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AN Lp-THEORY FOR ALMOST SURE LOCAL WELL-POSEDNESS OF

THE NONLINEAR SCHRÖDINGER EQUATIONS

UNE THÉORIE Lp POUR LE PROBLÈME DE CAUCHY DE

L’ÉQUATION DE SCHRÖDINGER NON LINÉAIRE A DONÉES

INITIALES ALÉATOIRES

OANA POCOVNICU AND YUZHAO WANG

Abstract. We consider the nonlinear Schrödinger equations (NLS) on Rd with random
and rough initial data. By working in the framework of Lp(Rd) spaces, p > 2, we prove
almost sure local well-posedness for rougher initial data than those considered in the
existing literature. The main ingredient of the proof is the dispersive estimate.

Résumé. Dans cet article nous considèrons l’équation de Schrödinger non linéaire (NLS)
sur Rd à donées initiales aléatoires et surcritiques. En travaillant dans des espaces de
Lp(Rd), p > 2, nous améliorons les résultats précédents de la litérature, en ce sens que nous
prouvons que NLS est localement bine-posée presque sûrement pour des données initiales
à régularité plus basse. L’ingrédient principal de la preuve est l’estimation dispersive.

1. Introduction

We consider the nonlinear Schrödinger equation (NLS) with power-type nonlinearity on

Rd, d ≥ 1: {
i∂tu+ ∆u = ±|u|p−1u

u|t=0 = u0 ∈ Hs(Rd),
(t, x) ∈ R× Rd, (1.1)

where p > 1. The equation (1.1) appears as a standard model in various physical contexts

and has been studied extensively over the past decades. In this note, we consider the

Cauchy problem (1.1) with random and rough initial data. In particular, by working in the

framework of Lp(Rd), p > 2, and using the dispersive estimate, we establish almost sure

local well-posedness of (1.1) with respect to random initial data of lower regularity than

those considered in the existing results in the literature.

NLS (1.1) arises as a Hamiltonian evolution associated to the energy

E(u) :=

ˆ
Rd

1

2
|∇u|2 ± 1

p+ 1
|u|p+1dx. (1.2)

In particular, E(u) is conserved by the flow of NLS. The solution set of (1.1) possesses the

following scaling symmetry:

uλ(t, x) := λ
2
p−1u(λ2t, λx). (1.3)
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2 O. POCOVNICU AND Y. WANG

Note that ‖uλ(0)‖Ḣs(Rd) = λ
s−( d

2
− 2
p−1

)‖u0‖Ḣs(Rd). Associated with the scaling symmetry,

one defines the so-called scaling-critical Sobolev index scrit(d, p) := d
2 −

2
p−1 such that the

homogeneous Sobolev norm ‖ · ‖Ḣscrit (Rd) remains invariant under the scaling symmetry

(1.3). We then say that the Cauchy problem (1.1) with an initial condition u0 ∈ Hs(Rd) is

subcritical, critical, or supercritical, depending on whether s > scrit(d, p), s = scrit(d, p), or

s < scrit(d, p), respectively. When d and p are such that scrit(d, p) = 1, the scaling symmetry

(1.3) also leaves the energy E(u) invariant, and in that case we say that (1.1) is energy-

critical. We say that the Cauchy problem (1.1) is energy-subcritical or energy-supercritical,

if scrit(d, p) < 1 or scrit(d, p) > 1, respectively.

In the deterministic setting, NLS (1.1) is known to be locally well-posed in the

(sub)critical regime, see [17, 7, 9]. On the contrary, in the supercritical regime it is known

to be ill-posed, see for example [8, 13]. In the last decade, a non-deterministic view point

has been used, aiming to improve our understanding of NLS. It consists of studying the

Cauchy problem (1.1) with random initial data. In this probabilistic setting, NLS is almost

surely locally well-posed even in certain supercritical regimes. See [1, 2, 4, 3, 15, 11].

As in [19, 12, 1], in this note we consider a randomization associated to the Wiener

decomposition Rdξ =
⋃
n∈Zd(n+ (−1

2 ,
1
2 ]d). Let ψ ∈ S(Rd) satisfying

suppψ ⊂ [−1, 1]d and
∑
n∈Zd

ψ(ξ − n) = 1 for any ξ ∈ Rd.

Given a function φ on Rd, we have φ =
∑

n∈Zd ψ(D − n)φ. We then define the Wiener

randomization of φ by

φω :=
∑
n∈Zd

gn(ω)ψ(D − n)φ, (1.4)

where {gn}n∈Zd is a sequence of independent mean zero complex-valued random variables on

a probability space (Ω,F , P ). In the following, we assume that the real and imaginary parts

of gn are independent and endowed with probability distributions µ
(1)
n and µ

(2)
n , satisfying

the following exponential moment bound:∣∣∣∣ˆ
R
eκxdµ(j)

n (x)

∣∣∣∣ ≤ ecκ2 (1.5)

for all κ ∈ R, n ∈ Zd, j = 1, 2. This condition is satisfied by the standard complex-valued

Gaussian random variables and by the uniform distribution on the unit circle.

It is well known that the Wiener randomization (1.4) does not improve differentiability;

see Lemma B.1 in [5]. However, its key advantage is improving integrability; see Lemma

2.3 in [1] and Lemma 2.2 below.

Given d ≥ 1 and p > 1, we define sd,p by

(i) sd,p = 0, if p > 1 + 4
d , d = 1, 2 or 1 + 4

d < p < 1 + 4
d−2 , d ≥ 3,

(ii) sd,p = scrit(d, p)− 1+, if p ≥ 1 + 4
d−2 , d ≥ 3.

Note that we have 0 ≤ sd,p < scrit(d, p). Also, remark that (i) corresponds to the energy-

subcritical case, while (ii) corresponds to the energy-(super)critical case.
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In this note, given φ ∈ Hs(Rd), sd,p ≤ s < scrit(d, p), we study the Cauchy problem (1.1)

with the random initial data φω. We state our main result below.

Theorem 1.1 (Almost sure local well-posedness). Given d ≥ 1 and p an odd integer such

that p > 1 + 4
d , let sd,p be defined as above. Given φ ∈ Hs(Rd) with sd,p ≤ s < scrit(d, p),

let φω be its Wiener randomization defined in (1.4), satisfying (1.5). Then, (1.1) is almost

surely locally well-posed with respect to the random initial data φω. More precisely, there

exist C, c, γ > 0 such that for each 0 < T � 1, there exists a set ΩT ⊂ Ω with the following

properties:

(a1) P (Ωc
T ) < C exp

(
− c

T γ‖φ‖2Hs

)
,

(b1) For each ω ∈ ΩT , there exists a unique solution uω to (1.1) with uω|t=0 = φω in

the class 1

S(t)φω + C([−T, T ];W s,rd,p+1(Rd)),

where rd,p is defined by

rd,p :=

{
p, if p > 1 + 4

d , d = 1, 2 or 1 + 4
d < p < 1 + 4

d−2 , d ≥ 3

1 + 4
d−2−, if p ≥ 1 + 4

d−2 , d ≥ 3.

Furthermore, for p non-integer in the energy-subcritical case (i), we also have almost sure

local well-posedness of (1.1) with initial condition φω, where φ ∈ Hs(Rd), s ∈ [0, scrit(d, p)),

in the following sense. There exist C, c, γ > 0 such that for each 0 < T � 1, there exists a

set Ω′T ⊂ Ω with the following properties:

(a2) P ((Ω′T )c) < C exp
(
− c

T γ‖φ‖2
L2

)
,

(b2) For each ω ∈ Ω′T , there exists a unique solution u to (1.1) with u|t=0 = φω in the

class

S(t)φω + C([−T, T ];Lp+1(Rd)).

Here S(t) = eit∆ denotes the linear propagator of the Schrödinger group. Set z(t) =

zω(t) := S(t)φω to be the random linear solution with φω as initial data. We reduce our

analysis on (1.1) to the following Cauchy problem satisfied by the nonlinear part v := u− z
of a solution u: {

i∂t + ∆v = N (v + zω)

v|t=0 = 0,
(1.6)

where N (u) := ±|u|p−1u. In the Duhamel formulation we have

v(t) = −i
ˆ t

0
S(t− t′)N (v + zω)(t′)dt′. (1.7)

The proof of Theorem 1.1 is based on a fixed point argument for v. As a result, the

uniqueness in Theorem 1.1 refers to uniqueness of the nonlinear part v of a solution u.

The main idea of the proof is to exploit the improved integrability of the random linear

1. Arguing as in [14], one can easily choose ΩT such that for each ω ∈ ΩT we have uω ∈ S(t)φω +
C([−T, T ];W s,rd,p+1(Rd))∩C([−T, T ];Hs(Rd)). In particular, the solution uω constructed in Theorem 1.1
belongs to the L2-based Sobolev space C([−T, T ];Hs(Rd)).
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solution z (see the probabilistic Strichartz estimates in Lemma 2.2) by working in the Lp-

based Sobolev spaces, p > 2, (as opposed to L2-based Sobolev spaces Hs) and by using the

dispersive estimates (Lemma 2.1).

In recent years, there have been several results in the literature on the almost sure local

well-posedness of NLS with random initial data. In [1, 2], the first author with Bényi and

Oh considered the cubic NLS on Rd, d ≥ 3, with random initial data φω defined as in

(1.4). They proved almost sure local well-posedness of (1.1) with p = 3, for φ ∈ Hs(Rd),
scrit − 1 + 3

d+1 < s < scrit. In [4], Brereton considered the analogous problem for the

quintic NLS on Rd, d ≥ 3, and proved almost sure local well-posedness for φ ∈ Hs(Rd),
scrit − 1

2 < s < scrit. In [15], the first author with Oh and Okamoto considered the energy-

critical NLS on Rd, d = 5, 6, and proved almost sure local well-posedness for φ ∈ Hs(Rd),
1 − 1

d < s < 1. More recently, the first author with Bényi and Oh [3] proved almost sure

local well-posedness of the cubic NLS on R3 based on a fixed point argument around a

(modified) partial power series expansion, thus improving previous results in [2]. Theorem

1.1 is an improvement of all these results, in the sense that we are able to lower the regularity

threshold for initial data that yield solutions of (1.1) almost surely.

Remark 1.2. All the above mentioned results are based on the L2-theory. This is not

the case of Theorem 1.1 (in particular, of Corollary 2.5 where we use the more precise ρd,p
and σd,p, rather than rd,p and sd,p), where v is constructed in C([−T, T ];W σ,ρd,p+1(Rd)),
ρd,p + 1 > 2. For σ ≥ σd,p, the space W σ,ρd,p+1(Rd) is subcritical with respect to the

scaling (1.3). In the above cited results, v was also constructed in critical or subcritical

L2-based Sobolev spaces: v ∈ Hσ(Rd), σ ≥ scrit(d, p). We remark that this required a gain

of σ − s derivatives for v, since the initial data is only in Hs(Rd), s < scrit(d, p). Such a

gain of derivatives was exhibited by using case-by-case analysis and a bilinear refinement

of the Strichartz estimates. In Theorem 1.1, v has at most the same differentiability as

the initial data. In particular, a gain of derivatives is not needed and the analysis is much

simpler. This is an advantages of working within the Lp-framework, p > 2, as opposed

to the L2-theory: it gives a more direct access to the gain of integrability given by the

randomization.

Remark 1.3. In the deterministic setting, one cannot expect to obtain the local well-

posedness of NLS in C([−T, T ];W s,p(Rd)), p 6= 2, because the linear propagator S(t) is

not bounded on Lp(Rd) for p 6= 2. We point out, however, the work of Zhou [20] in

which he proposes an alternative notion of a solution (based on the interaction represen-

tation) and, in this new formulation, obtains the local well-posedness of the cubic NLS in

C([−T, T ];W s,p(Rd)) for p < 2 (under additional restrictions on s and p).

Remark 1.4. For simplicity, we only stated the first part of Theorem 1.1 for p an odd

integer. In this case, the nonlinearity is algebraic and we apply the fractional Leibnitz rule

in estimating 〈∇〉sN (v + z), s > 0. When p is not an odd integer, the analysis becomes

more cumbersome and we prefer not to go into details. In particular, there are further

restrictions on the pairs (d, p) for which one can obtain a result similar to that in Theorem
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1.1. For instance, if we assume that d is arbitrarily large, while p is fixed, then scrit(d, p) is

also arbitrarily large. As seen in Theorem 1.1, with the technique in this note, we can only

hope to go down to s > scrit(d, p)− 1, which is still very large. Then, in order to estimate

〈∇〉sN (v + z), the nonlinearity N (u) = |u|p−1u needs to be very smooth, which is not the

case unless p is sufficiently large. We refer the readers to [18, 15] for the study of NLS with

non-algebraic nonlinearities.

In view of the time reversibility of NLS, we only consider positive times in the following.

2. Proof of Theorem 1.1

In this section, we prove the main result of the paper, Theorem 1.1. The main two tools

are the dispersive estimate (that we recall for readers’ convenience below, in Lemma 2.1)

and the probabilistic Strichartz estimates (Lemma 2.2).

Lemma 2.1. Let p ∈ [2,∞] and p′ such that 1
p + 1

p′ = 1. Then, there exists C > 0 such

that the following estimate holds

‖S(t)φ‖Lpx(Rd) ≤
C

|t|
d
2
− d
p

‖φ‖
Lp
′
x (Rd)

. (2.1)

Next, we recall some probabilistic Strichartz estimates. See [1, 2] for the proofs.

Lemma 2.2 ([1, 2]). Given φ ∈ L2(Rd), let φω be its Wiener randomization defined in

(1.4), satisfying (1.5). Then, given finite q, r ≥ 2, there exist C, c > 0 such that

P
(
‖S(t)φω‖Lqt ([0,T ];Lrx(Rd)) > λ

)
≤ C exp

(
− c λ2

T
2
q ‖φ‖2

L2

)
for all T > 0 and λ > 0.

In the following, we use the dispersive estimates and the probabilistic Strichartz in-

equalities in Lemmas 2.1 and 2.2 to prove the key nonlinear estimates needed to establish

Theorem 1.1. Given z(t) = S(t)φω, we define Γ by

Γv(t) := −i
ˆ t

0
S(t− t′)N (v + z)(t′)dt′. (2.2)

Proposition 2.3. Given d ≥ 1 and p ≥ 3 an odd integer, let ρ ∈ (1, p] for d = 1, 2,

while ρ ∈
(
1, 1 + 4

d−2

)
for d ≥ 3. Let σ ≥ σ(d, p, ρ) := d(p−ρ)

(ρ+1)(p−1) and 0 < T ≤ 1. Given

φ ∈ Hσ(Rd), let φω be its Wiener randomization defined in (1.4), satisfying (1.5). Then

θ := d
2 −

d
ρ+1 ∈ (0, 1) and for any 0 < ε < 1 − θ, there exist C1, C2 > 0 such that the

following estimates hold

‖Γv‖L∞([0,T ];Wσ,ρ+1(Rd)) ≤ C1T
1−θ−ε(‖v‖p

L∞([0,T ];Wσ,ρ+1(Rd))
+Rp

)
, (2.3)

‖Γv1 − Γv2‖L∞([0,T ];Wσ,ρ+1(Rd))

≤ C2T
1−θ−ε

( 2∑
j=1

‖vj‖p−1
L∞([0,T ];Wσ,ρ+1(Rd))

+Rp−1
)
‖v1 − v2‖L∞([0,T ];Wσ,ρ+1(Rd)), (2.4)
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for all v, v1, v2 ∈ L∞([0, T ];W σ,ρ+1(Rd)) and all R > 0, outside a set of probability ≤
C exp

(
− c R2

T
2ε
p ‖φ‖2Hσ

)
.

Proof. Note that the hypothesis on ρ yields θ ∈ (0, 1). For ε ∈ (0, 1 − θ), we use the

dispersive estimate (2.1) and Hölder’s inequality to obtain

‖Γv‖L∞([0,T ];Wσ,ρ+1(Rd)) ≤ sup
t∈[0,T ]

ˆ t

0

1

|t− t′|θ
‖〈∇〉σN (v + z)(t′)‖

L
1+ 1

ρ
x (Rd)

dt′

≤ sup
t∈[0,T ]

(ˆ t

0

1

|t− t′|
θ

1−ε
dt′

)1−ε

‖〈∇〉σN (v + z)‖
L

1
ε
T L

1+ 1
ρ

x (Rd)

≤ CT 1−θ−ε‖〈∇〉σN (v + z)‖
L

1
ε
T L

1+ 1
ρ

x (Rd)
. (2.5)

Here and in the following we use the shorthand notation LqTL
r
x(Rd) := Lq([0, T ];Lr(Rd)).

Recalling that p = 2k+ 1 with k ∈ N, we write N (v+ z) = |v+ z|p−1(v+ z) as the product

(v+z)k+1(v+z)k. Then, by the fractional Leibnitz rule (see, for example, [10]), the Sobolev

embedding W σ,ρ+1(Rd) ⊂ L
(p−1)(ρ+1)

ρ−1 (Rd) (which holds provided that σ ≥ d(p−ρ)
(ρ+1)(p−1)), and

Lemma 2.2 we have

‖〈∇〉σN (v + z)‖
L

1
ε
T L

1+ 1
ρ

x (Rd)
=
∥∥∥〈∇〉σ[(v + z)k+1(v + z)k]

∥∥∥
L

1
ε
T L

1+ 1
ρ

x (Rd)

. ‖〈∇〉σ(v + z)‖
L
p
ε
T L

ρ+1
x (Rd)

‖v + z‖2k
L
p
ε
T L

(p−1)(ρ+1)
ρ−1

x (Rd)

. ‖〈∇〉σ(v + z)‖p
L
p
ε
T L

ρ+1
x (Rd)

.

(
‖〈∇〉σv‖p

L
p
ε
T L

ρ+1
x (Rd)

+ ‖〈∇〉σz‖p
L
p
ε
T L

ρ+1
x (Rd)

)
.
(
T ε‖v‖p

L∞([0,T ];Wσ,ρ+1(Rd))
+Rp

)
, (2.6)

outside a set of probability

≤ C exp

(
− c R2

T
2ε
p ‖φ‖2Hσ

)
.

Estimate (2.3) then follows from (2.5) and (2.6). The proof of (2.4) is analogous. �

Remark 2.4. We remark that the proof of the nonlinear estimates in Proposition 2.3 is

similar in spirit to the following works on almost sure local well-posedness for the nonlinear

wave equation [5, 6, 16], in the sense that no case-by-case analysis is needed.

In Proposition 2.3, we have a degree of freedom in choosing ρ. It turns out that to lower

as much as possible the regularity σ of φ, one needs to take ρ = p in the energy-subcritical

case, while ρ needs to be arbitrarily close to 1+ 4
d−2 in the energy-(super)critical case. More

precisely, the following corollary holds.

Corollary 2.5. Given d ≥ 1, p ≥ 3 an odd integer, and 0 < ε� 1, we define

σd,p :=

{
0, if d = 1, 2 or 3 ≤ p < 1 + 4

d−2 , d ≥ 3

d−2
2−ε ·

p−1− 4
d−2

+ εd
d−2

p−1 , if p ≥ 1 + 4
d−2 , d ≥ 3.
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and

ρd,p :=

{
p, if d = 1, 2 or 3 ≤ p < 1 + 4

d−2 , d ≥ 3

1 + 4−εd
d−2 , if p ≥ 1 + 4

d−2 , d ≥ 3.

Given φ ∈ Hσ(Rd) with σ ≥ σd,p, let φω be its Wiener randomization defined in (1.4),

satisfying (1.5). Then there exist C1, C2, α > 0 such that the following estimates hold

‖Γv‖
L∞([0,T ];W

σ,ρd,p+1
(Rd))

≤ C1T
α
(
‖v‖p

L∞([0,T ];W
σ,ρd,p+1

(Rd))
+Rp

)
, (2.7)

‖Γv1 − Γv2‖L∞([0,T ];W
σ,ρd,p+1

(Rd))

≤ C2T
α
( 2∑
j=1

‖vj‖p−1

L∞([0,T ];W
σ,ρd,p+1

(Rd))
+Rp−1

)
‖v1 − v2‖L∞([0,T ];W

σ,ρd,p+1
(Rd))

, (2.8)

for all v, v1, v2 ∈ L∞([0, T ];W σ,ρd,p+1(Rd)) and all R > 0, outside a set of probability

≤ C exp
(
− c R2

T
2ε
p ‖φ‖2Hσ

)
.

Proof. In the case when d = 1, 2 or p < 1 + 4
d−2 , d ≥ 3, this follows by taking ρ = p in

Proposition 2.3 and by noticing that σ(d, p, p) = 0. For p ≥ 1+ 4
d−2 , d ≥ 3, one takes ρ = ρd,p

in Proposition 2.3 and a straightforward calculation shows that σ(d, p, ρd,p) = σd,p. �

In Proposition 2.3 and Corollary 2.5, we restricted our attention to the case when p is an

odd integer. In the following we remark that when φ ∈ L2(Rd), i.e. σ = 0, this assumption

on p is redundant.

Remark 2.6. Let d = 1, 2 or 1 < p < 1 + 4
d−2 with d ≥ 3. Given φ ∈ L2(Rd), let φω be

its Wiener randomization defined in (1.4), satisfying (1.5). Then there exist C1, C2, α > 0

such that the following estimates hold

‖Γv‖L∞([0,T ];Lp+1(Rd)) ≤ C1T
α
(
‖v‖p

L∞([0,T ];Lp+1(Rd))
+Rp

)
, (2.9)

‖Γv1 − Γv2‖L∞([0,T ];Lp+1(Rd))

≤ C2T
α
( 2∑
j=1

‖vj‖p−1
L∞([0,T ];Lp+1(Rd))

+Rp−1
)
‖v1 − v2‖L∞([0,T ];Lp+1(Rd)), (2.10)

for all v, v1, v2 ∈ L∞([0, T ];Lp+1(Rd)) and all R > 0, outside a set of probability ≤ C exp
(
−

c R2

T
2ε
p ‖φ‖2

L2

)
.

Proof. By Corollary 2.5, when d = 1, 2 or 1 < p < 1 + 4
d−2 with d ≥ 3, estimates (2.9) and

(2.10) hold when p is an odd integer. In this case, (2.9) and (2.10) are simply (2.7) and

(2.8) with σ = σd,p = 0 and ρd,p = p. We then notice that the proof of Proposition 2.3 (and

thus that of Corollary 2.5) when σ = 0 does not require the use of the fractional Leibnitz

rule and, in particular, the assumption that p is an odd integer is redundant. �

We conclude this note with the proof of Theorem 1.1, which follows easily from Corollary

2.5 and Remark 2.6 via a fixed point argument.
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Proof of Theorem 1.1. Let s ≥ σd,p. Fix 0 < T ≤ 1 and define M := M(T ) =

min

{(
1

2C1

) 1
p−1

,
(

1
4C2

) 1
p−1

}
T
− α
p−1 , with C1, C2 as in (2.7) and (2.8). We also define

R ∼ T−
α
p−1 such that

C1T
αRp ≤ M

2
and C2T

αRp−1 <
1

2
.

With these choices, it follows from Corollary 2.5 that Γ is a contraction on the ball of radius

M centered at the origin in L∞([0, T ];W s,ρd,p(Rd)) outside a set of probability

≤ C exp
(
− c R2

T
2ε
p ‖φ‖2Hσ

)
∼ exp

(
− c 1

T γ‖φ‖2Hs

)
for some γ > 0. In view of (1.7) and (2.2), an application of the contraction mapping

principle then concludes the proof of the first part of Theorem 1.1.

For the second part of Theorem 1.1, one argues similarly, using (2.9) and (2.10) to show

that Γ is a contraction on a ball centered at the origin in L∞([0, T ], Lp+1(Rd)). �
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