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An important factor that hinders the management of non-native species is a general lack of 17 

information regarding the biogeography of non-natives, and, in particular, their rates of 18 

turnover. Here, we address this research gap by analysing differences in temporal beta-19 

diversity (using both pairwise and multiple-time dissimilarity metrics) between native and 20 

non-native species, using a novel time-series dataset of arthropods sampled in native forest 21 

fragments in the Azores. We use a null model approach to determine whether temporal beta-22 

diversity was due to deterministic processes or stochastic colonisation and extinction events, 23 

and linear modelling selection to assess the factors driving variation in temporal beta-24 

diversity between plots. In accordance with our predictions, we found that the temporal beta-25 

diversity was much greater for non-native species than for native species, and the null model 26 

analyses indicated that the turnover of non-native species was due to stochastic events. No 27 

predictor variables were found to explain the turnover of native or non-native species. We 28 

attribute the greater turnover of non-native species to source-sink processes and the close 29 

proximity of anthropogenic habitats to the fragmented native forest plots sampled in our 30 

study. Thus, our findings point to ways in which the study of turnover can be adapted for 31 

future applications in habitat island systems. The implications of this for biodiversity 32 

conservation and management are significant. The high rate of stochastic turnover of non-33 

native species indicates that attempts to simply reduce the populations of non-native species 34 



in situ within native habitats may not be successful. A more efficient management strategy 35 

would be to interrupt source-sink dynamics by improving the harsh boundaries between 36 

native and adjacent anthropogenic habitats. 37 

Keywords: Invasive species, beta-diversity, turnover, theory of island biogeography for 38 

exotic species, island biogeography, fragmentation, habitat island 39 

Introduction  40 

The introduction, spread and establishment of species outside of their native range can result 41 

in substantial changes to natural ecosystems (Mooney and Hobbs 2000, Dyer et al. 2017), 42 

sometimes including the local and/or regional extirpation of native species (Clavero and 43 

García-Berthou 2005, Bellard et al. 2016). Furthermore, the global rate of transfer and mixing 44 

of species between native and non-native ranges does not show any signs of decreasing 45 

(Seebens et al. 2017). We use the term ‘non-native’ throughout this study and we define such 46 

species simply as those that are present in an area outside of their native range as a result of 47 

human actions (Blackburn et al. 2016), which on islands is generally a consequence of 48 

commerce, gardening, agriculture and forestry (Whittaker and Fernández-Palacios 2007).   49 

Indeed, the impact of non-native species, and particularly invasive species (a subset of non-50 

native species), is variable but it does appear to be more acute on islands (Blackburn et al. 51 

2004, Whittaker and Fernández-Palacios 2007, Bellard et al. 2016, but see Sax et al. 2002). A 52 

key component of assessing the impact of non-native species in island systems involves the 53 

development, and testing, of (island) biogeographical theories and models relevant to them 54 

(Pyšek 1998, Blackburn et al. 2008, 2016, Burns 2015). For example, in their fifty 55 

‘fundamental questions in island biology’, Patiño et al. (2017) recently highlighted that 56 

understanding how the impacts of non-native species differ from those of naturally colonising 57 

species is a key question in their management.  58 

Burns (2015) has started this process via a recently introduced extension of MacArthur and 59 

Wilson’s (1967) equilibrium theory of island biogeography (ETIB), which he termed a 60 

‘theory of island biogeography for exotic species’ (herein, ‘TIBE’). TIBE is a graphical 61 

island biogeographic model that makes a variety of different predictions regarding the species 62 

richness and turnover of native and non-native species (Burns 2015). This was a useful 63 

advance as little is known about the turnover patterns of non-natives. However, the analysis 64 

of turnover dynamics of non-natives has so far only been studied in the context of true 65 



islands, i.e. islands surrounded by a matrix of water (Whittaker and Fernández-Palacios 2007, 66 

Burns 2015). In contrast, the knowledge of turnover patterns for non-native species in habitat 67 

islands, i.e. patches of natural habitat surrounded by a matrix of often human dominated 68 

habitats (see Matthews 2015), is lacking. Such knowledge is important as the destruction and 69 

fragmentation of natural habitat is widely recognised as the leading driver of contemporary 70 

species extinctions (e.g. Sala et al. 2000) and also as an important driver of extinction debt 71 

(Triantis et al. 2010). Moreover, there has been an increasing recognition of the synergistic 72 

effects of the different drivers of species loss (e.g. habitat loss, climate change and invasive 73 

species; e.g. Didham et al. 2007, Ferger et al. 2017, Karp et al. 2018). As with true islands, 74 

we predict that the turnover of non-native species will be greater than for native species in 75 

habitat fragments. However, in true islands the matrix (water) can generally be ignored, 76 

whilst in habitat island systems it is possible that the surrounding matrix contributes to 77 

turnover patterns within habitat islands. As many non-native species have strong affinities to 78 

human-dominated habitats, that is, they are generalists or human habitat specialists 79 

(McKinney and Lockwood 1999, Borges et al. 2008, 2010), the presence of non-native 80 

species within habitat islands of native habitat is theorised to be driven by stochastic source-81 

sink mass effect dynamics as a result of human disturbance (Williamson 1996, Sgarbi and 82 

Melo 2017). Non-native species, which should therefore be less adapted to the conditions 83 

within the sink habitat, should have a higher risk of extinction and turnover (MacArthur and 84 

Wilson 1967). This possibility has not previously been examined in habitat islands.  85 

A variety of methods have been employed to analyse turnover in the island literature (e.g. 86 

Russell et al. 1995, Whittaker et al. 2000, Burns 2015), mostly based on the summation of 87 

raw numbers (e.g. number of extinction events). However, another, and arguably more 88 

statistically robust, way of analysing temporal changes in species assemblages uses 89 

dissimilarity indices, which allow researchers to partition out the effect of richness 90 

differences between samples (Baselga 2010, Baselga et al. 2015). One such approach is to 91 

use the framework of temporal beta-diversity. Beta-diversity provides a measure of the 92 

differences in the composition of communities, and is usually calculated in a spatial context, 93 

e.g. to assess how composition changes across a set of sites or along an ecological gradient 94 

(Anderson et al. 2011). Temporal beta-diversity is a similar concept, where beta-diversity is 95 

calculated for the same location at different times, and in conjunction with a suitable null 96 

model the analysis of temporal beta-diversity can be used to determine whether changes in 97 

assemblages across time are due to deterministic processes or stochastic colonisation and 98 



extinction events (Baselga et al. 2015). Temporal beta-diversity sensu stricto has been much 99 

less studied relative to spatial beta-diversity (but see Baselga et al. 2015, Tonkin et al. 2017). 100 

Beta-diversity can be calculated using a variety of different approaches (see Anderson et al. 101 

2011) and in this study we focus on the use of dissimilarity indices to calculate beta-diversity, 102 

in particular Sørensen dissimilarity. Recent work has partitioned the Sørensen index into 103 

turnover and nestedness-resultant dissimilarity / richness difference components (Baselga 104 

2010, 2012, Carvalho et al. 2012). 105 

In this study, we use a unique time-series dataset of arthropods sampled in native forest 106 

fragments over five years in the Azores (see Borges et al. 2017) to investigate the differences 107 

in turnover dynamics of native and non-native species. Using TIBE and past studies on island 108 

theory in habitat islands (e.g. Matthews 2015) as theoretical frameworks, we make two 109 

predictions. First, based on the above points, we predict that temporal beta-diversity will be 110 

greater for non-native species than for native species (Prediction 1). We use a null model 111 

approach to determine whether turnover of species through time was due to deterministic 112 

processes or stochastic colonisation and extinction events, and linear modelling selection to 113 

assess if any factors (i.e. elevation, climate, disturbance) are driving variation in temporal 114 

beta-diversity between plots. Second, as the invasion process is predicted to be on-going (see 115 

Burns 2015, Seebens et al. 2017), based on the TIBE we predict that colonisation rate will be 116 

greater than extinction rate for non-native species, whilst colonisation rate will be roughly 117 

equivalent to extinction rate for native species (Prediction 2).  118 

Our dataset is ideal for examining temporal beta-diversity patterns of native and non-native 119 

species in habitat islands as the regular census interval allows us to accurately describe 120 

colonisation and extinction events (and thus turnover), and the Azorean arthropod fauna 121 

contains a high proportion of non-native species (Borges et al. 2010). Confirming or 122 

invalidating these predictions will enable a better understanding of the turnover dynamics of 123 

non-native species in fragmented landscapes and will provide important information to aid in 124 

the conservation of fragmented natural areas impacted by the spread and establishment of 125 

non-native species in currently threatened ecosystems.  126 

Material and methods  127 

Study site and data collection 128 



Arthropods were sampled using nine 50m x 50m plots located in four native fragments of 129 

pristine forest on Terceira Island in the Azores. The plots were setup within the 130 

ISLANBIODIV project (Borges et al. 2017; Cicconardi et al. 2017). Arthropods were 131 

sampled using a passive flight interception trap called a SLAM (Sea, Land, and Air Malaise) 132 

trap. The collecting bottles were collected and changed every three months; thus, each sample 133 

covers one season of the year. For the current study, we used data sampled over the years 134 

2012 –2016 (inclusive). The arthropods were grouped by their native and non-native 135 

colonisation strategies. A more comprehensive outline of the study site (including a map) and 136 

the sampling methodology is provided in Appendix S1 in the Supporting Information (see 137 

also Borges et al. 2017).  138 

For the climatic data, we used data from the CIELO Model (Azevedo et al. 1999). The 139 

CIELO model is a simple parcel model, based on the transformations experienced by an air 140 

mass ascending a mountain, which simulates the evolution of an air parcel's physical 141 

properties, starting from the sea level. Two Principal Components Analysis (PCA) axes were 142 

calculated using the climatic variables mean annual temperature, annual rainfall and relative 143 

humidity. The PCA was undertaken using the ‘vegan’ R package (Oksanen et al. 2013), and 144 

we took the first two axes as they explained ~ 99% of the variance. The first axis (P1) 145 

corresponded to differences in temperature and precipitation, whilst the second axis (P2) 146 

corresponded more to differences in humidity. In addition, we used an ‘index of Disturbance’ 147 

developed by Cardoso et al. (2013) for the Azores that models disturbance by considering 148 

landscape configuration and proximity of human-modified habitat to each patch of pristine 149 

native forest (see Appendix S1). We also calculated the elevation of each plot using a digital 150 

elevation model (DEM) for Terceira Island.  151 

We pooled the samples within each year to create yearly datasets for each of the nine plots. 152 

Where the same species had been sampled in multiple samples within a single year we 153 

combined records and summed the abundances. We then converted these data into presence-154 

absence matrices, such that for each of the nine plots we had five presence-absence matrices, 155 

one for each of the five sampling years (2012–2016).  156 

Calculating temporal beta-diversity: Prediction 1  157 

To examine whether temporal beta-diversity was greater for non-natives than for natives 158 

(Prediction 1), we used both pairwise and multiple-time temporal beta-diversity frameworks. 159 

First, for each plot we constructed a presence-absence matrix for the pooled 2013 samples 160 



(the first full year of sampling, see Appendix S1) and the pooled 2016 samples. We then used 161 

the ‘beta.temp’ function in the ‘betapart’ R package (Baselga et al. 2017) to calculate 162 

partitioned pairwise temporal beta-diversity (Sorensen index) between these two years, and 163 

we stored both partition values (i.e. temporal turnover and temporal nestedness-dissimilarity) 164 

as well as the overall Sorensen’s dissimilarity value. This analysis was undertaken separately 165 

for native and non-native species. To determine whether the observed pairwise temporal beta-166 

diversity and partition values were significantly different from random expectation, we 167 

followed Baselga et al. (2015) and used an FE null model (Ulrich and Gotelli 2007) whereby 168 

row (site species richness) marginal totals were allowed to vary and column (species 169 

incidences) marginal totals are fixed. In this context, the FE null model characterises a 170 

situation whereby species randomly colonise and go extinct at sites, from a common regional 171 

pool (Baselga et al. 2015). This null model was implemented using the ‘c0’ algorithm in the 172 

‘vegan’ R package (Oksanen et al. 2013). This null model was used to randomise the 2016 173 

presence/absence matrix, which was then compared to the empirical 2013 presence/absence 174 

matrix, using the ‘beta.temp’ function. This process was repeated 1000 times, for both the 175 

native and the non-native species data; the overall dissimilarity value, and the two partition 176 

values, was stored in each instance. Using these null model values, we calculated the Z-177 

scores for the six metrics (the three temporal beta-diversity metrics, for both the native and 178 

non-native presence/absence matrices). A two-sided P-value was also calculated for each Z-179 

score. To ensure that our results were consistent across the two main beta-diversity 180 

partitioning frameworks, we also calculated temporal beta-diversity and re-ran the above 181 

analyses using the Carvalho partitioning framework (Carvalho et al. 2012), the Sorensen 182 

family of beta-diversity metrics and the BAT R package (Cardoso et al. 2014). The Carvalho 183 

partitioning framework differs from the Baselga framework in that it partitions overall beta-184 

diversity into turnover and richness difference components, instead of turnover and 185 

nestedness-dissimilarity components.  186 

Spatial beta-diversity studies have shown that pairwise beta-diversity metrics and multisite 187 

beta-diversity metrics (i.e. spatial beta-diversity aggregated across multiple sites) can reveal 188 

different patterns (Baselga 2013). Thus, we adapted the ‘beta.temp’ function to calculate 189 

partitioned multiple-time dissimilarity, again based on the Sorensen index. This is an 190 

aggregate measure that enables the calculation of temporal beta-diversity across multiple time 191 

periods for the same site. We calculated multiple-time dissimilarity for both native and non-192 



native species for four years (2013 – 2016) and compared the resultant beta-diversity values 193 

with their pairwise counterparts.  194 

Calculating turnover: Prediction 2  195 

Following Burns (2015), turnover was calculated as the total number of colonisation and 196 

extinction events across the five years (2012 – 2016). That is, colonisation was considered to 197 

have occurred if a species was not present in a plot in year i, but was present in year i+1. 198 

Equally, under this turnover framework, an extinction event was considered to have occurred 199 

if a species was present in a plot in year i, but not in year i+1.  200 

To test Prediction 2 (that colonisation rate will be greater than extinction rate for non-native 201 

species, but equivalent to extinction rate for native species), we calculated the number of 202 

turnover events for each individual species, across all nine plots. Reduced major axis 203 

regression was then used to determine how colonisation rate varied with extinction rate (see 204 

Burns 2015) as both variables (colonisation and extinction rate) contained random error; in 205 

such cases, standard linear regression underestimates the slope of the relationship. The 206 

regression models were calculated using the ‘lmodel2’ R package (Legendre 2014), and we 207 

used the standard major axis (SMA) method. Models were fitted for native and non-native 208 

species separately. In this analysis, a slope significantly greater than one, or an intercept 209 

significantly greater than zero, would indicate that the colonisation rate exceeded extinction 210 

rate (for either native or non-native species) and thus that the number of native/non-native 211 

species increased in the fragments over the five years, and vice versa.  212 

Explaining variation in temporal beta-diversity 213 

To determine whether any of our environmental variables explained variation in the turnover 214 

component of temporal beta-diversity, we undertook a model comparison approach using 215 

generalised linear models (GLMs). We used GLMs with the Gaussian family in these 216 

analyses, and normality of the response variables was assessed using the Shapiro-Wilks test 217 

(in both cases the null hypothesis that the response variable was normally distributed could 218 

not be rejected). We ran the model comparison twice, once for each of two response 219 

variables: 1) the pairwise temporal turnover beta-diversity partition values of native species, 220 

and 2) the pairwise temporal turnover beta-diversity partition values of non-native species. 221 

As predictor variables, we started with elevation (log transformed), disturbance (log 222 

transformed) and two climatic PCA axes (P1 and P2). All predictors were standardised to 223 

have a mean of 0 and standard deviation of 1 to enable comparison of the effect sizes. 224 



Multicollinearity was assessed using variance inflation factors (VIFs), which resulted in P1 225 

being removed from all subsequent analyses as it was very highly correlated with altitude. 226 

The three remaining predictor variables (elevation, disturbance and P2) all had VIFs under 227 

ten. 228 

Using these response and predictor variables, we compared a full set of generalised linear 229 

models (GLMs) within an information theoretic approach (Burnham and Anderson 2002). 230 

For each response variable, a full set of models were compared using Akaike’s information 231 

criterion corrected for small sample size (AICc; see Burnham and Anderson 2002). The 232 

model with the lowest AICc was considered the best model, whilst all models with ΔAICc <= 233 

2 were considered to have similar support. As our data were sampled using 50 m x 50 m 234 

quadrats nested within fragments, we used a spatial autocovariate within an auto-Gaussian 235 

regression approach to account for the experimental design. First, for each response variable, 236 

we fitted the global model and extracted the residuals. We then created a spatial autocovariate 237 

using the residuals (see Crase et al. 2012) and the ‘autocov_dist’ function in the ‘spdep’ R 238 

package (Bivand 2017). The neighbourhood radius was set to encompass all plots, and we 239 

used the ‘inverse’ type and row standardised (W) style settings. The spatial autocovariate was 240 

fixed in the model selection. For all models with ΔAICc <= 2, we also checked the residuals 241 

for homoscedasticity, and we checked for any remaining spatial autocorrelation in the 242 

residuals using the ‘spdep’ R package (Bivand 2017), the ‘nb2listw’ function and row 243 

standardised weights. We also re-ran the model selection analyses using Gaussian mixed 244 

effect models with ‘fragment’ as a random effect (random intercept); however, the variance 245 

of the random effect was very close to zero in both cases and these results are not discussed 246 

further. 247 

Sensitivity analyses 248 

We ran two sensitivity analyses to ensure our results were robust. First, to ensure our 249 

sampling was sufficient we calculated sampling completeness estimates for each year in each 250 

plot using the iNEXT R package (Hill number order q = 0, Hsieh et al. 2016). Second, we set 251 

up a tenth plot in which we placed three SLAM traps instead of one to determine whether the 252 

use of a single SLAM trap in each of the plots was sufficient to capture the relevant 253 

community properties. A full methodology for each of the sensitivity analyses is provided in 254 

Appendix S1. All analyses were undertaken using R (version 3.4.3, R Core Team 2017).   255 

Results 256 



Dataset summary  257 

Over the five years, we sampled 28,704 arthropod specimens, representing 147 species and 258 

morpho species (no. of native sp. = 89 and no. of non-native sp. = 58), across ten plots (nine 259 

plots were used in the main analysis and a tenth plot was used in the sensitivity tests). Across 260 

the nine plots that formed the main basis of this study, the mean richness (i.e. mean of each 261 

plot across the five years) of species in a plot ranged from 21 to 38 and 3 to 11, for native and 262 

non-native species respectively (Table 1). Mean total abundance (i.e. abundance of all species 263 

in a plot) ranged from 205 to 886 and 4 to 68 for native and non-native species respectively 264 

(Table 1).  265 

Temporal beta-diversity 266 

For all nine plots, overall temporal beta-diversity was larger for non-native species than for 267 

native species (Table 2; Fig. 1), confirming Prediction 1. The temporal turnover component 268 

of overall pairwise beta-diversity was larger than the temporal nestedness-dissimilarity 269 

component for all but one plot for non-native species, and for five of the nine plots for native 270 

species (Fig. 1). For overall temporal beta-diversity, the Z-scores were negative for all but 271 

one plot for native species, whilst Z-scores were both positive and negative for non-native 272 

species (Table 2). Four of the overall pairwise beta Z-scores for native species were 273 

significant, whilst only one of the overall pairwise beta Z-scores for non-native species was 274 

significant (Table 2). The null model results for the pairwise temporal beta-diversity 275 

partitions were similar to the results for the overall pairwise temporal beta-diversity values 276 

(see Table 2). This outcome did not change when the Carvalho pairwise beta-diversity 277 

partitioning framework was used rather than the Baselga approach (see Appendix S2): overall 278 

pairwise beta-diversity and the two partitions were all positively and significantly correlated 279 

between the two approaches (all Pearson’s correlation coefficients > 0.90, and all P-values < 280 

0.001), and the same overall picture emerged regardless of the approach used (compare Fig. 1 281 

with Fig. S3 in Appendix S2).  282 

Using multiple-time dissimilarity produced similar results to the pairwise temporal beta-283 

diversity analysis (see Figure S4 in Appendix S3): overall temporal beta-diversity was larger 284 

for non-native species than for native species, for all nine plots, and on average the temporal 285 

nestedness-dissimilarity component represented a larger proportion of total temporal beta-286 

diversity for native species than for non-native species. One interesting difference was non-287 

native species in Plot 6 (compare Fig.1 with Fig.S4), whereby the pairwise measure indicated 288 



that the nestedness-dissimilarity component represented 100% of overall beta-diversity, but 289 

only 16% using multiple-time dissimilarity. 290 

Differences in colonisation and extinction rates 291 

Reduced major axis regression of the number of colonisation events against the number of 292 

extinction events revealed that, contrary to Prediction 2, the slope of the relationship was 293 

significantly greater than one for both native (slope = 1.26; 95% CI = 1.11 – 1.44) and non-294 

native species (slope = 1.28; 95% CI = 1.16 – 1.42) (Fig. 2), indicating that the colonisation 295 

rate exceeded the extinction rate for both groups. The intercept of the relationship was not 296 

significantly different from zero for either native (intercept = 0.17; 95% CI = -0.22 – 0.51) or 297 

non-native (intercept = -0.11; 95% CI = -0.38 – 0.13) species. The R2 values for both 298 

regression models were: 0.64 and 0.86 for the native and non-native species models, 299 

respectively.  300 

Explaining variation in temporal beta-diversity between plots 301 

When the turnover partition (of overall pairwise temporal beta-diversity) values were used as 302 

the response variables in a set of GLMs, the selection procedure indicated that the only 303 

predictor variable in both the best native and non-native species models was the fixed spatial 304 

autocovariate, and there were no additional models within 2 ΔAICc of either best model. Re-305 

running the model selection using the turnover component of multiple-time dissimilarity 306 

produced the same overall results.  307 

Sensitivity analyses 308 

Sample completeness estimates indicated that our sampling was sufficient: the mean sample 309 

completeness estimate across all years and plots was 0.97 (range = 0.81 to 1.00, the results 310 

for each year and plot are presented in Table S2 in Appendix S4). Using three SLAM traps in 311 

a plot rather than one did not result in substantially different sampled communities according 312 

to various measures of diversity (see Appendix S4).  313 

 314 

Discussion 315 

We have undertaken an evaluation of the differences in temporal beta-diversity patterns 316 

between native and non-native arthropod species across nine native forest plots in the Azores 317 

for which a time series of five years is available (2012 - 2016). 318 



Non-native species have larger rates of temporal beta-diversity than native species in 319 

Azorean forest fragments 320 

The results of our temporal beta-diversity analyses (both pairwise and multiple-time 321 

dissimilarity) indicated that, in accordance with Prediction 1, temporal beta-diversity was 322 

considerably greater for non-native species than for native species, across all nine plots. In 323 

addition, with one exception (Plot 6 when using pairwise beta-diversity, Fig. 1), for non-324 

native species the largest component of temporal beta-diversity was by far the temporal 325 

turnover partition, indicating an actual turnover of species rather than nested patterns in 326 

richness (Baselga partition) or richness differences (Carvalho partition) between years.  327 

Burns (2015), in his theory of island biogeography for exotic species (TIBE), attributed 328 

differences in turnover rates between natives and non-natives to standard island 329 

biogeographical variables. However, Burns was focused on true islands. In our study system 330 

of habitat islands, we found that, in regard to overall pairwise temporal beta-diversity for 331 

non-native species, the null model analyses were only significant in one case, and the signs of 332 

the Z-scores varied between the plots (Table 2). These findings, in combination with previous 333 

work in our study system (e.g. Borges et al. 2006, 2008, Florencio et al. 2016), appear to 334 

support the notion that the distribution of non-native arthropods in Azorean native forests is 335 

driven by stochastic processes and occupancy dynamics, possibly due to source-sink 336 

processes (see also Borges et al. 2008). In a study of temporal beta-diversity patterns of birds 337 

in France, Baselga et al. (2015, p.9) also found that temporal changes in assemblages were 338 

not significantly different from a null model and concluded that “the observed changes in 339 

species composition of local bird assemblages might be the consequence of stochastic 340 

processes in which species populations appeared and disappeared from specific localities in a 341 

random-like way.”  342 

Many non-native arthropod species in the Azores are adapted to human land-uses (Borges et 343 

al. 2008, Rigal et al. 2018), and thus we would expect there be a large number, and thus high 344 

potential for mass effects (Shmida and Wilson 1985), of non-natives in the disturbed 345 

landscapes surrounding the fragments (see also Borges et al. 2006). The Azores has 346 

undergone substantial land use change since human colonisation of the archipelago (Triantis 347 

et al. 2010), and native forest fragments in the Azores are characterised by hard boundaries, 348 

i.e. there is an abrupt change from native forest habitat to anthropogenic habitat (Borges et al. 349 

2006, 2008). As such, there are likely to be large mass effects and a constant supply of non-350 



native individuals permeating into the native forest where they frequently undergo local 351 

extinction and re-colonisation, leading to high beta-diversity through time. Thus, it seems 352 

likely that is not just the size of the native habitat that underpins the colonisation rate of non-353 

natives (as in true islands cf. Burns 2015) but also the amount of surrounding anthropogenic 354 

habitat and size of the non-native source pool, which is known to be large in the Azores 355 

(Borges et al. 2010). More detailed studies focusing on the habitat affinities and dispersal 356 

ecology of non-native species are needed to further explore this possibility. Interestingly, our 357 

disturbance metric, that incorporates surrounding land use, was not an important predictor of 358 

non-native temporal beta-diversity in the linear model selection analysis. However, as all of 359 

the native forest fragments on Terceira are surrounded by human land uses, it is likely that 360 

there was simply not enough variation in the disturbance metric between plots.  361 

In regards to the processes underpinning temporal beta-diversity patterns of native species, 362 

the results are more equivocal. Overall pairwise temporal beta-diversity was significantly 363 

lower than expected by chance in four of the nine plots for native species, in comparison to 364 

only one of the nine plots for non-native species. This indicates a stronger role for 365 

deterministic processes driving temporal beta-diversity and turnover in native species 366 

assemblages (Baselga et al. 2015). However, as with non-native species, none of our 367 

predictor variables were found to explain variation in the temporal beta-diversity of native 368 

species. The reasons for this finding are unclear but could simply be due to the fact that our 369 

experimental design did not allow us to test for the importance of other biogeographic 370 

variables such as area on turnover (MacArthur & Wilson 1967). Further studies examining 371 

the turnover dynamics of native and non-native species in habitat fragments are needed. 372 

Colonization and extinction rates for native and non-native species 373 

Our Prediction 2, that colonisation rate will be greater than extinction rate for non-native 374 

species, whilst colonisation rate will be roughly equivalent to extinction rate for native 375 

species, was not borne out by the data. Whilst we observed that the colonisation rate was 376 

greater than the extinction rate for non-natives, contrary to expectations we found a similar 377 

pattern for native species (Fig. 2). Whilst this finding is expected for non-native species, 378 

these results could imply either that many of the native species in the fragments have high 379 

dispersal ability and are easily able to disperse between plots and fragments, or possibly that 380 

native species have not yet reached equilibrium following substantial habitat loss over the last 381 

few centuries. An alternative explanation is that our sampling did not accurately record all 382 



colonisation and extinction events during the study period. Previous work on turnover on 383 

islands has shown that the calculation of turnover rate is sensitive to the grain size of the time 384 

series data analysed (e.g. were samples carried out every year or every ten years) (e.g. Russell 385 

et al. 1995, Whittaker et al. 2000). Considering these issues, inevitably we have not recorded 386 

every true turnover event (i.e. crypto-turnover), and equally, due to sampling error, we have 387 

likely missed individuals in certain instances and thus erroneously recorded turnover events 388 

(i.e. pseudo-turnover). However, sampling was every three months (as opposed to multiple 389 

years in most island studies), and thus a species had to be absent across all the monthly 390 

samples for an extinction event to be classified. We also carried out sensitivity analyses to 391 

ensure our sampling effort was sufficient. As a result, we are confident that our sampling 392 

protocol has generated data of sufficient quality to test our predictions. 393 

Implications for conservation and biodiversity management 394 

Non-native species are thought to be leading drivers of contemporary species extinctions, and 395 

the issue seems particularly acute in true and habitat island systems (Sax and Gaines 2003, 396 

Cardoso et al. 2010, Bellard et al. 2016). However, the biogeography of non-native species is 397 

not well known. Specifically, it is not known whether standard biogeographical theory and 398 

metrics derived from the study of native species can be accurately applied to non-native taxa. 399 

As a result of this uncertainty, a number of recent studies have focused on examining the 400 

differences and similarities between natives and non-natives using classic biogeographical 401 

and ecological patterns, such as the ISAR and the abundance-occupancy relationship (e.g. 402 

Blackburn et al. 2008, Rigal et al. 2013, Burns 2015). The results of our study contribute 403 

towards filling this knowledge gap by showing that it cannot be assumed a priori that native 404 

and non-native taxa within the same community are similarly assembled and will follow the 405 

same temporal dynamics.  406 

Importantly, our results indicate that it might not be possible to apply simple biogeographical 407 

principles (e.g. Wilson and Willis 1975) when devising non-native species management plans 408 

in fragmented landscapes. Rather, management should be based on the results of 409 

biogeographical and ecological studies explicitly focused on non-native taxa. A corollary of 410 

this statement is that there is an urgent need for additional studies focused on outlining and 411 

testing biogeographical theory in the context of non-native species (Patiño et al. 2017). In the 412 

native forest sampled in our study, the high rate of stochastic turnover of non-native species 413 

that we observed indicates that attempts to simply reduce the populations of non-native 414 



species in situ within native habitats may not be successful. This is because for many non-415 

native species the native habitat is likely just a sink, and the constant immigration of 416 

individuals from anthropogenic source habitats in close proximity to the native habitats (i.e. 417 

mass effects) means local extinction of non-natives within the native forest is unlikely to be 418 

permanent. Thus, a more efficient future management strategy and land-use policy will be to 419 

interrupt these source-sink dynamics by improving the harsh boundaries between native 420 

habitat and adjacent anthropogenic habitat, and in the longer term to design and create a more 421 

graded landscape mosaic (Lindenmayer and Fischer 2006) whereby contrasting land uses are 422 

not simply knitted together in an ad hoc fashion. The high turnover of non-native species also 423 

brings into question the ability of non-natives to, amongst other things, replace the functional 424 

roles of extirpated native species (see Whittaker et al. 2014; Rigal et al. 2018) or increase 425 

functional redundancy in fragmented landscapes. Functional diversity studies that focus on 426 

non-native species are often based on static time periods (e.g. a sample from one year) and 427 

their conclusions thus do not account for the fact that many non-native species present in a 428 

patch may simply be ephemeral members of a given community. 429 
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 574 

TABLES 575 

Table 1. The mean richness (M. Richness), mean abundance (M. Abundance), and the 576 
number of colonisation (Colonis.), extinction, and total turnover events of arthropod species 577 
across nine native forest plots on Terceira Island, in the Azores. For each plot, the data are 578 
provided for native (Nat) and non-native (Non) species separately. Each plot was sampled 579 
multiple times across five years and samples were pooled to create five yearly samples (2012 580 
– 2016). An extinction event was deemed to have occurred if a species was present in year i 581 
but not in year i+1, and vice versa for a colonisation event (Plot notation as in Table S1 and 582 
Figure S1).  583 

Plot Type M. Richness M. Abundance Colonis. Extinction Turnover 
1 Nat 32.8 790.8 27 24 51 
2 Nat 30.2 496.4 28 26 54 
3 Nat 25.6 558.0 19 20 39 
4 Nat 38.0 885.6 46 20 66 
5 Nat 25.0 511.0 36 17 53 
6 Nat 21.0 204.6 26 26 52 
7 Nat 25.0 272.8 28 21 49 
8 Nat 20.6 480.2 21 16 37 
9 Nat 30.2 489.4 27 22 49 
1 Non 6.8 20.8 17 10 27 
2 Non 4.6 9.4 10 11 21 
3 Non 4.0 5.6 10 9 19 
4 Non 10.8 67.6 31 21 52 
5 Non 4.25 11.2 10 8 18 
6 Non 3.75 4.4 13 12 25 
7 Non 3.2 5.0 8 7 15 



8 Non 4.4 8.8 19 14 33 
9 Non 5.0 18.2 13 15 28 
 584 

 585 

  586 



Table 2. Pairwise temporal beta-diversity values for arthropod species sampled in 2013 and 587 
2016 in nine native forest plots on Terceira Island, in the Azores. For each plot, the data are 588 
provided for native (Nat) and non-native (Non) species separately. Overall temporal beta-589 
diversity values (Sorensen dissimilarity index) are provided in addition to the temporal 590 
turnover (Turn.) and temporal nestedness-dissimilarity (Nest.) components of overall 591 
temporal beta-diversity. For the two partition values and the overall temporal beta-diversity 592 
value, significance was determined using an FE null model (1000 iterations). For each of the 593 
three beta-diversity values, the Z-score (Z) and associated P-value (P) are provided (see 594 
‘Materials and methods’). P-values significant at the 0.05 level are highlighted in bold (Plot 595 
notation as in Table S1 and Figure S1). The overall temporal beta-diversity differ very 596 
slightly from the sum of the turnover and nestedness components in certain plots due to 597 
rounding error. 598 

Plot Type Temporal beta-diversity  Turnover Nestedness  Overall 
Turn. Nest. Overall Z P Z P Z P 

1 Nat 0.12 0.05 0.18 -0.94 0.35 -1.48 0.14 -2.49 0.01 
2 Nat 0.08 0.23 0.30 -0.85 0.39 0.52 0.60 -0.33 0.74 
3 Nat 0.05 0.14 0.18 -2.92 <0.01 3.64 <0.01 -1.08 0.28 
4 Nat 0.11 0.08 0.18 -0.36 0.72 -1.58 0.11 -1.96 0.04 
5 Nat 0.04 0.06 0.10 -2.04 0.04 -0.24 0.81 -2.53 0.01 
6 Nat 0.11 0.18 0.29 -2.68 0.01 6.17 <0.01 -0.1 0.92 
7 Nat 0.12 0.11 0.23 -1.00 0.32 0.75 0.45 -0.44 0.66 
8 Nat 0.15 0.08 0.23 -3.45 <0.01 1.22 0.22 -3.48 <0.01 
9 Nat 0.17 0.09 0.26 0.11 0.91 -0.72 0.47 -0.59 0.56 
1 Non 0.22 0.04 0.26 -1.13 0.26 -0.94 0.35 -2.58 0.01 
2 Non 0.75 0.05 0.80 1.50 0.13 -0.39 0.70 1.63 0.10 
3 Non 0.25 0.15 0.40 -1.52 0.13 0.74 0.46 -1.48 0.14 
4 Non 0.44 0.12 0.57 -0.24 0.81 -0.27 0.79 -0.63 0.53 
5 Non 0.5 0.00 0.50 0.75 0.45 -1.72 0.08 -0.47 0.64 
6 Non 0.00 0.71 0.71 -4.84 <0.01 11.20 <0.01 -0.72 0.47 
7 Non 0.5 0.25 0.75 -0.38 0.70 1.73 0.08 0.69 0.49 
8 Non 0.8 0.03 0.83 0.02 0.98 0.06 0.95 0.05 0.96 
9 Non 0.33 0.3 0.64 -1.06 0.29 1.63 0.10 -0.09 0.92 
 599 

 600 

  601 



FIGURES 602 
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 611 

 612 

Figure 1. Pairwise temporal beta-diversity values for native and non-native arthropod 
species across nine plots of native forest on Terceira Island, in the Azores. For each plot, 
temporal beta-diversity was calculated using the pooled 2013 samples and the pooled 2016 
samples. For each plot, temporal beta-diversity was calculated separately for native species 
(blue bars) and non-native species (red bars). The height of each bar corresponds to the 
overall temporal beta-diversity. Overall temporal beta was also partitioned into nestedness 
and turnover components using the Baselga partition approach (Baselga et al. 2017). Within 
each bar, the dark shaded area rising from the x-axis corresponds to the nestedness 
component of overall temporal beta diversity. Thus, the lighter shaded area within each bar 
that rises from the dark shaded area corresponds to the turnover component. 
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 626 

Figure 2. The relationship between the number of colonisation events and the number of 
extinction events in native (a) and non-native (b) arthropod species sampled in nine native 
forest plots on Terceira Island in the Azores. Each plot was sampled multiple times across 
five years and samples were pooled to create five yearly samples. Turnover was then 
calculated as the total number of colonisation and extinction events across the five years 
(see ‘Materials and methods’). In (a) and (b), the black line is the isometric line (i.e. 
intercept of zero and slope of 1) and the red line is the best fit line from reduced major axis 
regression. In both cases the best fit regression line is significantly greater than one. 
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Appendix S1 Additional methodological information 632 

Study site 633 

The Azorean archipelago is located in the North Atlantic, roughly between 37º to 40º N 634 

latitude and 25º to 3º W longitude. Since human occupation of the islands, there have been 635 

substantial changes in the size and quality of native habitats, mostly due to the creation of 636 

urban areas, agriculture fields, pastures and non-native plantations (Borges et al. 2008, 637 

Triantis et al. 2010). Terceira Island (Fig. 1), a roughly circular island of 402 km2 area, 638 

contains the largest area of native pristine forests in the Azores (Triantis et al. 2010), with 639 

five main fragments of native forest distributed across four main volcanic polygenetic 640 

complexes.  641 

Data collection 642 

Arthropods were sampled using nine 50m x 50m plots located in four native fragments of 643 

pristine forest on Terceira setup within the ISLANBIODIV project (Cicconardi et al. 2017): 644 

Serra de Santa Bárbara (Plots T07, T48, T49, T164), Biscoito da Ferraria (Plots T01, T02, 645 

T41), Terra Brava (Plot T15) and Galhardo (Plot T33) (see Figure S1, below). Arthropods 646 

were sampled using a passive flight interception trap called a SLAM (Sea, Land, and Air 647 

Malaise) trap. The SLAM traps are approximately 110 x 110 x 110 cm (see Fig. S2 in 648 

Appendix S1), and work by intercepting arthropods on an area of black mesh and funnelling 649 

them into a sampling bottle filled with a killing liquid. Propylene-glycol was used as it 650 

persists for a long time without evaporating, and enables the collection of good quality 651 

specimens for posterior DNA extraction. The collecting bottles were collected and changed 652 

every three months; thus, each sample covers one season of the year. However, due to 653 

logistical challenges and problems with the traps, in a very small number of cases (see Table 654 

S1 in Appendix S1) certain three-month samples were excluded. Further details on the 655 

method can be found in Borges et al. (2017). Samples were sorted and individuals identified 656 

to species level by experienced taxonomists and to morpho species where specific 657 

determinations were not possible. The arthropods were then grouped by their native and non-658 



native colonisation strategies. For the current study, we used data sampled over the years 659 

2012 –2016 (inclusive). Sampling only commenced half way through 2012 (see Table S1, 660 

below) and thus for the temporal beta-diversity analyses we used 2013 as the base year to 661 

ensure that the pairwise comparisons were based on equal samples. However, for the species-662 

level turnover analyses we used the full dataset as the missing months here are less likely to 663 

affect the results.  664 

For the climatic data, we used the CIELO Model (Azevedo et al. 1999). The CIELO model is 665 

a simple parcel model, based on the transformations experienced by an air mass ascending a 666 

mountain, which simulates the evolution of an air parcel's physical properties, starting from 667 

the sea level. CIELO climatic data for the sites were extracted from Borges et al. (2006). In 668 

addition, we used an ‘index of Disturbance’ developed by Cardoso et al. (2013) for the 669 

Azores that models disturbance by considering landscape configuration and proximity of 670 

human-modified habitat to each patch of pristine native forest. Thus, in this study we 671 

represent anthropogenic disturbance of a plot by explicitly considering landscape 672 

configuration and the amount of neighboring anthropogenic habitats, ranked according to 673 

their level of intensity-use. 674 

Species sorting and classification 675 

Parataxonomists sorted samples to orders, and posteriorly to Recognizable Taxonomic Units 676 

(RTUs). One of the authors (PAVB) then identified to species level the RTUs of the 677 

following arthropod orders: Diplopoda (Chordeumatida, Julida), Chilopoda 678 

(Geophilomorpha, Lithobiomorpha, Scolopendromorpha), Arachnida (Araneae, Opiliones, 679 

Pseudoscorpiones) and Insecta (Blattaria, Coleoptera, Hemiptera, Microcoryphia, Neuroptera, 680 

Psocoptera, Thysanoptera, Trichoptera). All material is stored at EDTP—Entomoteca 681 

Dalberto Teixeira Pombo, University of Azores, Angra do Heroísmo, Portugal. 682 

Arthropods were grouped into three colonization categories: endemic (i.e. restricted to the 683 

Azores); native non-endemic, i.e. species that arrived naturally to the archipelago but are 684 

present both in the Azorean Islands and elsewhere; and non-native species, i.e., species 685 

whose original distribution range did not include the Azores and that are believed to have 686 

been introduced in the Macaronesian region after human settlement in the 15th century. The 687 

non-native status was inferred either from historical records of detected species introductions 688 

or from their current distribution being closely associated with human activity. For 689 

unidentified species, if other species in the same genus, subfamily or family were present in 690 



the archipelago and all belonged to the same colonization category (according to Borges et al. 691 

2010), the unknown species were classified similarly. Otherwise, we assumed the species to 692 

be native. For simplicity, endemic and native non-endemic species were grouped and are 693 

termed “native” throughout the text. 694 

Sensitivity analyses methodology 695 

To ensure our sampling was sufficient we calculated sampling completeness estimates for 696 

each year in each plot using the iNEXT R package (Hill number order q = 0, Hsieh et al. 697 

2016). 698 

Due to the resources required to sample arthropods in multiple plots every three months over 699 

five years, we only placed one SLAM trap in each plot. To determine whether this was 700 

sufficient to capture the relevant properties (e.g. species composition, distribution of 701 

abundance) of the sampled communities, in 2015 we set up a tenth plot in Terra Brava (Plot 702 

T18), in which we placed three SLAM traps, spaced 30 m apart, and sampled every month. 703 

We constructed three overall assemblage matrices whereby, for each SLAM trap, the data 704 

from the 12 months of 2015 were pooled into one sample. To determine whether community 705 

composition was similar across the three traps, we calculated a number of summary statistics: 706 

1) the number of species in each assemblage, 2) the total abundance of each assemblage, 3) 707 

the proportion of species that were sampled in all three traps (i.e. are present in all three 708 

assemblages), and 4) the distribution of abundance across the species in each assemblage. In 709 

regards to (4), we fitted the gambin species abundance distribution model, using the ‘gambin’ 710 

R package and a subsampling procedure to ensure sample sizes were kept consistent (see 711 

Matthews et al. 2014), to the abundances of the species in each assemblage and recorded the 712 

alpha (shape) parameter (Matthews et al. 2014). Finally, to check that spatial species turnover 713 

across the three traps was low, we calculated multisite spatial beta-diversity across the three 714 

assemblages using presence-absence data (‘beta.multi’ function; Sorensen index) and 715 

abundance data (‘beta.multi.abund’ function; Bray-Curtis multiple-site dissimilarity), using 716 

the ‘betapart’ R package (Baselga et al. 2017). As most species were found in all three traps, 717 

it was not possible to use a null model approach that constrained the marginal totals. All 718 

analyses were undertaken using R (version 3.4.3, R Core Team 2017).   719 
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Plot locations 757 

 758 

 759 

Figure S1. A map of the ten sampled 50m x 50m plots and areas of native forest on the island 760 
of Terceira, Azores.  761 

 762 
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 764 

 765 

 766 



 767 

Figure S2. Example SLAM trap in a plot within a native forest fragment on Terceira Island 768 
(Terra-Brava T18), Azores 769 

770 



Table S1. Sampling dates for the nine plots across the five years. A ‘1’ indicates that 771 
sampling was undertaken in this plot during this time period, whilst a ‘0’ indicates that 772 
sampling was not undertaken during this time period due to either logistical issues or 773 
problems with the traps. Codes as in Figure S1: 1- TER-NFBF-T-01; 2- TER-NFBF-T-02; 3 -774 
TER-NFBF-TP41; 4- TER-NFPG-T-33; 5- TER-NFSB-T-07; 6- TER-NFSB-T164; 7-TER-775 
NFSB-TE48; 8- TER-NFSB-TE49; 9- TER-NFTB-T-15, 776 

Plot 2012 
Sep. 

2012 
Dec. 

2013 
May 

2013 
Sep. 

2013 
Dec. 

2014 
March 

2014 
June 

2014 
Sep. 

2014 
Dec. 

1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 
4 1 0 1 1 1 1 1 1 1 
5 1 0 1 1 1 1 1 1 1 
6 1 0 1 1 1 1 1 1 1 
7 1 1 1 1 1 1 1 1 1 
8 1 1 1 1 1 1 1 1 1 
9 1 1 1 1 1 1 1 1 1 

Plot 2015 
March 

2015 
Sep. 

2015 
June 

2015 
Dec. 

2016 
March 

2016 
June 

2016 
Sep. 

2016 
Dec. 

 

1 1 1 1 1 1 1 1 1  
2 1 1 1 0 1 1 1 1  
3 1 1 1 1 1 1 1 1  
4 1 1 1 1 1 1 1 1  
5 1 1 1 1 1 1 1 0  
6 1 0 1 1 1 1 1 1  
7 1 1 1 0 1 1 1 1  
8 1 1 1 1 1 0 1 1  
9 1 1 1 1 1 1 1 1  
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Appendix S2 Temporal beta-diversity results using the Carvalho et al. partition 789 
framework 790 

 791 

Figure S3. Pairwise temporal beta-diversity values for native and non-native arthropod 792 
species across nine plots of native forest on Terceira Island, in the Azores (Plot notation as in 793 
Table S1 and Figure S1). For each plot, temporal beta-diversity was calculated using the 794 
pooled 2013 samples and the pooled 2016 samples. For each plot, temporal beta-diversity 795 
was calculated separately for native species (blue bars) and non-native species (red bars). The 796 
height of each bar corresponds to the overall temporal beta-diversity. Overall temporal beta 797 
was also partitioned into richness differences and turnover components using the Carvalho 798 
partition approach (Carvalho et al. 2012). Within each bar, the dark shaded area rising from 799 
the x-axis corresponds to the richness differences component of overall temporal beta 800 
diversity. Thus, the lighter shaded area within each bar that rises from the dark shaded area 801 
corresponds to the turnover component.  802 

  803 



Appendix S3 Multiple-time dissimilarity results 804 

  805 

Figure S4. Multiple-time dissimilarity values for native and non-native arthropod species 
across nine plots of native forest on Terceira Island, in the Azores. For each plot, multiple-
time dissimilarity was calculated across four years of data (2013 – 2016). For each plot, 
temporal beta-diversity was calculated separately for native species (blue bars) and non-
native species (red bars). The height of each bar corresponds to the overall multiple-time 
dissimilarity was. Overall multiple-time dissimilarity was also partitioned into nestedness 
and turnover components using the Baselga partition approach (Baselga et al. 2017). Within 
each bar, the dark shaded area rising from the x-axis corresponds to the nestedness 
component of overall temporal beta diversity. Thus, the lighter shaded area within each bar 
that rises from the dark shaded area corresponds to the turnover component. 



 806 

Appendix S4 Sensitivity Analyses Full Results 807 

Table S2. Sampling coverage estimates for the nine plots across the five years. SC is the 808 
sampling coverage for the observed data, and the LCI and UCI are the 95% lower and upper 809 
confidence intervals, respectively.  810 

SC LCI UCI Plot Year SC LCI UCI Plot Year 
0.992 0.987 0.996 1 2012 0.983 0.967 1.000 8 2012 
0.986 0.981 0.991 1 2013 0.987 0.981 0.993 8 2013 
0.992 0.987 0.997 1 2014 0.989 0.983 0.995 8 2014 
0.987 0.982 0.993 1 2015 0.981 0.968 0.993 8 2015 
0.986 0.981 0.992 1 2016 0.981 0.970 0.991 8 2016 
0.942 0.911 0.974 2 2012 0.979 0.965 0.992 9 2012 
0.984 0.977 0.992 2 2013 0.990 0.986 0.995 9 2013 
0.985 0.975 0.995 2 2014 0.985 0.976 0.993 9 2014 
0.967 0.952 0.981 2 2015 0.976 0.964 0.989 9 2015 
0.989 0.983 0.995 2 2016 0.973 0.958 0.987 9 2016 
0.970 0.956 0.985 3 2012      
0.990 0.982 0.997 3 2013      
0.996 0.993 1.000 3 2014      
0.972 0.959 0.985 3 2015      
0.985 0.974 0.996 3 2016      
0.918 0.878 0.957 4 2012      
0.991 0.987 0.995 4 2013      
0.991 0.988 0.994 4 2014      
0.979 0.972 0.986 4 2015      
0.985 0.978 0.992 4 2016      
0.810 0.666 0.954 5 2012      
0.994 0.989 0.998 5 2013      
0.989 0.982 0.996 5 2014      
0.984 0.976 0.992 5 2015      
0.988 0.978 0.999 5 2016      
0.902 0.845 0.958 6 2012      
0.954 0.931 0.977 6 2013      
0.968 0.956 0.980 6 2014      
0.965 0.947 0.984 6 2015      
0.966 0.949 0.984 6 2016      
0.983 0.957 1.009 7 2012      
0.977 0.965 0.990 7 2013      
0.985 0.977 0.993 7 2014      
0.963 0.943 0.984 7 2015      
0.910 0.867 0.953 7 2016      
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 813 

Using three SLAM traps in a single plot 814 

Using three SLAM traps in a plot rather than one did not result in substantially different 815 

sampled communities. Species richness across the three traps in T18 only ranged 49 – 51 816 

species, whilst abundance varied from 1380 to 1739 individuals per trap. The alpha parameter 817 

of the gambin distribution was relatively constant between the three traps (2.47, 2.44 and 818 

3.69), indicating similar SAD shapes. 58% of the total sampled species (n = 38) were present 819 

in all three traps and overall spatial beta-diversity was low based on both presence/absence 820 

data (Sorensen dissimilarity = 0.24) and abundance data (Bray-Curtis multiple-site 821 

dissimilarity = 0.31). Thus, we are confident that our general sampling protocol is sufficient 822 

to obtain representative samples of the arthropod fauna in each plot.  823 
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