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Abstract 15 

Sulfation and desulfation pathways represent highly dynamic ways of shuttling, repressing and re-16 

activating steroid hormones, thus controlling their immense biological potency at the very heart of 17 

endocrinology. This theme currently experiences growing research interest from various sides, 18 

including, but not limited to, novel insights about PAPS synthase and sulfotransferase function and 19 

regulation, novel analytics for steroid conjugate detection and quantification. Within this review, we 20 

will also define how sulfation pathways are ripe for drug development strategies, which have 21 

translational potential to treat a number of conditions, including chronic inflammatory diseases and 22 

steroid-dependent cancers.  23 

Introduction  24 

Steroid sulfation and desulfation pathways represent fundamental routes which regulate steroid 25 

circulatory transport and action. Whilst sulfated almost all steroids are inert and unable to bind to 26 

and activate their specific nuclear receptors. Indeed, as they are no longer lipophilic, sulfated 27 

steroids require active transport into cells via organic anion-transporters. Once intracellular, steroid 28 

conjugates can be desulfated, a process catalyzed by the ubiquitously expressed steroid sulfatase 29 

(STS) enzyme.  30 

Over the past 50 years, scientific perspectives on why sulfated steroids exist have changed several 31 

times, from it being a mere solubilization step for subsequent renal secretion to sulfated steroids 32 

representing a dynamic pool of steroid precursors fueling peripheral steroid signaling (Reed, et al. 33 

2005). Such dynamic sulfation/desulfation processes are highly relevant in the endocrine 34 

communication between mother and fetus, a field that recently was reviewed elsewhere (Geyer, et 35 

al. 2017). Another twist comes from recent evidence that sulfated steroids can still be substrates for 36 

steroidogenic enzymes, suggesting they may act as hormonal precursors for a wide range of steroids. 37 

We have previously provided a comprehensive review examining how sulfation and desulfation 38 

impacts steroid action in normal physiology and in a multitude of disease states (Mueller, et al. 39 

2015). Here we aim to give an update on the key advancements in this rapidly moving field. 40 

Different PAPS synthases for different sulfation pathways? 41 

PAPS synthases and a subset of sulfotransferases work together to ensure efficient sulfation of 42 

steroid hormones. PAPS synthases provide high-energy sulfate in the form of 3’-phospho-adenosine-43 

5’-phosphosulfate (PAPS) that is then used for sulfuryl transfer to hydroxyl- or amino-groups of 44 

acceptor molecules (Mueller and Shafqat 2013). Several recent cell-based studies investigated the 45 

function of PAPSS1. Small interfering RNA-mediated knockdown of PAPSS1 sensitizes non-small cell 46 

lung cancer cells to DNA damaging agents (Leung, et al. 2015; Leung, et al. 2017). PAPSS1 further 47 

seems to be essential for nuclear provirus establishment during retroviral (HIV) infection (Bruce, et 48 

al. 2008). This was independent from tyrosine sulfation of the CCR5 co-receptor of HIV, but required 49 

the sulfotransferase SULT1A1 for HIV-1 minus-strand DNA elongation (Swann, et al. 2016); however, 50 

the authors left open what SULT1A1 substrate was responsible for this effect.  51 

A different picture emerges for the functionality of PAPSS2, the only other PAPS synthase encoded in 52 

the human genome. Transcriptional co-regulation of the PAPSS2 genes with the SULT2A1 53 

sulfotransferase has been reported in some cases (Kim, et al. 2004; Sonoda, et al. 2002). Generally, 54 

PAPSS2 is believed to be an inducible gene (Fuda, et al. 2002; Mueller et al. 2015); controlled by TGF-55 

β via p38 kinase phosphorylating Sox9 (Coricor and Serra 2016). Rare compromising mutations in the 56 
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PAPSS2 gene present clinically with bone and cartilage mal-formations and an endocrine defect 57 

(Noordam, et al. 2009). By performing a DHEA challenge test, we established that inactivating 58 

PAPSS2 mutations cause apparent SULT2A1 deficiency (Oostdijk, et al. 2015). DHEA could no longer 59 

be efficiently sulfated and was downstream converted to biologically active androgens; manifesting 60 

with undetectable DHEA sulfate, androgen excess and metabolic disease (Oostdijk et al. 2015). 61 

Mechanistically, it is difficult to explain why two highly conserved enzymes with an amino acid 62 

identity of 78% could not compensate for each other. Both enzymes have similar APS kinase catalytic 63 

activity (Grum, et al. 2010) and they both shuttle between cytoplasm and nucleus, controlled by 64 

conserved nuclear localization and export signals (Schroder, et al. 2012). However, PAPS synthases 1 65 

and 2 differ markedly in their protein stability, with PAPSS2 being partially unfolded at physiological 66 

temperature (van den Boom, et al. 2012). The natural ligand and substrate adenosine-5’-67 

phosphosulfate (APS) stabilizes the enzyme, making APS an efficient modulator of sulfation 68 

pathways (Mueller and Shafqat 2013). For the sulfation pathways studied so far, the PAPS co-factor 69 

is always rate-limiting (Kauffman 2004; Moldrup, et al. 2011); but the question remains how 70 

specificity for one of the PAPS synthases is generated. 71 

Substrate specificity and regulation of sulfotransferases 72 

Sulfotransferases provide specificity to sulfation reactions by means of binding specific subsets of 73 

acceptor molecules (Coughtrie 2016). Our understanding of their structure, regulation, and function 74 

within different sulfation pathways has significantly increased in recent years. The first crystal 75 

structure of a plant sulfotransferase in complex with substrate, Arabidopsis SULT18/AtSOT18 with 76 

the glucosinolate sinigrin bound to it, identified essential residues for substrate binding and 77 

demonstrated that the catalytic mechanism may be conserved between human and plant 78 

sulfotransferase enzymes (Hirschmann, et al. 2017). Further, the core elements including the 5'-PSB 79 

and 3'-PB motifs, both involved in the binding of PAPS, are structurally conserved even in the 80 

distantly related tyrosine-protein sulfotransferases, human TPST1 and TPST2 (Tanaka, et al. 2017; 81 

Teramoto, et al. 2013). Protein substrates have to locally unfold and bind in a deep active site cleft 82 

to TPSTs and the vicinity of the acceptor tyrosine residues adopts an intrinsically unfolded 83 

conformation in order to facilitate this process (Tanaka et al. 2017; Teramoto et al. 2013). TPSTs 84 

were known to fulfill different biological functions; shear stress applied to primary cultures of human 85 

umbilical vein endothelial cells lead to downregulation of TPST1 via protein kinase C, but to 86 

upregulation of TPST2 via a tyrosine kinase-dependent pathway (Goettsch, et al. 2006; Goettsch, et 87 

al. 2002). However, there are no obvious differences in the substrate-binding site of TPST1 and 2; 88 

these need to be hidden in other non-conserved residues in the periphery. Similarly, substrate 89 

specificity may be controlled outside of the active center for Arabidopsis SULT18/SOT18 90 

(Hirschmann et al. 2017). The substrate specificity of human SULT1A3, on the other hand, is well 91 

understood. A single amino acid substitution in the substrate binding site (glutamic acid at position 92 

146) makes SULT1A3 highly selective for catecholamines (both endogenous and xenobiotic) as 93 

Glu146 forms a salt bridge with the nitrogen on the catecholamine side chain (Dajani, et al. 1999). 94 

With this one exception, the molecular understanding of the isoform specificity of sulfotransferases 95 

remains a challenge despite the wealth of structural information. 96 

Recent insights into enzyme kinetics may be helpful here. It is well known that sulfotransferases can 97 

show substrate-inhibition due to the formation of non-productive ternary complexes (Gulcan and 98 

Duffel 2011; Mueller et al. 2015). More recent is the view that sulfotransferases may be allosterically 99 

regulated by their cofactor PAPS: This allosteric regulation extended the dynamic range of SULT1A1’s 100 

catalytic efficiency (Wang, et al. 2014). Certainly, a new concept is that sulfotransferases might be 101 
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allosterically regulated in an isozyme-specific manner; liver sulfotransferase SULT1A1 for example is 102 

modulated by catechins (naturally occurring polyphenols) and nonsteroidal anti-inflammatory drugs 103 

(Wang, et al. 2016). All these modes of regulation of SULTs are illustrated in Figure 1. A better 104 

understanding of sulfotransferase enzymes may have direct translational potential for drug 105 

development (Cook, et al. 2016): Raloxifene is an approved selective estrogen receptor modulator 106 

that is quickly sulfated, and thus inactivated, in human cells. Modulating this compound in a way 107 

that prevented sulfation, but left its interaction with the estrogen receptor untouched, resulted in 108 

an enormous increase in estrogen receptor-activation efficacy (Cook et al. 2016). It is likely that this 109 

approach could also work with other compounds. 110 

Finally, it is population genetics influencing steroid sulfation pathways and the interindividual 111 

variability in drug response. Several coding single nucleotide polymorphisms in SULT genes influence 112 

an individual’s sulfation capacity (Louwers, et al. 2013), but also gene number variations have been 113 

reported for SULT2A1 (Ekstrom and Rane 2015) and other sulfotransferases (Marto, et al. 2017). In 114 

fact, the SULT2A1 gene seems to be more evolvable than, for example, PAPS synthases (Mueller et 115 

al. 2015); Ensembl (https://www.ensembl.org ) lists various expansions of this gene in different 116 

lineages with an eight-genes-comprising gene cluster in mice (Zerbino, et al. 2018), while a set of 117 

two PAPS synthase genes is highly conserved in vertebrates (van den Boom et al. 2012). A reverse 118 

approach using metabolomics and pharmacogenomics indicated that acetaminophen use 119 

phenocopied the effect of genetic variants of SULT2A1 on sulfated metabolites of androstenediol, 120 

pregnenolone, and DHEA (Cohen, et al. 2018). This study also challenges views on the mechanism of 121 

action of acetaminophen in pain management as sulfated sex hormones can function as 122 

neurosteroids and modify nociceptive thresholds. 123 

Analytics of steroid conjugates 124 

From the very beginning of steroid metabolomics, steroid mixtures were de-conjugated before 125 

analysis, mainly by gas-chromatography-mass-spectrometry (Shackleton 2010). However, measuring 126 

both free and conjugated steroids may give complementary information. Quantification of 127 

conjugates could be laboriously carried out using biochemical separation techniques (Shackleton, et 128 

al. 1968) or in multi-step differential de-conjugation measurements (Hill, et al. 2010). 129 

Experimentally, detection of intact steroid conjugates was reported already in 1982 (Shackleton and 130 

Straub 1982), using particle beam ionization; however this technique did not become standard in 131 

analytical labs. Only recently, more and more reports describe the targeted measurements of steroid 132 

sulfates and glucuronides using LC-MS/MS. Galuska et al. (Galuska, et al. 2013) reported a combined 133 

targeted method for intact steroid sulfates and unconjugated steroids. Six steroid sulfates were 134 

quantified by ESI-MS-MS in negative mode and, separately, 11 unconjugated steroids were analyzed 135 

by atmospheric pressure chemical ionization (APCI)-MS-MS in positive mode. This combined method 136 

could be used for different biological matrices including aqueous solutions, cell lysates and serum 137 

(Galuska et al. 2013). Validated targeted LC-MS/MS assays for different sex steroid sulfates from 138 

human serum are becoming available (Dury, et al. 2015; Poschner, et al. 2017; Sanchez-Guijo, et al. 139 

2015b). Nevertheless, all these assays require separate runs for the conjugated and free steroids. An 140 

integrated method for quantifying free and sulfated steroids in a single LC-MS/MS run was recently 141 

described (Lee, et al. 2016). It used both SIM and MRM modes as well as polarity switching and was 142 

capable of detecting eight free steroids and four sulfated ones. All methods described so far, were 143 

targeted assays.  144 

Noteworthy, low-energy collision-induced dissociation may be a way to discover new sulfo-145 

conjugates. Maekawa et al. (Maekawa, et al. 2014) used this technique not only to detect sulfate 146 
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adducts (–97 m/z), but also glycine (–74 m/z) or taurine conjugates. The group of Oscar Pozo 147 

developed a modification of this idea to monitor disulfates (McLeod, et al. 2017); these doubly 148 

sulfated steroids will be discussed further below. Constant-ion-loss monitoring of one of the sulfates 149 

(–97 m/z) allowed untargeted detection of potentially all soluble bis-sulfates; with the caveat that 150 

phosphates could also cause this signal (McLeod et al. 2017). This method was recently applied in 151 

prenatal diagnostics [Pozo et al, J Mol Endocr, accepted 19-Feb-2018]. Further developments in 152 

steroid conjugate analytics may involve ultra-high-performance supercritical-fluid chromatography 153 

linked to mass spectrometry (Doue, et al. 2015) and mass spectrometry-imaging as established for 154 

sulfated gluco-lipids (Marsching, et al. 2014) or for testosterone (Shimma, et al. 2016); allowing for 155 

spatial resolution of sulfation ratios. 156 

Measuring sulfation ratios of different enzymes precisely might help to expand what has been called 157 

the “sulfated steroid pathway” (Sanchez-Guijo, et al. 2016). The concept that sulfation does not 158 

prevent downstream conversion of steroids, but modulates it, is based on the side-chain cleaving 159 

activity of cytochrome P450 CYP11A1 towards cholesterol sulfate (Tuckey 1990). This observation 160 

was then extended to CYP17A1 that bound and metabolized pregnenolone sulfate (Neunzig, et al. 161 

2014). It is STS that can then convert sulfated steroids to biologically active steroids (Sanchez-Guijo 162 

et al. 2016). Steroid analysis of patients with steroid sulfatase deficiency suggests that other 163 

enzymes partially can complement STS (Sanchez-Guijo et al. 2016). In such a pathway, the sulfo-164 

group acts as protection group, allowing downstream biochemical conversions on one side of the 165 

steroid molecule, but not on the other. 166 

Selected steroid species in sulfo-focus 167 

Several steroid conjugates have been known for decades, but only recently have these forms been 168 

thought to be biologically meaningful and worth studying. Here, we briefly review knowledge about 169 

vitamin D-sulfates, steroid disulfates and 11-oxo-androgens. 170 

Vitamin D  171 

25-hydroxy-vitamin D3-3-sulfate (25-OH-D3-S) is a major metabolite of vitamin D3 found in the 172 

systemic circulation (Axelson 1985). As circulating concentrations of 25OH-D3-3-O-sulfate seem not 173 

to be rapidly secreted by the kidney, there is the possibility that this sulfate metabolite may serve as 174 

a reservoir of 25OH-D3 in vivo, contributing indirectly to the biologic effects of vitamin D (Wong, et 175 

al. 2018). Sulfotransferase SULT2A1 was identified as the major vitamin D3-sulfating enzyme (Kurogi, 176 

et al. 2017; Wong et al. 2018). SULT2A1 showed activity towards several vitamin D3-related 177 

compounds, whereas SULT1A1 and SULT2B1a/SULT2B1b only showed sulfating activity for, 178 

respectively, calcitriol and 7-dehydrocholesterol (Kurogi et al. 2017). 179 

The relationship between vitamin D and sulfation pathways is reciprocal. The vitamin D receptor also 180 

induces transcription of the steroid sulfotransferases SULT2A1 (Echchgadda, et al. 2004) and 181 

SULT2B1b (Seo, et al. 2013) as well as the phase I monooxygenase CYP3A4 (Ahn, et al. 2016), among 182 

other genes. Interestingly, the induction of steroid sulfatase by vitamin D3 and retinoids was 183 

reported in HL60 promyeloid cells (Hughes, et al. 2001). As net effect, vitamin D transcriptional 184 

regulation results in androgen inactivation (Ahn et al. 2016) and elevated sulfation activity that 185 

might increase the levels of vitamin D sulfate metabolites.  186 

Several analytical methods have been reported to detect and quantify vitamin D3 sulfoconjugates 187 

(Abu Kassim, et al. 2018; Gao, et al. 2017; Higashi, et al. 2014). Axelson reported values of 35±14 nM 188 

for 25-hydroxy-D3-3-sulfate in plasma from 60 patients (Axelson 1985), Gao measured 56±24 nM for 189 

Page 5 of 20



6 

 

25-OH-D3-3-sulfate in serum from six healthy volunteers (Gao et al. 2017) and Abu Kassim found a 190 

range of 9.52–43.8 nM for 25-OH-D3-3-sulfate in serum of 10 volunteers (Abu Kassim et al. 2018). 191 

Concentrations of this vitamin D3 sulfoconjugate were consistently higher than its glucuronidated 192 

counterparts. More importantly, the reported circulating concentrations for vitamin D3-3-sulfate 193 

reach up to what is regarded as the normal level of circulating 25-OH-vitamin D3, 80-250 nM (Hollis 194 

2010). Early studies described vitamin D3-3-sulfate as less biologically active than free vitamin D3 in 195 

rodents (Cancela, et al. 1987; Nagubandi, et al. 1981). Considering the high circulating 196 

concentrations of 25-OH-D3-3-sulfate in the human circulation, it should be taken into account when 197 

determining a person’s vitamin D status - it could be a reservoir for local generation of 25-OH-D3 and 198 

the active 1,25-di-OH-D3. 199 

Steroid disulfates 200 

Several steroid-diols like estradiol or androstenediol can be doubly sulfated, most likely by the same 201 

steroid sulfotransferases due to the pseudo-symmetry of those steroids (Mueller et al. 2015) and a 202 

high degree of plasticity in the substrate binding sites (Berger, et al. 2011). As early as in 1962, 203 

steroid disulfates (also referred to as bis-sulfates) were described as a constituent of human urine 204 

(Pasqualini and Jayle 1962). Falany and coworkers established for 24-hydroxycholesterol-3,24-205 

disulfate that double sulfation leads to a terminal product that is resistant to re-activation by STS 206 

(Cook, et al. 2009). This fueled the idea that a second sulfation step represented a further regulatory 207 

step or an irreversible step towards inactivation (Mueller et al. 2015). Double sulfation also changes 208 

affinity for organic anion transporters. While estradiol-3-sulfate and estradiol-17-sulfate both were 209 

substrates for the sodium-dependent organic anion transporter SOAT (SLC10A6), estradiol-3,17-210 

disulfate no longer was cargo for this transporter (Grosser, et al. 2017); depending on where the 211 

second sulfation step may occur within the cell, a steroid disulfate may be confined to that cellular 212 

compartment. 213 

11-oxo androgenic steroids 214 

The C19 steroid 11β-hydroxy-androstenedione is produced by the adrenal in significant amounts; it 215 

has however long been regarded as a dead-end product of adrenal steroidogenesis (Pretorius, et al. 216 

2017). In recent years, evidence has accumulated that this steroid could be converted to potent 217 

androgenic 11-oxygenated steroids, 11-keto-testosterone and 11-keto-dihydrotestosterone, that 218 

have similar potency to testosterone and dihydrotestosterone to activate the human androgen 219 

receptor (Storbeck, et al. 2013). Sulfated 11-oxo-steroids have not been reported until now, 220 

analogous to other androgens (Schiffer, et al. 2018). Interestingly, 11-oxo-steroids seem to be 221 

resistant to glucuronidation in various cancer cell lines (du Toit and Swart 2018) and 11-keto-222 

testosterone and 11-keto-dihydrotestosterone are metabolized at a slower rate than testosterone 223 

and dihydrotestosterone (Pretorius, et al. 2016). It seems that the 11-oxo modification prevents 224 

conjugation, making these steroids to exert prolonged androgenic effects.  225 

Steroid sulfatase action and regulation 226 

Steroid sulfatase is a membrane-bound protein with its active site located in the lumen of the 227 

endoplasmic reticulum (Thomas and Potter 2013). It catalyzes the hydrolysis of sulfate ester bonds 228 

from many chemical structures, and it is heavily involved in the desulfation of steroids. STS’s main 229 

hormone substrates are estrone sulfate, dehydroepiandrosterone sulfate (DHEAS), pregnenolone 230 

sulfate, and cholesterol sulfate. Thus, STS action represents a major intracrine route in regenerating 231 

biologically active steroids. The crystal structure of STS has been determined (Hernandez-Guzman, et 232 

al. 2003) showing a domain consisting of two antiparallel α-helices that protrude from the roughly 233 
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spherical structure; this gives it a “mushroom-like” shape. Despite this, very little is known on what 234 

factors regulate STS activity. STS undergoes post-translational modifications, the key one being the 235 

generation of C-alpha formylglycine (FGly), the catalytic residue in the active site of STS, from a 236 

cysteine by sulfatase-modifying factors 1 and 2 (SUMF1 & SUMF2). Furthermore, STS contains four 237 

potential N-glycosylation sites, however only two (Asn47 and Asn259) are used (Stein, et al. 1989; 238 

von Figura, et al. 1998) and only mutations at these sites decrease activity (Stengel, et al. 2008).  239 

Most recent studies have focused on directly measuring STS activity in a range of diseases and 240 

conditions in order to shed some light on how this enzyme is molecularly controlled (see Figure 2). 241 

Evidence from chronic liver disease and pre-osteoblastic cells suggests inflammatory mediators, in 242 

particularly TNFα (Newman, et al. 2000), can regulate STS expression and activity most likely through 243 

NF-kB signaling (Dias and Selcer 2016; Jiang, et al. 2016); with activity depressed by glucocorticoid 244 

treatment (Dias and Selcer 2016). Interestingly, estrogens have also been shown to influence STS 245 

activity in leukocytes taken from pregnant patients where STS activity is increased in the 3
rd

 246 

trimester (Miyakawa, et al. 1994). In support of this, Gilligan et al. have shown estradiol (E2) 247 

treatment can increase STS activity in colorectal cancer cells via G-protein coupled estrogen receptor 248 

(GPER) action (Gilligan, et al. 2017a). These studies suggest a potential positive feedback mechanism 249 

by which elevated local estrogen synthesis can further drive estrogen desulfation and activity. How 250 

this system is controlled by down-stream GPER mediators remains unknown. However, it is of 251 

interest that many steroids, including estrogens, are anti-inflammatory and thus local 252 

sulfation/desulfation regulation may represent a mechanism by which steroids control the local 253 

influence of an inflammatory insult.  254 

Mutations in the STS gene and X-linked Ichthyosis  255 

Mutations or deletions of the STS gene result in X-linked ichthyosis (XLI), a condition associated with 256 

hyperkeratosis (Ballabio, et al. 1989). XLI is also termed STS deficiency and represents a common 257 

inherited metabolic disorder, with 1:6000 live births and no geographical or ethnical variation 258 

(Fernandes, et al. 2010). Patients with XLI have no sulfatase activity and thus cholesterol sulfate 259 

breakdown is impaired. The subsequent cholesterol sulfate accumulation physiologically stabilizes 260 

cell membranes (Williams 1992) and builds-up in the stratum corneum causing partial retention 261 

hyperkeratosis with visible scaling (Elias, et al. 1984; Williams and Elias 1981). With this loss of 262 

desulfation, it is reasonable to assume XLI patients would also exhibit depleted circulating desulfated 263 

steroid concentrations, which would subsequently effect their hormone-related development. 264 

However, in healthy adult men STS has no significant impact on systemic androgen reactivation from 265 

DHEAS (Hammer, et al. 2005), thus suggesting STS loss has less physiological effects than anticipated. 266 

Indeed, in XLI patients, a compensatory mechanism has been identified through the upregulation of 267 

5α-reductase which, the authors suggest, maintains peripheral androgen activation despite reduced 268 

androgen availability (Idkowiak, et al. 2016). Along with changes in androgen metabolism, XLI 269 

patients also have elevated plasma concentrations of 27-hydroxycholesterol-3-sulfate compared to 270 

healthy males (Sanchez-Guijo, et al. 2015a). The effects of this increased oxysterol sulfate remains 271 

unknown.  272 

Greater than 90% of XLI patients harbor complete deletions of the STS gene. However, there have 273 

been 14 point mutations within the STS gene previously reported; 3 nonsense mutations and 11 274 

missense mutations (Mueller et al. 2015). More recently, a mutation in exon 3 of the STS gene was 275 

shown to cause a complete loss of STS activity in the affected patient (del Refugio Rivera Vega, et al. 276 

2015). Furthermore, two unrelated Japanese patients with ichthyosis are known to have two 277 

different point mutations in exon 7 (Oyama, et al. 2016). A novel indel mutation in exon 5 of the STS 278 
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gene has also been reported leading to a frameshift causing a premature stop codon 81 codons 279 

downstream from the substitution site (Takeichi, et al. 2015). Intriguingly, this frameshift did not 280 

affect the reported active site of STS thus the encoded transcript may be spared if a truncated 281 

mutant protein was synthesized.  282 

Steroid Sulfatase and Cancer 283 

Breast Cancer 284 

The most exciting advancements in steroid desulfation research have come through two recently 285 

completed clinical trials of the STS inhibitor Irosustat (STX64, 667Coumate). The IPET trial examined 286 

Irosustat in treatment of naive ER+ early breast cancer patients (Palmieri, et al. 2017b) and the 287 

Phase II IRIS trial examining the clinical benefit rate of Irosustat combined with aromatase inhibition 288 

in advance and metastatic ER+ breast cancer (Palmieri, et al. 2017a). Although patient recruitment 289 

numbers were relatively low (IPET n = 13; IRIS n = 27) both trials demonstrated some clinical benefit 290 

for STS inhibition. In the IPET trial breast tumors were assessed for the effects of Irosustat on tumor 291 

growth as measured by 3'-deoxy-3'-[18F]-fluorothymidine uptake measured by PET scanning (FLT-292 

PET) and Ki67 immunohistochemistry. STS inhibition significantly reduced Ki67 scores and the tumor 293 

uptake of FLT as measured by PET. Furthermore, Irosustat also decreased tumor STS expression, 294 

with this effect also observed in other estrogen metabolizing enzymes and ERα expression. This 295 

suggests STS inhibition may have beneficial effects with regards to dampening down tumor estrogen 296 

synthesis.  297 

Previous pre-clinical studies have shown combining aromatase inhibitors with STS inhibition was a 298 

viable strategy to treat MCF-7 xenografts in mice (Foster, et al. 2008a). Thus, the IRIS trial testing this 299 

strategy in breast cancer patients who had lapsed whilst on aromatase therapy. Clinical benefit rate 300 

was seen in 18.5% (95% Cl 6.3-38.1%) of patients with a median progression-free survival of 2.7 301 

months (95% Cl 2.5-4.6). Considering the difficulty of treating advanced and metastatic breast 302 

cancer, these results are encouraging for the future of STS inhibition in breast cancer treatment. 303 

Furthermore, MCF-7 cells resistant to letrozole treatment have been shown to have higher STS 304 

mRNA expression and greater expression of organic anion-transporting polypeptides, which mediate 305 

estrone sulfate transport into the cell (Higuchi, et al. 2016). This provides some molecular insight 306 

into aromatase resistance and how STS inhibition may be beneficial to patients who relapse on 307 

aromatase inhibitors. However, more clinical data is still required to examine whether Irosustat, or 308 

indeed other STS inhibitors, would be beneficial for ER+ aromatase resistant breast cancer patients.  309 

Gynecological Cancers 310 

Along with new evidence suggesting the importance of STS and SULT1E1 expression in endometriosis 311 

(Piccinato, et al. 2016), there are new insights into how desulfation impacts endometrial (Sinreih, et 312 

al. 2017) and ovarian (Mungenast, et al. 2017; Ren, et al. 2015) cancers. This work represents a 313 

growing interest in local estrogen metabolism and action in gynecological conditions (Rizner 2016; 314 

Rizner, et al. 2017). Indeed, these studies show a lack of aromatase activity and expression in these 315 

cancers, implicating STS activity as the most likely pathway through which local estrogen synthesis 316 

occurs (Ren et al. 2015; Sinreih et al. 2017). Indeed, high SULT1E1 protein expression is positively 317 

associated with better-differentiated epithelial ovarian cancers compared to grade 3 epithelial 318 

ovarian cancers (Mungenast et al. 2017). This suggests estrogen sulfation, and thus inactivation, 319 

limits estrogen tissue availability reducing the potential mitogenic effects of non-sulfated estrogens. 320 

Thus, targeting desulfation (i.e. via STS inhibition) may be an important strategy in treating ovarian 321 

and endometrial cancer. Pre-clinical mouse xenograft studies have previously demonstrated that STS 322 
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inhibition blocks estrone sulfate stimulated growth of endometrial tumors (Foster, et al. 2008b), 323 

although this theory remains to be tested clinically. Furthermore, and if the STS pathway dominates 324 

estrogen synthesis, then these studies may go some way to explain the clinical failure of aromatase 325 

inhibitors to treat endometrial cancer (Bogliolo, et al. 2016). 326 

Gastrointestinal Cancers 327 

A growing body of evidence on gastrointestinal cancers now implicates sex steroids and their 328 

desulfation as important drivers of proliferation (Barzi, et al. 2013; Foster 2013; Ur Rahman and Cao 329 

2016). Most research has focused on colorectal cancer (CRC) as previous work has shown a potential 330 

prognostic role for STS and SULT1E1 protein expression in CRC (Sato, et al. 2009), implicating a high 331 

STS and low SULT1E1 expression as indicative of a poor outcome. More recently, over-expression of 332 

STS in the CRC cell line HCT116 increases proliferation in vitro and in vivo xenograft mouse models, 333 

with these effects blocked by STS inhibition by STX64 (Gilligan, et al. 2017b). These actions were 334 

shown to be through increased estrogen desulfation and activation of the G-protein coupled 335 

estrogen receptor (GPER), a finding further supported by evidence these effects may be modulated 336 

by a hypoxic environment (Bustos, et al. 2017). Indeed, it is of interest to note STS activity can 337 

increase hypoxia inducible factor Hif1α expression in cervical and prostate cancer cells, suggesting 338 

STS action may be further regulated by hypoxic conditions (Shin, et al. 2017). Furthermore, estradiol 339 

(E2) treatment increases both STS activity (Gilligan et al. 2017a) and GPER expression in CRC (Bustos 340 

et al. 2017), suggesting a novel positive feedback loop through which E2 can drive CRC proliferation.  341 

Steroid sulfation pathways, the brain and behavior 342 

XLI patients have an association with behavioral disorders, which include attention deficit-343 

hyperactivity disorder (ADHD), autism, and social communication deficits (Davies, et al. 2009; 344 

Stergiakouli, et al. 2011). A study examining 384 patients with ADHD identified two SNPs in the STS 345 

gene significantly associated with this condition (Brookes, et al. 2008). Indeed, the polymorphism 346 

rs17268988 within the STS gene is associated with inattentive behavior in males with ADHD (Humby, 347 

et al. 2017). More recently, XLI patients have been shown to be at a significantly increased risk of 348 

developmental conditions and psychiatric illness (Chatterjee, et al. 2016). The hormonal implications 349 

in these conditions remains ill-defined, although researchers have hypothesized disturbed neuronal 350 

DHEA-DHEAS metabolism might result in altered neurotransmitter function contributing to the 351 

observed abnormalities. There is some support for this theory, albeit in a different disease context. 352 

Evidence suggests declining concentrations of neurosteroids, such as DHEA and DHEAS, are closely 353 

associated with increased risk of Alzheimer’s disease (AD) (El Bitar, et al. 2014; Wojtal, et al. 2006). 354 

STS inhibition attenuated cognitive deficits in spatial learning and memory and in hippocampal 355 

synaptic plasticity in rats with amyloid β protein induced AD (Yue, et al. 2016). The authors suggest 356 

STS inhibition elevated brain DHEAS concentrations with this accounting for the neuroprotective 357 

effects, although neuronal DHEAS levels were not measured. Thus, definitive proof that DHEAS is the 358 

key neurosteroid linked to STS action within the brain remains to be seen.  359 

Another sulfated steroid, pregnenolone sulfate, is known to inhibit GABA neurotransmission in the 360 

brain. Two new studies shed light on the effect of this and other neurosteroids on GABA(A) receptor 361 

function. The stimulating neurosteroids tetra-hydrodeoxycorticosteron (THDOC) and pregnanolone 362 

bind to the very same site within the transmembrane domain (Laverty, et al. 2017; Miller, et al. 363 

2017). Inhibitory pregnenolone-sulfate on the other hand binds to another site within the 364 

transmembrane domain and fosters pore opening, which corresponds to the desensitized state 365 

(Laverty et al. 2017).  366 
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 367 

Conclusion  368 

Despite this review only covering the past few years of steroid sulfation and desulfation research, it 369 

highlights the now strong evidence supporting the importance on sulfation and desulfation 370 

pathways in controlling steroid action. Most importantly, early clinical trials in hormone-dependent 371 

breast cancer of the STS inhibitor Irosustat are encouraging and suggest inhibiting desulfation as a 372 

viable strategy. Thus, targeting steroid desulfation in other cancers and conditions remains of 373 

significant interest. Furthermore, improvements in measuring both sulfated and non-sulfated 374 

steroids via mass spectrometry should allow for more sensitive quantification and thus a greater 375 

ability to tease-out how the balance between sulfation and desulfation is regulated.  376 

However, there is still much we do not know. Defining which PAPS synthase interacts with which 377 

SULT would lead to a greater understanding on steroid sulfation pathways and may lend itself to 378 

specific inhibitory strategies. Most researchers in this area focus on sulfated estrogens and androgen 379 

precursors (e.g. DHEAS), however we have little grasp of whether other sulfated steroids, such as 380 

vitamin D, represent biologically relevant reservoirs for local desulfation and subsequent action. 381 

Furthermore, we are only beginning to understand about disulfated steroids, and at present, we do 382 

not know how these are formed and whether they possess biological function. Finally, we still do not 383 

clearly understand what factors regulate STS activity, although inflammation seems most likely to 384 

play a role. 385 
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Figure legends 1 

 2 

Figure 1: Different modes of regulation of sulfotransferase enzymes. A, human SULT1A3 contains a 3 

unique glutamate (E) in the substrate binding site, specifically binding catecholamines. B, substrates 4 

can bind in non-productive conformations, causing substrate inhibition. C, dissociation of PAP from 5 

the sulfotransferase may be rate-limiting, causing product inhibition. D, allosteric protein-protein 6 

contacts may regulate SULT function. E, non-substrate molecules may allosterically activate 7 

sulfotransferases. Please refer to the main text for further explanation. 8 

 9 

Figure 2: The regulation of STS activity. Many factors are known to either increase or decrease STS 10 

activity. To increase STS activity, sulfatase-modifying factors 1 and 2 (SUMF1 and SUMF2) generate 11 

C-alpha formylglycine (FGly), the catalytic residue in the active site of STS, from a cysteine. 12 

Estrogens, in particular estradiol, have been shown to increase STS activity in leukocytes in the third 13 

trimester of pregnancy and in colorectal cancer cells, with this effect potentially regulated by G-14 

protein coupled estrogen receptors (GPER). Inflammation, mediated by TNFα through NF-κB 15 

signalling, also increases local STS activity. Many cancers, in particular breast, prostate, and 16 

colorectal cancer, have all been shown to have higher STS activity compared to non-malignant 17 

tissue. Factors that decrease STS activity include mutations in the SUMF1 gene leading to failure of 18 

the formation of FGly and thus reduced catalytic activity. Drugs, such as Irosustat, that target STS 19 

activity have been developed. Interestingly, glucocorticoids, including dexamethasone, can reduce 20 

STS activity in various cell lines. Inherited STS deficient (X-linked ichthyosis) patients have loss of STS 21 

activity. 22 

 23 
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non-productive conformations, causing substrate inhibition. C, dissociation of PAP from the sulfotransferase 
may be rate-limiting, causing product inhibition. D, allosteric protein-protein contacts may regulate SULT 
function. E, non-substrate molecules may allosterically activate sulfotransferases. Please refer to the main 

text for further explanation.  
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