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Abstract

Robots assisting humans in complex domains often have
to reason with different descriptions of incomplete domain
knowledge. It is difficult to equip such robots with compre-
hensive knowledge about the domain and axioms governing
the domain dynamics. This paper presents a combined ar-
chitecture that enables interactive and cumulative discovery
of axioms governing action capabilities, and the precondi-
tions and effects of actions in the domain. Specifically, An-
swer Set Prolog is used to represent the incomplete domain
knowledge, and to reason with this knowledge for planning
and diagnostics. Unexpected outcomes observed during plan
execution trigger reinforcement learning to interactively dis-
cover specific instances of previously unknown axioms and
to revise the existing axioms. Furthermore, a decision tree
induction approach based on the relational domain represen-
tation constructs generic versions of the discovered axioms,
which are then used for subsequent reasoning. The architec-
ture’s capabilities are illustrated and evaluated in a simulated
domain of a robot moving objects to specific places or people
in an indoor domain.

1 Introduction

Consider a robot!' assisting humans by finding and mov-
ing desired objects to particular locations in an office build-
ing. In such complex, dynamic, and potentially resource-
constrained environments, the robot will require a significant
amount of domain knowledge, e.g., about domain objects,
events and its own capabilities. At the same time, it will be
challenging for humans to equip the robot with comprehen-
sive domain knowledge, or to possess the time and expertise
to interpret raw sensor input and provide detailed feedback.
Domain knowledge may include commonsense knowledge,
including default knowledge such as “books are usually in
the library” that holds in all but a few exceptional circum-
stances, e.g., cookbooks are in the kitchen. The robot also
extracts information from its sensors and actuators, which
is typically associated with numerical representations, e.g.,
probabilistic representations of uncertainty such as “I am
90% sure the robotics book is on the table”. In addition, a
robot is typically equipped with axioms governing domain

'We use the terms “robot”, “agent” and “learner” interchange-
ably, although an embodied agent is not essential for the learning
task described in this paper.

dynamics. Such domain axioms typically describe the pre-
conditions and expected outcomes of actions that can be ex-
ecuted in the domain. The axioms also include knowledge
of action capabilities, also known as affordances. With ref-
erence to an action, we define an affordance as a combina-
tion of attributes of object(s) and agent(s) involved in the ac-
tion (Gibson 1986), e.g., the affordance of a person climbing
a stair is described in terms of the stair’s height with refer-
ence to the person’s leg length (Warren 1984).

A fundamental challenge with these different types of
knowledge possessed by a robot is that the knowledge is
usually incomplete, and often needs to be revised over time.
For instance, if the floor of a room has just been polished,
a robot’s movement in this room will produce unexpected
outcomes in the absence of an accurate description of the
robot’s movement on such surfaces. To truly assist humans
in complex domains, robots thus need the ability to aug-
ment and revise the different types of knowledge. Towards
addressing this challenge, the architecture described in this
paper seeks to enable interactive and cumulative discovery
of domain axioms. Although our architecture can be used
to discover both axioms governing actions performed by the
robot and axioms governing exogenous actions, we focus on
the former in this paper and assume that any knowledge of
exogenous actions is limited to that encoded a priori—we
leave the exploration of exogenous actions as a direction for
further research. We discuss the following key characteris-
tics of the architecture:

e For planning and diagnostics, an action language-based
descriptions of transition diagrams of the domain are
translated to an Answer Set Prolog (ASP) program for
non-monotonic logical reasoning, and to a partially ob-
servable Markov decision process (POMDP) for proba-
bilistic reasoning.

e Unexpected observations during plan execution are con-
sidered to indicate the existence of previously unknown
knowledge about domain axioms. The discovery of these
axioms and the corresponding action capabilities, is for-
mulated as a Reinforcement Learning problem that is in-
formed by ASP inference.

e Decision tree-based regression with the relational repre-
sentation encoded in the ASP program, and a sampling-
based approach, are used to identify candidate axioms,
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and to generalize across these candidates. These generic
axioms are included in the ASP program and used for sub-
sequent reasoning.

Given the focus on the ability to discover axioms corre-
sponding to different types of knowledge, we abstract away
the uncertainty in perception and do not describe the prob-
abilistic reasoning component of the architecture. We illus-
trate the architecture’s non-monotonic logical reasoning and
axiom discovery capabilities in a simulated domain that has
arobot assisting humans by delivering desired objects to par-
ticular locations or people in an indoor domain.

The remainder of this paper is organized as follows. We
first review related work in Section 2, and describe our ar-
chitecture’s components in Section 3. Experimental results
are discussed in Section 4, followed by conclusions and a
discussion of future work in Section 5.

2 Related Work

This section reviews some related work in logic program-
ming, probabilistic reasoning, and relational learning, in the
context of robotics.

Probabilistic algorithms are used widely for tasks such
as reasoning and learning in robotics and Al, but these for-
mulations, by themselves, make it difficult to reason with
commonsense knowledge. In parallel, research in classical
planning has provided many algorithms for representing and
reasoning with commonsense knowledge. For instance, ap-
proaches based on first-order classical logic have been used
for applications in robotics and Al, but they do not sup-
port desired capabilities such as non-monotonic logical rea-
soning and default reasoning. The logic programming com-
munity has developed many formalisms for non-monotonic
logical reasoning, e.g., ASP is used by a growing inter-
national research community (Erdem and Patoglu 2012).
These logical reasoning approaches, however, often require
complete knowledge about the domain and the agents’ capa-
bilities. Also, these approaches, by themselves, do not sup-
port probabilistic reasoning, whereas quantitative reasoning
about the uncertainty related to sensing and actuation on
robots is often based on a probabilistic representation. Ap-
proaches have been developed to support both logical and
probabilistic reasoning (Baral, Gelfond, and Rushton 2009;
Milch et al. 2006; Richardson and Domingos 2006). The
subset of these approaches based on first-order logic are of-
ten not expressive enough for certain types of knowledge,
e.g., they model default knowledge and uncertainty by asso-
ciating logic statements with numbers that may not be mean-
ingful, whereas approaches based on logic programming do
not support reasoning with large probabilistic components.
For all these approaches, interactive discovery of knowledge
continues to be an open problem.

Different approaches have been developed for represent-
ing and reasoning about action capabilities. Research in psy-
chology indicates that humans can make accurate judgments
about others’ action capabilities using simple representa-
tions, without actually observing the subject perform the ac-
tion(s) of interest (Ramenzoni et al. 2010). Many computa-
tional approaches have also been developed for represent-

ing and reasoning about affordances, often building on the
knowledge representation and reasoning algorithms sum-
marized above (Griffith et al. 2012; Sarathy and Scheutz
2016). Despite the existing research, open questions remain
regarding the suitable definition and representation of affor-
dances (Horton, Chakraborty, and Amant 2012).

In complex domains, agents often have to start with in-
complete domain knowledge, and learn from repeated in-
teractions with the environment. Different algorithms and
architectures have been developed to support this capabil-
ity. For instance, a first-order logic representation and the
observed effects of actions have been used to learn causal
laws (Shen and Simon 1989). This approach used axioms
as working hypotheses to be revised through discriminant
learning when predictions fail, but only the encoded pre-
conditions and effects of actions could be monitored. An-
other approach incrementally refined operators encoded in
first-order logic by making any unexpected observations the
preconditions or effects of operators (Gil 1994). This work
focused on augmenting existing knowledge and not on revis-
ing incorrect axioms, and did not allow for the same action
to lead to different outcomes in different contexts. Further-
more, these (and other such) approaches do not support gen-
eralization of acquired knowledge as described in this paper,
and also have the (known) limitations of approaches based
on first-order logic.

Researchers have used inductive logic with ASP to mono-
tonically learn causal rules (Otero 2003). A maximum sat-
isfiability framework has also been used with plan traces
for refining incomplete domain models (Zhuo, Nguyen,
and Kambhampati 2013). Interactive learning has also been
posed as a Reinforcement Learning (RL) problem with
an underlying Markov decision process (MDP) formula-
tion (Sutton and Barto 1998). Approaches for efficient RL
include sample-based planning algorithms (Walsh, Goschin,
and Littman 2010), and Relational Reinforcement Learn-
ing (RRL), which combines relational representations with
regression for Q-function generalization (Tadepalli, Givan,
and Driessens 2004). However, existing interactive rela-
tional learning algorithms focus on planning, only general-
ize over the states and actions corresponding to a given plan-
ning task (Driessens and Ramon 2003), or do not support the
desired commonsense reasoning.

In this paper, we present an architecture that supports
automatic, interactive discovery of previously unknown
knowledge governing action capabilities and the precondi-
tions and effects of actions. We build on and extend our
architectures that (a) combined declarative programming
and probabilistic graphical models for planning and diag-
nostics in robotics (Sridharan and Gelfond 2016; Sridha-
ran et al. 2017); and (b) integrated declarative programming
with relational reinforcement learning for interactive discov-
ery of previously unknown axioms governing action execu-
tion (Sridharan and Meadows 2016) and the agent’s action
capabilities (Sridharan, Meadows, and Gomez 2017).

3 Architecture Description

Figure 1 shows a block diagram of the overall architec-
ture. For any given goal, ASP-based non-monotonic log-
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Figure 1: Architecture combines complementary strengths
of declarative programming, probabilistic graphical models,
and relational reinforcement learning.

ical reasoning with a coarse2-resolution domain descrip-
tion provides a sequence of abstract actions. Each abstract
action is implemented as a sequence of concrete actions,
using a POMDP to reason probabilistically with the rele-
vant part of the corresponding fine-resolution system de-
scription. For complete details about representing and rea-
soning with tightly-coupled transition diagrams at these
two resolutions, please see (Sridharan and Gelfond 2016;
Sridharan et al. 2017). Here, we focus on the new compo-
nent of the architecture for interactively discovering domain
axioms. We thus abstract away the uncertainty in percep-
tion and do not discuss probabilistic planning. Instead, we
describe ASP-based reasoning for planning and diagnostics,
and relational reinforcement learning for axiom discovery.
We illustrate these capabilities of our architecture in the con-
text of the following domain.

Example 1. [Robot Assistant (RA) Domain]
Consider a robot that has to deliver objects to particular
rooms or people. Attributes include:

e Different sorts (classes) such as entity, person, robot,
object, book, desk etc.

e Static attributes such as a human’s role, which can
be {engineer,manager,sales}; the robot’s armtype,
which can be {electromagnetic, pneumatic}; an object’s
surface, which can be {hard,brittle}; and an object’s
weight, which can be {light,heavy}.

e Fluents such as location of humans and the robot, which
can be one of office, kitchen, library and workshop;
status of an object, which can be {damaged,intact};
whether an object is being held by the robot; and whether
an object has been labeled.

As a partial illustration, consider a scenario with two rooms,
three humans, one robot, three movable objects and five im-
movable objects—it has 6,946,816 physical (object) con-
figurations in a standard RL/MDP formulation and 55,296
static attribute combinations that can be explored during the
axiom discovery phase. In this domain, the robot may not
know, for instance, that:

1. A brittle object is damaged when it is put down.

2. Delivering an unlabeled object to a sales person causes it
to be labeled.

3. A damaged object cannot be delivered to a person, except
to an engineer.

4. An object with a brittle surface cannot be labeled.

5. A heavy object cannot be picked up by a robot with an
electromagnetic arm.

6. A damaged object cannot be labeled by a robot with a
pneumatic arm.

These statements correspond to different types of knowledge
encoded as causal laws, affordances etc, as described later.
The objective is to construct and include suitable axioms in
the ASP program.

3.1 Knowledge Representation

In our architecture, the transition diagrams of any given do-
main are described using an action language AL; (Gelfond
and Inclezan 2013). Action languages are formal models of
parts of natural language used for describing transition dia-
grams. Action language AL, has a sorted signature contain-
ing three sorts, namely statics, fluents and actions. Statics
are domain properties whose truth values cannot be changed
by actions, whereas fluents are domain properties whose
truth values can be changed by actions. Fluents are of two
types, basic and defined. Basic fluents obey the laws of iner-
tia and are changed directly by actions. Defined fluents, on
the other hand, do not obey the laws of inertia and may not
be changed directly by actions—they are changed based on
other fluents. Actions are defined as a set of elementary op-
erations. A domain property p or its negation —p is a literal.
In AL, three types of statements are supported:

a causes [, if po,...,p, (Causal law)

L if po,...,pm
impossible ay,...,a; if po,..., p, (Executability condition)

(State constraint)

where a is an action, [ is a literal, [, is a basic literal, and
Po,- - -, Pm are domain literals.

Domain description The representation of any domain is
given by the system description &, a collection of statement
of AL, and history 7. The system description & has a
sorted signature X and axioms that describe the transition
diagram 7. The basic sorts in the signature ¥ for the RA
domain in Example 1 include place, robot, entity, person,
object, role, armtype, weight, sur face, cup, book etc. Sorts
that are subsorts of other sorts, e.g., cup and book are sub-
sorts of ob ject, and person and robot are subsorts of entity,
are arranged hierarchically. Furthermore, the signature in-
cludes specific instances of sorts, e.g., we have robot rob,
places {of fice,workshop,kitchen,library}, and roles (of
people) {engineer, programmer, manager}.

Domain attributes and actions are described in terms of
the sorts of their arguments. The X of the RA domain in-
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cludes fluents such as:

loc(entity, place)
obj_status(ob ject,status)
in_hand (entity,ob ject)
statics such as:
obj_surface(object,surface)
obj_weight(object,weight)
person_role(person,role)

and actions such as:

move(robot, place)
serve(robot,ob ject, person)
affix_label(robot,ob ject)

The signature X also includes the sort step for temporal rea-

soning, and the relation holds(fluent,step) to state that a
particular fluent holds true at a particular timestep.

The axioms of the system description & include causal laws
such as:

move(roby,Pl) causes loc(rob;,Pl)
serve(roby,0,P) causes in_hand(P,0O)
pickup(rob;,0) causes in_hand(rob;,0)
affix_label(rob;,0) causes has_label(O)
where the second axiom implies that when the robot ex-
ecutes the serve action in the context of a specific object
and person, the object is in the person’s hand. Although we

do not describe it here, it is also possible to encode non-
deterministic causal laws (Sridharan et al. 2017).

Examples of state constraints of the RA domain include:
ﬁlOC(O,Lz) if lOC(O,Ll), L] #Lg
—in_hand(E,0;) if in_hand(E,0;), O # O,
loc(O,L) if loc(E,L), in_hand(E,O)

where the second axiom implies that any entity (robot or
person) can only hold one object at a time.

Examples of executability conditions of the RA domain in-
clude the following:

impossible move(rob,,L) if loc(roby,L)
impossible pickup(roby,0) if loc(roby,Ly),loc(0,L,),
Ly # L
impossible serve(roby,01,P) if in_hand(P,0,),0; # O,

where the first axiom implies that a robot cannot pick up
an object unless the robot and the object are in the same
location.

The recorded history .7 of a dynamic domain is usually a
record of fluents observed to be true/false at a time step, i.e.,
obs(fluent,boolean, step), and the occurrence of an action
at a time step, i.e., hpd(action, step). We expand this notion
of history to construct a model that supports the representa-
tion of (prioritized) defaults describing the values of fluents

in their initial states. For instance, we can encode a state-
ment such as “books are usually in the library and if it not
there, it is normally in the office” as follows:

initial default /oc(X,library) if textbook(X)
initial default loc(X,office) if textbook(X),
=loc(X,library)

We can also encode exceptions to this default statement such
as “cookbooks are in the kitchen”. Any inconsistencies in-
troduced by observations or acquired (and encoded) knowl-
edge, is addressed using consistency-restoring (CR) rules, as
described later in this section.

Affordance representation Next, consider the represen-
tation of affordances, which can be of two types. Positive
(i.e., enabling) affordances describe permissible uses of ob-
ject(s) and agent(s) in actions, whereas negative (i.e., forbid-
ding) affordances, also known as disaffordances, describe
unsuitable combinations of object(s) and/or agent(s) in the
context of specific actions. In this paper, we introduce the
following generic definition of forbidding affordances:

aff-forbids(ID,A) if not fails(ID,A),
forbidding_aff(ID,A)
—occurs(A,I) if aff_forbids(ID,A)

where the “not” in the first statement represents default
negation (on which we provide more details later). The sec-
ond statement implies that action A cannot occur if it is
not afforded, which depends on whether suitable conditions
have been defined to arrive at this conclusion. Any action
can have one or more such relations defined with unique
IDs. For instance, if we know that a robot with an electro-
magnetic arm cannot pick up a heavy object, the following
statements may be included in Z:

forbidding_aff (id1, pickup(R,O))
fails(id1, pickup(R,0)) if not obj_weight (O, heavy)
fails(id1, pickup(R,0)) if not arm_type(R,electromagnetic)

where the pickup action is not afforded if the object is heavy
and the robot’s arm is electromagnetic.

The representation of knowledge in our architecture
brings up some subtle issues. First, for any given action,
the axioms for both the executability conditions and the
forbidding affordances imply that, when the body of these
axioms are true, the desired outcomes (i.e., effects) will
not be achieved because not all of the action’s precondi-
tions are satisfied—the action should then not be included
in a plan. However, there are key differences in the type of
knowledge encoded by executability conditions and affor-
dances, and how this knowledge is represented. Affordance
relations, once discovered, either specify preconditions that
when true will lead to the corresponding action not having
the desired outcomes (negative affordance), or specify pre-
conditions that when true will lead to the successful execu-
tion of an action that may not have been considered possible
(so far). In other words, these relations remove or add ele-
ments from the set of actions available for consideration to
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achieve any given goal. Also, for any particular action, each
affordance is defined in terms of the attributes of the objects
operated by an agent, or of an agent and an object involved
in this action. An executability condition does not have to
meet these requirements, e.g., when an executability condi-
tion is discovered and in use, the plans computed for any
given goal are a subset of the plans obtained in the absence
of this condition. Second, the representation of affordances
as relations between domain properties and actions, similar
to the representation of actions, is distributed, e.g., we can
define multiple affordance relations for any action. The ad-
vantages of this representation, e.g., information reuse and
ease of plan explanation, are discussed in Section 4.2.

ASP-based inference The domain representation is trans-
lated into program I1(Z, 5¢) in CR-Prolog, a variant of ASP
that allows us to represent and reason with defaults and their
exceptions, and incorporates CR rules (Balduccini and Gel-
fond 2003). We will use the terms CR-Prolog and ASP in-
terchangeably in this paper. ASP is based on stable model
semantics and non-monotonic logics, and includes default
negation and epistemic disjunction, e.g., unlike “—a” that
states a is believed to be false, “not a” only implies that a
is not believed to be true, and unlike “p V —p” in propo-
sitional logic, “p or —p” is not tautologous (Gelfond and
Kahl 2014). ASP can represent recursive definitions, de-
faults, causal relations, and constructs that are difficult to
express in classical logic formalisms. The program IT thus
consists of causal laws of &, inertia axioms, closed world
assumption for defined fluents, reality checks, and observa-
tions, actions, and defaults, recorded in 7. Every default is
turned into an ASP rule and a CR rule that allows the robot
to assume that the default’s conclusion is false, under excep-
tional circumstances, so as to restore program consistency
under exceptional circumstances. For instance, IT could in-
clude prioritized defaults encoded as ASP rules:

holds(loc(B,library),0) < #textbook(B),
not—holds(loc(B,library),0)

holds(loc(B,of fice),0) < #textbook(B),
—holds(loc(B,library),0),
not—holds(loc(B,of fice),0)

and the CR rules:
—holds(loc(B,library),0) & #textbook(B).
—holds(loc(B,of fice),0) <= #textbook(B),

—holds(loc(B,library),0).

where the first CR rule implies that under exceptional cir-
cumstances, to restore program consistency, the robot can
assume that a textbook is not in the library in the initial
state. For planning, IT also includes the definition of a goal,
a constraint stating that the goal must be achieved, and a
rule generating possible future actions of the robot. Further-
more, although we do not discuss it in this paper, IT includes
relations and axioms for explaining observed outcomes and
partial scene descriptions.

Algorithms for computing the entailment, and for plan-
ning and diagnostics, reduce these tasks to computing the
answer sets of the program I1(2, ). The ground literals
in an answer set represent the beliefs of an agent associated
with program II. An ASP solver is used to compute the an-
swer sets of any given program IT. We use SPARC, a lan-
guage that expands CR-Prolog to provide explicit constructs
for specifying objects, relations, and their sorts (Balai, Gel-
fond, and Zhang 2013).

In the absence of comprehensive domain knowledge, ap-
propriate plans may not be found and the execution of plan
steps may have unexpected outcomes. In the RA domain, a
robot moving a brittle cup to the kitchen may not know that
putting the cup down is going to damage it—the unexpected
outcome will only be observed after the action is completed.
In this paper, we focus on discovering such axioms that en-
code knowledge corresponding to causal laws, executability
conditions, and forbidding affordances. Including these ax-
ioms in IT will improve the quality of plans computed for
achieving any given goal.

3.2 Axiom Discovery

This section describes the steps of the axiom discovery pro-
cess. We begin with the formulation of axiom discovery
as a reinforcement learning (RL) problem, followed by the
decision-tree regression approach to construct a relational
representation of the experiences obtained during RL. We
then describe the construction of candidate axioms from the
tree, and the validation of the candidate axioms to produce
generic axioms to be included in the CR-Prolog program.

RL and Tree Induction When executing an action pro-
duces an unexpected transition, i.e., it does not produce the
expected observations and/or produces new unexpected ob-
servations, the state description described by the action’s ef-
fects becomes the goal state in a relational reinforcement
learning (RRL) problem. The objective of this formulation
is to find state-action pairs that are likely to lead to analo-
gous “error” states. First consider the standard RL formu-
lation and the underlying Markov decision process (MDP)
defined by the tuple (S,A, Ty, Ry):

e §is the set of states;

e A is the set of actions;

o Ty:SxAxS —[0,1] is the state transition function;
e Rf:SxAxS — Ris the reward function.

In the RL formulation, functions 7y and Ry are unknown to
the agent. Each element in S grounds the domain attributes,
and whether the last action to be executed had the expected
outcome(s). Such a formulation mimics the experiences that
a robot acquires incrementally and interactively as it per-
forms the assigned tasks, and provides a principled approach
to assign credit to current or previous state-action combina-
tions for the observed transition(s). Note that the definition
of the reward functions used in this approach has to be differ-
ent when discovering axioms corresponding to the different
types of knowledge. For instance, high immediate reward is
to be provided:
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e When an action’s expected effects are not observed, if the
focus is on discovering executability conditions.

e When effects in addition to those expected for an action
are observed, if the focus is on discovering causal laws.

e When the expected and unexpected effects of an action
are observed, if the focus is on discovering affordances.

One key benefit of ASP-based reasoning is that we can de-
fine and automatically compute the states and actions rel-
evant to a given (unexpected) transition, eliminating parts
of the search space irrelevant to the discovery of the de-
sired knowledge. This identification of the relevant search
space is equivalent to constructing the system description
2(T), which is the part of 2 relevant to the transition 7
of interest. To do so, we first define the object constants
relevant to the unexplained transition—this is a revised
version of the definition in (Sridharan and Gelfond 2016;
Sridharan et al. 2017).

Definition 1. [Relevant object constants]
Let a;, be the target action that when executed in state o
did not result in the expected transition T = (07, ar,, 02).
Let relCon(T) be the set of object constants of signature £
of Z identified using the following rules:

1. Object constants from a;, are in relCon(T);

2. If f(x1,...,Xn,y) is a literal formed of a domain prop-
erty, and the literal belongs to o7 or o3, but not both, then
X1y...,Xpn,y are in relCon(T);

3. If body B of an executability condition of a;, contains
an occurrence of a term f(xj,...,x,,Y) whose domain is
ground, and f(xi,...,x,,y) € O}, then xj,...,x,,y arein
relCon(T).

Constants from relCon(T) are said to be relevant to tran-
sition 7. For instance, if the target action in RA domain
is a;g = serve(roby,cupi, persony), with loc(roby,of fice),
loc(cupy,office) and loc(persony,of fice) in state o, the
relevant object constants will include rob; of sort robot,
cupi and person, of sort thing, and o ffice of sort place.

Once we know the relevant object constants, we can define
the relevant system description Z(T') as follows.

Definition 2. [Relevant system description]

The system description 2(T) relevant to the transition 7 =
(01,a4, 02) that resulted in the unexplained transition, is de-
fined by the signature X(7') and axioms. The signature X(7')
is constructed as follows:

1. Basic sorts of ¥ that produce a non-empty intersection
with relCon(T) are in £(T).

2. For basic sorts of X(T) that correspond to the range of a
static attribute, all domain constants are in (7).

3. For basic sorts of X(7') that correspond to the range of a
fluent, or domain of a fluent or a static, domain constants
that are in relCon(T) are in X(T).

4. Domain properties restricted to the basic sorts of £(7') are
also in X(T).

The axioms of Z(T') consist of those of Z restricted to the
signature X(7). Building on our example of a state transi-
tion with a,; = serve(roby,cupy, person;), 2(T) would not
include other robots, cups or people that may exist in the do-
main. It can be shown that each transition in the original sys-
tem description & maps to a transition in the system descrip-
tion Z(T) relevant to the unexpected transition of interest—
see (Sridharan et al. 2017) for complete details about estab-
lishing this relationship between transition diagrams. States
of 2(T), i.e., literals formed of fluents and statics in the an-
swer sets of the corresponding ASP program, are states in
the RL formulation for axiom discovery. Actions included
in the RL formulation are (in a similar manner) the ground
actions of 2(T). Furthermore, it is possible to pre-compute
or reuse some of the information used to construct the sys-
tem description relevant to any given transition.

Coming back to our example of the target action a;, =
serve(roby,cupy, person;), the relevant system description
2(T) (with a small set of domain objects) includes thirteen
atoms formed of relevant fluents:

in_hand(roby,cupy), item_status(cup,damaged),
item_status(cup,,intact), labelled(cup, false),
labelled(cupy ,true), loc(persony,kitchen),
loc(persony,library), loc(person,office),
loc(persony,workshop), loc(roby,kitchen),
loc(roby,library), loc(roby,of fice),
loc(roby,workshop)
eight possible (relevant) ground actions:
af fix_label(roby,cupy), move(rob,kitchen),
move(roby,library), move(roby,of fice),
move(roby,workshop), pickup(roby,cupy),
putdown(roby,cupy), serve(roby,cupi,person;)
and nine atoms formed of relevant static attributes:
arm_type(rob,electromagnetic), surface(cup;,hard),
obj weight(cupy,heavy), obj weight(cupy,light),
role(persony ,engineer), role(person),manager),
role(persony,sales), surface(cup,brittle),
arm_type(roby, pneumatic)

The system can then restrict its discovery process to focus
on the possible combinations of relevant domain attributes.

Restricting exploration to just the relevant system descrip-
tion still leaves some open problems. For instance, Defini-
tions 1 and 2 may not capture deeper relationships in the
construction of the axioms. Also, in domains with complex
relationships between objects, the space of relevant states
and actions may still be so large that exploration may need
to be limited to a fraction of this space during the RL tri-
als. Furthermore, Q-learning (by itself) does not generalize
to relationally equivalent states, making it computationally
expensive to conduct RL trials in complex domains.

We exploit the relational representation encoded in the
ASP program to address some of these problems. Specifi-
cally, we use a relational representation to generalize to re-
lationally equivalent states. After one or more episodes of
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Q-learning, all visited state-action pairs and their estimated
Q-values are used to incrementally update a binary deci-
sion tree (BDT)—the motivation for constructing this tree
is to relationally represent the robot’s experiences. The path
from the root to a leaf node corresponds to a partial de-
scription of a state-action pair (s,a). Internal nodes corre-
spond to boolean fests of specific domain attributes or ac-
tions, and determine the node’s descendants. The remainder
of the state description is stored at the leaf—some of this
may be transferred to a new node (for variance reduction)
when the BDT is updated. The revised tree is used to com-
pute a new policy, eliminating the need to completely rebuild
the tree after each episode. The incremental inductive learn-
ing of the BDT draws on the algorithm by Driessens and Ra-
mon (2003). In each Q-learning episode, the system stochas-
tically decides to attempt either a random action or the one
preferred by the current policy, ignoring actions currently
invalidated by known axioms. Each action application also
updates the information stored at a relevant leaf. Over time,
the system assigns a higher value to outcomes perceived to
be similar to the originally encountered unexpected transi-
tion. Since these errors may appear in the context of differ-
ent combinations of domain attributes, these combinations
are varied during RL trials, and the BDT reflects the explo-
ration of different, but similar, MDPs. Q-learning episodes
terminate when the Q-values stored in the BDT converge.
For large, complex domains, we assume that when the num-
ber of explored attribute-value combinations reaches a frac-
tion of the total number of possible combinations, the RL
trials will be halted.

Constructing Candidate Axioms The next step con-
structs candidate axioms for causal laws, executability con-
ditions and forbidding affordances, each of which has a
known structure, as described in Section 3.1. For instance,
any executability condition has the non-occurrence of an ac-
tion in the head, with a body of (pre)condition(s) that prevent
this action from being included in a plan. In a similar man-
ner, causal laws have the occurrence of an action in the body
and specific effects of executing the action in the head.

To construct these axioms, the system examines each leaf
from the induced BDT, extracts a partial state-action de-
scription using its path to the root, and aggregates the stored
information about domain attributes from this description.
Branches with low Q-values or corresponding to an action
that did not result in the observed transition are eliminated.
The resulting structures include information on the mean
and variance of the stored Q-value, based on the different
samples clustered under each leaf. Each structure’s state-
ments about specific attributes holding or not holding are
partitioned into two subsets, and all possible pairwise com-
binations of those subsets are elicited, producing unique tu-
ples, each of which is the basis of a candidate. These store
(a) the amassed Q-value; (b) the total variance; and (c) the
number of training samples that influenced the candidate.

The system estimates the quality of the candidate from the
Q-values of relevant samples it has experienced. It makes
a number of random sample draws from the BDT, propor-

tional to the size of the tree and the number of attributes
not used as tests, without replacement. Each sample is a full
state description of information at the leaf and along the path
to the root. Each such state description that matches a candi-
date axiom adds to its Q-value, variance and count. Consider
the axiom corresponding to a disaffordance relation in the
RA domain, which prevents a robot with an electromagnetic
arm from trying to pick up a heavy object. Assume that a
candidate axiom has been constructed from an example leaf
whose path to the root represents a partial state description
that includes:

loc(booky ,workshop), loc(roby,workshop),
ob j_weight (book| ,heavy), arm_type(roby,electromagnetic)

and that a Q-value of 9.5 is associated with this example.
One resulting candidate can be written as:

positive: [obj_weight(book),heavy),
arm_type(roby,electromagnetic) ]
negative: []

Q-sum: 9.5, Count: 1, Mean: 9.5

Of the random samples drawn during candidate quality es-
timation, only some will match the candidate’s partial state
description, e.g.:

positive: [loc(book,,workshop),

ob j_weight (booky ,heavy), obj_status(book;,intact)]
negative: []

Q: 9.9

The system uses this sample to update the candidate:

positive: [obj_weight(book,,heavy),
arm_type(roby, electromagnetic) ]

negative: []

Q-sum: 19.4, Count: 2, Mean: 9.7

When all the candidates have been found, the system can
then choose the final set of axioms to be added to the system
description, i.e., the CR-Prolog program.

Filtering Candidate Axioms The final step of the axiom
discovery process is generalization, i.e., the identification
of the most generic form of candidate axioms with a suf-
ficiently high likelihood of representing correct knowledge
about the domain. First, candidates not refined by additional
training samples after their construction are removed. Then,
the candidates are ranked by the number of samples used to
adjust them, and any candidates that elaborate other, higher-
ranked candidates are removed. For instance,

The remaining candidates undergo validation tests in sim-
ulation. For instance, a candidate executability condition, if
true, should describe a case where an action will not provide
the desired effects. If we can find a case that should imply
a “failure” (i.e., unexpected transition) based on this axiom,
but meets with “success” (i.e., expected transition) when the
action is executed, the candidate axiom is incorrect. To this
end, the simulation takes a random state where the target ac-
tion is known to succeed, and makes minimal changes to the
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domain attributes necessary to make the state match the par-
tial state description of the candidate axiom. If executing the
action only provides the expected outcomes in this adjusted
state, the candidate axiom is discarded. Note that these vali-
dation tests are guaranteed not to retract any correct axioms,
but are not guaranteed to retract all incorrect ones. The re-
maining candidate axioms, after suitably replacing the ob-
ject constants with variables, are included in the CR-Prolog
program that is used for reasoning in the subsequent steps.

4 Experimental Setup and Results

In this section, we first state the claims about our architec-
ture’s capabilities (Section 4.1). Next, we illustrate some of
these capabilities using an execution trace, and discuss some
key advantages of the representation of knowledge in our
architecture (Section 4.2). We then summarize and discuss
the results of experimental evaluation in a simulated domain
(Section 4.3).

4.1 Claims

We posit and evaluate the following six central claims about
our architecture’s capabilities:

1. The distributed representation of affordances and other
types of knowledge supports efficient inference, informa-
tion consolidation and information reuse;

2. The architecture can learn symbolic knowledge structured
as affordances, executability conditions, and causal laws;

3. During axiom discovery, automatically limiting search to
the space relevant to any given unexpected transition im-
proves computational efficiencys;

4. Our approach to discovering different types of knowledge
is robust to perceptual noise;

5. Introducing validation tests in the loop of learning, plan-
ning, and execution, significantly improves the accuracy
of the discovered axioms; and

6. The discovered axioms help improve the quality of plans
generated for any given goal.

We discuss the first claim qualitatively, and evaluate the
other five claims quantitatively. We consider six target
axioms—two each of affordances, executability conditions,
and causal laws—including those discussed in Example 1.
We conducted trials of 1000 repetitions apiece, providing
them to the domain but removing them from the system’s
domain model. We examined the output axioms which the
system discovered in each trial. Although each of these tests
focused on a single target axiom, we have demonstrated the
ability to discover axioms simultaneously elsewhere (Srid-
haran, Meadows, and Gomez 2017). We also conducted tri-
als in which we explored different fractions of the search
space, ignoring relevance, comparing 300 trials for each of
these explorations (50 repetitions for each of the six target
axioms). We used precision and recall as measures of accu-
racy. Furthermore, we allowed the system to test each dis-
covered axiom in simulation, and report the resulting effects
of this checking on initial accuracy.

4.2 Execution Trace and Discussion

As an illustration of the architecture’s working, con-
sider the robot in the RA domain that does not know
that a brittle object will be damaged if it is put
down. Suppose also that obj_surface(cup,brittle) and
obj_status(cupy,intact), and that the domain characteristics
are otherwise as described earlier. Let the initial state there-
fore include the following literals:

in_hand(cup;,roby)
loc(cupy,workshop)
obj_surface(cupy,brittle)
obj_status(cupy,intact)

and let the goal state description include:
loc(C,kitchen)

where C is a variable of sort cup, i.e., the objective is to
deliver a cup to the kitchen. One possible plan to achieve
this goal has two actions:

move(roby, kitchen)
putdown(roby, cupy)

However, if this plan is executed, the second action results in
an unexpected outcome, potentially triggering the discovery
process. Over a period of learning, the robot is able to add
the following generic axiom to its system description:

putdown(R,0) causes obj_status(O,damaged)
if obj_surface(O,brittle)

preventing the robot from (in the future) including a
putdown action in a plan involving a brittle object.

Let us now also consider the first claim about the benefits of
the representation of knowledge in our architecture. Recall
that action capabilities, and the preconditions and effects of
actions, are encoded in a distributed manner using one or
more axioms, which provides the following advantages:

e First, it will be possible to provide more meaningful ex-
planations of plans and inferences. Recall that affordances
are statements about an action with respect to the at-
tributes of object(s) and/or agent(s) involved in the action.
Each affordance also relates a partial state description to
the actions that can (or cannot) be performed in states that
build on this state description. When grounded, such a
representation is close to language structures likely to be
used for responses, for instance in diagnostics and plan
explanation. It will thus be easy to translate and use this
knowledge to make statements of the form “lifting this
large cylinder with this small robot could work as long
as the cylinder is not heavy”, or “Affixing a label to the
coffee cup will not work when the cup is known to be
brittle and the label applicator is known to work on hard
surfaces”.

e Second, it will be possible to efficiently respond to queries
that require consolidation of knowledge across attributes
of robots or objects, by directing attention to the relevant
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knowledge. For instance, assume that the domain knowl-
edge includes affordance relations that describe the abil-
ity of individual robots, with different strength levels, to
pick up (or not pick up) objects of different weights and
surfaces. Questions of the form “what objects can weak
robots pick up?”’, or “which robots can pick up cups?”’
can be answered quickly by expanding Definition 2 to
automatically consider only the affordance relations and
attributes relevant to such questions. Furthermore, it will
also be possible (although we do not consider it here) to
develop composite affordance relations, e.g., a hammer
may afford an “affix objects” action in the context of a
specific agent because the handle affords a pickup action
and the hammer affords a swing action, by the agent.

e Third, the distributed representation will simplify infer-
ence and information reuse. For instance, if a hammer has
a graspable handle, this relation also holds true of the par-
ent object class and for all other objects with graspable
handles. In a similar manner, a forbidding affordance (i.e.,
disaffordance) that prevents the pickup action when the
type of the robot’s arm does not match the weight of the
object, can also be used to infer the robot’s inability to per-
form similar actions such as opening a heavy door or clos-
ing a large window. This relates to research in psychology
which indicates that humans can judge the intent and ac-
tion capabilities of others without actually observing them
perform the target actions (Ramenzoni et al. 2010).

Initial results of experimental evaluation do support the ben-
efits listed above—future work will design and conduct ex-
tensive experimental trials to gather quantitative results in
support of the first claim.

4.3 Experimental Results

Our prior work proposed different architectures for dis-
covering forbidding affordances (Sridharan, Meadows, and
Gomez 2017) and for executability conditions (Sridharan
and Meadows 2016). Here, we evaluated whether a single
architecture can discover these forms of knowledge as well
as the knowledge of causal laws.

Discovering different types of knowledge: In our exper-
iments, the average recall and precision over the entire set of
target axioms, were 0.98 and 0.72 respectively. The system
took a mean 5.95 time units to perform decision tree induc-
tion and a mean 0.35 time units to extract a set of axioms.
We found that axioms with more clauses were more diffi-
cult to learn. Also, if axioms were structured to include spe-
cific exceptions, there were more logical over-specifications,
e.g., an axiom stating that “a light, brittle object cannot be
labeled” was discovered instead of “a brittle object cannot
be labeled”. We treat these over-specifications as false posi-
tives, and the (overall) worst case recall and precision were
0.91 and 0.64 respectively. This supports our second claim,
that our architecture can discover knowledge corresponding
to affordances, executability conditions, and causal laws.

Effect of directed exploration: Next, we conducted tri-
als to examine the benefit of limiting exploration, for any

given unexpected transition, to just the relevant portion of
the search space. The mean time required to compute this
relevant space was 533 time units, and the mean time to dis-
cover the axioms in this reduced search space was 6.3 time
units, resulting in a mean total time of 539.3 units for discov-
ering axioms in the search space relevant to any given tran-
sition. It is possible to precompute and cache the relevant
space to be explored in response to any given unexpected
transition in a given domain. Recall that the RA domain has
55,296 static attribute combinations and 6,946,816 physi-
cal (object) configurations. For our target axioms, this space
can be reduced to 8 — 128 static combinations (mean = 54)
that are relevant to any given action.

Next, we conducted trials that explored only a fraction of
the original space, ignoring relevance, to discover the target
axioms. At 0.01% exploration of the original space, a mean
total time of 608.4 units was required to discover the axioms;
the corresponding precision and recall were 0.28 and 0.86
respectively. The time taken to explore 0.01% of the original
search space is therefore similar to the length of time taken
to explore just the space relevant to any given transition.
However, exploring only the relevant search space provides
significantly higher values of recall and precision. Next, at
0.1% exploration of the search space (again ignoring rel-
evance), the discovery of axioms took a mean total time
of 800.4 units; the corresponding precision and recall were
0.53 and 0.99 respectively. In this case, although the recall is
similar to that obtained when only the relevant search space
is explored, the precision is still significantly lower and the
computation time requirement is significantly higher. Fur-
thermore, our implementation of the construction of the rel-
evant search space can also be made more efficient. These
results thus support the third claim, that limiting exploration
to the space relevant to any given unexpected transition im-
proves the computational efficiency of axiom discovery.

Robustness to perceptual noise: Next, we evaluated the
fourth claim, i.e., whether axiom discovery is robust to per-
ceptual noise, which we interpreted as the noise having a
negative but non-catastrophic impact on performance. We
introduced noise in the form of a fixed chance for an action
to have an unexpected outcome in the form of the removal
or addition of a single literal formed of a random fluent of
the desired resultant state. We performed 500 repetitions for
each of the six target axioms in the RA domain, and repeated
this for 10 different levels of noise between 0 — 20%. The
corresponding recall and precision scores are summarized
in Figures 2 and 3. We observe that the addition of noise
affects both precision and recall, with a more significant ef-
fect on precision. However, note that errors were predom-
inantly false positives corresponding to over-specifications
of the target axioms, e.g., they included executability con-
ditions that would correctly prevent an action from being
considered during planning but were not in the most general
form possible. In addition, these false positives were incre-
mentally eliminated as the robot performed a series of vali-
dations tests on the discovered axioms, as described below.
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Condition Causal laws Executability conditions (Dis)Affordances
Axiom 1 | Axiom 2 | Axiom 3 Axiom 4 Axiom 5 | Axiom 6
Without axioms 101.4 0 164.4 29.7 121.3
With axiom 110.7 11.2 75.7 23.0 86.5

Table 1: Number of plans found without and with each of the target axioms (see Example 1) under consideration. On average,
discovering causal laws increases the number of feasible plans to achieve any given goal, whereas discovering executability
conditions and disaffordances decreases the number of plans that can be used to achieve any given goal.
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Figure 2: Recall scores as a function of added noise; al-
though added noise reduces accurate recall of axioms, many
errors correspond to over-specifications that are filtered by
validation tests.

Effect of validation tests: Our recent work showed that
precision increased with the number of tests conducted to
validate the discovered axioms (Sridharan, Meadows, and
Gomez 2017). In our current work, we observed that there is
a similar improvement in precision with our architecture that
supports the discovery of axioms corresponding to different
types of knowledge in a more complex domain. These vali-
dation tests improved precision by filtering incorrect axioms.
For instance, when only the search space relevant to any un-
expected transition is explored, precision improved (on aver-
age) from 0.72 to 0.91 after ten validation tests. Even for the
0.01% and the 0.1% exploration of the original space (i.e.,
ignoring relevance), ten validation tests improved precision
from 0.28 to 0.90 and from 0.53 to 0.95 respectively. These
results support our fifth claim, that including validation in
the loop of planning, execution, and learning, improves the
accuracy of the discovered knowledge.

Effect on plan quality: Finally, we explored the effect of
the discovered axioms on the quality of plans generated. We
conducted 1000 paired ASP-based planning trials for each
axiom, and for all the axioms, with and without the corre-
sponding target axiom(s) in the system description. Table 1
summarizes the results for each of the six axioms, and dis-
plays some interesting trends. For instance, the set of plans
found after including axioms that represent knowledge cor-
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Figure 3: Precision scores as a function of added noise;
although added noise affects precise discovery of axioms,
many errors correspond to over-specifications that are fil-
tered by validation tests.

responding to a causal law (e.g., axiom 1 or 2 in this study)
was a superset of the plans found without including these
axioms in the system description. In other words, discov-
ering previously unknown knowledge corresponding to a
causal law (on average) increases the number of possible
plans that can be constructed to achieve an assigned goal.
On the other hand, the set of plans found after including ax-
ioms that represent knowledge of an executability condition
or a forbidding affordance (axioms 3 — 6 in this study) was a
subset of the plans found without including these axioms. In
other words, discovering knowledge corresponding to a pre-
viously unknown executability condition or forbidding af-
fordance (on average) reduces the number of plans that can
be executed to achieve an assigned goal. However, when ax-
ioms corresponding to different types of knowledge are con-
sidered together, the set of plans found after including these
axioms is no longer a subset or superset of the plans found
without including the axioms. For instance, when all six tar-
get axioms are considered together, all we can say is that
29.2 is the average magnitude of the difference in the num-
ber of plans found with and without including these axioms.
Furthermore, we verified that all the plans that were com-
puted after including all the target axioms were correct.
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5 Conclusions and Future Work

This paper described an architecture for interactive and
cumulative discovery of axioms corresponding to causal
laws, executability conditions and forbidding affordances.
We used Answer Set Prolog to represent and reason with
incomplete domain knowledge for planning and diagnos-
tics, and used decision tree induction and relational rein-
forcement learning to identify specific candidate axioms and
generalize across these specific instances. Experimental re-
sults (in the context of a robot assisting humans in an indoor
domain by moving particular objects to particular places or
people) indicate that our approach:

e Supports reliable and efficient reasoning and discovery of
the axioms corresponding to different types of knowledge,
especially when search is limited to the space relevant to
the unexpected transition that triggered axiom discovery;

e Provides some robustness to perceptual noise—although
noise degrades the accuracy of axiom discovery, includ-
ing validation tests in the loop of planning, execution and
learning helps recover from these errors; and

e Results in the discovery of axioms that when included in
the system description, improves the quality of the plans
found for any given goal.

The architecture opens up multiple directions for research
that we seek to investigate in the future. More specifically:

o We will explore the problem of automatically determin-
ing when to discover different types of knowledge, and
thoroughly investigate the benefits of the underlying dis-
tributed representation;

e We will investigate the discovery of affordance relations
that enable the execution of specific actions by specific
agents;

o We will explore active interactive discovery of axioms in-
stead of limiting discovery to situations corresponding to
unexpected state transitions during plan execution; and

e We will evaluate the architecture on physical robots,
which will require the use of the component of the ar-
chitecture that reasons about perceptual inputs probabilis-
tically.

The long-term objective is to enable robots assisting humans
to represent, reason with, and interactively revise different
descriptions of incomplete domain knowledge.
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