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ABSTRACT   

 

    The progress is described in developing a parallel computer code to study the dynamics of wet 

granular systems based on the Fast Multi-pole Boundary Element Method (FMBEM). Here, three 

examples are considered that have closed-form or numerical solutions and thus able to act as 

benchmarks. They involved capillary interactions, the formation of a solid-solid contact when a 

particle approaches a solid wall while immersed in a Newtonian fluid, and the isoviscous 

hydrodynamic and elastohyrodynamic sliding of a particle. While computationally more expensive 

than DEM, there are a number of advantages such as extending interactions from the pendular to 

more saturated states, the ease with which non-spherical particles can be modelled and the ability to 

model wet granular systems that may exhibit transitions from frictional to lubricated flow. 

Consequently, FMBEM is able to model wet agglomerates more realistically than DEM and this is 

important for improving the performance of twin screw granulation, which is the intended 

application of the current work. 
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1. Introduction 

 

Tablets are the most common oral dosage form for pharmaceutical drugs, which contain primarily 

the Active Pharmaceutical Ingredients (APIs), fillers, disintegrants and binders. Generally the feed 

powders are granulated to improve their flow characteristics and thus ensure homogenisation and 

accurate metering to the tableting dies. High shear wet granulation (HSG) is the most common 

batch process in which a solution or melt binder is mixed with the feed powders. However, there is 

a growing interest in continuous granulation processes to improve efficiency and product quality. In 



particular, twin screw granulation (TSG) has considerable potential compared to HSG because of its 

flexibility in terms of the throughput and equipment design, reproducibility, short residence times, 

smaller liquid/solid ratios and also the ability to granulate difficult-to-process formulations [1]. It 

involves a self-wiping co-rotating intermeshing twin screw extruder with an open channel at the 

exit; the screws comprise helical conveying elements (CEs) and mixing segments that are usually 

kneading elements (KEs). The specification of the granular product includes a tolerance on the size 

distribution and mechanical strength, which control the dissolution and mechanical strength of 

tablets formed from the granules. Unlike batch granulation, further work is required to understand 

the mechanisms and process factors that govern size enlargement at a level of detail required by the 

FDA regulations (eg Quality by Design (QbD) and Process Analytical Technology (PAT)). 

Empirical regime maps represent the most effective current modelling approach for applying QbD 

[2] and will be discussed further below. There is a large parametric space of screw designs, 

formulations, feed arrangements and operating conditions. The additional major technical challenge 

is that APIs constitute typically 5 - 80% of the ingredients and, consequently, the current empirical 

approach for developing a satisfactory process for a given formulation is relatively slow and 

involves considerable costs, particularly for expensive APIs. It may lead to sub-optimal process 

specifications; for example, decreasing segregation during downstream powder handling by 

reducing oversized and unwanted fines is proving to be particularly difficult [1]. The mixing by 

KEs is important for dispersing viscous binders  and can be reduced in intensity by incorporating 

the binder in the powder feed as solid particles and injecting water, rather than as an aqueous 

solution of the binder, which is considerably more viscous for commonly used polymeric binders 

[3]. However, more work is required to optimise this approach.  

    Granule growth and breakdown mechanisms have been identified for HSG [4] and they have 

been mapped against dimensionless groups incorporating the binder droplet penetration time and 

granule yield stress respectively. Such regime maps provide a useful tool for designing wet 

granulation processes by predicting the granule formation mechanism and hence the granule shape 

and size distribution from a few dimensionless groups based on formulation properties and process 

parameters. A similar approach has been suggested for TSG [5] but establishing the evolution of the 

groups along the screws would require discrete particle modelling. The Distinct Element Method 

(DEM) has been applied to modelling granule growth in HSG via coalescence but was based on 

empirical rebound criteria involving a measured dynamic yield stress for single DEM particles that 

represent granules [6]. While it is possible to model wet agglomerate collisions at the primary 

particle scale using DEM [7], this method has a number of limitations that include the inability to 

model: (a) the funicular and capillary saturated states, (b) liquid interface merging during, for 



example, powder wetting and agglomerate densification, (c) complete drainage of fluid lubricated 

particles to allow solid-solid contacts to form, (d) viscous forces with interparticle gaps that are 

greater than that required by the lubrication limit and (e) elastohydrodynamic coupling. Moreover in 

the case of DEM, (a) the tangential viscous force is approximated by the gap corresponding to the 

squeeze flow component in the lubrication limit [7] and (b) spherical particles are generally 

simulated since it is a limitation of the available interaction laws, although more complex shapes 

can be created by clustering, for example. 

   The long-term objective of the current work is to develop a Fast Multi-pole Boundary Element 

Method (FMBEM) code to overcome the above limitations of DEM for application to TSG; a brief 

description of this method is given in §2. FMBEM is computationally more expensive than DEM 

and, hence, DEM will be remain the most appropriate method for many large-scale applications. 

However, DEM requires some features of particle-particle and fluid-particle interactions to be 

known a priori whereas FMBEM can capture them from first principles. For example, FMBEM 

allows a more realistic estimation of the interparticle gap developed during oblique collisions by 

allowing the pressure developed in the converging flow at the inlet of the sliding contact to be 

computed. Given the large number of primary particles in a TSG process, a parallel FMBEM GPU 

code is being written that will be able to simulate sections of an extruder in a way that is analogous 

to a recent experimental study [8]. 

    The aim of the current paper is to describe the applicability and advantages of FMBEM to wet 

granular systems since this method has not been considered previously in the powder technology 

community. In addition, three different single particle systems will be described in order to 

exemplify such applications that are also useful as benchmarks: (i) a rigid spherical particle 

interacting with a thin inviscid liquid film, (ii) an elastic spherical particle fully immersed in a 

Newtonian liquid moving towards a rigid wall with van der Waals attraction and (iii) a rigid 

spherical particle sliding tangentially against a rigid wall while immersed in a Newtonian liquid 

under a constant normal force and at a constant velocity.  

 

2. FMBEM: methodology 
 
  The Boundary Element Method (BEM) is a numerical technique for solving linear partial 

differential equations. Only the boundaries, sources and sinks are meshed, potentially offering 

significant computational savings compared with the Finite Discrete Element Method (FDEM) [9].  

However, BEM typically leads to dense matrices, while for FDEM they are generally sparse and it 

acts to limit the possible savings for BEM. The Fast Multipole Method (FMM) [10] adopts a 

hierarchical tree data structure that can reduce the complexity for N-body problems when applied to 



BEM. Essentially, FMBEM reduces the density of the matrices and enables significant hardware 

savings compared with BEM [11]. With these savings FMBEM has been demonstrated to be able to 

solve problems where hundreds of thousands to millions of particles are required with modest 

resources [12]. The implementation used throughout this work utilizes novel FMBEM software for 

use on local and massively parallel GPU clusters. To the authors knowledge such commercial codes 

not available and there are only two FMBEM codes for GPU architectures available worldwide. 

The implementation used here was developed specifically to address typical wet granular systems. 

A dynamic optimizer ensures that the FMBEM code runs on a GPU cluster efficiently and with high 

utilization. More details about the scheme developed are given in the Appendix. 

    In summary, BEM is extremely efficient since the surfaces, rather than the volumes of the 

particles are discretised to solve the Green’s functions for the fluid velocity field, which avoids the 

need to mesh the continuous phase or the interior of the particles. This involves a superposition of 

the fields produced by appropriate point sources and sinks, and dipoles at the corresponding 

interfaces. FMBEM has greatly enhanced the computational efficiency by allowing the Green’s 

functions to be integrated for the near (particle domain) and far (bulk domain) fields separately (the 

computational cost scales as 𝑁log (𝑁) rather than 𝑁3 for BEM). It has been applied to some 

relatively simple systems, such as emulsions [13] and, particularly the dynamics of biological cells 

and microcapsules [12]. BEM is restricted to Stokes flows (Re < 1: Re = Reynolds number) so that 

the inertia of the continuous phase (not the particles) is ignored but it could be applied to many 

systems (e.g. for 10 μm diameter particles, the upper limit of the approach velocity is 10 m/s).  

Although, BEM was originally developed for linear constitutive equations it has been adapted for 

nonlinear elastic [14] and viscoelastic [15] material models. It is also possible, for example, to 

create particles of any shape or to remove liquid from a system resulting from evaporation, 

desorption or permeation by an array of point sinks on a boundary. 

3. Partially submerged rigid spherical particle on a thin film 

 
A rigid spherical particle of radius, R, and density, 𝜌𝑆, is allowed to come into contact with an 

infinite inviscid liquid film of thickness, 𝑇 = 2.4𝑅 with a surface tension, 𝛾, and density, 𝜌𝐵 > 𝜌𝐴, 

corresponding to a half-filling angle 𝜓 = 0 at first contact (Fig. 1); the contact angle between the 

liquid and particle is 𝜃𝐶 = 90o. Above the liquid film is a second fluid with a density, 𝜌𝐴. The 

interface couples the liquid response as proposed by Landau & Lifshitz [16] and leads to a change 

in the minimum gap, 𝐷, between the particle and wall. The version of the interface coupling utilized 

by Ladau & Lifshitz [16] includes a viscous interaction term that is incorporated in the FMBEM 

implementation but neglected in the numerical solver of the Laplace-Young equation. When an 



equilibrium gap is achieved, the particle is displaced towards the wall at a velocity 0.1 μm/s until 

contact is made with the wall. It is then allowed to return to the equilibrium gap under the action of 

buoyancy.  

   The FMBEM algorithm returns the force on the particle and corresponding minimum gap at each 

time step. The dimensionless capillary force, 𝐹𝐶∗ = 𝐹𝐶/𝑅𝛾 , where 𝐹𝐶 is the capillary force, is 

calculated from the Laplace-Young equation as: 

 

𝐹𝐶∗ = 2𝜋sin (𝜋 − 𝜓 − 𝜃𝐶) sin(𝜓)        (1) 

 

The capillary length is given by 𝜆𝐶 = �(𝜌𝐵 − 𝜌𝐴)𝑔/𝛾 , where 𝑔 is the acceleration due to gravity, 

and hence the system is uniquely described by four parameters: (i) the Bond number  

𝐵 = (𝑅/𝜆𝐶)2 = 11.04, density difference 𝜌 = (𝜌𝑆 − 𝜌𝐴)/(𝜌𝐵 − 𝜌𝐴) = 2, contact angle 𝜃𝐶 = 90o 

and  dimensionless film thickness 𝑇∗ = 𝑇/𝜆𝐶 = 7.37. 

     The dimensionless capillary force as a function of the dimensionless gap is shown in Fig. 2.The 

results are in excellent agreement with Eq. (1); the relative error is of the order of the numerical 

error ( )610−O . For this special case with 𝜃𝐶 = 90o, the result is symmetric about 𝐷/𝑅 = 1.21. 

The particle first touches the surface of the liquid at 𝐷/𝑅 = 2.21 and the liquid then wets the 

particle so that it is displaced away from the wall due to buoyancy with an unstable equilibrium 

position of 𝐷/𝑅 = 2.43; the solution of Laplace-Young equation has both a stable and unstable 

branch [17]. Since the acceleration is zero, perturbation forces do not cause a transition to the stable 

branch that would probably occur in a real experiment. When it is moved towards the wall, the 

capillary force exhibits a maximum value before touching the wall. The particle is then allowed to 

move away from the wall under the action of buoyance when a stable equilibrium is achieved with a 

half-filling angle of 162o and a gap of 𝐷/𝑅 = 0.21. 

4. Elastic spherical particle fully immersed in a fluid moving towards a rigid wall with van der 

Waals attraction 

 

    The time taken for a spherical particle to reach a wall under low Reynold’s number conditions is 

known to be infinite [18]. However, it is finite when there is an attractive force such as a van der 

Waals potential. A schematic of the problem is shown in Fig. 3. This example demonstrates the 

complete drainage of a fluid between two solid surfaces. Any multi-particle solver should require 

techniques for resolving collisions in which there is exclusion of liquid between particles and this 

example is one of the simplest demonstrations. Here, the time taken for a 1 µm radius spherical 



particle, with density 2200 kg/m3, to contact a wall when immersed in Newtonian liquid with an 

initial velocity 2.8 mm/s and minimum gap 4.2 μm is obtained by three different methods: Chan and 

Horn’s inertia-less calculation [18], a numerical solver for the Newtonian equations including the 

inertia of the particle and the FMBEM code that also includes the inertia of the particle. For all 

three methods, the van der Waals attractive force is represented by the following expression [19]: 

 

𝐹𝑣𝑣𝑣 = −
𝑅𝑅
6𝐷2                                                                                                                                                    (2) 

where 𝑅 = 3 x 10-19 J is the Hamaker constant. 

 

     Chan and Horn’s [18] inertia-less calculation has the following form: 

 

𝐷(𝑡) = � 𝐴
18𝜋𝜋𝜋

(𝑡𝑐 − 𝑡)�
1/2

                                                                                                                            (3)                                                            

              

where 𝜂 = 1 Pa.s is the fluid viscosity and 𝑡𝑐 is the finite contact time and 𝑡 is the time. The results 

of the numerical inertia solution were obtained by solving the following force balance using 

Matlab’s ODE 45 numerical solver: 

 

6𝜋𝜂𝑅
𝐷(𝑡)

𝑑𝐷
𝑑𝑡

+
𝑅𝑅

6𝐷2(𝑡)
= 𝑚

𝑑2𝐷(𝑡)
𝑑(𝑡2)                                                                                                                   (4) 

                              

where 𝑚 is the particle mass.  

    Chan and Horn’s inertia-less calculation is an upper bound on the time for the particle to reach 

the wall since inertia acts to continue the motion towards the wall more rapidly than would 

otherwise be the case as can be seen in Fig. 4. The travel duration from the numerical solution of 

Eq. (3) is slightly greater than a factor 0.58 less than that predicted by the theory of Chan and Horn 

[18]. The figure also shows that there is a close agreement with the FMBEM calculation of the 

trajectory with the numerical solution of Eq. (4). That the particle is able to contact the wall even 

though the viscous force, 𝐹𝑉 , scales as 1/𝐷 (Eq. (5) [18] arises because the van der Waals force 

scales as 1/𝐷2 (Eq. (2)) so that at small gaps the attractive force dominates.  

 

𝐹𝑉 = −
6𝜋𝜂𝑅2

𝐷
𝑑𝐷
𝑑𝑡

                                                                                                                                             (5) 



5. Hydrodynamic lubrication 

 

    Provided that the normal force is sufficiently small, and the liquid viscosity, sliding velocity and 

radii are sufficiently large, hydrodynamic lubrication will be developed between two particles 

undergoing an oblique impact. This is termed isoviscous hydrodynamic lubrication (IHL) since the 

typical contact pressures will be insufficient to increase the viscosity of the liquid unlike those that 

are prevalent in engineering contacts.  However, is possible that the particles are deformed 

elastically and that has the effect of reducing the contact pressure and hence the viscous resistance 

to sliding; this is termed isoviscous elastohydrodynamic lubrication (IEHL). In the current section, 

such lubrication is modelled using FMBEM by considering a spherical particle in close proximity to 

a wall that is immersed in a Newtonian fluid as shown schematically in Fig. 5. A constant velocity 

parallel to the wall is applied to the particle and the coefficient of friction is evaluated. The mass of 

the particle is taken to be the normal load on the particle, which is increased by increasing the 

density of the particle. The FMBEM code is used to calculate the force required to maintain the 

velocity and the coefficient of friction is determined as follows [20]: 

 

𝜇 =
∯𝜏𝑤 𝑑𝑑𝑑𝑑
∯𝑝𝑑𝑑𝑑𝑑

                                                                                                                                                 (6) 

 

where 𝜇 is the coefficient of friction (due to lubrication), 𝜏𝑤 is the wall shear stress acting on the 

surface of the particle and 𝑝 is the pressure on the walls.  

    Figures 6 and 7 show the calculated coefficients of friction as a function of the non-dimensional 

group (𝜂𝜂𝑅/𝑊), where 𝑊 is equal to the weight of the particle and 𝜂 is the imposed sliding 

velocity, for particles having Young’s moduli of 10 GPa and 1 MPa respectively.   Adams & 

Edmondson [21] derived a closed-form approximation for a rigid particle (HL) that may be written 

as follows: 

 

𝜇 =
𝜋𝜂𝜂𝑅
𝑊

�1.22sinh−1 �0.04
𝜋𝜂𝜂𝑅
𝑊

+ 0.59��                                                                                           (7)  

                                 

It may be seen in Fig. 6 that Eq. (7) is a reasonable approximation to that calculated by the 

FMBEM. However, at small values of the dimensionless group, this equation overestimates the 

coefficient of friction because the onset of elastic deformation of the particle induces IEHD 

lubrication. de Vincente et al. [22] obtained the following closed-form approximation for the IEHD 

limit that may be written as: 



 

𝜇 = 2 �3.2 �
3𝜂𝜂
8𝐸𝑅

�
0.71

�
3𝑊

8𝐸𝑅2
�
−0.76

+ 0.96 �
3𝜂𝜂
8𝐸𝑅

�
0.36

�
3𝑊

8𝐸𝑅2
�
−0.11

�                                                  (8) 

    

It may be seen in Fig. 7 that the agreement between Eq. (8) and the FMBEM calculation is 

excellent. The corresponding pressure profile is shown in Fig. 8. At the rear of the contact the 

pressure is negative, which corresponds to the Sommerfield solution for a 2D journal bearing [23]. 

In practise, the negative pressure will result in cavitation. 

    Thus it has been demonstrated that FMBEM is capable of calculating the friction between 

hydrodynamically lubricated particles; Figs 6 and 7 represent a region of a form of a Stribeck curve 

[23]. In a complete version of such a curve, small values of the group (𝜂𝜂𝑅/𝑊) are associated with 

boundary friction while, and with increasing values of the group, eventually there will be a 

transition to the hydrodynamic region; this transition region is term mixed lubrication. Since it has 

been shown that FMBEM is able to model the complete drainage between particles immersed in a 

liquid, it would be straightforward to model the complete Stribeck curve. This is relevant since it 

has been established that wet particle assemblies exhibit a transition from frictional to lubricated 

flow, for example, with increasing strain rate. Thus Iveson et al. [24] studied the axial compression of 

cylindrical agglomerates of densely packed fine glass ballotini (~ 35 μm) with water, glycerol and a series of 

silicone oils as liquid binders to provide a range of viscosities and surface tensions. It was observed that at 

small values of the Capillary number (Ca = 𝜂𝜀̇𝑅/𝛾coṡ  𝜃𝐶 where 𝜖̇ is the nominal uniaxial strain rate) the 

strength of the agglomerates was constant but at some critical value it increased with increasing Ca. The 

initial region was interpreted as corresponding to interparticle friction and the second region as being 

dominated by viscous forces. That is, there is a clear indication of a transition from frictional to lubricated 

flow as expected from the trends in a Stribeck curve. Huang et al. [25] measured the shear behaviour of 

monodisperse polystyrene beads (~290 μm) with an isodense liquid binder having viscosities in the range 1 - 

2300 mPa s. They also observed a frictional to lubricated transition at a critical shear rate that decreased 

linearly with increasing binder viscosity. 

 

    It may be concluded from the above studies that discrete modelling of the deformation characteristics of 

wet agglomerates, which are critical to the performance of TSG, should account for transitions from the 

frictional to the lubricated state and vice-versa. This is a particular advantage of FMBEM compared with 

DEM, which relies on the equation derived by Goldman et al. [26, 27] to calculate the hydrodynamic 

tangential force between particles. It is based on an asymptotic solution of the Stokes equation and 

is only applicable in the lubrication limit. As mention in §1, it requires knowledge of the 

interparticle gap, which is obtained from that calculated by the normal interaction using a solution 



based on the lubrication approximation. Thus unlike DEM, the calculation is not fully coupled in 

addition to neglecting the role of IEHL, which may also be important in normal collisions [28]. Real 

particles are topographically rough so it is important to emphasise that the transition from frictional 

to lubricated sliding is governed by the dimensionless film thickness parameter being ~ 5; it is 

defined by the ratio of the minimum film thickness to a combined asperity height parameter as 

represented by a minimum gap that acts as a cut-off distance [29]. 

 

6. Conclusions 

 

    The validation of the current FMBEM code has been demonstrated using examples that are 

relevant to wet granular dynamics. Although the problems presented here are simplistic, they 

demonstrate that FMBEM is able to compute wet particle interactions that occur frequently in 

multi-particle granular dynamics. In particular, it is possible to account for frictional-hydrodynamic 

transitions that are important for the behaviour of wet agglomerates and, consequently, for the 

performance of TSG processes. In summary, it has been shown that FMBEM is able to accurately 

(a) model low Reynolds number fluid flow efficiently, (b) track and evolve liquid and elastic 

interfaces, (c) account for drainage between hydrodynamically lubricated particles and (d) 

effectively solve elastohydrodynamic problems. Thus, FMBEM has many advantages compared 

with DEM but at a significant computational cost.  
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Appendix 
 
Summary of the formulation of the FMBEM code. 
 
The numerical scheme is a more advanced version of that described in FMBEM to determine the 
matrices on which the solver acts. The solver was a GPU version of GMRes with incomplete LU-
factorization [29]. Adaptive h-p mesh refinement was employed [30]. The time step for each 
simulation was the minimum of a number of a semi-analytic expressions to identify the smallest 
time step size for continued simulation. Generally this corresponded to the smallest of the distance-
travelled/(1000*velocity) being used for the time step. However the distance travelled could be the 
distance for collision or the movement of an interface near a solid contact. 
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Figures: 

 
Fig. 1. Schematic of geometry and parameters for the determination for a partially immersed rigid spherical 

particle where     𝜁(𝑟) is the liquid free-surface profile, 𝐻0 is the capillary rise/fall, 𝑟 is the radial coordinate 

and 𝑧 is the vertical coordinate. The position of the interface is given by �𝑟, 𝜁(𝑟)�. 

 
Fig. 2. The non-dimensional capillary force as a function of the dimensionless gap calculated by and the 

numerical solution (line) and the FMBEM code (circles). 



 
Fig. 3. Schematic diagram of van der Waals attraction between a spherical particle and a wall immersed in a 

Newtonian liquid. 

 
Fig. 4. Dimensionless minimum gap between a spherical particle and wall calculated for the system shown in 

Fig. 3 where the full line refers to Chan and Horn [18] solution (Eq. 4), the full circles correspond to the 

numerical solution of Eq. (4) and the dashed line was calculated using FMBEM. 



 
Fig. 5. Schematic diagram of a hydrodynamically lubricated spherical particle where W is the normal force 

and 𝜂 is the sliding velocity. 

 
Fig. 6. The coefficient of friction as a function of the non-dimensional group (ηvR/W) calculated by FMBEM 

(full circles) and by Eq. (7) for IHL (full line); the Young’s modulus of the particle is 10 GPa. 



 
Fig. 7. The friction coefficient as a function of the the non-dimensional group (ηvR/W) calculated by 

FMBEM (full circles) and by Eq. (8) for IEHD (full line); the Young’s modulus of the particle is 1 MPa. 

 
Fig. 8. Fluid pressure profile for a sliding spherical particle in a Newtonian liquid. 
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