/s scan speed and 99 m 
hatch spacing was found to be optimum and resulted in SLM parts with 23.62%, 
porosity level, 8.68 µm surface roughness, 30 GPa modulus of elasticity and 522 MPa 
UCS. These properties were suggested to be suitable for orthopaedic structure with 
stiffness close to that in human bones, and also to improve the bone in-growth 
characteristics. 
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