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• Environmental factors controlling dif-
fuse pollution are currently seen as a
“black box”.

• Two mesocosm experiments were de-
signed to mimic the riverbank environ-
ment.

• High concentrations of dissolved Pb
were released, due to the oxidation of
galena.

• Solubility of Pb sulphate mineral angle-
site had little control over dissolved Pb
concentrations.
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Metal mining activities have resulted in the widespread metal pollution of soils and sediments and are a world-
wide health concern. Pb is often prolific in metal-mining impacted systems and has acute and chronic toxic ef-
fects. Environmental factors controlling diffuse pollution from contaminated riverbank sediment are currently
seen as a “black box” from a process perspective. This limits our ability to accurately predict and model releases
of dissolved Pb. Previous work by the authors uncovered keymechanisms responsible for themobilisation of dis-
solved Zn. The current study identifies key mechanisms controlling the mobilisation of dissolved Pb, and the en-
vironmental risk these releases pose, in response to various sequences of “riverbank” inundation/drainage.
Mesocosm experiments designed to mimic the riverbank environment were run using sediment severely con-
taminated with Pb, from a mining-impacted site. Results indicated that, although Pb is generally reported as
less mobile than Zn, high concentrations of dissolved Pb are released in response to longer or more frequent
flood events. Furthermore, the geochemical mechanisms of release for Zn and Pb were different. For Zn, mecha-
nisms were related to reductive dissolution of Mn (hydr)oxides with higher concentrations released, at depth,
over prolonged flood periods. For Pb, key mechanisms of release were related to the solubility of anglesite and
the oxidation of primary mineral galena, where periodic drainage events serve to keep sediments oxic, particu-
larly at the surface. The results are concerning because climate projections for the UK indicate a rise in the occur-
rence of localized heavy rainfall events that could increase flood frequency and/or duration. This study is unique
in that it is the first to uncover key mechanisms responsible for dissolved Pb mobilisation from riverbank sedi-
ments. Themineralogy at themining-impacted site is common tomany sitesworldwide and it is likely themech-
anisms identified in this study are widespread.

© 2018 Published by Elsevier B.V.
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1. Introduction

Metal mining activities includingmineral extraction, processing and
dumping of contaminated waste alongside river channels has resulted
in thewidespreadmetal pollution of soils and sediments and is aworld-
wide health concern (Foulds et al., 2014; Frau et al., 2018; Zhang et al.,
2012; Zadnik, 2010). The impacts of these activities have been reported
internationally; Coeur d'Alene River Valley, Idaho (USGS, 2001), San
Luis, Argentina (Tripole et al., 2006) and throughout Europe, Upper Sile-
sia in southern Poland (Ullrich et al., 1999), Iberian Pyrite Belt, south
west Spain (Torres et al., 2013). In England andWales, mining impacted
catchments play a critical role in the distribution of metals through flu-
vial systemswith the highestmetal flux arising frommineralised catch-
ments with a history of metal mining (Mayes et al., 2013). Contrary to
the traditional focus on point sources of pollution from adits and shafts,
a greater emphasis has been placed on dealing with diffuse forms, pri-
marily due to the EU Water Framework Directive 2000/60/EC require-
ment that management of water quality should be at a catchment
scale delivered through the river basin management plans (Collins
et al., 2012). There are 226 waterbodies categorised as “impacted” by
non-coal mine water pollution in England and Wales and over 50%
show evidence of diffuse pollution (Environment Agency, 2010). That
could serve as a barrier to achieving “good” surface water chemical sta-
tus for all water bodies by 2021 (EU amending directives 2000/60/EC
and 2008/105/EC). Identifying the exact sources, and understanding
pollution dynamics, within a catchment are listed as key priorities for
effective management and remediation efforts (Environment Agency,
2012a).

Pb is listed as a priority substance in EU amending directives 2000/
60/EC and 2008/105/EC in the field of water policy because of its
known toxic effects. Unlike elements, such as Cu and Zn, Pb has no
known biological function and therefore can be harmful to flora and
fauna at very low levels (Chibuike and Obiora, 2014). Pb is
bioaccumulative, passing through trophic levels of the food chain and
increasing in concentration at each level. Bioavailable forms of Pb can
be taken up and stored in tolerant plants (Sharma and Dubey, 2005)
and macroinvertebrates (Cid et al., 2010), accumulate in earthworms
(Wijayawardena et al., 2017) and high concentrations can be stored in
liver, kidneys and muscles of cattle due to the consumption of contam-
inated forage (Zadnik, 2010). In severely contaminated mining catch-
ments such as Coeur d'Alene river Basin, USA, levels of Pb in children's
blood have been found to far exceed federal intervention levels (USGS,
2001). Pb can have chronic and acute toxicity effects that include detri-
mentally impacting macroinvertebrate community structure
(Montserrat, 2010; Byrne et al., 2013), phytotoxicity resulting in river-
bank instability (Environment Agency, 2008), chronic effects in cattle
such as osteoporosis and anaemiawith high exposure resulting in ataxia
and death (Zadnik, 2010) and neurotoxic effects in children such as be-
haviour problems, lower IQ and learning disabilities (Wijayawardena
et al., 2017).

In mining impacted catchments Pb can be introduced into the envi-
ronment when primary sulphidemineral galena (PbS) is brought to the
surface and oxidised through exposure to atmospheric conditions. High
concentrations of Pb and sulphate can be released into fluvial systems in
this way. Once introduced to the river system Pb can be transported
downstream as a free ion, aqueous complex, or in particulate form
sorbed to sediment particles (vanLoon and Duffy, 2011). Where physi-
cal, chemical and hydrological changeswithin the river allow, Pb associ-
ated sediment would be deposited on riverbanks and floodplains, the
location depending on factors such as particle size, flood magnitude
and morphology of the river (Macklin and Dowsett, 1989; Bradley,
1995; Dennis et al., 2003). The partitioning of Pb in sediment is depen-
dent on the chemical environmental conditions and the geology, for ex-
ample formations high in quartz or carbonates that would influence
mineralogy. Where Pb is associated with mineral forms impervious to
weathering, environmental changes would not influence the
mobilisation of dissolved Pb and this contaminant would remain un-
available for uptake. However in mining impacted catchments Pb is
often associated with Fe and Mn (hydr)oxide and sulphur minerals
in the sediment (Tripole et al., 2006; Buekers et al., 2008; Zakir and
Shikazono, 2011). These minerals can undergo dissolution and pre-
cipitation reactions in response to dynamic changes in redox poten-
tial, pH (Nordstrom and Alpers, 1999) and levels of moisture
(Buckby et al., 2003) – processes that commonly occur within the
riverbank environment (Byrne et al., 2013; Krause et al., 2010; Du
Laing et al., 2009). As a result the sediment can become a source of
dissolved Pb to river systems (Charlatchka and Cambier, 2000;
Torres et al., 2013).

Climate projections based on UKCP09 river basin regions in West
Wales and North West England (Met Office, 2017) indicate a shift to-
wards aridity by 2020. Summer river flows are expected to decline
and Q95 (flow that is exceeded 95% of the time) may reduce 26% by
2050 and 35% by 2080 in western Wales, using medium emissions
(P50) scenarios (DEFRA, 2012a). Furthermore projections indicate a
rise in the occurrence of localized heavy rainfall events, particularly in
winter. Peak river flows are expected to increase 13% by 2020, 20.8%
by 2050 and 27.6% by 2080 in Wales, using medium (P50) scenarios
(DEFRA, 2012b). Changes in river flow alter river stage and expose
river bank sediments to variablewater saturation regimes, periods of in-
undation are followed by periods of drainage. If climate change projec-
tions are correct, patterns of inundation and drainage are likely to
become more pronounced. The focus of the current research is within
the UK, however it is important to note that climate driven changes in
distribution of rainfall and the resulting increase in peak flow events
within mining impacted systems, is an issue experienced internation-
ally (Ciszewski and Grygar, 2016).

The current research is intended to add to the work of Lynch et al.
(2017) in which the geochemical mechanisms controlling dissolved
Zn release from riverbank sediments were determined (Lynch et al.,
2017). Key Zn control mechanisms were: the (co)precipitation of Zn
with Mn (hydroxides), followed by the reductive dissolution and re-
lease of Zn in response to prolonged flooding and; Precipitation of Zn
sulphate salts over long dry antecedent periods followed by the imme-
diate dissolution of these salts and release of dissolved Zn on sediment
flood wetting.

In the current study the same mesocosm experiments are run to
allow the authors to determine the control that different sequential pat-
terns of flooding and drainage have on themobilisation of dissolved Pb.
Pb is reported as less mobile than Zn under oxic conditions (Galan et al.,
2003; Carroll et al., 1998) with a greater affinity for Fe (hydr)oxide sur-
faces (Evans, 1991; Wang et al., 2010) and a lower sorption edge (Lee
et al., 2002; Appelo and Postma, 2010). However, in severely polluted
catchments contaminated sediments have been identified as an impor-
tant source of dissolved Pb contamination to surface water (Palumbo-
Roe et al., 2012; Byrne et al., 2013) and it is hypothesised that certain
flood/drain sequences will control the mobilisation of dissolved Pb
from contaminated riverbank sediment.

Key hydrogeochemical mechanisms may include: (i) Pb co-
precipitation with and sorption to Fe/Mn (hydr)oxides under oxidised
(drained) periods followed by reductive dissolution and release of dis-
solved Pb due to a fall in redox potential conditions over prolonged
flood periods; (ii) the oxidation of the primary mineral galena and re-
lease of dissolved Pb and sulphate where previously reduced sediment
is exposed to oxic conditions (Wragg and Palumbo-Roe, 2011) (iii)
the precipitation of insoluble Pb sulphides due to a fall in redox poten-
tial conditions over prolonged flood periods (Lynch et al., 2014); (iv)
control of dissolved Pb concentrations to low levels through saturation
with respect to anglesite (PbSO4) over flooded periods (Palumbo-Roe
et al., 2013; Appelo and Postma, 2010); (v) hydrological saturation
and precipitation of soluble sulphate salts over long dry periods
followed by dissolution of these salts, and a “flush” of dissolved Pb and
sulphate, in response to flood wetting (Byrne et al., 2013).
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Previous studies have investigated the effects of alternately flooding
and drying contaminated soil for different frequencies and durations on
the mobilisation of toxic trace elements such as Cd and Zn (Lynch et al.,
2017; Shaheen et al., 2014; Du Laing et al., 2007). This study is unique in
that experiments examine the patterns of dissolved Pb release from
coarse grained riverbank sediment collected from a mining impacted
catchment highly contaminated with Pb. Understanding the mecha-
nisms of release for this toxic metal under varying hydrometeorological
perturbations is crucial information for environmental monitoring and
the development of successful pollution control measures.

To establish the environmental risk Pb-contaminated riverbank sed-
imentmay pose in light of UK climate projections, the results of two lab-
oratory mesocosm experiments are examined. The objectives were to:
(i) investigate if flooding and draining sequences influence the patterns
of dissolved Pb release from severely contaminated river bank sedi-
ment; (ii) identify key hydrogeochemical processes responsible for con-
trolling the mobilisation of dissolved Pb and if they differ from the
mechanisms of control for dissolved Zn; (iii) establish if Pb contami-
nated riverbank sediment poses an environmental risk when exposed
to alternate flooding and draining sequences.

2. Introduction

A summary of the sample site data and mesocosm treatment
methods is provided below. Please see (Lynch et al., 2017) for detailed
information on the methodology.

2.1. Sediment sample site

The sample site at Cwmystwyth (SN799743) is located in central
Wales, at an elevation of 250 m above sea level (ASL). The mine site is
drained by the Afon Ystwyth River which runs from east to west,
draining into the Irish Sea at Aberystwyth (approximately 25 km
north east of Cwmystwyth) (Fig. 1). The north side of the river ismarked
by spoil heaps rising to 500 m ASL and on the south side grass banks,
Fig. 1. Location of sample site, grid reference SN799743 (denoted by a star) at the Cwmyst
used primarily for grazing, rise steeply to 450 m ASL. Mining ceased at
Cwmystwyth in 1921 (Bick, 1976). The country rock dates from the Si-
lurian period with alternating bedrock of hard coarse sandstones and
shales that form the upper Llandovery Series (British Geological
Survey, 2007). Rivers that rise on this type of geology have been de-
scribed as “Base Poor” having a low alkalinity, so less able to buffer
acidic inputs (Natural Resources Wales, 2004).

2.2. Rainfall and river flow characteristics

Detailed information on rainfall and flow at the sample site can be
found in Lynch et al. (2017). Generally flow rises and recedes quickly,
however extended periods (greater than a week) of flow well above
themean value (1.989m3/s) (leading to riverbank and floodplain inun-
dation) and extended periods well below the mean value (leading to
drainage and exposure of riverbank and floodplain), are common
(Centre for Ecology and Hydrology, 2015). Changes in river flow are
known to cause a rise and fall in river stage that can influence patterns
of hyporheic exchange flow (Byrne et al., 2013).

2.3. Sediment collection

Sediment was collected on two occasions, July 2012 and December
2013 for analysis in two separate mesocosm treatments. Visual inspec-
tion of the northern riverbank indicated that sediment was made up of
predominantly sandy gravel interspersed with some finer silt particles
and larger pebbles and boulders. The sediment samples were collected
from the north bank of the river at the same site, but different locations.
On the first visit, sediment was taken from waste piles running along
the side of the river channel. This material would have been dumped
along the side of the river during active mining andwas therefore likely
to contain high concentrations of primary and secondary minerals. On
the second visit, material was taken from the base of the mining waste
piles, on a lateral flow path, so was likely to contain lower concentra-
tions of the primary waste and material eroded from the waste piles.
wyth abandoned mine complex in the River Ystwyth catchment in mid-Wales (inset).
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This site was closer to the active river channel and therefore would be
more susceptible to hydrometeorological perturbations. A stainless
steel shovel was used to collect sediment from the top 10 cm.

2.4. Laboratory analysis

2.4.1. Mesocosm experiments
Two mesocosm experiments were conducted in order to meet the

objectives. The first experiment was run to determine the effect alter-
nately wetting and drying contaminated sediment for different dura-
tions and frequencies had on the release of dissolved Pb and establish
whether the sediment posed an environmental risk. The second exper-
iment focused on runswhere patterns of dissolved Pb release were pro-
nounced allowing a (i) comparison of concentration and lability of Pb in
the sediment at the two different sampling locations; (ii) comparison of
the environmental risk the sediment posed at each location (iii) deter-
mination of the repeatability of the results. For both experiments
water and sediment analysis enabled the elucidation of the key geo-
chemical mechanisms of dissolved Pb mobilisation.

The sedimentwashomogenised byhand and larger pebbleswere re-
moved. The sediment was then packed into each mesocosm to a depth
of 24 cm using a plastic trowel (Fig. 2). An extended experimental
timeframe for each column of 20 days at field capacity, to equilibrate
the sediment, followed by a maximum of 11 weeks treatment period
promoted the removal of any artefacts and allowed time for systems
to settle into a steady pattern. Artificial Rainwater (ARW) was created
based on Plynlimon rainwater chemistry (pH 4.9–5.2), found in the up-
lands of mid-Wales (Neal et al., 2001). For field capacity, twice a week,
500ml of ARWwas added via the top of themesocosm until water per-
colated though the bottom tap (Fig. 2). Following field capacity,
mesocosms were divided into 7 different treatments. 5 were variable
wet and dry runs and 2 constant controls. The Cwmystwyth gauged
daily flow (grid reference SN790737), taken from the UK National
River Flow Archive (Centre for Ecology and Hydrology, 2015), provided
guidance regarding the length of time riverbank sediment may be ex-
posed to atmosphere or submerged (Section 2.2). Variable runs were
designed to include longer wet runs, longer dry runs and wet and dry
run of same duration and frequency. Control runs were non-variable
and either constant wet (flood) or unsaturated and oxidised (field ca-
pacity). This allowed a comparison between variable and non-variable
wet and dry runs. Constant flood and field capacity were sampled
Fig. 2. Outline of mesocosm including sampling points. Note: Filtered samples are referred t
acknowledge that the samples may contain colloidal and/or nano-sized particles.
every week. Variable run samples were taken only at the start and end
of a wet period. Runs were: 1 week wet followed by 1 week dry
(1wwet), 1 week wet followed by 2 weeks dry (2wdry), 1 week wet
followed by 3 weeks dry (3wdry), 2 weeks wet followed by 1 week
dry (2wwet), 3 weeks wet followed by 1 week dry (3wwet), Flood
(Flood) and field capacity (F/C). The temperature was maintained at
22–23 °C for the 1st mesocosm experiment and ~18 °C for the 2nd
mesocosm experiment.

Water samples were taken from the top of the mesocosm using a
plastic syringe and from the bottom via a tap, in that order to avoid
mixing between levels and filtered through a 0.45 μm PTFE syringe fil-
ter. A Hanna Combo pH/EC and temperature hand held stick meter
model No 98129, recorded pH, conductivity and temperature for each
sample. An Aquaread Aquameter multiparameter water quality probe
was used to measure dissolved oxygen (DO) and redox potential
(ORP) (2nd mesocosm experiment only). The ORP reference electrode
was type 3MPK1 AgCl and ORP readings were converted to the hydro-
gen scale (Eh) as instructed by Aquaread. For further detail regarding
mesocosm methodology, please see Lynch et al. (2017).

2.4.2. Trace metal and anion analysis
Flame Atomic Absorption Spectroscopy (FAAS) (Perkin Elmer Ana-

lyst 300) was used tomeasure Fe, Mn, Pb, Ca, Ni, Cu (mg L−1) in filtered
pore water samples from the 1st mesocosm experiment. Detection
limits were: Ca, 0.06; Fe, 0.03; Cu, 0.01; Mn, 0.01; Pb, 0.04 and Ni, 0.01
(mg L−1). Inductively Coupled Plasma with Optical Emission Spectros-
copy (ICP/OES) (iCAP 6500 Duo) was used to measure dissolved Fe,
Mn and Pb in (i) filtered pore water samples of the 2nd mesocosm ex-
periment and (ii) sequential extraction samples from the 1st and 2nd
mesocosm experiments. Detection limits were: Fe, 0.005; Mn, 0.001;
Pb, 0.05 (mg L−1). Ion Chromatography (Dionex ICS2000) was used to
measure dissolved sulphate, nitrate, chloride and phosphate in pore
water samples of the 1st mesocosm experiment and the 2ndmesocosm
experiment. Detection limits were: sulphate, 0.07; nitrate, 0.04; chlo-
ride, 0.06; phosphate, 0.06 (mg L−1). Flame photometer BWB technolo-
gies was used for detection of Na, K and Ca in filtered pore water of the
2nd mesocosm experiment. For all analysis quality control standards
and blanks, either de-ionised water, or matrix matched solutions for se-
quential extractions, were used throughout. The results were consid-
ered acceptable if the data were within 5% of the expected
concentration.
o as “dissolved” concentrations. However, this is operationally defined and the authors
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2.4.3. Alkalinity and inorganic carbon analysis (water and sediments)
Unfilteredwater samples from bothmesocosm treatment runswere

analysed for alkalinity (as calcium carbonate) using the standard oper-
ating procedure for Great Lakes National Program office total alkalinity
titration method (US EPA, 1992). Filtered pore water samples were
tested for total carbon (TC) and non purgeable organic carbon (NPOC)
using a carbon analyser (Shimadzu TOC-V CSN). Inorganic Carbon =
Total Carbon − Non Purgeable Organic carbon. For non purgeable or-
ganic carbon the sample was first acidified to pH 2 to transform inor-
ganic carbon to CO2. The CO2 was removed via sparging with a carrier
gas. During this process some purgeable organic carbon (benzene, tolu-
ene, cyclohexane and chloroform) may be partly removed. Although
there tends to be negligible amounts of these in surface water samples,
the remaining organic carbon is “non-purgeable” and is measured, as
mg (of carbon) per litre of water, through CO2 detection in the analyser
using a non-dispersive infrared (NDIR) detector. Standards and blanks
were used throughout. The results were considered acceptable if within
5% of the expected concentration. Sediment collected for the 2nd
mesocosm experimentwas analysed for total inorganic (IC) using a sep-
arate solid sample module of the Shimadzu instrument (SSM 5000A). A
sub sample of sieved (2 mm) sediment was weighed (no N50 mg), and
oven dried at 140 °C for 24 h. The sample was treated with phosphoric
acid inside the Shimadzu instrument to produce CO2 that was purged at
200 °C and detected using a non-dispersive infrared (NDIR) detector.
Calibration was performed using different weights of sodium carbonate
containing 11.3% carbon. The results provided % TIC (Shimadzu
Scientific Instruments, 2014). The results were considered acceptable
if within 5% of the expected concentration.

2.4.4. Statistical analysis
All calculations were performed using SPSS 20.0. Statistical tests re-

vealed the data was not normally distributed therefore significant dif-
ferences in pore water data were identified through non-parametric
Wilcoxon rank sum test. Relationships between Pb and pore water var-
iables were determined using Spearman's rho 2-tailed non-directional
tests.

To determine key factors linked to the mobilisation of dissolved Pb
for selected variable runs at the bottom of the mesocosms, Principal
Component Analysis (PCA)was carried out. Datawas assessed to ensure
(i) that underlying variables correlated (Bartlett's test of sphericity) and
(ii) sampling adequacy (Kaiser-Meyer-Olkin). Factor rotation was cho-
sen based on whether the factors (principal components (PC)) were
thought to be unrelated (orthogonal) or related (oblique). For further
information on PCA see Supplementary information D.

2.4.5. PHREEQC (Ph-Redox-Equilibrium in “C”)
The geochemical computer program PHREEQC was used for specia-

tion and saturation index (SI) calculations using theWATEQ4F.dat data-
base distributed with the PHREEQC program. The saturation state of
various minerals were calculated using input data derived from pore
water measurements for selected runs (Tables A1 and A2). Data was
considered acceptable if charge balance was ≤5%.
Table 1
Sequential extraction steps.

Step
#

Extractant Extraction details

1 0.5 M HCla Rotational shaker for 1 h, cen
2 0.25 M hydroxylamine hydrochloride in 0.25 M HCl Rotational shaker for 1 h, cen
3 50 g L−1 sodium dithionate with 0.2 M in 0.35 M

acetic acid
Rotational shaker for 2 h, cen

4 Aqua Regia cHCl and cHNO3 (3:1 molar ratio) Agitated gently overnight. Fo
Whatman no 42

a 0.5 M HCl is a moderately corrosive first step and therefore it is not possible to differentiat
dissolution of amorphous or soluble phases. Furthermore, the first step was originally used for
these points are included in the results/discussion section as the authors consider the results p
In some cases the control of trace metal solutes by equilibriumwith
a mineral can be demonstrated (Appelo and Postma, 2010). The key-
word “equilibrium_phases” was used to calculate the concentration of
anglesite that would precipitate and subsequent dissolved Pb concen-
trations in pore and surfacewater if conditionswere brought to equilib-
rium and reached saturation with respect to anglesite.

2.4.6. Sequential extraction of sediment samples
Dynamic changes in redox potential conditions can occur within

river bank sediment due to flooding/draining sequences (Lynch et al.,
2017; Lynch et al., 2014; Du Laing et al., 2009). Different Fe phases dis-
play awide range of reactivity (adsorption capacity and susceptibility to
reduction). A fall in redox potential conditions can result in the
microbially mediated reductive dissolution of Fe and Mn (hydroxides)
(Stumm and Sulzberger, 1992; Lynch et al., 2014). This can serve to re-
mobilize partitioned contaminants such as Pb (Torres et al., 2013).
When flood waters subside the exposure of previously reduced sedi-
ment surfaces to atmospheric conditions may result in the oxidation
and hydrolysis of previously reduced Fe and Mn (Lovley and Phillips,
1989; Grundl and Delwiche, 1993). Fe andMn (hydr)oxides can rapidly
(minutes to hours) scavenge high concentrations of dissolved trace
metal contaminants such as Pb (Burton, 2010; Caetano et al., 2003). In
order to understand the reactivity of Fe and Mn minerals in the sedi-
ment along with partitioned Pb and therefore the potential for the sed-
iment to control the mobilisation of Pb in response to dynamic changes
in redox potential a modified 4 step sequential extraction procedure
was carried out in triplicate on sediments samples collected for 1st
and 2nd mesocosm experiments. The sequential extraction procedure
focused primarily on Fe and Mn minerals with steps run sequentially
from ‘most reactive’ to ‘least reactive’. Extractions were carried out on
freeze dried −70 °C sediment (≤63 μm) (Table 1). Please see Supple-
mentary information ‘E’ for full extraction methodology.

2.4.7. Scanning electron microscopy with energy dispersive X-ray spectros-
copy (SEM/EDX)

A combination of SEM/EDX was carried out to create images of and
identify elements at the surface of the sediment samples for areas atmi-
cron scale. Freeze dried sediment was dusted lightly onto carbon stubs
and coated in carbon to encourage conductivity. Sampleswere analysed
with a Philips XL30 FEG ESEMfittedwith anOxford Instruments X-Sight
EDS ATW X-Ray detector. Please see Supplementary data ‘F’ for full
methodology.

3. Results and discussion

3.1. Factors influencing the mobilisation of dissolved Pb

A key objective of the current studywas to determinewhether min-
ing contaminated sediments became a source of dissolved Pb in re-
sponse to flooding and draining sequences. The results indicated that
these perturbations did influence the mobilisation of dissolved Pb, al-
though patterns in the release of dissolved Pb were found to vary
References

trifuged, supernatant filtered (0.45 μm) Lovley and Phillips (1986)
trifuged, supernatant filtered (0.45 μm) Poulton and Canfield (2005)
trifuged, supernatant filtered (0.45 μm) Poulton and Canfield (2005)

llowing day heated 80 °C for 2 h. Filtered Wilson and Pyatt (2007), Montserrat
(2010)

e the release of divalent ions from loosely sorbed/exchangeable phase or as a result of
analysis of Fe from within a different sediment environment. The implications regarding
rovide valuable supporting data.



Fig. 3. Average concentration of dissolved Pb released over a flood period (mg L−1) (concentration at the end of a floodminus concentration at the start) for all runs, top and bottom of the
mesocosm for (a) 1st mesocosm experiment, bars indicate standard error (n = 9 for 3wwet and 3wd, n = 12 for 2ww and 2wd, n = 18 for 1ww, flood and F/C) (b) 2nd mesocosm
experiment bars indicate standard error (n = 3 for 3wwet and 3wd, n = 5 for 1ww, flood).

Fig. 4. Principal component analysis showing the distribution of pore water chemical
samples along the first two principal components includes runs 1wwet, 3wwet, 3wdry,
flood at the top (squares) and bottom (circles) of the mesocosms. Arrows indicate
general trend for longer flooded runs (bottom) compared to 1wwet and 3wwet runs
(top) (2nd mesocosm experiment).
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depending on the flood/drain sequence and the location (top/bottom)
within the mesocosms.

The average concentration of dissolved Pb released over a flood pe-
riod was significantly higher at the top of the mesocosm compared to
the bottom (z = −7.3, p ≤ 0.001), (z = − 2.525, p ≤ 0.05), 1st and
2nd mesocosm experiments respectively. At the top of the mesocosm,
within surface water, the concentraton of dissolved Pb increased over
the duration of the flood. All variable wet and dry runs displayed signif-
icantly higher concentrations of dissolved Pb at the end of a flood com-
pared to the start (z ≤−1.96, p ≤ 0.05) (Fig. 3a and b). In contrast, at the
bottom of the mesocosm almost all of the dissolved Pb was released at
the start of a flood (within 2–3 h) and concentrations remained rela-
tively constant, or declined over the flood period. There was no signifi-
cant increase in dissolved Pb between the start and end of a flood period
at the bottom of the mesocosm for the 2wdry, 3wdry, 2wwet and F/C
runs (z ≥ −1.96, p ≥ 0.05), nor for the constant flood runs at the top (z
= −0.73, p = 0.465) (z = −1.424, p = 0.155) and bottom (z =
−0.63, p=0.53) (z=−0.316, p=0.752) of the 1st and 2ndmesocosm
experiments respectively (Fig. 3a and b). Similarities in the patterns of
dissoved Pb release were apparent between the two mesocosm experi-
ments possibly indicating the key geochemical mechanisms controlling
Pb mobilisation were the same.

Principal components analysis was conducted on 8 items with or-
thogonal rotation (varimax) to determine the underlying factors
influencing the mobilisation of Pb. Two PCs had eigenvalues greater
than “1”: PC1 explained 62.7% and PC2 explained 14.9% of the variance.
PC1 showed a high positive loading for sulphate (0.958) and Ca (0.897)
and a negative loading for Pb (−0.527). At the bottom of the
mesocosms, runs with longer flood periods, particularly the constant
flood run, scored highly against this component (Fig. 4). Pore and sur-
face water chemical analysis found that average concentrations of dis-
solved sulphate and Ca were higher at the bottom of the mesocosms
compared to the top (Tables 2 and 3) and correlation analysis for the
flood run at the bottom of the mesocosm showed a significant negative
relationship between Pb and sulphate (r = −0.889, p ≤ 0.01) and Pb
and Ca (r =−0.605, p ≤ 0.01). These results could indicate that under-
lying factors contributing to the release of sulphate and Ca over flooded
periodsmay be linked to the lower concentrations of Pb at the bottomof
themesocosms. Inorganic carbon (IC) in the sedimentwas belowdetec-
tion in the current study both prior to treatment and at the end of the
run. Pore and surface water analysis indicted that bicarbonate concen-
trations were undetectable. Furthermore, it can be seen, Section 3.2,
Table 4, geochemical modelling, that no carbonate minerals were pre-
dicted to precipitate. Therefore it is unlikely the substitution of Ca for
Pb in carbonate minerals such as calcite (CaCO3), aragonite (CaMg
(CO3)2, and ankerite (Ca(Fe,Mg)CO3)2 (Cravotta, 2008; Fairchild et al.,
2010) or the precipitation of Pb carbonate minerals such as cerussite
(VanLoon and Duffy, 2011) were key geochemicalmechanisms control-
ling the mobilisation of dissolved Pb. Sulphate was present at higher
concentrations than the other anions (nitrate, chloride and phosphate).
In waters with high sulphate concentrations the production of hydro-
gen sulphide and precipitation of insoluble metal sulphide galena
(PbS) can serve as a sink for dissolved Pb (Du Laing et al., 2009). How-
ever, although redox potential measurementswere lower at the bottom
of the mesocosms than at the top (Table 3), they did not decline low
enough for the production of hydrogen sulphide (b120 mV) (Ross,
1989; Gambrell et al., 1991; Bartlett, 1999). Gypsum (CaSO4·2H2O) is
often present in mining impacted catchments (Younger, 1998; Harris
et al., 2003; Kuechler et al., 2004). Piper analysis indicated that the
water samples were Ca-sulphate water type - typical of mine drainage.
Dissolution of this mineral could account for the presence of sulphate
and Ca in pore water and processes relating to the dissolution of this
mineral could be linked to the attenuation of dissolved Pb. This is
discussed further in Section 3.2.

High negative loadings for DO (−0.814) and redox potential
(−0.942) were recorded against PC1 and 2. This is in line with the neg-
ative loading for Pb (−0.527) against PC1. Runs, at the top of the
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mesocosms, scored negatively against PC1 and in some cases PC2
(3wwet run) (Fig. 4). DO and redox potential measurements showed
conditionswere oxic ~99.5%DO, Eh 494mV at the top of themesocosms
(Table 3). These results indicate that underlying factors linked to high
DO and redox potential conditions, may have contributed to releases
of dissolved Pb over flood periods at the top of themesocosms. Correla-
tion analysis for the 3wwet run indicated a significant positive rela-
tionship between dissolved Pb and sulphate (r = 0.605, p ≤ 0.01)
and dissolved Pb and Ca (r= 0.828, p ≤ 0.01). The oxidation of Pb sul-
phide minerals such as galena in mine tailings and contaminated
sediment has been linked to the release of high concentrations of dis-
solved Pb into surface water during laboratory inundation experi-
ments (Wragg and Palumbo-Roe, 2011) and in the field, in
response to storm events (Byrne et al., 2012). The oxidation of galena
would not necessarily produce excess acidity however, any subse-
quent hydrolysis (Younger, 1998) or adsorption reaction (Dzombak
and Morel, 1987) would result in proton release. Therefore, the
slightly acidic pH observed (pH 5.3, range 4.8–5.8), (pH 5.7, range
5.1–5.8) during the 1st and 2ndmesocosm experiments respectively
could be linked to these acid producing processes and the poor buff-
ering capacity of the water.

3.2. Solubility control of dissolved Pb concentrations in pore and surface
water by equilibrium with anglesite

Anglesite has been reported to form as a weathering product from
the oxidation of galena in mine drainage environments (Harris et al.,
2003; Palumbo-Roe et al., 2013). To assess how close to saturation the
flood water solutions were with respect to mineral phases, particularly
anglesite, that may have formed over the treatment period, saturation
indices (SI) were calculated using PHREEQC (Ball and Nordstrom,
2001).

The three week wet run (top) and flood run (bottom)were selected
for analysis because the highest average concentration of dissolved Pb
was observed for the 3wwet run at the top of the mesocosm (21.5 ±
2.9 mg L−1), (10 ± 2.1 mg L−1) and the lowest average concentration
was observed for the constant flood run at the bottom (10.8 ±
2 mg L−1), (3.8 ± 0.3 mg L−1) (Tables 2 and 3). Mineral phases and
SI's were calculated from input data (Table A1) and are listed (Table 4).

For both the 3 week wet (top) and constant flood (bottom) runs,
surface and porewater conditions reached supersaturationwith respect
to anglesite by the end of the first 3 week flood (week D) (Table 4). For
the constant flood run, porewater conditions then changed from super-
saturated to saturated by weeks H and L. This was not the case for the
3weekwet runwhere conditions remained supersaturated over the en-
tire treatment period.

The flood run, unlike the variable runs, was not periodically drained
and exposed to atmospheric conditions. The sediment, to a large extent,
remained saturated and thewater stagnant so it is possible that this sys-
tem could have moved towards an equilibrium state.

To test that theory, a simple script was run using PHREEQC to calcu-
late the anglesite precipitation that would occur if the input data
(Table A1) for sample weeks D, H, L reached saturation with respect to
anglesite. The program also calculated the concentration of dissolved
Pb that would be expected in pore water under these new saturated
conditions (Fig. 5). The script was run for both the flood run (btm)
and 3wwet run (top) for comparison.

In theory, if pore water conditions reach supersaturation with re-
spect to anglesite, aswas found to occur for the 3weekwet and constant
flood run (week D), according to Le Châtelier's principle anglesite pre-
cipitation would occur and result in the decline in dissolved Pb and sul-
phate concentrations.

Log k 10−7:79 ¼ PbSO4
2−

h i
sð Þ
⇆ Pb½ � aqð Þ SO4

2−
h i

aqð Þ



Table 3
2nd mesocosm experiment, mean and range (in parenthesis) of dissolved (b0.45 μm) metals and anions (mg L−1), pH, conductivity (μS/cm), temperature (°C), DOC (mg L−1), TIC
(mg L−1) at the end of a flood, by run, top (T) and bottom (B) of the mesocosm, key average values (bold and underlined), n = #a.

1wwet (T) 1wwet (B) 3wdry (T) 3wdry (B) 3wwet (T) 3wwet (B) flood (T) Flood (B)

n = 5 n = 5 n = 3 n = 3 n = 3 n = 3 n = 10 n = 10

pH
(Range)

5.5 5.7 5.6 5.7 5.6 5.8 5.7 5.8
(5.1–5.7) (5.6–5.8) (5.5–5.7) (5.6–5.7) (5.4–5.7) (5.7–5.8) (5.4–5.8) (5.6–5.8)

Temp
(Range)

17.5 17.8 17.7 17.7 18.4 18.9 17.9 18.2
(16–20) (16.4–20.1) (16.2–20.3) (16.3–20.3) (17–19.6) (17.5–20) (16–20.3) (16.5–20.3)

Cond
(Range)

225.2 392 175.3333 382 230.6667 405 264.9 408.4
(148–373) (336–435) (170–186) (338–415) (206–276) (359–436) (162–416) (342–452)

D.O. %
(Range)

100 34 102 37 94 18 102 12
(78–109) (10.4–43.2) (99–105) (13.1–52.7) (80.5–101) (8.3–28.1) (98–111 (7.8–23)

Eh
(Range)

509 482 499 491 483 428 485 423
(459–603) (456.9–530) (479–525) (478.9–509) (468–504) (412.7–436) (446–555) (381–485)

Fe
(Range)

0.0 0.1 0.0 0.1 0.7 0.1 0.0 0.3
0.0 (0–0.1) (0–0.1) (0–0.2) (0–2) (0.1–0.2) (0–0.2) (0.1–0.6)

Mn
(Range)

0.1 0.1 0.0 0.1 0.1 3.5 0.2 5.8
(0–0.1) (0.1–0.2) 0.0 (0–0.2) (0–0.1) (2.2–5.3) (0–0.7) (1–10.1)

Pb
(Range)

8.3 4.9 6.1 5.8 10.0 4.9 8.6 3.8
(8–9.2) (3.8–5.6) (5–6.7) (4.3–7) (7.5–14.2) (2.3–6.9) (5–15) (1.7–4.8)

Ca
(Range)

2.4 11.8 2.0 13.7 4.7 15.7 5.7 13.6
(0–8) (8–14) (0–4) (16–12) (3–7) (14–17) (0–18) (4–19)

Nitrate
(Range)

1.6 1.4 0.6 1.9 1.1 0.1 0.7 0.0
(0.2–2.8) (0.6–2.3) (0–1.2) (1–2.5) (0.4–1.7) (0–0.2) (0–2.1) (0–0.5)

Chloride
(Range)

8.5 3.3 1.7 2.6 4.0 3.5 7.8 6.0
(2.4–23.5) (2.6–4.8) (1.27–2.48) (1.4–3.4) (1.6–6.4) (1.1–5.5) (1.5–27.6) (0.7–17.5)

Sulphate
(Range)

25.3 95.2 17.7 120.3 36.0 110.3 35.5 94.6
(8.5–64) (121.9–47.7) (8.8–35.2) (90–145) (19.3–52.9) (66.6–147.7) (7–115) (46–138)

Na
(Range)

2.2 4.8 3.0 4.7 5.3 14.3 7.3 8.8
(0–4) (3–7) (1–6) (3–7) (4–7) (9–19) (1−22) (2–18)

K
(Range)

1.2 1.0 0.0 0.7 0.3 1.0 2.8 0.7
(0–4) 1.0 0.0 (0–1) (0–1) 1.0 (0–25) (0–1)

DOC
(Range)

2.5 3.1 1.9 3.1 2.6 4.3 2.6 3.6
(2.1–3.2) (2.4–3.5) (1.9–2) (2.6–3.8) (1.9–3) (3.7–4.9) (1.9–4.9) (2.5–4.8)

TIC
(Range)

0.8 1.2 0.6 1.1 0.8 2.8 0.7 2.5
(0.4–1.1) (0.6–1.8) (0.3–0.9) (0.7–1.6) (0.7–1.1) (2.3–3.4) (0.2–1.4) (1.1–4.3)

a Note: “n” relates to number of samples taken at the end of a flood period. The “n” varied between runs because certain runs had more flood periods than others over the treatment
period.
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For the flood run, week D, conditions were supersaturated with re-
spect to anglesite (Table 4). Actual concentrations of Pb were higher
in pore water than the concentrations predicted at equilibriumwith re-
spect to anglesite (Fig. 5). Byweek L porewater conditionswere no lon-
ger supersaturated (Table 4) and actual Pb concentrations had declined
to 5 mg L−1 (Fig. 5). Predicted Pb concentrations at equilibrium for the
flood run, weeks H and L were similar to actual Pb concentrations for
these weeks (Fig. 5), indicating that conditions had moved towards an
equilibrium state.
Table 4
Mineral phases, SI and charge balance (%) (first mesocosm run).

Week D H L D H L

Sample 3wwet 3wwet 3wwet Flood Flood Flood
Location Top Top Top Bottom Bottom Bottom
Charge balance % 0.5 −0.8 −0.2 0.2 0 −0.1
Anglesite PbSO4 0.36 0.25 0.32 0.37 0.04 −0.07
Larnakite PbO:PbSO4 −1.58 −1.13 −1.52 −0.62 −1.41 −0.34
Pb(OH)2 −2.09 −2.05 −2.54 −1.65 −2.12 −1.95
Gypsum CaSO4·2H2O −2.96 −3.02 −2.88 −2.72 −2.56 −2.46
Zincite ZnO −4.94 −4.58 −5.06 −4.2 −4.12 −3.9
ZnO(a) −4.96 −4.61 −5.03 −4.26 −4.2 −3.93
Bianchite ZnSO4:6H2O −5.49 −5.28 −5.18 −5.18 −4.98 −5.02
ZnSO4:H2O −6.76 −6.54 −6.47 −6.43 −6.22 −6.28
Melanterite
FeSO4:7H2O

ND ND ND −5.15 −4.63 −4.44

Pyrochroite Mn(OH)2 −9.89 −9.42 −9.77 −8.41 −8.17 −7.77
Birnessite MnO2 −20.09 −19.43 −20.17 −18.02 −17.77 −16.97

Note: All solution output results were checked for charge balance (within 5%). Small con-
centrations of Nawere added tomake up for any charge imbalance. Na was not measured
in the porewater, however concentrationsmeasured inprevious studies at the sample site
(Montserrat, 2010) were similar to the concentrations used to balance charges
(7.5–32 mg L−1). ND = no data/dissolved Fe was below detection. Anglesite SI in bold.
Predicted Pb concentrations for the 3wwet run at the top of the
mesocosm were lower than actual Pb concentrations (Fig. 5). For this
run, conditions reached supersaturation at the end of a three week
flood and anglesite precipitation was predicted to occur but the actual
Pb concentration data shows that this process did not result in a decline
in dissolved Pb concentrations. The results indicate that the systemwas
not in equilibrium and the solubility of anglesite had little control over
dissolved Pb concentrations at the top of the mesocosms. For the
3wwet run long flood periods were followed by short drainage periods
and re-flooded though addition of fresh artificial rain water. Sediment
would therefore have been exposed to oxic conditions (particularly at
the surface) that would have encouraged oxidation of Pb sulphidemin-
erals and release of dissolved Pb during periods of innundation.

Concentrations of dissolved Pbwere observed to be lower in the sec-
ond mesocosm experiment however saturation indices calculated for
the 2nd mesocosm experiment using information from input Table A2
showed that conditions at the bottom of the mesocosm were saturated
with respect to anglesite (Table B1). The high concentration of sulphate
measured at the bottom of the mesocosms during this experiment
(Table 3) would have influenced saturation indices for anglesite. The
dissolution of sulphate bearingminerals such as gypsummay have con-
tributed to the high sulphate concentrations at the bottom of the
mesocosms. SI calculations indicated gypsumwas undersaturated, con-
ditions that would favour the dissolution of this mineral. Batch-type ex-
periments investigating the interaction of gypsum with Pb in aqueous
solutions observed the rapid dissolution of gypsum and simultaneous
formation of anglesite on the gypsum surface and in solution
(Astillerosa et al., 2010). In the current study sulphate producingmech-
anisms such as dissolution of soluble sulphates would have encouraged
the rapid precipitaion of anglesite and provided a solubility control over
dissolved Pb concentrations at the bottom of the mesocosm. Conditions



Fig. 5. Concentrations of dissolved Pbmeasured (actual) in pore and surfacewater and calculated (predicted) by bringing the system to saturationwith respect to anglesite for the 3wwet
(top) and flood run (bottom) of the mesocosms (1st mesocosm experiment).

1436 S.F.L. Lynch et al. / Science of the Total Environment 636 (2018) 1428–1441
were just below saturation with respect to anglesite at the top of the
mesocosm (Table B1) and therefore it is likely the solubility of anglesite
had little control over dissolved Pb concentrations at the top of the
mesocosms for the 2nd mesocosm run.

3.3. Sediment analysis

Fe and Mn minerals have been reported as volumetrically the most
important contaminant hosts in metal mining contaminated sediment
in England andWales (Hudson-Edwards, 2003). Reactive ‘easily reduc-
ible’ Fe and Mn (hydr)oxides have been found to reduce more quickly
(Lovley and Phillips, 1987) at a higher redox potential (Du Laing et al.,
2009) than older more crystalline forms such as goethite or hematite.
Many studies have observed the partitioning of Pb with Fe and Mn hy-
droxides in metal contaminated sediments (Macklin and Dowsett,
1989; Evans, 1991; Hudson-Edwards, 2003; Burton et al., 2005; Byrne
et al., 2010; Farnsworth and Hering, 2011). Dynamic changes in redox
potential conditions and pH can bring about the reductive dissolution
and precipitation of Fe and Mn hydroxides (Lovley and Phillips, 1986;
Lee et al., 2002) and that can control the mobilisation of Pb
(Charlatchka and Cambier, 2000; Lesven et al., 2010).

Extraction step 1 was intended to remove reduced Fe, Mn and Pb
loosely sorbed to the sediment surface and extraction step 2 was ex-
pected to recover easily reducible Fe and Mn (hydr)oxides along with
any partitioned Pb. The first two extractions therefore represented the
most labile forms of Fe and Mn. A control standard of ferrihydrite was
synthesised using Poulton and Canfield (2005) methodology and
showed a 77% Fe recovery during extraction step 1. It is therefore likely
that high concentrations of ‘easily reducible’ Fe were extracted during
step 1. However, it can be seen from the results (Table 5) that relatively
small concentrations of Fe and Mn were extracted from the sediment
during the 1st and 2nd extractions compared to Pb. Almost all of the
Pb (N90%) was extracted during the first 2 extraction steps (Fig. 6).
The first extraction step was originally carried out on tidal river surface
Table 5
Mean concentrations (mg/kg) of metals in sediment (b63 μmgrain size) collected in 2012 and 2
sequential extration.

Pb (2012) Pb (2014) Fe (2

Loosely sorbed 59,463.9 ± 8589.6 59,807.2 ± 2015.1 2905
Easily reducible 25,306.4 ± 3940.23 16,276.9 ± 911.9 1183
Reducible 0 0 22,97
Residual 2952.9 ± 1436.2 0 19,26
Pseudo total 87,723.2 76,084.1 46,32
EA PEL guidelines* 91.3 91.3

⁎ Environment Agency Predicted Effect Level.
sediment (Lovley and Phillips, 1986). Sediment was not severely Pb-
contaminated and sulphate concentrations were in some cases an
order of magnitude lower compared to the current study. Although
chemical extractions are intended to be phase specific total specificity
is highly unlikely (Leinz et al., 2000; Linge, 2008). Baba et al. (2011) re-
ported that a 0.5 M HCl extraction resulted in 30% Pb removal from an
anglesite sample (b63 μm) within 1 h. Leinz et al. (2000) carried out a
series of Tessier et al. (1979) extractions and reported a 60,000 mg/kg
recovery of Pb from anglesite using an extraction of 0.25 M hydroxyl-
amine hydrochloride in 0.25 M HCl for 30 mintues at 50 °C. Further-
more, 0.5 M HCl produces a low pH extraction and galena dissolution
has been found to increase as pH declines (Cama et al., 2005). It is pos-
sible therefore the high concentration of Pb released during the 1st and
2nd extraction may be due, in part, to the presence of other minerals,
such as galena or anglesite in the sediment. The presence of these min-
erals was corroborated through SEM/EDX analysis (Figs. 8–10, Table 6).

In the current study concentrations of dissolved Fe were very low in
surface and pore water compared to other metals (Tables 2 and 3).
Gotoh and Patrick (1974) found that under flooded conditions Fe
(hydr)oxide reductive dissolution occurred at 300mV (pH 5), therefore
this mechanismwas unlikely to occur in the present study as redox po-
tentialmeasurements did not decline low enough, even at the bottomof
the mesocosms. Furthermore microbial depletion of oxygen is limited
by the availability of labile organic carbon (Gambrell et al., 1991) and
the low-medium organic carbon measured in the current study would
be unlikely to favour a large fall in redox potential conditions. The re-
sults of sediment and water analysis indicate that it is unlikely co-
precipitation of Pb with Fe and Mn (hydr)oxides followed by reductive
dissolution would have been a key mechanism controlling the
mobilisation of Pb.

Higher concentrations of Pbwere found in the ‘easily reducible' frac-
tion of the sediment sampled during the 1st mesocosm run, compared
to the 2nd (Table 5) and it is likely that differences in Pb concentration
in the sediment were reflected in pore water concentrations (Fig. 7).
014 (n=3). Results are shown for pseudo-totalmetals and each geochemical phase of the

012) Fe (2014) Mn (2012) Mn (2014)

.4 ± 242.3 4721.7 ± 49.2 146.9 ± 13.5 361.3 ± 2.3

.8 ± 76.7 1255.5 ± 111.3 59.9 ± 9.2 105.5 ± 10.8
3.3 ± 1596.4 13,812.6 ± 248.1 68.8 ± 3.6 64.5 ± 0.8
0.6 ± 1452.8 24,078.5 ± 990.6 330.9 ± 24.2 386.4 ± 15.1
3.1 43,868.3 606.4 917.7
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The average concentration of “dissolved” Pb was significantly lower for
2nd mesocosm experiment in 2014 compared to the 1st experiment in
2012 for all runs at the top and bottom of themesocosm (z ≤−1.96, p ≤
0.05). Average concentrations were approximately 2–3 times lower
(Fig. 7). Sediment collected in 2012 was taken from piles of mine tail-
ings that had been dumped along the side of the river due to inefficient
processes at the time of extraction. This waste would contain high con-
centrations of the original ore minerals and their oxidised products. In
2014 sediment was collected from a different riverbank location closer
to the river channel. This sediment may have been deposited during
overbank flooding and as wash load transported from waste piles sur-
rounding the site, this process has been described by (Merrington and
Alloway, 1994). The spatial heterogeneity of the post mining landscape
is problematic with regards to predicting diffuse pollution. The above
results highlight the importance of characterising the sediment within
a catchment prior to modelling pollutant releases.

SEM/EDX analysis was carried out to identify possible mineral asso-
ciations of Pb in the sediment. Fig. 8 shows a back scattered electron
image of the sediment (1st mesocosm run). Heavy elements (high
atomic number) backscatter electrons more strongly than light ele-
ments (low atomic number) and therefore appear brighter in the
image. As Pb is considered a heavier element, a bright grainwas selected
for analysis (spectrum3) and amagnified back scattered electron image
taken (Fig. 9).

EDX was carried out and the resulting quant specification (Table 6)
shows an atomic % close to 1:1 ratio for Pb and S which could possibly
indicate the presence of the mineral galena.

The smart map pattern (see Supplementary data ‘G’) for elements
Pb, S and Fe shows that the grain in spectrum3 is likely to be a Pb, Smin-
eral. A similar pattern of Pb and S was found throughout the sediment
indicating this mineral was widely distributed. Fe did not show the
same pattern and was not found to be partitioned with Pb. Mn was dif-
ficult to quantify through SEM/EDS, possibly due to lower total concen-
trations of this element in the sediment.
Table 6
Quant specification for spectrum 3. Atomic % for S and Pb in bold.

Element Weight% Atomic%

S K 13.13 45.43
Mn K −0.07 −0.14
Fe K 2.85 5.65
Zn L 3.46 5.87
Pb M 80.64 43.19
Totals 100.00
3.4. Conceptual model for dissolved Pb mobilisation

The results from the current studywere used to create a simple con-
ceptual model showing the key geochemical mechanisms controlling
the release and attenuation of Pb. The model contrasts two key hydro-
logical runs, the prolonged 3wwet run with a short period of drainage
and the constant flood (control) run. Both include a prolonged water
residence time to allow reactions to occur at the sediment/water inter-
face, however, the period of drainage for the 3wwet run allows expo-
sure to atmospheric conditions, particularly at the surface. These
conditions would promote the oxidation of galena and result in the re-
lease of dissolved Pb into surface water upon re-wetting. In contrast,
for the prolonged flood period with no period of drainage there would
be little exposure to atmospheric conditions and oxygen, particularly
deeper in the sediment. This would serve to reduce the rate of galena
oxidation and conditions may ‘stagnate’. High dissolved Pb concentra-
tions and dissolution of sulphate bearing minerals such as gypsum
may result in saturation with respect to anglesite leading to the attenu-
ation of dissolved Pb. The 3wwet run is shown at the top of the
mesocosm and the flood run at the bottom of mesocosm to highlight
where the pattern of dissolved Pbmobilisation/attenuation is most pro-
nounced for each run. The dashed arrows indicate the depth at which
Fig. 7. Average concentration (mg L−1) of dissolved Pb released at the end of a flood for
mesocosm experiments in 2012 and 2014 by run at the top and bottom. Bars indicate
standard error 1st mesocosm experiment n = 9 for 3wwet and 3wd, n = 12 for 2ww
and 2wd, n = 18 for 1ww, flood and F/C; 2nd mesocosm experiment n = 3 for 3wwet
and 3wd, n = 5 for 1ww, flood.



Fig. 8. Back scattered electron image of sediment (1st mesocosm run).
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keymechanisms have less of an influence on the pattern of dissolved Pb
release.

The environmental factors controlling diffuse pollution from con-
taminated riverbank sediment are currently seen as a “black box”
from a process perspective. The current study is the first to uncover
the key mechanisms responsible for dissolved Pb release into the river-
ine environment.

Compared to a previous study of Zn mobilisation in riverbank sedi-
ments (Lynch et al., 2017), the current research has found that the geo-
chemical mechanisms controlling the release of dissolved Pb are
dissimilar. Due to different geochemical mechanisms controlling
mobilisation for Pb and Zn, the patterns of release were found to be dif-
ferent in response to the flood/drainage runs. High concentrations of
dissolved Zn were released (i) immediately on flood wetting following
a long dry antecedent period, and (ii) in response to prolonged flooding,
at the bottom of the mesocosm, due to reductive dissolution processes.
In the current study, the highest concentration of dissolved Pb release
was observed at the surface, in response to longer/more frequent
flood periods, with intermittent drainage episodes that promoted oxic
conditions.
Fig. 9.Magnified Back scattered electron image of the grain in spectrum 3.
3.5. Environmental risk of contaminated sediments

Pb is listed as a priority substance in theWater Framework Directive
2013/39/EU, 12th August 2013, amending directives 2000/60/EC and
2008/105/EC in thefield ofwater policy. These directives note thatmax-
imum allowable concentrations (MAC) should be taken into account in
the river basinmanagement plans covering period 2015 to 2021. For in-
land surface waters the annual average for Pb and its compounds is 1.2
μg l−1 (bioavailable).Where risk to, or via, the aquatic environment as a
result of acute exposure has been identified, maximum allowable con-
centrations (MAC = 14 μg l−1) have been applied. The EU standard
takes into the account the influence of DOC on the toxicity of Pb but un-
like the standard for Zn it does not require consideration of Ca. A metal
bioavailability assessment tool has been developed for Pb that takes into
consideration the influence of DOC. Using the highest concentrations of
DOC 4.9 mg L−1 measured in the current study the calculated predicted
no effect concentration (PNEC) of Pb (the calculated dissolved concen-
tration of Pb that is equivalent to the EQS available for local water con-
ditions at the site) is 5.88 μg L−1.

Comparing the above standards to the results from dilution calcula-
tions (Table 7) it can be seen that dissolved Pb concentrations for all
runs exceed MAC and PNEC and therefore would be expected to cause
adverse environmental effects and pose a significant environmental
risk.

There are currently no mandatory threshold values for trace metal
contaminants in river sediments in the UK and Europe. This is due to
(i) the challenges of setting fixed standards in river systemswhere con-
tamination is spatially highly variable and (ii) limited toxicological data
(Environment Agency, 2008). Catchments with a long history of mining
are often naturally highly mineralised and difficulties can arise when
assessing the precise environmental risk contaminated soils and sedi-
ment may pose (Dennis et al., 2003). There are however interim sedi-
ment quality guideline values developed by the Environment Agency
(Environment Agency, 2008) that are used to trigger further investiga-
tion. Predicted effect level (PEL) is the level abovewhich adverse biolog-
ical effects are expected to occur. It can be seen that sediment sampled
for the 1st and 2nd mesocosm experiments contained high concentra-
tions of Pb (Table 5). All samples far exceed predicted effect level
(PEL) concentrations and therefore could pose a significant environ-
mental risk. It should be noted that these intermim standards relate to
in-channel sediments, rather than river bank sediments, but in the ab-
sence of other standards relating to sediment they have been used as
a guide.

PEL values relate to total metals (including residual forms) and
therefore provide no indication of the potential bioavailability of trace
metal contaminants. A recent study of Pb contaminated soil found that
LC50 values (concentration of Pb causing 50% mortality) for earth
worms were far lower for acidic soils, pH 4.96 (1161 mg kg−1) com-
pared to neutral, pH 6.94 (4648 mg kg−1) or alkaline, pH 8.45
(7851 mg kg−1) soils and concluded that soil properties are important
factors that modify bioavailability (Wijayawardena et al., 2017). In the
current study the low inorganic carbon concentrations of the sediment
indicate a slightly acidic environment that may favour increased bio-
availability. Furthermore all concentrations of Pb measured in the cur-
rent study exceeded all LC50 values regardless of pH. The high
concentration of Pb present in the most labile fractions of the sediment
indicate that dissolved Pb could easily be released into pore and surface
water in response to environmental perturbationswith potentially seri-
ous adverse effects onwater quality, aquaticflora and fauna and the sur-
rounding agricultural and grazing land (Walling et al., 2003; Foulds
et al., 2014).

4. Conclusions

The Cwmystwyth mine has been identified as a top 30 priority min-
ing “impacted” waterbody in western Wales river basin district



Fig. 10. Simple conceptual model showing the key geochemical mechanisms controlling the release and attenuation of Pb.
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(Environment Agency, 2012b). Although mining has ceased at the site
the sediment remains severely Pb-contaminated. Results of the current
study indicate the sediment is likely to act as source of dissolved Pb pol-
lution to the Afon Ystwyth. Historical studies have found high concen-
trations of Pb (68 μg l−1) in the river water half a km below the
Cwmyswyth mine area with concentrations remaining high (58
μg l−1) up to 7.5 km downstream although more recent studies found
concentrations of dissolved Pb to be below detection (Montserrat,
2010).

A previous mesocosm study by Lynch et al. (2017) found high con-
centrations of dissolved Zn may be released from stream riverbanks
over prolonged flood periods due to the reductive dissolution of Mn
(hydr)oxides. Pb is generally reported as less mobile than dissolved
Zn. However, results from the current study indicate that high concen-
trations of dissolved Pb could be released in response to longer or
more frequent flood events where periodic drainage events serve to
keep conditions more oxic, particularly at the surface.

This is a concern because climate projections indicate a rise in the oc-
currence of localized heavy rainfall events, particularly in winter
(DEFRA, 2012b). Projected increases in flood events, particularly during
winter months could result in a rise in river stage leading to prolonged
inundation of river bank sediment and the mobilisation of dissolved Pb.
Anglesite solubility may control dissolved Pb concentrations with
depth, but have little control at the sediment surface where continual
oxidation of galena and subsequent releases of dissolved Pb may
occur. Where flood conditions subside a fall in river stage and
exfiltration could result in a pulse of dissolved Pb released into river sys-
tems. Dilution calculations indicate that concentrations of dissolved Pb
released are likely to exceed MAC in river water and therefore pose a
significant environmental risk.
Table 7
Diluted Pb min and max average concentrations for 1st and 2nd mesocosm experiments.

Mesocosm experiment # Pb mg L−1 Pb after dilution μg l−1

1st experiment (max) 21.5 34.4
1st experiment (min) 10.8 17.28
2nd experiment (max) 10 16
2nd experiment (min) 3.8 6.08
This study is unique in linking key hydrological processes that may
occur due to climate change to hydrogeochemical mechanisms control-
ling dissolved Pb mobilisation. The mineralogy at the Cwmystwyth site
is common tomanymining impacted sites and it is likely that themech-
anisms identified in the current study would be widespread in the UK
and worldwide. As these pollution events are transient the “exact
sources” of Pb pollution would be difficult to identify in the field in
the absence of continuous samplingmethodologies. As a result Pb pollu-
tion events could go unnoticed. The authors suggest that further
field studies are carried out that focus on understanding how stream-
floodplain connectivity could drive diffuse Pb pollution at mining
impacted sites particularly under variable hydrometeorological
conditions.
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