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Abstract
Pond networks support high levels of biodiversity when compared to other freshwater ecosystems such as rivers, lakes and
streams. The persistence of species in these small, sometimes ephemeral, aquatic habitats depends on the dispersal of individuals
among ponds in the landscape. However, the number of ponds across the landscape is at a historical low as urbanisation and
intensified agricultural practices have led to a substantial loss of ponds (nodes in the pond network) over more than a century.
Here, we examine the extent and drivers of pond loss in a heavily urbanised landscape (Birmingham, UK) over 105 years and
determine how pond loss influences key structural properties of the pond network using graph theoretic approaches. Specifically,
we calculated minimum spanning trees (MST) and performed percolation analyses to determine changes in both the spatial
configuration and resilience of the pond network through time. Pond numbers declined by 82% between ca1904 and 2009, such
that pond density decreased from 7.1 km-2 to 1.3 km-2. The MST analyses revealed increased distance between
ponds in the network (i.e. edge length increased) by up to 49% over the 105-year period, indicating that ponds in
the modern landscape (2009) were considerably more isolated, with fewer neighbours. This study demonstrates that
graph theory has an excellent potential to inform the management of pond networks in order to support ecological
communities that are less vulnerable to environmental change.

Keywords Ponds . Fragmentation . Stepping stones . Resilience .Minimum spanning tree . Urban ecology

Introduction

Ponds are discrete aquatic habitats distributed across the terres-
trial landscape to form a naturally fragmented network, or

'pondscape' (Boothby 1999) and many pond-dwelling organ-
isms are effective dispersers that have the capacity to move long
distances between pond habitats in order to acquire resources,
avoid predators, competitors, and disturbance, and seek out con-
specifics (Fahrig 2007). As a consequence, local populations in
ponds become linked by the movement of individuals to form
metapopulations sustained across the wider pond network (e.g.
Jeffries 1994; Briers et al. 2004). Therefore, the ability of pond-
dwelling organisms to disperse among ponds is especially piv-
otal in promoting species persistence in a dynamic habitat net-
work (Gibbs 2000; Fortuna et al. 2006) in which individual
ponds are gained and/or lost through time via a range of natural
and anthropogenic processes (Jeffries 2012).

Land-use change such as urbanisation can limit the natural
processes that create ponds such as erosional processes or flood-
plain dynamics (Indermuehle et al. 2008; Williams et al. 1998b,
2010) and accelerate the destruction of natural ponds (Sukopp
1981) or those used formerly for agriculture or industrial pur-
poses (Wood and Barker 2000). This loss and destruction of
pond habitat is common to many countries across the world
(Fairchild et al. 2013; Hassall 2014). Across the United
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Kingdom (UK), 32% of ponds are estimated to have been lost
over 120 years between 1880 and 2000: a rate of 0.27% per year
(Biggs et al. 2005). Losses have occurred in both rural and urban
areas, however, the greatest loss (>80%) has been estimated for
urban areas such as London between 1870 and 1984 (Langton
1985) and the city of Cardiff (Rich 1998) or areas of intensive
agriculture (Beresford and Wade 1982). These major declines
are likely to mask a relatively high turnover of sites as ponds are
lost and gained over time (Williams et al. 1998a). Some evi-
dence has emerged to suggest that pond losses may have slowed
or reversed recently (Biggs et al. 2005; Williams et al. 2010),
potentially as pond creation has become imbedded within ame-
nity developments (Jeffries 2012), or as a result of conservation
action (e.g. the Million Ponds Project). Nevertheless, in many
regions the number of ponds in the modern landscape is still
likely to be the lowest in recorded history, with 80% of remain-
ing ponds in the UK existing in a degraded state (Williams et al.
2010) consistent with other wetland habitats (Defra 2011).

The loss of ponds can threaten the persistence of
metacommunities when distances between extant ponds begin
to exceed the dispersal abilities of the species they support.
Species populations that become isolated by pond loss are at a
greater risk of local extinction when faced with environmental
disturbances or pollution since they lack nearby habitats from
which to source recolonists (Tischendorf and Fahrig 2000;
Petersen and Masters 2004; Caquet et al. 2007). Within the
network, connectivity to large ponds is important as these often
support source populations (Van Geest et al. 2003; Sondergaard
et al. 2005; Hill et al. 2015) consistent with source-sink island
biogeography (MacArthur and Wilson 1967). Equally, connec-
tivity to small ponds is also important since these are more likely
to be fishless and serve as important reservoirs of aquatic inver-
tebrates, amphibians and macrophytes (Oertli et al. 2002;
Sondergaard et al. 2005; Scheffer et al. 2006). The overall spatial
configuration and topology of the pond network (locations and
distances between habitats) is thus a key consideration for fresh-
water biodiversity conservation (Biggs et al. 1994; Boothby
1997; Lundkvist et al. 2002; Jeffries 2005) and questions remain
as to how the loss of ponds affects the metacommunity
structure of the wider network. Through spatial analyses
such as graph theory (Harary 1969), it is possible to
determine the extent to which pond loss has fragmented
the pond network, threatening species metapopulations.

Graph theory has recently emerged as a powerful tool to
evaluate the connectivity of habitat networks and the move-
ments of wildlife and genes (Garroway et al. 2008), and here
we apply it to investigate the possible impacts of urbanisation
on pond networks. In graph theory, networks are distilled into
graphical form with nodes representing habitat patches, and
edges indicating the existence of functioning connections or
‘ecological flux’ between node populations (Urban et al.
2009). Traditional applications of graph theory in the field of
ecology have focused on modelling species networks, such as

food webs, plant-pollinator mutualistic relationships or host-
parasitoid webs (e.g. Proulx et al. 2005; Bascompte et al.
2006). To date, graph theory approaches have focussed on
terrestrial habitat networks (e.g. Laita et al. 2010;
Gurrutxaga et al. 2011; Decout et al. 2012) and application
to aquatic systems has been largely confined to riverscapes
(Erős et al. 2011; Segurado et al. 2013; Eros and Campbell
Grant 2015), with scant application to lentic systems
(Ishiyama et al. 2014).

Percolation theory, the science of clustering or clumping
in random networks (Stauffer 1987), can be used to comple-
ment graph theoretical analyses in order to identify impor-
tant network characteristics. Percolation analyses can eluci-
date network redundancy or robustness where, for example,
apparently redundant nodes provide alternative dispersal
pathways should any nodes be lost or impacted (Laita
et al. 2011). Transposed into analyses of landscape connec-
tivity, percolation theory is the quantitative analysis of con-
nectivity in spatially structured systems (With 2002).
Frequently, percolation analyses are undertaken to reflect
known dispersal ability of a focal organism or organisms
in order to gain an understanding of the relative connected-
ness of the network (O’Brien et al. 2006; Reunanen et al.
2012; Ishiyama et al. 2014).

Together, graph and percolation theory can be used to gain
a strategic oversight of a habitat network (Galpern et al. 2011)
and help identify areas of the network with high ecological
flux for management planning or policy formation (Fall et al.
2007; Stewart-Koster et al. 2015). For urban areas this could
yield better outcomes for nature conservation effort where
resources may be limited. Without consideration of the spatial
configuration of habitat there remains a risk that, notwith-
standing the potential but largely unknown influence of gar-
den ponds, as urban development continues pond networks
could become increasingly fragmented and less resilient to
multiple environmental stressors and climate change.

Ponds are a good candidate for graph theory analysis
(Moilanen 2011), being discrete habitats linked by dispersal
of aquatic biota (e.g. invertebrates), many of which live ex-
clusively within pond networks (Céréghino et al. 2007). In
this study, major changes in the structure and connectivity of
a pond network within Birmingham, a heavily urbanised re-
gion of the UK, were identified for a 105 year period (ca1904
– 2009). The structure of the pond network was assessed over
time by digitising ponds present on historical Ordnance
Survey mapping and the resilience of the network determined
by analysing changes in pond distribution, area and number in
relation to shifts in land-use. We tested three hypotheses:
1) that considerable pond loss would be observed over
the 105 year sequence, 2) pond losses would be strong-
ly associated with urbanisation, and 3) the structural
robustness of the Birmingham pond network would de-
cline as the number of ponds in the network decreased.
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Materials and methods

Study area

Birmingham (268 km2, 1.1M inhabitants) is located within the
Midlands region of the UK (Fig. 1). The area has a rich indus-
trial history of mining and manufacturing, however land-use
within contemporary Birmingham comprises mostly of built-
up areas and gardens (75% cover), improved grassland, in-
cluding public parks and gardens (12%), arable and horticul-
ture (8%), mixed, broadleaved or coniferous woodland (4%)
and other habitats (1%) (data derived from Land Cover Map
2007). Water bodies (<1% by area) found in the area include
rivers, streams and canals as well as lakes, reservoirs and
ponds. Ponds with surface area up to 2ha (Biggs et al.
1998), the focus here, are widely dispersed across the region
and range from small garden ponds, storm water basins, shal-
low, naturalised wetlands and ex- marl pits to concrete-lined
ornamental ponds within parks.

Pond digitisation

Data for historical analyses of the pond network in the
Birmingham administrative area were derived from three his-
torical map layers, accessed and downloaded in individual
1km2 raster tiles from EDINA Digimap and processed in
ArcGIS 9.3 (ESRI, Redlands, CA, USA). First, the County
Series 1st revision maps of Birmingham (Edina Historic

Digimap Service 2012a) were published 1903-1905 (hereafter
ca1904). Second, the National Grid overhaul and re-survey
(Edition A) (Edina Historic Digimap Service 2012b) were
published 1943-1995 (hereafter as ca1962). Both ca1904
and ca1962 were mapped at 1:2500 scale which enabled land-
scape features with an area of 16m2 or larger to be identified,
although smaller, isolated or significant features may also be
mapped (Oliver 2005). The third and most contemporary
dataset (2009) was derived from Ordnance Survey
MasterMap (EDINA Digimap Ordnance Survey Service
2009). A drawback of each of these mapping methods is that
the number of temporary and garden ponds are likely to be
underestimated (Jeffries 2012).

Ponds were drawn digitally as individual polygons using
ESRI’s ArcScan tool pack extension which permitted surface
area calculation. Where possible, curvilinear features without
OS map annotation were cross-checked against the other data
layers to elucidate pond presence (Thornhill 2013).

Land-use

Land use surrounding each pond was determined for each
time period by fitting to Land Cover Map 2007 (LCM2007;
Morton et al. 2011) Broad Habitat classifications and grouped
accordingly; Farmland (arable and horticulture), Grassland
(improved grassland, neutral grassland), Open/scrub (scrub),
Suburban and Urban (differentiated by the continuity of urban
component; Fuller et al. 2002), Woodland (broadleaved and

Fig. 1 The Birmingham city
administration area (study extent)
showing historical pond
locations, indicative land-use
(Land Cover Map 2007) and
United Kingdom context (inset)

Urban Ecosyst (2018) 21:213–225 215



coniferous woodland). For ca1904 and ca1962 this was
achieved by examining map annotations and symbols, and
for 2009 by extracting the land-use for each pond directly
from LCM2007 coverage data. Using the same method, sub-
sequent land-use was also recordedwhere ponds were lost (i.e.
not drawn) or created over time.

Graph analyses (minimum spanning trees)

Within a graph, edges are considered binary where nodes are
connected or not, or they can be quantitative based on proba-
bility of connection relative to the distance between them
(Dale and Fortin 2010). A path is an unbranched route across
a graph in which no node is revisited (Fig. 2a). Multiple con-
nected paths, provided that no closed circuits are created, re-
sult in a tree (Fig. 2b), and a tree that connects all nodes within
the graph is called a spanning tree. The minimum spanning
tree (MST) is the tree that accumulates the least cost (e.g.
distance) in connecting all nodes within a graph (Fig. 2c).
Urban and Keitt (2001) recommended that conservation ef-
forts should concentrate on the MST as it allows for dispersal
across the entire network. Whilst more complex aspects of
graph theory can be applied, the MST is likely to indicate
the key corridors for the movement and exchange of organ-
isms, or 'backbone' of connectivity (Bunn et al. 2000; Urban
and Keitt 2001; Fall et al. 2007) and can be weighted by edge
or node features such as surface area. In any graph, metrics
such as the betweenness centrality (BCk, Freeman 1977) can
also be calculated in order to identify the likely importance of
nodes as hubs of connectivity or stepping stones (Minor and
Urban 2007) for the wider network. For a full review of def-
initions and terms see (Urban et al. 2009; Kivelä et al. 2014).

MST metrics were calculated based on distance and pond
surface area for each historical pond network as determined by
Urban and Keitt (2001). First, a Euclidean distance matrix is
calculate for all ponds within the network. A probability ma-
trix is then constructed by applying a negative-exponential
decay function, within which the steepness of the distance to
probability of dispersal relationship is determined by a dis-
tance decay conversion factor (Loro et al. 2015). Finally in
this factor, a reference distance is used that has ecological
relevance (Ribeiro et al. 2011). Here, a distance of 1km was
selected, broadly consistent with knowledge of aquatic organ-
ism dispersal including insects (e.g. Conrad et al. 1999;
Angelibert and Giani 2003) and amphibians such as the newt
Triturus cristatus (Boothby 1999; Kupfer and Kneitz 2000).

Calculation of a flux-weighted MSTf is achieved with the
inclusion of relative patch size within the network where larg-
er nodes contribute a higher degree of flux based on the as-
sumption that they contribute larger and more stable popula-
tions (Erős et al. 2011; Segurado et al. 2013; Fig. 2d).
Minimum spanning trees were derived using the package
'igraph' (Csardi and Nepusz 2006) for R Statistical Software
(R Core Team 2017). The igraph package also allowed the
computation of a number of diagnostics including average
edge length, number of sub components (or clusters) and
betweeness centrality (BCk) (Freeman 1977). The value of
BCk for a given node is the number of shortest pathways
between all pairs of nodes in a graph that require it as a
stepping stone, which can also be expressed as a proportion
to allow for comparison under different scenarios where there
may be differing numbers of nodes (e.g. different historical
pond networks).

Percolation analysis

Percolation analyses were carried out in order to consider
connectivity across the pond network with respect to observed
dispersal abilities of a range of pond dwelling organisms (see
Supplementary material T1). Within percolation analysis, the
degree of connectivity in a habitat network can be assessed by
deriving an order parameter (e.g. the relative size of greatest
connected component (GCC) to the whole network) which
defines the transition from a connected system to a discon-
nected one (Kivelä et al. 2014). The distance at which the
GCC is no longer evident is called the percolation threshold
and represents a critical fraction of links that needs to be re-
moved to break the network into disconnected components
(Kivelä et al. 2014). In a pond network with a greater degree
of robustness where redundant nodes are abundant, the perco-
lation threshold will occur at a lower distance as the GCC is
preserved for longer. The proximity of the percolation thresh-
old to known dispersal abilities can therefore reveal informa-
tion about the relative accessibility of the network to a given

i

a b

c d

Fig. 2 Hypothetical graph arrangements within a pond network. Solid
circles indicate connected nodes (ponds) and lines indicate edges
(functional connections) where (a) is a path, (b) a tree, (c) a minimum
spanning tree (MST) and d) a flux-weighted MST which deviates from
the MST due to the increased surface area of node i, grey arrows indicate
the direction of net ecological flux
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organism. Percolation analyses were carried out using
EDENetworks (Kivelä et al. 2014).

Results

Pond habitat loss and turnover through time

Between ca1904 and 2009 there was an 82% decline in the
number of ponds across Birmingham (Table 1), reflecting a
net loss of 1573 ponds. Most (73%) ponds were lost between
ca1904 and ca1962 reflecting an average loss of 15 ponds per
year. Pond density declined from 7.1 km-2 in ca1904 to 2.0
km-2 by ca1962 and to 1.3 km-2 in 2009. Over time, the mean
surface area of ponds increased (by 204%) as many small
waterbodies were lost and larger ones retained (Table 2).
This shift was statistically significant early in the sequence
(1904 and ca1962, Mann-Whitney, P < 0.05), but not later
(ca1962 and 2009, Mann-Whitney, P = 0.12). The total area
of all habitat within the Birmingham pond network declined
by 46% between ca1904 and 2009, although the retention of
larger ponds offset the rapid loss of individual sites. As a
proportion of the entire Birmingham administrative area, pond
coverage was 0.36% in ca1904, 0.22% in ca1962 and 0.20%
in 2009.

Changes in the total number of ponds masks a considerable
amount of turnover within the pond stock over time (Table 3).
Half (50.1%, 171 sites) of the ponds reviewed in 2009 were
over 105 years old (present at ca1904 census) and half
(49.9%, 170) were younger, created and not subsequently lost
between ca1904 and ca1962 (17%, 58 sites) or between
ca1962 and 2009 (32.3%, 112). The 171 ponds that persisted
throughout the study represented just 8.9% of the number that
were present in ca1904. Whilst overall mean surface
area of ponds increased, the mean surface area of ponds
that were present throughout the study period decreased
over time from 2413m2 (ca1904) to 1935m2 (ca1962) to
1919m2 (2009) which represents an overall 21.5% de-
crease in average surface area.

Many ponds were originally associated with farmland,
however, the number of such ponds decreased rapidly from
71% of total pond numbers in ca1904 to just 15% by 2009
(Table 4). Much pond loss was attributable to suburban ex-
pansion, which was the land-use identified to have replaced
lost ponds in 875 (3.26 /km2) and 106 (0.40 /km2) cases be-
tween ca1904 and ca1962, and ca1962 and 2009 respectively
(Table 3). Net losses within farmland were the second highest.
The number of ponds associated with, or enveloped by, sub-
urban areas and areas of grassland (including public parkland
and golf courses) increased by 2009 to account for a total of
57% of those present, from just 8% in ca1904. The number of
ponds associated with urban / industrial land-use was consis-
tently low, at no point accounting for more than 8.5% (0.11

/km2) of ponds present. Though suffering an overall loss in
numbers, the number of ponds associated with woodlands
relative to all those within the network consistently increased
through time from 9.6% (ca1904) to 17.6% (2009).

In total, 2195 geographically distinct ponds were present at
any one time throughout the 105 year study period. A total of
283 were created and 1856 lost (Table 3). The study revealed
the origins and use of a subset (334 ponds, 15%) of
Birmingham's ponds. Most, often small (mean surface area
493m2), were built for purposes of landscaping (101 ponds,
30%) as either ornamental features (67 ponds) or moats (39
ponds). The minerals industry was the second most frequent
contributor (81 ponds, 24%), of which just over half were as a
result of brickworks (42 ponds, 52%). The third most impor-
tant use was for recreational purposes, predominately for fish-
ing, accounting for 18% (60 ponds) whilst other industrial
uses (e.g. disused reservoirs, sludge lagoons, mill ponds) com-
prised a further 16%. Ponds created as a result of other indus-
trial uses or for recreational purposes (e.g. fishing) were typ-
ically large relative to this audit (mean surface area 4129m2).
Very few ponds (20, 6%) appeared to be created through nat-
ural processes; the majority (84%) of the subset were thus
artificial, having been created to support human activities al-
though it was not possible to ascertain the origins of 87% of
ponds that were already present in ca1904.

Pond network resilience through time

Changes in the pond network were characterized by a 49%
increase in MSTf mean edge length from 462m to 687m,
meaning that ponds within the 2009 network were consider-
ably more isolated with fewer neighbours. Mean central-
ity values (BCk, normalised for each time period)
showed an increase of 210%, suggesting that biodiver-
sity movement across the network was increasingly re-
liant upon fewer ponds (Table 2).

In the ca1904 and ca1962 landscapes the MSTf routed
outside of the central area of Birmingham through areas of
higher pond density to the south and to the east (Fig. 3b, c).
In ca1904, three distinct patches of high pond density were
apparent in the northeast, east and south of Birmingham cen-
tre. However, the numbers of ponds in these areas were much
diminished by 2009 (Fig. 3a) where up to 30 ponds km-2 were
lost between ca1904 and ca1962. Although much
overshadowed by the impact of urban expansion affecting
the wider pond network, several new ponds have been created
as part of modern developments since ca1962 that marginally
improve pond density within some central areas of
Birmingham. Due to the loss of ponds to the south and east
in particular, and a slight gain in the city centre, the 2009
MSTf re-routes through the central area (Fig. 3a).

Analysis of the distribution of centrality values across dif-
ferent size classes of pond within the MSTf demonstrated
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decreasing levels of redundancy in the pond network through
time (Fig. 4). Across the ca1904 network the largest ponds
(>5000m2) are also the most central typically with BCk values
of approximately 0.5. Since ca1904 however, despite the

retention of larger ponds, they are much less central (lower
BCk values) indicating an inadequate network of stepping
stones to allow the MSTf to route through habitats more likely
to provide source populations.

Table 1 International comparison of pond loss (adapted from Wood et al. 2003; Globevnik and Kirn 2009; Fairchild et al. 2013; Hassall 2014)

Region Country(s) Period Total loss
(%)

Annual loss
(%)

Land-use Source

Bedfordshire England 1910 – 1981 82 1.15 Intensive arable Beresford and Wade (1982)

Birmingham England 1904 – 2009 82 0.78 Urban This study

Cambridgeshire England 1840/90 – 1990 < 68 < 0.68 Intensive arable Jeffries and Mills (1990)

Cardiff City Wales 1880/86 – 1997 < 80 < 0.72 Urban Rich (1998)

Cardiff County Wales 1951/61 – 1997 < + 54 < + 1.5 Rural Rich (1998)

Cheshire England 1870 – 1993 61 0.50 Rural and urban Boothby and Hull (1997)

Clywd Wales 1840/90 – 1990 < 32 < 0.32 Arable and pasture Jeffries and Mills (1990)

Durham England 1840/90 – 1990 < 41 < 0.41 Arable and pasture Jeffries and Mills (1990)

Edinburgh Scotland 1840/90 – 1990 < 6 < 0.06 Urban Jeffries and Mills (1990)

Essex
(selected areas)

England 1870 – 1989 < 69 < 0.58 Mixed Heath and Whitehead (1992)

Huddersfield England 1985 – 1997 31 2.60 Urban/ industrial Wood et al. (2003)

Huntingdonshire England 1890 – 1980 56 0.68 Mixed Beresford and Wade (1982)

Leicestershire England 1840/90 – 1990 < 60 < 0.60 Intensive arable Jeffries and Mills (1990)

London region England 1870 – 1984 > 90 0.79 Mixed Langton (1985)

Midlothian Scotland 1840/90 – 1990 < 23 < 0.23 Arable and pasture Jeffries and Mills (1990)

North Leicestershire England 1934 – 1979 60 1.33 Mostly pasture Beresford and Wade (1982)

SE Northumberland England 1846/69 –
2005/2008

< + 15.8 < + 0.12 Mixed Jeffries (2012)

Sussex England 1977 – 1996 21 1.10 Pasture (dewponds) Beebee (1997)

N Rhine Westphalia Germany 1963 – 1986 > 40 > 1.7 Mixed Glindt (1993)

South Berlin Germany 1880 – 1980 81 0.8 Forest Sukopp (1981)

Barnim NEGermany 1839 – 1989 33.3 0.13 Agricultural Schneeweiss and Beckmann
(1999)

Wielopolska Poland 1890 – 1941 56 1.1 Agricultural Ryszkowshi and Balazy (1995)

Pomerania Poland 1888 – 1980 < 70.2 < 0.76 Agricultural Pieńkowski (2003)
Rio Grande do Sul Brazil 1905 – 2005 90 0.9 Wetlands, rice-fields Guadagnin et al. (2005)

Chianti Hills Italy
(Tuscany)

1939 – 1999 35 0.58 Vineyards Scoccianti (1999)

Orbotello
lagoon area

Italy
(Tuscany)

1939 – 1999 12.5 0.21 Coastal, shrub Scoccianti (1999)

Trieste Italy /
Slovenia

1979 – 1998 70 3.7 Karstic plateau
wetlands

Bressi and Stoch (1998)

Žumberak-Samoborsko
Gorje

NW Croatia 1935 – 2005 51.8 0.74 Nature reserve Hutinec and Struna (2007)

SE Pennsylvania
and N Delaware
(Brandywine)

United States 1883 – 1936 - 2.70* Piedmont Fairchild et al. (2013)

United States 1946 – 2005 - 0.16* Piedmont Fairchild et al. (2013)

Sweden 1914 – 1970 55 1.0 Mixed Bjureke et al. (1976)

Netherlands 1900 – 1989 90 1.0 Mixed Weinreich and Musters (1994)

England and Wales 1880 – 1920 57.5 1.41 Mixed Rackham (1986)

United Kingdom 1990 – 1996 7.4 1.23 Mixed (lowland
ponds)

Williams et al. (1998a)

United Kingdom 1900 – 1990 75 0.78 Mixed Bailey-Watts et al. (2000)

United Kingdom 1998 – 2007 + 12.5 + 1.4 Mixed Williams et al. (2010)

*Based on exponential decay function
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In the ca1904 network, more nodes are retained within
Greatest Connected Component (GCC) as the distance thresh-
old is decreased resulting in a percolation threshold of 811m
(Fig. 5). However, as ponds are lost over time, the percolation
threshold increased to 1559m by ca1962 to 2361m by 2009
(Table 2). If a dispersal threshold of 1km was applied to the
networks, most (92.4%) of ponds would comprise the GCC in
the ca1904 pondscape whilst it would only be comprised of
148 (28.2%) and 63 (18.5%) ponds by ca1962 and 2009 net-
works respectively. Similarly, the total number of sub-
components created by applying a 1km threshold proportion-
ally increases over time, thus in ca1904, 42 sub-components
were created from a possible 1914 (0.4%), whilst in ca1962
and 2009 33 (6.3%) and 7 (12.3%) sub components were
created respectively (Fig. 6).

Discussion

This study aimed to assess how Birmingham's network of
pond habitats has altered in response to increasing

urbanisation over a 105 year period and consider changes
in network robustness and implications for biodiversity.
A rate of pond loss in Birmingham between ca1904 and
2009 of 0.78% per annum is comparable to that of
London (0.79%) between 1870 and 1984 (Table 1), and
an 82% total loss in total pond numbers between ca1904
and 2009 ranks Birmingham second highest in the UK
(accept hypothesis one), behind urban London and com-
parable to losses in Bedfordshire's intensively agricultur-
al landscape (Beresford and Wade 1982). Whilst there
are few records of ponds loss outside of the UK, losses
in Birmingham appear greater than nationwide losses ob-
served in Sweden (Bjureke et al. 1976) and comparable
to those in the Netherlands (Weinreich and Musters
1994). Since ca1962, the rate of annual pond loss has
declined to 0.1%, consistent with the nationwide disap-
pearance of ponds reported by Biggs et al. (2005).
Therefore, pond-dwelling organisms within Birmingham
are likely to rely upon fewer ponds, potentially rendering
their metacommunities less resilient to stochastic events
such as pollution or deterministic changes such as global

Table 2 Birmingham pond
network general and minimum
spanning tree (MSTf) summary
statistics

Measure ca1904 ca1962 2009

Number of ponds 1914 524 341

Pond density (km-2) 7.14 1.95 1.27

Mean surface area (m2 ±1SE)† 508 (± 38.6)a 1126 (± 120.1)b 1537 (± 176.4)b

Total habitat area (ha) 97.3 59.0 52.4

Ponds created* - 171 112

Original ponds** - 353 171

MSTf mean betweeness (BCk ±1SE) 0.020 (± 0.002) 0.056 (± 0.006) 0.062 (± 0.007)

Average MSTf edge length (m) 462 443 687

Percolation threshold (m) 811 1559 2361

†Lettering denotes significant differences (Mann-Whitney, P <0.05)
* Created since last mapping series and may be subsequently lost
** Present throughout 105 year study period

Table 3 Number of ponds (/km2)
lost and created within different
land-uses across the Birmingham
pond network. Percentiles, in
parenthesis, reflect total numbers
lost or created by the latter
mapping sequence

ca1904 to ca1962 ca1962 to 2009

Land-use Lost Created Net Lost Created Net

Farmland 0.86 (14.7%) 0.13 (19.9%) -0.73 0.23 (21.0%) 0.07 (16.1%) -0.16

Combined* 0.03 (0.6%) 0.00 (0.0%) -0.03 0.00 (0.0%) 0.00 (0.0%) 0.00

Grassland 0.43 (6.9%) 0.10 (15.2%) -0.31 0.16 (14.6%) 0.06 (15.2%) -0.10

Open / scrub 0.28 (4.8%) 0.12 (18.7%) -0.16 0.01 (0.3%) 0.01 (3.6%) +0.01

Suburban 3.43 (58.9%) 0.16 (25.7%) -3.26 0.52 (47.5%) 0.13 (30.4%) -0.40

Urban 0.50 (8.6%) 0.06 (9.9%) -0.44 0.10 (9.2%) 0.07 (17.9%) -0.03

Woodland 0.29 (4.9%) 0.06 (9.4%) -0.23 0.08 (0.7%) 0.07 (17.0%) -0.01

Unknown 0.03 (0.6%) 0.01 (1.2%) -0.03 0.00 (0.0%) 0.00 (0.0%) 0.00

Total -5.83 +0.64 -5.19 -1.10 +0.42 -0.68

*Combined with or split from another pond or other wetland habitat e.g. river / lake
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climate change. Ponds that have remained throughout the
study (171 ponds) have a notably reduced surface area,
which may suggest the occurrence of natural succession-
al processes e.g. vegetation encroachment, or develop-
ment pressures.

Pond resource turnover, loss and creation

As reported by a number of other authors (Williams et al.
1998a; Jeffries 2012), the raw numbers mask a high turnover
in pond resource. The turnover in stock is clearly linked to
land-use change and strongly driven by the process of urban-
isation (accept hypothesis two) not dissimilar to the impact of
coastal urbanisation upon an estuarine wetland network (Dou
and Cui 2014). Here however, former farmland field ponds
were either lost to, or enveloped by, suburban development as
others (few by comparison) were built as part of those devel-
opments. These findings accord with several studies of

Fig. 3 Flux weighted minimum spanning trees for the Birmingham pond
network for (a) ca1904, (b) ca1962 and (c) 2009. Nodes represent ponds,
larger nodes indicate higher BCk relative to the network. Lines represent
edges. Grey circles represent the location of the contemporary
Birmingham city centre

Table 4 Land-use associated with pond presence through time within
the Birmingham pondscape

Land-use ca1904 ca1962 2009

Farmland 5.09 (71.3%) 0.62 (31.9%) 0.19 (14.7%)

Grassland 0.37 (5.1%) 0.34 (17.2%) 0.31 (24.6%)

Open / scrub 0.52 (7.3%) 0.26 (13.2%) 0.02 (1.8%)

Suburban 0.21 (2.9%) 0.28 (14.3%) 0.42 (32.8%)

Urban 0.24 (3.3%) 0.15 (7.8%) 0.11 (8.5%)

Woodland 0.68 (9.6%) 0.30 (15.3%) 0.22 (17.6%)

Unknown 0.04 (0.6%) 0.01 (0.4%) 0.00 (0.0%)

Total ponds present 1914 524 341
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Birmingham's demography and changing landscape, where
the population of Birmingham has increased from approxi-
mately 500,000 in 1900 to 1M by the early 2000s (Haynes
2008; University of Portsmouth 2017), which coincided with
the expansion of Birmingham city centre throughout the 20th
century as villages and hamlets coalesced into suburbs
through industrial and residential development on former ag-
ricultural land (Axinte 2015).

The vast majority of ponds lost within Birmingham were
probably artificial in nature, however in a highly altered land-
scape they are likely to act as surrogates for natural habitats
and studies have shown artificial ponds to have high conser-
vation value (Vermonden et al. 2009; Hill et al. 2017;
Thornhill et al. 2017). Nevertheless, it is apparent that many
ponds are more isolated from their neighbouring habitats and
there is a large body of evidence in the published literature that
this degeneration of the pond network with less connected
nodes has large implications for local and regional biodiver-
sity (e.g. Table 1).

A recent reduction in the rate of pond loss within
Birmingham may be due to the retention of larger ponds,
which are frequently located in public green spaces or used
for recreation (e.g. boating and fishing). Such cultural land-
marksmay receive protection through local authority planning
policies or legislation. Applying conventional island biogeog-
raphy (MacArthur and Wilson 1967), the retention of high
quality larger ponds could help to preserve some of the
network's source populations and reduce the overall impact
of pond loss. However, a number of studies have also shown
that a cluster of small ponds are key contributors to regional
invertebrate biodiversity (Wood et al. 2001; Scheffer et al.
2006; Boix et al. 2012). Reasons for this are complex, how-
ever it may be due to an increased fish and waterfowl presence
in larger ponds resulting in the exclusion of some invertebrate
species and reduction in vegetation complexity (Oertli et al.

2002; Sondergaard et al. 2005; Schilling et al. 2009) or to an
increase in the number of habitat niches available across sev-
eral small ponds (Williams et al. 2004). Nevertheless, the po-
tential ecological value in retaining larger ponds for biodiver-
sity may be compromised in Birmingham due to the loss of
smaller stepping stone habitats that would otherwise connect
larger ponds to the network by facilitating species dispersal.

Possible implications for the biota

As a result of pond loss, the 2009 percolation threshold
(2.36km) suggests that for many aquatic biota the
Birmingham pond network is comprised of a series of sub-
components, the number of which can be inferred through
statistical thresholding (Fig. 6). A percolation threshold of
811m and average MSTf edge length of 462m indicated that
more frequent exchange of biota between ponds was likely in
the ca1904 pond network, which would have historically
allowed more rapid recovery of local populations from sto-
chastic events. For invertebrates, the exception may be a small
percentile of species populations which make long distance
movements (Conrad et al. 1999) which may be sufficient to
maintain genetic diversity (Lowe and Allendorf 2010) but not
population recovery.

The majority of macroinvertebrate dispersal studies have
focused on Odonates, though nearly all suggest that dispersal,
particularly of Zygopterans, beyond 1km is rare and due to
high levels of philopatry the majority of movements are
constrained to less than 100m (Rouquette and Thompson
2007; Supplementary Material Table T1). Though potentially
less severe due to stronger dispersal tendencies, the scenario is
likely to be similar for some Hemipterans (Briers 1998) and
Diptera (Service 1997). Less clear is the impact that pond loss
is likely to have had on non-winged (i.e. passive) invertebrate
dispersal (e.g. Gastropods and leeches (Hirudinea)) which are
largely incapable of self-dispersal between habitats and rely
on vectors (Bilton et al. 2001).

Analysis of the spatial configuration of pond networks
alone suggests that the majority of the 2009 Birmingham pond
network has too few ponds that are typically too far apart to
sustain populations of the European protected amphibian,
Triturus cristatus. T. cristatus is generally considered to dis-
perse up to 250m (Langton et al. 2001), with few studies
reporting movements up to 1km (Kupfer and Kneitz 2000)
and optimum pond density for a T. cristatus metapopulation
is considered to be 4km-2 (Oldham et al. 2000), which is
seldom achieved by 2009 in this study (mean pond density
1.3km-2). These findings may substantiate the suggestion that
T. cristatus populations across Birmingham are generally
thought to have experienced a decline, though limited data
exist (The Wildlife Trust 2000).

Although the overall robustness of the Birmingham pond
network has clearly declined with probable implications for
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many pond-dwelling organisms, further study is required to
understand the relative significance of impacts to biota with
different dispersal modes and strengths (partially accept hy-
pothesis 3). In addition, this analysis does not represent prob-
able losses in temporary ponds (Jeffries 2012) and or the oc-
currence small garden ponds which are estimated to be present
within 10% of UK gardens (Davies et al. 2009). However,
whilst valuable as temporary refuges the biodiversity support-
ed by garden ponds has been shown to be a nested subset of
field ponds (Hill and Wood 2014) and potentially unlikely to
offset their loss.

Future directions

The present study provides the first application of graph the-
ory to a pond network. However, research in three areas would
improve the ecological grounding of such spatial models.
First, dispersal across the urban landscape is highly unlikely
to be uniform as it is comprised of many obstacles such as
roads (Parris 2006) and artificial lighting (Bilton et al. 2001;
Smith et al. 2009). Small aquatic invertebrates in particular are
difficult to track and efforts have focused primarily on rare
species (e.g. Purse et al. 2003; Hassall and Thompson 2012).
Second, within habitat quality could not be assessed, yet na-
tional studies have identified a decline in the quality of ponds
(Williams et al. 2010), which could suggest that many includ-
ed here may not be suitable for colonisation for pollution
sensitive taxa. To this end, public participation in data gener-
ation (i.e. citizen science; Thornhill et al. 2016) and improve-
ments in remote-sensing (Palmer et al. 2015) are promising
avenues. Thirdly, we used a 1km threshold as a broad average
of the dispersal ability of the community, however, a more in
depth analysis could apply shorter and longer thresholds to
better represent the varied abilities of the ecological commu-
nity to disperse (Galpern et al. 2011), whilst being careful not
carry out analysis without sufficient evidence base (Moilanen
2011); thus referring back to point one above.

Conclusion

The identification of the backbone of an urban pond network
by using graph theory and the concept of minimum spanning
trees (MSTs) is the beginning of a landscape-scale strategy for
the conservation of pond fauna and flora rather than traditional
single site management. An extended analysis should be car-
ried out to include the wider pond network such that study
boundaries are reflective of natural boundaries. However, this
study highlights important clusters and pathways within the
current pond stock as well as evidence of a need to improve
the networks spatial resilience.

This study finds that ponds have become increasingly
scarce in the urban landscape over more than 100 years as

they are lost to the process of urbanisation. The loss of ponds
since ca1904 is considerable, but the rate of pond loss has
slowed in recent times. This may be reflective of the types
of ponds which are being retained as they are often in the
public eye and form part of amenity parkland.

The manner in which this study has been carried out is
stepwise and intuitive and can be undertaken with widely
available software such that it may be readily repeated across
regions and adapted for other landscapes. Landscape man-
agers should ensure that the ponds that remain are of good
quality and could use the analytical approach presented here to
strategically create ponds in order to reduce the vulner-
ability of the pond network to further habitat loss.
However, opportunities remain to further refine the ap-
proach by incorporating inter-habitat resistance to dis-
persal due to unfavourable land-use.

Acknowledgements This work was supported by a studentship awarded
by Natural Environment Research Council (NERC) and received CASE
Studentship support from the Macauley Land-use Research (now The
James Hutton Institute). Thanks also go to two anonymous reviewers
for their helpful suggestions during the refinement of this manuscript.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a link
to the Creative Commons license, and indicate if changes were made.

References

Angelibert S, Giani N (2003) Dispersal characteristics of three odonate
species in a patchy habitat. Ecography 1:13–20

Axinte A (2015) Birmingham Historic Landscape Characterisation
(HLC).

Bailey-Watts T, Lyle A, Battarbee R et al (2000) Lakes and ponds. In:
Acreman M (ed) The hydrology of the UK: a study of change.
Routledge, London, pp 180–203

Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary
networks facilitate biodiversity maintenance. Science 312:431–433.
https://doi.org/10.1126/science.1123412

Beebee TJC (1997) Changes in dewpond numbers and amphibian diver-
sity over 20 years on chalk downland in Sussex, England. Biol
Conserv 81:215–219. https://doi.org/10.1016/S0006-3207(97)
00002-5

Beresford JE, Wade PM (1982) Field ponds in North Leicestershire: their
characteristics, aquatic flora and decline. Trans Leicester Lit Philos
Soc 76:25–34

Biggs J, Corfield A, Walker D (1994) New approaches to the manage-
ment of ponds. Br Wildl 5:273–287

Biggs J, Fox G, Nicolet P, et al (1998) A guide to the methods of the
National Pond Survey.

Biggs J, Williams P, Whitfield M et al (2005) 15 Years of pond assess-
ment in Britain: Results and lessons learned from the work of Pond
Conservation. Aquat Conserv Mar Freshw Ecosyst 15:693–714.
https://doi.org/10.1002/aqc.745

Bilton DT, Freeland JR, Okamura B (2001) Dispersal in freshwater in-
vertebrates. Annu Rev Ecol Syst 32:159–181

222 Urban Ecosyst (2018) 21:213–225

https://doi.org/10.1126/science.1123412
https://doi.org/10.1016/S0006-3207(97)00002-5
https://doi.org/10.1016/S0006-3207(97)00002-5
https://doi.org/10.1002/aqc.745


Bjureke K, Dahlgren U, Fronaeus M et al (1976) Margel I Lundabygden.
Lund, Sweden

Boix D, Biggs J, Céréghino R et al (2012) Pond research and manage-
ment in Europe: BSmall is Beautiful.^. Hydrobiologia 689:1–9.
https://doi.org/10.1007/s10750-012-1015-2

Boothby J (1997) Pond conservation: Towards a delineation of
pondscape. Aquat Cons Mar Freshw Ecosyst 7:127–132

Boothby J (1999) Framing a strategy for pond landscape conservation:
aims, objectives and issues. Landsc Res 24:67–83. https://doi.org/
10.1080/01426399908706551

Boothby J, Hull AP (1997) A census of ponds in Cheshire. North West
England. 7:75–79

Bressi N, Stoch F (1998) Karstic ponds and pools: history, biodiversity
and conservation. In: Ponds and pond landscapes of Europe.
Proceedings of the International Conference of the Pond Life
Project. Maastricht, The Netherlands,

Briers RA (1998) Metapopulation ecology of Notonecta in small ponds.
University of Sheffield

Briers RA, Gee JHR, Cariss HM, Geoghegan R (2004) Inter-population
dispersal by adult stoneflies detected by stable isotope enrichment.
Freshw Biol 49:425–431. https://doi.org/10.1111/j.1365-2427.
2004.01198.x

Bunn AG, Urban DL, Keitt TH (2000) Landscape connectivity: a con-
servation application of graph theory. J Environ Manage 59:265–
278

Caquet T, Hanson ML, Roucaute M et al (2007) Influence of isolation on
the recovery of pond mesocosms from the application of an insecti-
cide. II. Benthic macroinvertebrate responses. Environ Toxicol
Chem 26:1280–1290

Céréghino R, Biggs J, Oertli B, Declerck S (2007) The ecology of
European ponds: defining the characteristics of a neglected freshwa-
ter habitat. Hydrobiologia 597:1–6. https://doi.org/10.1007/s10750-
007-9225-8

Conrad KF, Willson KH, Harvey IF et al (1999) Dispersal characteristics
of seven odonate species in an agricultural landscape. Ecography
(Cop) 22:524–531. https://doi.org/10.1111/j.1600-0587.1999.
tb00541.x

Csardi G, Nepusz T (2006) The igraph software package for complex
network research. InterJournal Complex Sy:1695.

Dale MRT, Fortin M-J (2010) From Graphs to Spatial Graphs. Annu Rev
Ecol Evol Syst 41:21–38. https://doi.org/10.1146/annurev-ecolsys-
102209-144718

Davies ZG, Fuller RA, LoramA et al (2009) A national scale inventory of
resource provision for biodiversity within domestic gardens. Biol
Conserv 142:761–771. https://doi.org/10.1016/j.biocon.2008.12.
016

Decout S, Manel S, Miaud C, Luque S (2012) Integrative approach for
landscape-based graph connectivity analysis: a case study with the
common frog (Rana temporaria) in human-dominated landscapes.
Landsc Ecol 27:267–279. https://doi.org/10.1007/s10980-011-
9694-z

Defra (2011) Water for Life. Department for Environment and Rural
Affairs, London

Dou P, Cui B (2014) Dynamics and integrity of wetland network in
estuary. Ecol Inform 24:1–10. https://doi.org/10.1016/j.ecoinf.
2014.06.002

EDINA Digimap Ordnance Survey Service (2009) OS MasterMap
Topography Layer [GML geospatial data], Coverage:
Birmingham, Updated Jan 2009. Ordnance Survey, GB

Edina Historic Digimap Service (2012a) Birmingham, Sandwell, Walsall,
Wolverhampton and Dudley areas. Scale 1:2,500. Ordnance Survey
County Series 1st Revision [TIFF geospatial data] Published 1902-
1905. Landmark Information Group, UK

Edina Historic Digimap Service (2012b) Birmingham, Sandwell,Walsall,
Wolverhampton and Dudley areas. Scale 1:2,500. National Grid

Series overhaul and resurvey (Edition A) [TIFF geospatial data]
Published 1933-1977. Landmark Information Group, UK

Eros T, Campbell Grant EH (2015) Unifying research on the fragmenta-
tion of terrestrial and aquatic habitats: patches, connectivity and the
matrix in riverscapes. Freshw Biol 60:1487–1501. https://doi.org/
10.1111/fwb.12596

Erős T, Olden JD, Schick RS et al (2011) Characterizing connectivity
relationships in freshwaters using patch-based graphs. Landsc Ecol
27:303–317. https://doi.org/10.1007/s10980-011-9659-2

Fahrig L (2007) Non-optimal animal movement in human-altered land-
scapes. Funct Ecol 21:1003–1015. https://doi.org/10.1111/j.1365-
2435.2007.01326.x

Fairchild GW, Robinson C, Brainard AS, Coutu GW (2013) Historical
Changes in the Distribution andAbundance of Constructed Ponds in
Response to Changing Population Density and Land Use. Landsc
Res 38:593–606. https://doi.org/10.1080/01426397.2012.672640

Fall A, Fortin MJ, Manseau M, O’Brien D (2007) Spatial graphs:
Principles and applications for habitat connectivity. Ecosystems
10:448–461. https://doi.org/10.1007/s10021-007-9038-7

Fortuna MA, Gómez-Rodríguez C, Bascompte J (2006) Spatial network
structure and amphibian persistence in stochastic environments.
Proc Biol Sci 273:1429–1434. https://doi.org/10.1098/rspb.2005.
3448

Freeman L (1977) A set of measures of centrality based on betweenness.
Sociometry 40:35–41

Fuller RM, Smith GM, Sanderson JM, et al (2002) Countryside Survey
2000 Module 7 Land Cover Map 2000. Dorchester

Galpern P, Manseau M, Fall A (2011) Patch-based graphs of landscape
connectivity: A guide to construction, analysis and application for
conservation. Biol Conserv 144:44–55. https://doi.org/10.1016/j.
biocon.2010.09.002

Garroway CJ, Bowman J, Carr D, Wilson PJ (2008) Applications of
graph theory to landscape genetics. Evol Appl 1:620–630. https://
doi.org/10.1111/j.1752-4571.2008.00047.x

Gibbs JP (2000) Wetland Loss and Biodiversity Conservation. Conserv
Biol 14:314–317. https://doi.org/10.1046/j.1523-1739.2000.98608.
x

Glindt D (1993) Situation, plege unt Neuanlage kleiner Stillgewasser im
Flachland Norwestdeutschlands. Metelen, Germany

Globevnik L, Kirn T (2009) Small water bodies - Assessment of status
and threats of standing small water bodies.

Guadagnin DL, Peter ÂS, Perello LFC, Maltchik L (2005) Spatial and
Temporal Patterns of Waterbird Assemblages in Fragmented
Wetlands of Southern Brazil. Waterbirds 28:261–272. https://doi.
org/10.1675/1524-4695(2005)028[0261:SATPOW]2.0.CO;2

Gurrutxaga M, Rubio L, Saura S (2011) Key connectors in protected
forest area networks and the impact of highways: A transnational
case study from the Cantabrian Range to the Western Alps (SW
Europe). Landsc Urban Plan 101:310–320. https://doi.org/10.1016/
j.landurbplan.2011.02.036

Harary F (1969) Graph theory. Addison-Wesley, Reading
Hassall C (2014) The ecology and biodiversity of urban ponds. Wiley

Interdiscip Rev Water 1:187–206. https://doi.org/10.1002/wat2.
1014

Hassall C, Thompson DJDJ (2012) Study design and mark-recapture
estimates of dispersal: A case study with the endangered damselfly
Coenagrion mercuriale. J Insect Conserv 16:111–120. https://doi.
org/10.1007/s10841-011-9399-2

Haynes M (2008) The Evolution of the Economy of the West Midlands
1700-2007. Wolverhampton

Heath DJ,Whitehead A (1992)A survey of pond loss in Essex, south-east
England.

Hill MJ, Biggs J, Thornhill I et al (2017) Urban ponds as an aquatic
biodiversity resource in modified landscapes. Glob Chang Biol.
https://doi.org/10.1111/gcb.13401

Urban Ecosyst (2018) 21:213–225 223

https://doi.org/10.1007/s10750-012-1015-2
https://doi.org/10.1080/01426399908706551
https://doi.org/10.1080/01426399908706551
https://doi.org/10.1111/j.1365-2427.2004.01198.x
https://doi.org/10.1111/j.1365-2427.2004.01198.x
https://doi.org/10.1007/s10750-007-9225-8
https://doi.org/10.1007/s10750-007-9225-8
https://doi.org/10.1111/j.1600-0587.1999.tb00541.x
https://doi.org/10.1111/j.1600-0587.1999.tb00541.x
https://doi.org/10.1146/annurev-ecolsys-102209-144718
https://doi.org/10.1146/annurev-ecolsys-102209-144718
https://doi.org/10.1016/j.biocon.2008.12.016
https://doi.org/10.1016/j.biocon.2008.12.016
https://doi.org/10.1007/s10980-011-9694-z
https://doi.org/10.1007/s10980-011-9694-z
https://doi.org/10.1016/j.ecoinf.2014.06.002
https://doi.org/10.1016/j.ecoinf.2014.06.002
https://doi.org/10.1111/fwb.12596
https://doi.org/10.1111/fwb.12596
https://doi.org/10.1007/s10980-011-9659-2
https://doi.org/10.1111/j.1365-2435.2007.01326.x
https://doi.org/10.1111/j.1365-2435.2007.01326.x
https://doi.org/10.1080/01426397.2012.672640
https://doi.org/10.1007/s10021-007-9038-7
https://doi.org/10.1098/rspb.2005.3448
https://doi.org/10.1098/rspb.2005.3448
https://doi.org/10.1016/j.biocon.2010.09.002
https://doi.org/10.1016/j.biocon.2010.09.002
https://doi.org/10.1111/j.1752-4571.2008.00047.x
https://doi.org/10.1111/j.1752-4571.2008.00047.x
https://doi.org/10.1046/j.1523-1739.2000.98608.x
https://doi.org/10.1046/j.1523-1739.2000.98608.x
https://doi.org/10.1675/1524-4695(2005)028%5B0261:SATPOW%5D2.0.CO;2
https://doi.org/10.1675/1524-4695(2005)028%5B0261:SATPOW%5D2.0.CO;2
https://doi.org/10.1016/j.landurbplan.2011.02.036
https://doi.org/10.1016/j.landurbplan.2011.02.036
https://doi.org/10.1002/wat2.1014
https://doi.org/10.1002/wat2.1014
https://doi.org/10.1007/s10841-011-9399-2
https://doi.org/10.1007/s10841-011-9399-2
https://doi.org/10.1111/gcb.13401


Hill MJ, Mathers KL, Wood PJ (2015) The aquatic macroinvertebrate
biodiversity of urban ponds in a medium-sized European town
(Loughborough, UK). Hydrobiologia 760:225–238. https://doi.org/
10.1007/s10750-015-2328-8

Hill MJ, Wood PJ (2014) The macroinvertebrate biodiversity and conser-
vation value of garden and field ponds along a rural-urban gradient.
Fundam Appl Limnol / Arch für Hydrobiol 185:107–119. https://
doi.org/10.1127/fal/2014/0612

Hutinec BJ, Struna S (2007) A survey of ponds and their loss in
Žumberak-Samoborsko Gorje Nature Park, northwest Croatia. Nat
Croat 16:121–137

Indermuehle N, Oertli B, Biggs J, et al (2008) Pond conservation in
Europe : the European Pond Conservation Network ( EPCN ). 30:
446–448

Ishiyama N, Akasaka T, Nakamura F (2014) Mobility-dependent re-
sponse of aquatic animal species richness to a wetland network in
an agricultural landscape. Aquat Sci 76:437–449. https://doi.org/10.
1007/s00027-014-0345-8

Jeffries MJ (1994) Invertebrate communities and turnover in wetlands
ponds affected by drought. Freshw Biol 32:603–612

Jeffries M (2005) Small ponds and big landscapes: the challenge of in-
vertebrate spatial and temporal dynamics for European pond con-
servation. Aquat Conserv Mar Freshw Ecosyst 15:541–547. https://
doi.org/10.1002/aqc.753

Jeffries MJ (2012) Ponds and the importance of their history: an audit of
pond numbers, turnover and the relationship between the origins of
ponds and their contemporary plant communities in south-east
Northumberland, UK. Hydrobiologia 689:11–21. https://doi.org/
10.1007/s10750-011-0678-4

Jeffries MJ, Mills D (1990) Freshwater ecology: principles and applica-
tions. Wiley, Chichester

Kivelä M, Arnaud-Haond S, Saramäki J (2014) EDENetworks: A user-
friendly software to build and analyse networks in biogeography,
ecology and population genetics. Mol Ecol Resour:117–122. https://
doi.org/10.1111/1755-0998.12290

Kupfer A, Kneitz S (2000) Population ecology of Great Crested Newts
(Triturus cristatus) in an agricultural landscape: dynamics, pond fi-
delity and dispersal. Herpetol J 10:165–172

Laita A, Kotiaho JS, Mönkkönen M (2011) Graph-theoretic connectivity
measures: what do they tell us about connectivity? Landsc Ecol 26:
951–967. https://doi.org/10.1007/s10980-011-9620-4

Laita A, Mönkkönen M, Kotiaho JS (2010) Woodland key habitats eval-
uated as part of a functional reserve network. Biol Conserv 143:
1212–1227. https://doi.org/10.1016/j.biocon.2010.02.029

Langton T (1985) The London pond survey. Oryx 19:163–166
Langton TES, Beckett CL, Foster JP (2001) Great Crested Newt

Conservation Handbook. Froglife, Halesworth
Loro M, Ortega E, Arce RM, Geneletti D (2015) Ecological connectivity

analysis to reduce the barrier effect of roads. An innovative graph-
theory approach to define wildlife corridors with multiple paths and
without bottlenecks. Landsc Urban Plan 139:149–162. https://doi.
org/10.1016/j.landurbplan.2015.03.006

Lowe WH, Allendorf FW (2010) What can genetics tell us about popu-
lation connectivity? Mol Ecol 19:3038–3051. https://doi.org/10.
1111/j.1365-294X.2010.04688.x

Lundkvist E, Landin J, Karlsson F (2002) Dispersing diving beetles (
Dytiscidae ) in agricultural and urban landscapes in. Ann Zool
Fennici 39:109–123

MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography.
Princeton University Press, Princeton

Minor ES, Urban DL (2007) Graph theory as a proxy for spatially explicit
population models in conservation planning. Ecol Appl 17:1771–
1782. https://doi.org/10.1890/06-1073.1

Moilanen A (2011) On the limitations of graph-theoretic connectivity in
spatial ecology and conservation. J Appl Ecol 48:1543–1547.
https://doi.org/10.1111/j.1365-2664.2011.02062.x

Morton D, Rowland C, Wood C, et al (2011) Final report for LCM2007 –
the new UK land cover map. CS Technical Report No 11/07
NERC/Centre for Ecology & Hydrology 112pp. (CEH project num-
ber: C03259)

O’Brien D, ManseauM, Fall A, Fortin MJ (2006) Testing the importance
of spatial configuration of winter habitat for woodland caribou: An
application of graph theory. Biol Conserv 130:70–83. https://doi.
org/10.1016/j.biocon.2005.12.014

Oertli B, Joye DA, Castella E et al (2002) Does size matter? The rela-
tionship between pond area and biodiversity. Biol Conserv 104:59–
70. https://doi.org/10.1016/S0006-3207(01)00154-9

Oldham R, Keeble J, SwanM, Jeffcote M (2000) Evaluating the suitabil-
ity of habitat for the great crested newt (Triturus cristatus). Herpetol
J 10:143–155

Oliver R (2005) Ornance Survey maps: a concise guide for historians.
The Charles Close Society, London

Palmer SCJ, Kutser T, Hunter PD (2015) Remote sensing of inland wa-
ters: challenges, progress and future directions. Remote Sens
Environ. https://doi.org/10.1016/j.rse.2014.09.021

Parris KM (2006) Urban amphibian assemblages as metacommunities. J
Anim Ecol 75:757–764. https://doi.org/10.1111/j.1365-2656.2006.
01096.x

Petersen I, Masters Z (2004) Dispersal of adult aquatic insects in catch-
ments of differing land use. :934–950

Pieńkowski P (2003) Disappearance of the mid-field ponds as a result of
agriculture intensification

Proulx SR, Promislow DEL, Phillips PC (2005) Network thinking in
ecology and evolution. Trends Ecol Evol 20:345–353. https://doi.
org/10.1016/j.tree.2005.04.004

Purse BV, Hopkins GW, Day KJ, Thompson DJ (2003) Dispersal char-
acteristics and management of a rare damselfly. J Appl Ecol 40:716–
728. https://doi.org/10.1046/j.1365-2664.2003.00829.x

R Core Team (2017) R: A language and environment for statistical
computing

Rackham O (1986) The history of the countryside: the classic history of
Britain’s landscape, flora and fauna. Dent, London

Reunanen P, Fall A, Nikula A (2012) Spatial graphs as templates for
habitat networks in boreal landscapes. Biodivers Conserv 21:
3569–3584. https://doi.org/10.1007/s10531-012-0382-3

Ribeiro R, Carretero MA, Sillero N et al (2011) The pond network: Can
structural connectivity reflect on (amphibian) biodiversity patterns?
Landsc Ecol 26:673–682. https://doi.org/10.1007/s10980-011-
9592-4

Rich T (1998) A comparison of the ponds in the County of Cardiff with
the national statistics from the Lowlands Ponds Survey 1996.

Rouquette JR, Thompson DJ (2007) Patterns of movement and dispersal
in an endangered damselfly and the consequences for its manage-
ment. J Appl Ecol 44:692–701. https://doi.org/10.1111/j.1365-2664.
2007.01284.x

Ryszkowshi L, Balazy S (1995) Agricultural Landscapes in
Wielkopolska: Threats and Protection. Poznan, Poland

Scheffer M, Van Geest GJ, Zimmer K et al (2006) Small habitat size and
isolation can promote species richness: second-order effects on biodi
v ersity in shallow lakes and ponds. Oikos 112:227–231

Schilling EG, Loftin CS, Huryn AD (2009) Macroinvertebrates as indi-
cators of fish absence in naturally fishless lakes. Freshw Biol 54:
181–202. https://doi.org/10.1111/j.1365-2427.2008.02096.x

Schneeweiss N, Beckmann H (1999) The ponds of the young-moraine-
landscape: habitats and centres of distribution of amphibians in
Brandenburg (NE-Germany). In: Boothy J (ed) Pond and Pond
Landscapes of Europe. Proceedings of the International
Conference of the Pond Life Project, 30 August – 2 September
1998. Maastricht, The Netherlands, pp 197–201

Scoccianti C (1999) Loss of ponds in three different areas of Tuscany:
conservation plans, actions and restoration projects. In: Boothby J
(ed) Pond and Pond Landscapes of Europe. Proceedings of the

224 Urban Ecosyst (2018) 21:213–225

https://doi.org/10.1007/s10750-015-2328-8
https://doi.org/10.1007/s10750-015-2328-8
https://doi.org/10.1127/fal/2014/0612
https://doi.org/10.1127/fal/2014/0612
https://doi.org/10.1007/s00027-014-0345-8
https://doi.org/10.1007/s00027-014-0345-8
https://doi.org/10.1002/aqc.753
https://doi.org/10.1002/aqc.753
https://doi.org/10.1007/s10750-011-0678-4
https://doi.org/10.1007/s10750-011-0678-4
https://doi.org/10.1111/1755-0998.12290
https://doi.org/10.1111/1755-0998.12290
https://doi.org/10.1007/s10980-011-9620-4
https://doi.org/10.1016/j.biocon.2010.02.029
https://doi.org/10.1016/j.landurbplan.2015.03.006
https://doi.org/10.1016/j.landurbplan.2015.03.006
https://doi.org/10.1111/j.1365-294X.2010.04688.x
https://doi.org/10.1111/j.1365-294X.2010.04688.x
https://doi.org/10.1890/06-1073.1
https://doi.org/10.1111/j.1365-2664.2011.02062.x
https://doi.org/10.1016/j.biocon.2005.12.014
https://doi.org/10.1016/j.biocon.2005.12.014
https://doi.org/10.1016/S0006-3207(01)00154-9
https://doi.org/10.1016/j.rse.2014.09.021
https://doi.org/10.1111/j.1365-2656.2006.01096.x
https://doi.org/10.1111/j.1365-2656.2006.01096.x
https://doi.org/10.1016/j.tree.2005.04.004
https://doi.org/10.1016/j.tree.2005.04.004
https://doi.org/10.1046/j.1365-2664.2003.00829.x
https://doi.org/10.1007/s10531-012-0382-3
https://doi.org/10.1007/s10980-011-9592-4
https://doi.org/10.1007/s10980-011-9592-4
https://doi.org/10.1111/j.1365-2664.2007.01284.x
https://doi.org/10.1111/j.1365-2664.2007.01284.x
https://doi.org/10.1111/j.1365-2427.2008.02096.x


International Conference of the Pond Life Project, 30 August – 2
September 1998, Maastricht, The Netherlands. Colin Cross Printers
Ltd, Garstang, Lancashire, UK, pp 203–210

Segurado P, Branco P, Ferreira MT (2013) Prioritizing restoration of
structural connectivity in rivers: A graph based approach. Landsc
Ecol 28:1231–1238. https://doi.org/10.1007/s10980-013-9883-z

ServiceMW (1997)Mosquito (Diptera: Culicidae) dispersal: the long and
short of it. J Med Entomol 34:579–588

Smith RF, Alexander LC, Lamp WO (2009) Dispersal by terrestrial
stages of stream insects in urban watersheds: a synthesis of current
knowledge. J North AmBenthol Soc 28:1022–1037. https://doi.org/
10.1899/08-176.1

SondergaardM, Jeppesen E, Jensen J-P (2005) Pond or lake; does it make
any difference? Arch für Hydrobiol 162:143–165

Stauffer D (1987) Introduction to percolation theory. Taylor & Francis,
London

Stewart-Koster B, Olden JD, Johnson PTJ (2015) Integrating landscape
connectivity and habitat suitability to guide offensive and defensive
invasive species management. J Appl Ecol 52:366–378. https://doi.
org/10.1111/1365-2664.12395

Sukopp H (1981) Grundwasserabsenkungen. Ursachen u. Auswirkungen
auf Natur u. Landschaft Berlins. Wasser S:239–272.

The Wildlife Trust (2000) Species Action Plan: Great crested newt
(Tristurus cristatus). In: Biodivers. Action Plan Birmingham Black
Ctry. http://www.wildlifetrust.org.uk/urbanwt/ecorecord/bap/html/
gcnewt.htm.

Thornhill I (2013) Water quality, biodiversity and ecosystem functioning
in ponds across an urban land-use gradient in Birmingham.
University of Birmingham, U.K.

Thornhill I, Batty L, Death RG et al (2017) Local and landscape
scale determinants of macroinvertebrate assemblages and
their conservation value in ponds across an urban land-use
gradient. Biodivers Conserv 26:1065–1086. https://doi.org/10.
1007/s10531-016-1286-4

Thornhill I, Loiselle S, Lind K, Ophof D (2016) The citizen science
opportunity for researchers and agencies. Bioscience 66:720–721.
https://doi.org/10.1093/biosci/biw089

Tischendorf L, Fahrig L (2000) On the usage and measurement of land-
scape connectivity. Oikos 90:7–19. https://doi.org/10.1034/j.1600-
0706.2000.900102.x

University of Portsmouth (2017) BirminghamDistrict through time, pop-
ulation statistics, total population. In: AVis. Britain through time

Urban D, Keitt T (2001) Landscape connectivity: a graph-theoretic per-
spective. Ecology 82:1205–1218

Urban DL, Minor ES, Treml EA, Robert S (2009) Graph models of
habitat mosaics. Ecol Lett 12:260–273. https://doi.org/10.1111/j.
1461-0248.2008.01271.x

Van Geest GJ, Roozen FCJM, Coops H et al (2003) Vegetation abun-
dance in lowland flood plain lakes determined by surface area, age
and connectivity. Freshw Biol 48:440–454. https://doi.org/10.1046/
j.1365-2427.2003.01022.x

Vermonden K, Leuven RSEW, Van Der Velde G et al (2009) Urban
drainage systems : An undervalued habitat for aquatic macroinver-
tebrates. Biol Conserv 142:1105–1115. https://doi.org/10.1016/j.
biocon.2009.01.026

Weinreich JA, Musters CJM (1994) The Situation of Nature in the
Netherlands. Den Haag, Netherlands

Williams PJ, Biggs J, Barr CJ, et al (1998b) Lowland pond survey 1996.
London

Williams PJ, Biggs J, Crowe A, et al (2010) CS Technical Report No.
7/07 Countryside Survey: Ponds Report from 2007. Lancaster

Williams PJ, Biggs J, Whitfield M, et al (1998a) Ancient ponds and
modern landscapes.

Williams P, Whitfielda M, Biggs J et al (2004) Comparative biodiversity
of rivers, streams, ditches and ponds in an agricultural landscape in
Southern England. Biol Conserv 115:329–341. https://doi.org/10.
1016/S0006-3207(03)00153-8

With KA (2002) Using Percolation Theory to Assess Landscape
Connectivity and Effects of Habitat Fragmentation. In: Applying
Landscape Ecology in Biological Conservation, pp 105–130

Wood PJ, Barker S (2000) Old industrial mill ponds: a neglected ecolog-
ical resource. Appl Geogr 20:65–81. https://doi.org/10.1016/S0143-
6228(99)00015-6

Wood PJ, Greenwood MT, Agnew MD (2003) Pond biodiversity and
habitat loss in the UK. Area 35:206–216. https://doi.org/10.1111/
1475-4762.00249

Wood PJ, Greenwood MT, Barker SA, Gunn J (2001) The effects of
amenity management for angling on the conservation value of
aquatic invertebrate communities in old industrial ponds. Biol
Conserv 102:17–29. https://doi.org/10.1016/S0006-3207(01)
00087-8

Urban Ecosyst (2018) 21:213–225 225

https://doi.org/10.1007/s10980-013-9883-z
https://doi.org/10.1899/08-176.1
https://doi.org/10.1899/08-176.1
https://doi.org/10.1111/1365-2664.12395
https://doi.org/10.1111/1365-2664.12395
http://www.wildlifetrust.org.uk/urbanwt/ecorecord/bap/html/gcnewt.htm
http://www.wildlifetrust.org.uk/urbanwt/ecorecord/bap/html/gcnewt.htm
https://doi.org/10.1007/s10531-016-1286-4
https://doi.org/10.1007/s10531-016-1286-4
https://doi.org/10.1093/biosci/biw089
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1034/j.1600-0706.2000.900102.x
https://doi.org/10.1111/j.1461-0248.2008.01271.x
https://doi.org/10.1111/j.1461-0248.2008.01271.x
https://doi.org/10.1046/j.1365-2427.2003.01022.x
https://doi.org/10.1046/j.1365-2427.2003.01022.x
https://doi.org/10.1016/j.biocon.2009.01.026
https://doi.org/10.1016/j.biocon.2009.01.026
https://doi.org/10.1016/S0006-3207(03)00153-8
https://doi.org/10.1016/S0006-3207(03)00153-8
https://doi.org/10.1016/S0143-6228(99)00015-6
https://doi.org/10.1016/S0143-6228(99)00015-6
https://doi.org/10.1111/1475-4762.00249
https://doi.org/10.1111/1475-4762.00249
https://doi.org/10.1016/S0006-3207(01)00087-8
https://doi.org/10.1016/S0006-3207(01)00087-8

	The application of graph theory and percolation analysis for assessing �change in the spatial configuration of pond networks
	Abstract
	Introduction
	Materials and methods
	Study area
	Pond digitisation
	Land-use
	Graph analyses (minimum spanning trees)
	Percolation analysis

	Results
	Pond habitat loss and turnover through time
	Pond network resilience through time

	Discussion
	Pond resource turnover, loss and creation
	Possible implications for the biota
	Future directions

	Conclusion
	References


