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Abstract 1	
The mammalian carotid body (CB) is the primary arterial chemoreceptor that responds to acute 2	
hypoxia, initiating systemic protective reflex responses that act to maintain O2 delivery to the 3	
brain and vital organs. The CB is unique in that it is stimulated at O2 levels above those that 4	
begin to impact on the metabolism of most other cell types. Whilst a large proportion of the CB 5	
chemotransduction cascade is well defined, the identity of the O2 sensor remains highly 6	
controversial. This short review evaluates whether the mitochondria can adequately function as 7	
acute O2 sensors in the CB. We consider the similarities between mitochondrial poisons and 8	
hypoxic stimuli in their ability to activate the CB chemotransduction cascade and initiate rapid 9	
cardiorespiratory reflexes. We evaluate whether the mitochondria are required for the CB to 10	
respond to hypoxia. We also discuss if the CB mitochondria are different to those located in 11	
other non-O2 sensitive cells, and what might cause them to have an unusually low O2 binding 12	
affinity. In particular we look at the potential roles of competitive inhibitors of mitochondrial 13	
complex IV such as nitric oxide in establishing mitochondrial and CB O2-sensitivity. Finally, 14	
we discuss novel signaling mechanisms proposed to take place within and downstream of 15	
mitochondria that link mitochondrial metabolism with cellular depolarization.  16	
 17	
 18	
 19	
  20	
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1 Introduction-the carotid body and hypoxia 1	
The mammalian carotid body (CB) is a highly specialized sensory organ derived from the 2	
neural crest. The sensory units of the CB are the ‘glomus’ or ‘type I’ cells that respond to a 3	
variety of stimuli including hypoxia, hypercapnia, acidosis and hormones thereby allowing the 4	
CB to function as a polymodal receptor (Kumar and Bin-Jaliah, 2007; Ribeiro et al., 2013; 5	
Thompson et al., 2016). Type I cell activation leads to stimulation of adjacent chemoafferent 6	
fibers that relay sensory information into the central nervous system. The physiological 7	
consequence of CB stimulation is therefore the initiation of series of systemic protective 8	
reflexes characterized by increased ventilation, tachycardia, systemic vasoconstriction and 9	
adrenaline release from the adrenal medulla (Kumar, 2009).  10	
 11	
There is now a general consensus that a series of key processes contribute to the CB hypoxic 12	
chemotransduction cascade. These include attenuation of outward K+ current, type I cell 13	
depolarization, Ca2+ influx through L-type Ca2+ channels, neurosecretion and chemoafferent 14	
excitation (Kumar and Prabhakar, 2012; Lopez-Barneo et al., 2016). Single type I cells are 15	
exquisitely sensitive to O2 and rapid (within ms) activation of the hypoxic chemotransduction 16	
cascade initiates at PO2s of between 20-40mmHg (Biscoe and Duchen, 1990; Buckler and 17	
Vaughan-Jones, 1994; Buckler and Turner, 2013); a level considerably greater than that at 18	
which cell metabolism is affected in O2-insensitive cells.   19	
 20	
What remains highly controversial is the molecular identity of the specific O2 sensor within the 21	
type I cell. We would argue that the physiological O2 sensor should exhibit certain key features: 22	
1. expression in the type I cell permitting intrinsic O2 sensitivity; 2. the ability to bind O2; 3. its 23	
binding of O2 occurs over the physiological range at which the type I cell is stimulated; 4. it is 24	
required for the CB to be stimulated by hypoxia; and 5. it is able to activate the CB transduction 25	
cascade within milliseconds. Many proposed sensors fit one or two of these criteria but few 26	
have been shown to adequately comply with all five.  27	
 28	
In mammalian cells, O2 is the terminal electron acceptor in the mitochondrial respiratory chain. 29	
Continuous binding and reduction of O2 in the CuB/haem a3 (cytochrome a3) binuclear center of 30	
complex IV drives mitochondrial electron transport and promotes activation of the 31	
mitochondrial ATP synthase. The long-established, mitochondrial hypothesis for 32	
chemoreception proposes that CB excitation induced by hypoxia is initiated by a reduction in 33	
O2 dependent mitochondrial energy respiration. This review will briefly critique the current 34	
evidence as to whether the mitochondria can be considered the functionally relevant O2 sensors 35	
within the CB.  36	
 37	
2 Mitochondrial inhibitors mimic all aspects of the carotid body hypoxic 38	
chemotransduction cascade 39	
All mitochondrial poisons induce chemoafferent excitation (Krylov and Anichkov, 1968; 40	
Mulligan et al., 1981; Obeso et al., 1989; Donnelly et al., 2014; Holmes et al., 2016; Holmes et 41	
al., 2017) leading to rapid increases in ventilation (Owen and Gesell, 1931), heart rate and 42	
arterial blood glucose (Alvarez-Buylla and de Alvarez-Buylla, 1988). Chemoafferent responses 43	
are rapid, dose dependent and reversible (Donnelly et al., 2014; Holmes et al., 2016) and the 44	
magnitude of the rise in chemoafferent frequency caused by saturating concentrations is 45	
consistent with those evoked by severe hypoxia or anoxia (Krylov and Anichkov, 1968; 46	
Mulligan et al., 1981; Obeso et al., 1989). Furthermore, mitochondrial inhibitors and uncouplers 47	
augment neurotransmitter secretion, confirming an action through the type I cell rather than the 48	
afferent nerve endings (Obeso et al., 1989; Rocher et al., 1991). Despite the strong consistency 49	
between all of the different types of mitochondrial poisons (both in the older and more recent 50	
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studies), it should be noted that some of the pharmacological agents used may not have acted 1	
selectively on the mitochondria and so the conclusions should be viewed with a certain degree 2	
of caution.  3	

 4	
Mitochondrial poisons cause fast (within ms) type I cell depolarization and increases in [Ca2+]i. 5	
The size and timing of the [Ca2+]i rise observed using many different mitochondrial inhibitors or 6	
uncouplers closely resembles that seen in hypoxia (Biscoe et al., 1989; Biscoe and Duchen, 7	
1990; Wyatt and Buckler, 2004; Buckler, 2011). As with hypoxia (Buckler and Vaughan-Jones, 8	
1994; Urena et al., 1994), the increases in [Ca2+]i are dependent on cellular depolarization and 9	
extracellular Ca2+ influx through voltage gated Ca2+ channels (Wyatt and Buckler, 2004). 10	
TASK1/3, TREK-1, BKCa, Kv4.1 and Kv4.3, have all been shown to be expressed in the CB and 11	
inhibited by hypoxia (Buckler et al., 2000; Sanchez et al., 2002; Williams et al., 2004; 12	
Yamamoto and Taniguchi, 2006; Kim et al., 2009; Kreneisz et al., 2009; Turner and Buckler, 13	
2013; Wang et al., 2017b). Of these, TASK1/3 and TASK-like K+ currents are diminished by a 14	
multitude of mitochondrial inhibitors leading to membrane depolarization (Barbe et al., 2002; 15	
Wyatt and Buckler, 2004; Buckler, 2011; Turner and Buckler, 2013; Kim et al., 2015a).  16	
 17	
Recent evidence has revealed the presence of TRP and other non-selective Ca2+-activated cation 18	
currents in type I cells that are activated by hypoxia (Kumar et al., 2006; Kang et al., 2014; Kim 19	
et al., 2015b; Wang et al., 2017a). Although intriguing, the full functional relevance of these 20	
currents in type I cell O2-sensing remains to be further characterized, and in particular whether 21	
these currents can be upregulated to preserve O2 sensing in the absence of TASK channels 22	
(Turner and Buckler, 2013). Current evidence suggests that mitochondrial inhibitors are also 23	
capable of increasing these inward depolarizing currents (Kim et al., 2015b; Wang et al., 24	
2017a).  25	
 26	
3 Mitochondria are necessary for the carotid body to respond to hypoxia 27	
The presence of functional mitochondria does appear necessary for the CB to respond fully to 28	
hypoxia. For instance, cyanide, rotenone and FCCP all attenuate TASK channel currents in such 29	
a way that prevents any further reduction by hypoxia (Wyatt and Buckler, 2004). In intact CB 30	
preparations oligomycin, cyanide and azide all reduce or abolish subsequent chemoafferent 31	
responses to hypoxia (Mulligan et al., 1981; Donnelly et al., 2014). Some of the attenuation 32	
observed in these experiments may have been due to impairment of oxidative phosphorylation 33	
in the chemoafferent fibers, limiting their excitability. Any such impairment is not apparent in 34	
response to physiological levels of hypoxia, since the PO2 that activates the type I cells occurs 35	
at a much higher level than those which would decrease mitochondrial function in the 36	
chemoafferent fibers. As such, chemoafferent responses to sustained hypoxia are better 37	
maintained than those in response to sustained high doses of mitochondrial inhibitors (Mulligan 38	
et al., 1981).  39	
 40	
In a recent study the importance of mitochondrial complex I was tested by developing mice 41	
deficient in Ndufs2 (a gene coding for NADH dehydrogenase [ubiquinone] iron-sulfur protein 42	
2- a component of complex I that participates in ubiquinone binding) in tyrosine hydroxylase 43	
positive cells (Fernandez-Aguera et al., 2015). Type I cells isolated from these mice were 44	
insensitive to hypoxia; they lacked any hypoxia-induced K+ current attenuation, [Ca2+]i 45	
elevation or neurotransmitter release. Furthermore, these mice failed to increase respiratory 46	
frequency when breathing 10% O2. This work supported a previous study in which type I cell 47	
hypoxic chemosensitivity was abolished in the presence of rotenone (Ortega-Saenz et al., 2003). 48	
The authors propose a mechanism whereby exposure to hypoxia promotes reverse electron 49	
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transport and ROS/NADH generation via complex I which is driven by a high rate of succinate 1	
oxidation at complex II. Accordingly, they have recently shown that genetic and 2	
pharmacological deactivation of complex II completely blocks type I cell hypoxic sensitivity 3	
(Gao et al., 2017).  4	
 5	
This intriguing and elegant hypothesis does however show some discrepancies with evidence 6	
from earlier reports. For instance, similar experiments performed on CBs with heterozygous 7	
Sdhd knock out displayed an augmented, rather than depressed basal activity and had a 8	
completely preserved hypoxic response (Piruat et al., 2004). Furthermore, when rat type I cells 9	
were exposed to tetramethyl-p-phenylenediamine (TMPD) and ascorbate in the presence of 10	
rotenone, there was still a robust elevation in Ca2+ upon hypoxic stimulation (Wyatt and 11	
Buckler, 2004). This would suggest that feeding electrons into cytochrome c is sufficient to 12	
sustain type I cell hypoxic sensitivity even when complex I activity (and ROS generation) is 13	
inhibited. Complex IV activity rather than complex I and II may therefore be necessary for 14	
hypoxic chemotransduction. The same report also showed that application of H2O2 was unable 15	
to excite the type I cell directly. This observation is consistent with the lack of effect of multiple 16	
anti-oxidants used in other CB preparations and animal species (Sanz-Alfayate et al., 2001; 17	
Agapito et al., 2009; Gomez-Nino et al., 2009). Interestingly, using novel ex vivo CB culture 18	
techniques combined with FRET based ROS sensors, Bernardini and co-workers deduced that 19	
type I cell ROS actually decreases in hypoxia due to reduction in NADPH oxidase activity (an 20	
alternative ROS source) (Bernardini et al., 2015). Clearly there is a need for reconciliation 21	
between these findings.  22	
 23	
4 The carotid body mitochondria are unique and have a low threshold for O2 24	
The evidence that mitochondria are required for CB O2 chemotransduction and that 25	
mitochondrial inhibitors can cause chemoexcitation, is not enough to define them as the O2-26	
sensors in the CB. Clearly, mitochondria are able to bind O2. However, the Km of the 27	
cytochrome a3 for O2 is reported to be <1mmHg in isolated mitochondria and between 1-28	
5mmHg in dissociated cells and tissue preparations, with little variation existing between 29	
different cell types (Wilson et al., 1988; Tamura et al., 1989). This is far lower than the PO2 at 30	
which the CB type I cells begin to be activated and, for this reason, is a common argument 31	
against the mitochondrial hypothesis.   32	
 33	
However, there is now a substantial body of evidence indicating that the CB type I cell 34	
mitochondria are unique. Experiments performed by Mills & Jöbsis, were the first to identify an 35	
unusually low affinity cytochrome a3 within the CB (Mills and Jobsis, 1970; 1972). Using 36	
absorbance spectra, they estimated that 43-67.5% of total cytochrome a3 within the intact CB 37	
preparation had a remarkably low O2 affinity. This fraction was reported to be almost 100% 38	
reduced at PO2s between 7-9mmHg and 50% reduced at a PO2 as high as 90mmHg. In contrast, 39	
the remaining fraction was only 50% reduced at a PO2 of approximately 0.8mmHg, comparable 40	
to cytochrome a3 found in other tissues (Gnaiger, 2001). Thus, the CB appeared to express both 41	
low and high affinity subtypes of cytochrome a3. At that time, the specific cellular location(s) of 42	
each was unclear. Later experiments utilized the photolabile binding of CO, to deduce that 43	
saturation of cytochrome a3 with CO prevented any additional chemoafferent excitation during 44	
hypoxia, implying that not only was the cytochrome a3 in the CB unusual, it was also required 45	
for O2-sensing (Wilson et al., 1994; Lahiri et al., 1999). It should be pointed out that the 46	
concentrations of CO used in these studies could have directly modified the activity of the BKCa 47	
channel (Williams et al., 2004; Williams et al., 2008) and the generation of H2S (Yuan et al., 48	
2015) and as such some of the observations could be related to mechanisms independent of the 49	
mitochondria.  50	
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 1	
In dissociated rabbit type I cell clusters, mitochondrial electron transport begins to be inhibited 2	
at a high PO2 value of approximately 40mmHg (Duchen and Biscoe, 1992a). PO2-NADH 3	
response curves demonstrate a significant ‘right shift’ in type I cells compared to sensory 4	
neurons, indicative of a heightened and distinctive O2 sensitivity. In addition, mitochondrial 5	
depolarization occurs at higher PO2s compared to O2-insensitive cells (Duchen and Biscoe, 6	
1992b). More recent work has verified the “right shifts” in both PO2-NADH and PO2-rh-123 7	
response curves in rat type I cells, confirming that the unusually low mitochondrial O2 affinity 8	
is conserved in multiple species (Turner and Buckler, 2013). By isolating complex IV activity 9	
with a cocktail of mitochondrial inhibitors plus TMPD and ascorbate, the authors were able to 10	
reveal that complex IV activity is a component of the mitochondria with the exceptionally low 11	
O2 affinity. Importantly, type I cell hypoxic response curves for electron transport inhibition, 12	
mitochondrial depolarization and complex IV run-down display considerable overlap with the 13	
rise in Ca2+, indicating that these processes are intimately linked. Therefore, it does appear that 14	
type I cell mitochondria have a highly specialized low affinity for O2 due to an altered 15	
function/subtype of cytochrome a3 in complex IV that predisposes CB energy metabolism to 16	
being impaired at high O2 tensions. It is likely that the high affinity cytochrome a3 in the CB 17	
described by Mills & Jöbsis is located in the non-O2 sensing tissue such as the, nerve endings, 18	
blood vessels and type II cells.  19	
 20	
Understanding the mechanism linking a fall in mitochondrial O2 consumption with K+ channel  21	
inhibition (or cation channel activation) is contentious. As previously mentioned, there could be 22	
a role for elevated mitochondrial ROS generation but this is still to be validated (Fernandez-23	
Aguera et al., 2015). Another possibility is an alteration in cytosolic nucleotides. Switching 24	
from a cell attached to inside-out patch configuration diminishes background K+ channel 25	
activity, suggesting that a basal level of an intracellular factor(s) activates TASK channels in 26	
normoxia (Varas et al., 2007). Addition of 5mM MgATP in the inside-out configuration can 27	
restore about 50% of this background K+ channel activity. Both mitochondrial inhibition and 28	
hypoxia also significantly elevate free Mg2+, consistent with a decrease in MgATP. Thus, the 29	
fall in MgATP during hypoxia is likely to attenuate a significant proportion of TASK-current 30	
leading to depolarization. However, the remaining modulators that account for the other 50% of 31	
TASK current are still to be identified. 32	
 33	
Another proposed mediator of TASK channel activity that is sensitive to changes in cytosolic 34	
nucleotide concentrations is AMPK (Wyatt et al., 2007). However, initial favorable studies 35	
based on pharmacological evidence have since been challenged by the finding that the AMPK-36	
a1a2 deficient CB retains complete O2-sensitivity (Mahmoud et al., 2016). Other groups have 37	
also shown that pharmacological targeting of AMPK does not impact on the hypoxia-induced 38	
K+ channel inhibition (Kim et al., 2014). Discrepancies may arise from the non-selectivity of 39	
the drugs used to evaluate AMPK function and potential redundancy mechanisms known to 40	
develop in genetic animal models (Nowak et al., 1997). A final hypothesis is that a build-up in 41	
lactate upon mitochondrial inhibition in hypoxia activates the olfactory receptor Olfr78 (Chang 42	
et al., 2015). However, the concentration of lactate necessary to elevate Ca2+ in an intact CB 43	
preparation appears to be quite high (30mM) and whether local levels reach this threshold 44	
during hypoxia is uncertain. We await a mechanism demonstrating how activation of Olfr78 (a 45	
G-protein-coupled receptor) modulates TASK or cation channel activity. A summary of the 46	
proposed O2-sensitive mitochondrial signaling pathways in the CB is presented in Figure 1.  47	
 48	
5 What determines the low O2 affinity of the carotid body mitochondria? 49	
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We propose that there are 2 potential means to account for the extraordinary O2 sensitivity of 1	
type I cell mitochondria. First, there could be a high level of production of a cytosolic factor 2	
that is able to freely diffuse into the mitochondria and then compete with O2 binding in complex 3	
IV (Figure 2). We predict that this competition would render mitochondrial electron transport 4	
more susceptible to subsequent falls in O2. We recently tested this by applying exogenous nitrite 5	
to CBs and subsequently measuring hypoxic sensitivity (Holmes et al., 2016). Nitrite is reduced 6	
within the mitochondria to generate local NO, a recognized competitive inhibitor of complex IV 7	
(Brown and Cooper, 1994; Cleeter et al., 1994; Castello et al., 2006; Basu et al., 2008; Castello 8	
et al., 2008). Moderate basal inhibition of the CB mitochondria by nitrite exaggerated the 9	
subsequent chemoafferent excitation during hypoxia signifying an increase in CB O2 sensitivity. 10	
Therefore, we validated the idea that CB hypoxic sensitivity could be adjusted by a factor 11	
capable of competing with O2 in the mitochondria and suggested a physiological role for 12	
endogenous NO in establishing type I cell mitochondrial O2-sensitivity. Measurable amounts of 13	
NO have been detected in mitochondrial of type I cells (Yamamoto et al., 2006). A possible 14	
source is nitric oxide synthase 3 (NOS-3) given its location within the type I cell (Yamamoto et 15	
al., 2006). Interestingly, mice with reduced NOS-3 have a dampened hypoxic ventilatory 16	
response and a depressed CB function (Kline et al., 2000). One explanation for this is an 17	
adaptation to chronic hypoxia brought about by reduced CB blood flow. However, this is 18	
unlikely as there is no significant type I cell hyperplasia/hypertrophy (McGregor et al., 1984; 19	
Tatsumi et al., 1991). Instead, the blunted CB activity could be due to the lack of NO acting on 20	
the CB mitochondria. Consideration of the precise compartmentalization of NO should also be 21	
taken into account. Whilst NO in the mitochondria induces chemostimulation, its action in other 22	
regions is likely to have opposing effects via modulation of soluble guanylate cyclase and L-23	
type Ca2+/BKCa channels (Summers et al., 1999; Iturriaga et al., 2000; Silva and Lewis, 2002; 24	
Valdes et al., 2003).  In addition, other diffusible cytosolic factors have been implicated in CB 25	
O2 sensing including H2S and CO (Peng et al., 2010; Yuan et al., 2015). Both of these gases are 26	
capable of inhibiting type I cell mitochondria (Wilson et al., 1994; Lahiri et al., 1999; Buckler, 27	
2011). Future experiments are required to evaluate if these substances act by setting type I cell 28	
mitochondrial O2 sensitivity. 29	
 30	
A second explanation for the low O2-affinity of the type I cell mitochondria is that it has a 31	
unique gene expression profile (Figure 2). Exploring gene expression in the CB is challenging 32	
due to its relatively small size and heterogeneity. However, advances in molecular biology 33	
techniques now make it possible to perform whole genome analysis using just micrograms of 34	
tissue or even single cells. RNA-sequencing analysis has now revealed a number of 35	
mitochondrial related genes that have a particularly high expression in the type I cell (Zhou et 36	
al., 2016). Of these Ndufa4l2 and Cox4i2 have been shown to be more highly expressed in the 37	
CB compared with tissue from the superior cervical ganglion (Gao et al., 2017). Whether these 38	
two genes contribute to the low mitochondrial O2 affinity remains to be determined but these 39	
findings do support the idea that CB mitochondria have a unique genetic signature encoding 40	
their mitochondrial complexes. We would expect many more genetic studies to probe this 41	
further until the type I cell mitochondria can be accurately modelled to pinpoint the structural 42	
conformation underlying its low O2 affinity. An interesting comparator may be the 43	
mitochondria isolated from guinea pig CB which does not appear to have any inherent O2 44	
sensitivity (Gonzalez-Obeso et al., 2017).  45	
 46	
7 Conclusion 47	
On current evidence, it is very hard to disprove the mitochondrial hypothesis of CB O2 sensing. 48	
The mitochondria seem to fulfil all five criteria that we have proposed for adequate O2-sensors. 49	
What is less clear is a mechanistic understanding of how the low O2 sensitivity of the CB 50	
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mitochondria is achieved and if mitochondria are involved in establishing pathological changes 1	
in CB function.  2	

 3	

  4	
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Figure Legends 1	
 2	
Figure 1: Carotid body mitochondrial signaling mechanisms activated during hypoxia. 3	
Hypoxia-induced mitochondrial inhibition is proposed to increase lactate generation (Chang et 4	
al., 2015), augment mitochondrial complex I reactive oxygen species (ROS) production 5	
(Fernandez-Aguera et al., 2015) or reduce mitochondrial ATP synthesis (Buckler and Turner, 6	
2013). These changes are proposed to directly or indirectly (e.g. via Olf78 receptor activation, 7	
reduced MgATP concentration or stimulation of AMP-activated protein kinase; AMPK) modify 8	
ion channel function leading to resting membrane potential (RMP) depolarization. This causes 9	
opening of L-type Ca2+ channels, neurosecretion and an increase in discharge frequency of the 10	
adjacent chemoafferent fibers. TRP- transient receptor potential channel; NSC- non-selective 11	
cation channel; BKCa- large conductance Ca2+-activated K+ channel; TASK-Twik-related acid-12	
sensitive K+ channel; TREK- TWIK-related K+ channel; AP-action potential.  13	
 14	
Figure 2: Potential mechanisms underlying the unique low O2 affinity mitochondria in the 15	
carotid body. Inhibition of mitochondrial function in the carotid body type I cell occurs at PO2 16	
values well above those that inhibit metabolism in other O2 insensitive cells. This activates a 17	
number of proposed signaling pathways (shown in blue). The unique low O2 affinity of the 18	
carotid body mitochondria could be due to 1. a unique mitochondrial gene expression profile or 19	
2. the presence of a competitive inhibitor such as NO (Holmes et al., 2016). The impact of 20	
lower mitochondrial O2 affinity is to cause a right-shift in the PO2-chemoafferent response 21	
curve, thereby enhancing the functional O2 sensitivity and allowing the carotid body to respond 22	
over a more physiological range of arterial PO2s. RET-reverse electron transport.  23	
 24	
 25	
 26	
 27	
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