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Abstract 1 

Metabolic disease risk is driven by defects in the function of cells that regulate energy 2 

homeostasis, as well as altered communication between the different tissues or organs that 3 

these cells occupy. Thus, it is desirable to use model organisms to understand the contribution 4 

of different cells, tissues and organs to metabolism. Mice are widely used for metabolic 5 

research, since well-characterised mouse strains (in terms of their genotype and phenotype) 6 

allow comparative studies and human disease modelling. Such research involves strains 7 

containing spontaneous mutations that lead to obesity and diabetes, surgically- and 8 

chemically-induced models, those that are secondary to caloric excess, genetic mutants 9 

created by transgenesis and gene knockout technologies, and peripheral models generated by 10 

Cre-Lox or CRISPR/Cas9 approaches. Focusing on obesity and type 2 diabetes as relevant 11 

metabolic diseases, we systematically review each of these models, discussing their use, 12 

limitations, and future potential. 13 

 14 

Key words: mouse; metabolism; obesity; diabetes; insulin resistance; insulin; glucagon; 15 
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Introduction 1 

Metabolic disease constitutes one of the foremost non-communicable disease states affecting 2 

global health. Almost 35% of adults over 20 years of age are obese, defined as BMI ≥ 25 3 

kg/m2, and these individuals are more likely to suffer type 2 diabetes mellitus (T2DM), as 4 

well as subfertility, hypertension and orthopaedic issues [1]. T2DM itself afflicts almost 10% 5 

of adults worldwide (30% in some genetically-predisposed populations), accounting for 5% 6 

of deaths secondary to significant co-morbidities including cardiovascular disease, 7 

neuropathy, nephropathy, vasculopathy and cancer [1]. The majority of metabolic disease 8 

states such as T2DM and obesity have complex polygenic aetiology, which increases disease 9 

risk when combined with a permissive environment. Many different cell types, as well as 10 

interactions between disparate tissues and organs (e.g. muscle, liver, adipose, pancreas) are 11 

involved in metabolic regulation, and may be subtly affected by these changes to produce a 12 

clinical phenotype. Dissecting the mechanisms underlying metabolic disease is thus 13 

challenging, requiring appreciation of how genotype and environment interact to influence 14 

cell/tissue/organ function. Since genes cannot (yet) be manipulated in humans, key to 15 

understanding metabolic disease is the development of animal models that allow genes in 16 

specific cells/tissues/organs to be linked with particular phenotypic traits. Focusing on 17 

obesity and T2DM as examples of metabolic disease partly driven by peripheral factors, the 18 

present review will discuss the animal models currently available, highlighting any 19 

limitations, before discussing future possibilities.  20 

Spontaneous mutation mouse models of obesity and diabetes 21 

Before the widespread adoption of technologies for conditional gene manipulation, a vast 22 

body of research relied on the use of animal models with perturbed peripheral metabolism 23 

due to spontaneous mutations resulting from selective breeding strategies. Many of these 24 
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animal models are still used today, since they are well characterised, tend to develop 1 

profound and reproducible metabolic deficits and arguably reflect the complex nature of 2 

human disease better.  3 

Obese or ob/ob mouse: The obese or ob/ob mouse was discovered in 1949 by Jackson 4 

Laboratories due to a chance mutation in the House Mouse (Mus Musculus) that was 5 

eventually transferred onto an inbred C57BL/6J background. Mice homozygous for the 6 

mutation rapidly gain weight from 2-14 weeks, with body mass almost 3-fold higher than 7 

non-obese wild-type (C57BL/6J) controls (reviewed in [2]). Seminal studies cloned and 8 

sequenced the ob gene, which encodes a 4.5 kb mRNA with a 167-amino acid ORF 84% 9 

conserved between mice and humans [3]. It was found that the ob/ob strain arose from a 10 

nonsense mutation in codon 105 of the ob (leptin) gene located on chromosome 6 (7 in 11 

humans), replacing an Arg with a STOP codon and leading to translation of a truncated non-12 

functional protein [3]. Thus, mutant mice are hypoleptinemic and present with hyperphagia, 13 

obesity, insulin resistance, hyperinsulinemia, transient hyperglycemia subsiding at 14-16 14 

wks, elevated HDL cholesterol fraction, sub/infertility and delayed wound healing [2]. 15 

Implying normal leptin receptor signalling, but a loss of leptin secretion, injection of 16 

recombinant leptin reduces body weight and food intake in ob/ob mice [4]. Moreover, 17 

hyperglycemia is only transient- probably owing to increased insulin levels and maintained 18 

beta-cell mass expansion- subsiding at 14-16 wks unless mice are bred onto the C57BLKS 19 

background , where severe glucose intolerance is associated with profound beta-cell loss, 20 

ketosis and early death [5].  21 

Whilst the ob/ob mouse has been pivotal in the discovery of leptin as a key regulator of food 22 

intake, obesity and energy homeostasis, its relevance for human obesity is less clear. Indeed, 23 

obesity in humans is a complex genetic trait influenced by environment [6]. Moreover, obese 24 

humans do no tend to present with weight gain from an early age, hyperglycemia progresses 25 
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with time, marked dyslipidemia is accompanied by increased LDL and not HDL and leptin 1 

increases rather than decreased [2]. Conversely, ob/ob mice may be a better model of 2 

exceedingly rare monogenic obesity (e.g. congenital leptin deficiency [7]), or where the 3 

general molecular and cellular effects of obesity and insulin resistance need to be studied on a 4 

candidate tissue (e.g. brain, islets, liver).  5 

Diabetes db/db mouse: Similarly to ob/ob mice, the db/db mouse results from a single 6 

autosomal recessive Gly -> Thr mutation in the leptin receptor (Lepr) gene located on 7 

chromosome 4 [8]. This results in an inactive Lepr and hyperleptinemia [8], with a phenotype 8 

closely matching the ob/ob mouse. Use of db/db mice is however complicated by profound 9 

infertility, interactions between steroid sulfotransferase enzymes and the Lepr resulting in 10 

gender differences in diabetes severity [9], and maintained metabolic performance in 11 

heterozygotes due to compensation [10]. 12 

TALLYHO JngJ mouse: This strain was derived from inbreeding male Theiler Original mice 13 

that spontaneously developed hyperglycemia and hyperinsulinemia without hypoleptinemia 14 

or defective Lepr signalling [11, 12]. This is due to inheritance of a single recessive Tannidd1 15 

(TallyHo-associated non-insulin-dependent diabetes) gene on chromosome 19, which 16 

interacts with a range of other TallyHo-associated loci including Tanidd2, Tanidd3, Tabw2 17 

and Tafat located on different chromosomes [11]. TALLYHO JngJ mice represent a model of 18 

polygenic moderate obesity combined with gradual onset insulin resistance, hyperglycemia, 19 

hyperinsulinemia, hyperlipidemia and beta-cell mass expansion from 10-14 weeks [11, 12]. 20 

As such, they share many characteristics of T2DM secondary to obesity in humans, although 21 

only males display overt hyperglycemia and impaired glucose intolerance ruling out study of 22 

the disease in female animals. Moreover, due to the polygenic nature of TALLYHO JngJ 23 

mice, experiments are complicated by lack of control animal, with most studies using either 24 

standard chow-fed C57BL6 or SWR/J [12]. 25 
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See Table 1 for a concise summary of spontaneous mutation mouse models 1 

Caloric excess mouse models of obesity and diabetes 2 

The high fat diet (HFD) mouse is perhaps one of the most-cited animal models of obesity due 3 

to its relevance for T2DM and ease of use in both wild-type and transgenic animals. In this 4 

model, maintenance diet is replaced with a HFD containing ~ 60% calories from fat (lard) 5 

and maintained for 1-20 wks, depending on the study and severity required [13]. After 1 6 

week of HFD, animals display impaired glucose tolerance and insulin secretion using IV 7 

glucose tolerance testing [14]. Weight gain is noticeable from 2-4 wks, with maximal body 8 

weight achieved at 16-20 wks, being almost 20-30% higher than wild-types [13, 14]. Mice 9 

generally display obesity (including adipocyte hyperplasia and mesenteric fat deposition), 10 

hypertension, hyperglycemia, hyperinsulinemia due to increased fasting insulin levels and 11 

insulin resistance. Impaired oral/intravenous/intraperitoneal glucose tolerance and glucose-12 

stimulated insulin release are usually apparent by 8-12 wks [13, 14]. Thus, the HFD mouse 13 

more closely mimics the progression of obesity and T2DM in humans, with insulin resistance 14 

and obesity occurring in parallel to compensatory beta-cell mass expansion and eventual 15 

beta-cell failure (> 18 wks) depending on strain, lab and colony [15].  16 

The mechanisms underlying beta-cell failure are controversial, but may reflect defective 17 

stimulus-secretion coupling [16], rather than a reduction in beta-cell mass as may be present 18 

in humans [15], although the extent to which this occurs is debated due to limitations in the 19 

assessment of beta-cell mass [15]. It should be noted that responses to HFD vary with strain- 20 

C57BL/6J, 129X1, DBA/2 and FVB/N animals being susceptible, whilst BALB/c are 21 

relatively protected [17]. Moreover, even among C57BL/6J, there tends to be some 22 

heterogeneity in HFD-responsiveness (‘low’ and ‘high’ responders), with commensurate 23 

differences in phenotype [18], meaning that food intake and weight should be closely 24 
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monitored. Sex differences also exist, with C57BL/6 female mice displaying milder glucose 1 

intolerance and systemic inflammation, normal insulin levels and less islet hypertrophy [19]. 2 

Lastly, HFD provides a useful way of revealing environment-genotype interactions, which 3 

may increase or decrease susceptibility to obesity/insulin resistance/insulin secretion in 4 

transgenic mouse models (see later).  5 

See Table 1 for a concise summary of caloric excess mouse models 6 

Surgical or chemically-induced models of obesity or diabetes 7 

Surgical or chemical ablation of brain centres involved in the regulation of energy 8 

homeostasis has led to the generation of rodent models of obesity. Since the use of these 9 

techniques are discussed elsewhere in this volume, we will focus here on the physical and/or 10 

chemical manipulation of adipose tissue, pancreas, and the ovaries.   11 

Adipose tissue: Humans possess functional brown adipose tissue (BAT) in the cervical–12 

supraclavicular depot, and BAT activity was shown to be negatively associated with 13 

adiposity and indices of metabolic syndrome (reviewed in [20]). Thus, modelling BAT 14 

deficiencies is relevant to the study of obesity and metabolic syndrome in humans. Lowell 15 

and colleagues demonstrated that removal of BAT by adipocyte-specific expression of 16 

diphtheria toxin in mice leads to obesity and hyperphagia, ostensibly due to the lack of UCP-17 

1 driven energy dissipation of heat [21]. BAT-ablated mice developed insulin resistance and a 18 

T2DM-like phenotype [21]. The lowered energy expenditure for BAT thermogenesis 19 

contributes to the development of obesity: BAT-ablated mice did not display obesity or 20 

hyperphagia when maintained under conditions of thermoneutrality [22], making this mouse 21 

model different from ob/ob and db/db mouse models where a combination of hyperphagia, 22 

hyperinsulinemia and energy expenditure appear to be more important [2]. 23 
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Endocrine pancreas: The endocrine pancreas is critical for the regulation of energy 1 

homeostasis via secretion of the hormones insulin, glucagon and somatostatin from the beta-, 2 

alpha-, and delta-cells, respectively. The beta-cell in particular has been the subject of intense 3 

research- loss of beta-cell function is associated with the development and progression of 4 

T2DM [15] (discussed further under “Conditional mouse lines for diabetes research”)- and 5 

many methods to study the function of this cell type have been developed over the decades 6 

following the discovery of insulin by Banting and Best in 1921. Alloxan and streptozotocin 7 

(STZ) are widely used to induce diabetes since their pro-beta-cell necrosis and thus 8 

diabetogenic properties were first described almost a half a century ago (reviewed in [23]). 9 

The specificity of both alloxan and STZ for beta-cells is due to their uptake by the low-10 

affinity glucose transporter, GLUT2, in rodent beta-cells [23]. GLUT2 is also expressed in 11 

the kidney and liver, leading to cytotoxic effects in these tissues [24]. Alloxan is an inhibitor 12 

of glucokinase (GK) and induces production of reactive oxygen species, thereby leading to 13 

beta-cell dysfunction and death [23]. The methylnitrosurea moiety of STZ is responsible for 14 

the toxicity effects of STZ, leading to modification of proteins, fragmentation of genomic and 15 

mitochondrial DNA, and ultimately beta-cell dysfunction and death [23]. The loss of 16 

functional beta-cell mass following exposure to alloxan and STZ leads to profound glucose 17 

dyshomeostasis. STZ is more commonly used than alloxan for the induction of diabetes in 18 

rodents as it is a more stable chemical, therefore leading to more reproducible results [23].  19 

As described earlier in the section on BAT ablation, pancreatic endocrine-cells can be 20 

eliminated by cell type-specific expression of diphtheria toxin. Studies using such approaches 21 

have been instrumental in lineage tracing analysis of pancreatic endocrine cells (for example, 22 

see [25]).  23 

Surgical methods have previously been used to deliver adeno-associated viruses (AAVs) in 24 

the vicinity of islets to facilitate gene delivery to these micro-organs [26, 27]. This technique 25 
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is technically demanding and involves injecting AAVs into the mesenteric artery [26] or the 1 

pancreatic duct [27] following laparotomy. AAV serotypes 6, 8, and 9 were shown to mediate 2 

long-term transduction of beta-cells [27], with more efficient transduction of the islets than 3 

systemic administration of AAVs [26, 27]. 4 

Ovariectomy: Menopause, or reproductive senescence, is part of the aging process in women 5 

and is commonly associated with weight gain and increased adiposity. Rodent models share 6 

multiple features of menopause with humans (reviewed in [28]). Although rodents do 7 

undergo natural menopause, only a small proportion of individuals within a colony would 8 

transition to a state that is akin to human menopause [28]. Ovariectomy (OVX) is a widely 9 

used method to increase the number of mice within a colony transitioning to the menopausal 10 

state. OVX induces a phenotype- increased body weight, adiposity (although the fat depots 11 

affected differ) and feeding- which closely mimics that seen in human females [28]. 12 

However, OVX is a model of immediate loss of function rather than a gradual transition of 13 

loss of the oestrus cycle, as in menopause, and does not accurately reflect the adaptations 14 

enacted to compensate for the gradual drop of ovarian hormones [29]. This temporal 15 

difference in effect may account for some of the phenotypic differences seen between the 16 

OVX model and human menopausal females, e.g. in total lean mass [30]. 17 

Genetically-modified mouse lines for diabetes research 18 

A key event in the development of T2DM in humans is expansion of the beta-cell mass to 19 

functionally compensate insulin resistance, mainly due to defective insulin signalling in 20 

muscle, liver and adipose tissue [15, 31]. This is followed by beta-cell failure and increased 21 

blood glucose levels after an poorly defined period of time [15]. Alpha-cells further aggravate 22 

the situation, by hypersecreting the glycogenolytic/gluconeogenic hormone glucagon [32], 23 

although this may be balanced by their conversion into beta-cells following extreme loss (in 24 
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mouse models at least) [33]. Much less is known about somatostatin-secreting delta-cells, 1 

although they likely act to suppress insulin and glucagon release in a paracrine manner [34], 2 

and recent studies have shown that they may in fact provide a source of beta-cells in pre-3 

pubertal animals, allowing diabetes recovery [35]. Obesity is a major risk factor for 4 

development of T2DM, since excess circulating fatty acids, glycerol, cytokines conspire to 5 

drive insulin resistance in muscle, liver and adipose depots, in addition to directly influencing 6 

beta and other cell function [31]. The mechanisms underlying insulin resistance, alpha-beta-7 

delta-cell interactions and conversion during diabetes, as well as the chronology of these 8 

events, are poorly understood. This is a major roadblock to treating the disease, since it is 9 

difficult to preserve insulin secretion or regenerate beta-cells in vivo without this knowledge. 10 

Key to this are mouse models that allow conditional and inducible gene manipulation 11 

specifically in muscle, liver and adipose tissue, as well as beta, alpha and delta-cells, allowing 12 

cellular/molecular interrogation of the processes involved in T2DM.  13 

Beta-cell-specific driver lines: Conditional gene recombination (expression or inactivation) 14 

can be achieved in pancreatic beta-cells using site-specific Cre-Lox technology. Early Cre 15 

driver lines consisted of Cre expressed under the control of the Rat insulin promoter (Rip-16 

Cre), otherwise termed the ancestral Ins2 gene, but were plagued with extra-pancreatic 17 

recombination, including in the hypothalamus (reviewed in [36, 37]), which is involved in 18 

glucose homeostasis. Depending on the exact Rip-Cre transgenic line used, recombination 19 

efficiency in beta-cells is ~80-98%, with varying degrees of expression in the brain 20 

depending on construct length [36, 37]. Such leakiness has however allowed these mice to 21 

reveal many brain-periphery phenomena, including a role for arcuate nucleus GABAergic 22 

RIP-Cre neurons in energy expenditure [38] 23 

The Pdx1-Cre deleter line also displays some leakiness, although this is mainly restricted to 24 

the hypothalamus, as shown using GFP reporters [37]. Unlike Rip (Ins2), which is restricted 25 
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to beta-cells within the pancreas, pancreatic and duodenal homeobox 1 (Pdx1) is expressed in 1 

the posterior gut endoderm during development and as such throughout the exocrine and 2 

endocrine pancreas in the adult. Pancreas-wide deletion can however be avoided by using an 3 

tamoxifen-inducible Cre (Pdx1-CreER) to switch on expression in the postnatal period when 4 

Pdx1 is largely confined to beta-cells within the pancreas [39]. This model also has the added 5 

advantage of being less leaky, with virtually no recombination detected in the brain [39].  6 

Both Rip-Cre and Pdx1-Cre strains are now superseded by animals in which Cre is expressed 7 

under the Ins1 promoter, this gene being more beta-cell-specific than Ins2, the expression of 8 

which is sufficient for normal insulin production following loss of both Ins1 alleles [40]. 9 

Ins1-CreERT (termed MIP-CreERT) animals lack Cre expression in the brain [37], but were 10 

developed using a transgenic construct containing the human growth hormone (GH) 11 

minigene, now shown to cause pregnancy-like proliferative changes in beta-cell mass through 12 

autocrine actions on the prolactin receptor (part of the cytokine receptor superfamily together 13 

with the growth hormone receptor) [41]. By contrast, Ins1-Cre knock-in animals rely on Cre 14 

expression from the translation initiation codon of the endogenous Ins1 gene [40], with the 15 

added advantage of driving more moderate Cre expression, the enzyme itself shown to induce 16 

beta-cell hypoplasia when present at high levels [42]. Nonetheless, this is sufficient for 17 

excellent (> 90%) recombination efficiency in beta-cells [40]. However, these animals are 18 

relatively new, and in light of issues with previous beta-cell-specific driver lines, more in-19 

depth metabolic phenotyping is required.  20 

Alpha-cell-specific driver lines: Glu-Cre mice were first developed over a decade ago using a 21 

short (1.6. kb) promoter fragment containing the rat Gcg promoter. Whilst initial 22 

recombination efficiency was high, this appears to have diminished over time from 100% -> 23 

40% depending on the colony studied [25, 43]. Similarly, the Glu-CreERT deleter strain 24 

displays expression in 50-75% of alpha-cells, but functional analyses in these animals are 25 
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complicated by haploinsufficiency due to loss of a preproglucagon gene [43], as well as 1 

expression in enteroendocrine L-cells and potentially in brainstem/hypothalamic neurons, 2 

which cleave preproglucagon into glucagon-like peptide 1 [36]. By contrast, animals 3 

engineered with an iCre upstream of the proglucagon gene (Glu-iCre) show Cre expression in 4 

a higher proportion of alpha-cells, as well as 70% of enteroendocrine L-cells, although 5 

recombination is also detected in ~ 20% beta-cells and the hindbrain, both sites involved in 6 

glucose homeostasis [44, 45]. Recent studies used CRISPR-Cas9 genome editing to insert 7 

CreER into the 3’ UTR of the endogenous Gcg locus, without disrupting preproglucagon 8 

expression [43]. Whilst the resulting Glucagon-CreER mice display a normal phenotype, 9 

even as homozygotes, and display good recombination efficiency in adult alpha-cells (~ 10 

95%), Cre expression was detected in only 33% of L-cells [43], limiting their use for 11 

enteroendocrine deletion compared to Glu-iCre animals [44].  12 

Delta-cell-specific driver lines: The widespread expression of the neuropeptide somatostatin 13 

(Sst) in the brain [46], makes assessment of any conditional gene recombination in delta-cells 14 

particularly challenging in vivo. Nonetheless, Sst-iCre mice possessing mCherry-2A-iCre 15 

after the Sst start codon show recombination in ~ 80% of delta-cells and have proven useful 16 

for delta-cell lineage tracing experiments [35]. However, it has been recently reported that 17 

another Sst-Cre mouse line in which Cre is inserted into the 3’UTR of the Sst gene possess 18 

depleted (~20-50%) Sst levels throughout the brain, leading to altered behavioural responses 19 

[46]. Thus, results should be interpreted carefully pending further phenotypic validation of 20 

delta-cell-specific driver lines for metabolic research, especially given the reported reduction 21 

in Sst expression in the hypothalamus of Sst-Cre animals [46].  22 

See Table 2 for a concise summary of pancreatic Cre-deleter lines. 23 
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Muscle-specific driver lines: Muscle is a major site for regulation of glucose and fatty acid 1 

metabolism, and hence energy expenditure. Peripheral insulin resistance is the first detectable 2 

defect in T2DM, with insulin resistance greatest in skeletal muscle at the initiating phase of 3 

the disease (reviewed in [47]). Manipulation of gene expression in skeletal muscle is thus a 4 

useful means with which to investigate the involvement of energy homeostasis via this tissue. 5 

Muscle-specific Cre-deleter strains have been produced using the muscle creatine kinase 6 

(MCK) [48], human alpha-skeletal actin (HSA) [49], myogenic factor 5 (Myf5) [50], myosin 7 

light chain 1/3 fast (MLC1/3f) [51], myogenic differentiation 1 (Myod1) [52], myogenin 8 

(Myog) [53] and paired box gene 7 (Pax7) [54] promoters. Additionally, tamoxifen-inducible 9 

Cre-deleter strains are also available for muscle-specific deletion using HSA and αMHC 10 

promoters. The MCK Cre-deleter strain has Cre expression driven by a 6.5 kb genomic DNA 11 

fragment from the Mck gene, containing the MCK promoter, enhancer 1, the untranslated 12 

exon 1, and intron 2/enhancer 2, conferring specificity for expression in skeletal muscle and 13 

heart. MCK-driven Cre expression is restrained during development [48], thus making this a 14 

useful deleter strain for the study of adult muscle phenotype. 15 

Liver-specific driver lines: The albumin promoter driven Cre-deleter strain (Alb-Cre) [55] 16 

has been widely used in the study of energy homeostasis by the liver. The Alb-Cre transgene 17 

consists of 2335-bp of the rat albumin enhancer/promoter fragment located 8.5-10.4 kb 18 

upstream of the albumin promoter [55]. The first study using this line demonstrated that 19 

hepatic and beta-cell glucokinase are involved in the pathogenesis of hyperglycaemia in 20 

MODY-2 [55]. A tamoxifen-inducible albumin promoter driven Cre-deleter strain, SA-Cre-21 

ERT2 is also available for targeted somatic mutagenesis in hepatocytes [56]. Whilst the 22 

transthyretin promoter driven Cre-deleter strain (TTR-Cre) leads to deletion in the foetal 23 

liver, visceral endoderm and yolk sac [57], a tamoxifen inducible version of this deleter strain 24 

allows specific recombination in the foetal and adult liver [58]. The Alfp-Cre-deleter strain 25 
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contains the mouse albumin enhancer and albumin promoter and alpha-fetoprotein enhancers, 1 

and was reported to lead to liver-specific Cre recombinase expression [59]. However, it was 2 

also reported that the transgene used for the generation of the deleter strain contains the 3 

human growth hormone gene and could, therefore, lead to the expression of human growth 4 

factor, which may confound data similarly to affected beta-cell-specific driver lines [41, 60]. 5 

An alternative approach to deliver Cre recombinase expression vectors to the liver in mouse 6 

models is the use of a technique termed hydrodynamic delivery [61]. This technique has been 7 

used successfully for hepatic gene delivery and involves the injection of plasmids, encoding 8 

for Cre-recombinase under the control of a tissue-specific promoter e.g. the albumin 9 

promoter, by hydrodynamic gene transfer [61]. Hydrodynamic gene transfer avoids problems 10 

such as positional insertion artefacts, variations caused by differences in genetic background, 11 

leaky expression, and toxicity associated with elevated Cre expression, which are 12 

confounding factors commonly encountered in the use of Cre-deleter strains.  13 

Adipose-specific driver lines: Adipose tissue- consisting of WAT and BAT- is an important 14 

site of energy homeostasis. We have already described how BAT can be targeted by chemical 15 

means. The Cre/lox system has also been used effectively to target adipocytes using 16 

adipocyte-specific promoters to drive Cre expression. Amongst these are aP2-Cre mice [62], 17 

where Cre expression is driven by the promoter of the fatty acid binding protein 4 (Fabp4) 18 

gene, and the Adipoq-Cre strains [63], where Cre expression is driven by the adiponectin 19 

promoter. The Adipoq-Cre strains have been shown to exhibit highly-selective expression of 20 

Cre in adipose tissue whilst the aP2-Cre strains have been shown to possess leaky expression 21 

in the brain, endothelial cells, macrophages, adipocyte precursors and embryonic tissues [64, 22 

65], and differing recombination efficiencies in WAT vs. BAT [65]. Platelet derived growth 23 

factor receptor alpha (Pdgfrα) promoter driven Cre-deleter strains (Pdgfrα-Cre) have also 24 

been generated based upon reports that Pdgfrα is expressed on adipocyte precursor cells in 25 
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WAT and can be used to trace adipocyte cell lineage [66]. Tamoxifen-inducible versions of 1 

the Adipoq-Cre (Adipoq-CreERT) and Pdgfrα-Cre (Pdgfrα-CreERT) deleter strains are also 2 

available for temporal regulation of Cre expression, all of which exhibit good cell type 3 

specificity [65]. There are currently no deleter strains that allow Cre expression specifically 4 

in WAT or BAT. 5 

See Table 3 for a concise summary of muscle, liver and adipose Cre-deleter lines 6 

See Schematic 1 for a diabetes mouse model phenotyping workflow 7 

Genetically-modified mouse lines for obesity research 8 

Most obesity models are centrally-mediated (discussed elsewhere in this volume) due to 9 

effects on neurons that regulate appetite and energy homeostasis etc. Some peripheral models 10 

of obesity are however listed below.   11 

11beta-hydroxysteroid dehydrogenase type 1 (HSD11B1): Increased 11 beta-hydroxysteroid 12 

dehydrogenase type 1 (HSD11B1), the key glucocorticoid regenerating enzyme, in the 13 

adipose tissue is characteristic of obesity in humans and rodents, and associated with 14 

metabolic syndrome [67]. Tissue-specific over-expression of 11BHSD1 also correlates with 15 

weight gain (or lack of, e.g. where HSD11B1 expression is high in liver) in menopausal 16 

women [68]. Thus, transgenic mice over-expressing HSD11B1 in adipose tissue via the aP2 17 

promoter display elevated intra-adipose corticosterone levels (the more active glucocorticoid 18 

in mice versus 11-dehydrocorticosterone), albeit with the caveat that there are specificity 19 

issues surrounding the use of the aP2 promoter for adipocyte-specific expression, including 20 

possible expression in the brain, as discussed earlier in this chapter [69]. Transgenic mice 21 

with apoE driven over-expression of HSD11B1 largely in the liver displayed normal 22 

corticosterone levels, glucose tolerance, body weight and fat depots, with concomitant 23 
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hyperinsulinaemia, suggesting that the obese phenotype is likely due to altered HSD11B1 1 

activity in other tissues, e.g. adipose tissue, rather than liver [70].  2 

MafB deletion in macrophage: MafB is expressed in macrophages (and rodent alpha-cells), 3 

where it is important for lineage commitment [71]. Transgenic mice with haematopoietic cell 4 

and macrophage-specific loss of MafB expression exhibited increased body weight and 5 

adipose tissue weight when exposed to HFD, with increased fat storage and serum cholesterol 6 

[72], linking the immune system with regulation of metabolism. 7 

Androgen receptor knockout mice: Androgen deprivation is linked to metabolic syndrome in 8 

men, whilst androgen replacement therapy has beneficial effects on body mass [73]. 9 

Androgens bind to the androgen receptor (AR) to exert their effect and various AR null 10 

(ARKO) mouse models exist. Global AR-KO mice display, late-onset visceral obesity, 11 

altered lipid metabolism, glucose homeostasis, and insulin and leptin resistance [74]. Liver-12 

specific AR-KO mice, generated using the Alb-Cre-deleter strain, exhibited obesity and 13 

hepatic steatosis when challenged with HFD, with concomitant liver insulin resistance 14 

resulting in hyperglycaemia, and altered fatty-acid oxidation [75]. Loss of AR in the brain, 15 

effected through synapsin-Cre deletion of floxed AR alleles, led to hypothalamic insulin 16 

resistance and reduced suppression of hepatic gluconeogenic gene expression [76]. Muscle-17 

specific deletion of AR using the MCK- or HSA-promoter deleter strains, led to altered fibre 18 

type composition, reduction in intra-abdominal fat mass, and contractility of fast- and 19 

intermediary-twitch muscles [77, 78]. Over-expression of AR in myocytes increased 20 

oxidative metabolism in skeletal muscle, and led to improved glucose tolerance [79, 80]. 21 

Deletion of AR using the aP2-Cre-deleter strain led to impaired insulin sensitivity and age-22 

related glucose intolerance, with increased susceptibility to HFD-induced visceral obesity 23 

[81]. Conversely, over-expression of AR in female mice protected against HFD-induced 24 
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atherosclerosis, obesity and dyslipidemia [82]. These data indicate that AR signalling may be 1 

protective against metabolic syndrome.  2 

GLUT4 mouse models: The low affinity insulin-sensitive glucose transporter isoform 4 3 

(GLUT4) is expressed in adipocytes, skeletal muscle and cardiac muscle, where it mediates 4 

glucose disposal [83]. In line with this, ablation of GLUT4 from adipocyte (aP2-Cre) [62] 5 

and muscle (MCK-Cre) [84] compartments led to reduced glucose uptake, hyperglycaemia, 6 

hyperinsulinaemia and secondary insulin resistance in other insulin sensitive tissues. By 7 

contrast, over-expression of GLUT4 prevented HFD-induced hyperglycaemia and insulin 8 

resistance [85].  9 

Beta 3 adrenergic receptor knockout mouse: Beta 3 adrenergic receptor (beta3-AR) is 10 

expressed in human BAT, with decreased expression levels in genetically-obese mouse 11 

models (reviewed in [86]). Mutation in the beta3-AR is associated with obesity, decreased 12 

energy expenditure, insulin resistance and T2DM [86]. Beta3-AR knockout mice (beta3-13 

ARKO) have increased fat mass indicating an impact on energy homeostasis [87].  14 

See Schematic 2 for an obesity mouse model workflow 15 

Mouse models for metabolic phenotyping of GWAS hits 16 

Linkage and candidate gene analyses have identified genes with high penetrance for T2DM 17 

and obesity (e.g. HNF1A, GCK and MC4R) [88], although these are rare causal variants seen 18 

only in a small proportion of individuals worldwide. It was not until the human genome was 19 

mapped that understanding of the genetics behind complex polygenic disease such as obesity 20 

and diabetes accelerated. To date, genome-wide association studies (GWAS) have identified 21 

> 100 single nucleotide polymorphisms (SNPs) or gene variants associated with an increased 22 

odds ratio of developing obesity or T2DM [6]. Whilst this only explains a small proportion 23 
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(~10%) of disease heritability [6], it is likely that many more low-effect size common 1 

variants exist whose discovery requires increased power through larger sample sizes. 2 

Pertinently, the majority of the SNPs associated with T2DM affect intravenous glucose 3 

tolerance rather than insulin resistance in humans, pointing to defects in beta-cell function 4 

[89], whereas for obesity BMI-associated loci tend to overlap with feeding and fasting 5 

circuits or molecules involved in neurodevelopment [90]. Despite this, few of the GWAS hits 6 

identified to date have been functionally validated for their effects on metabolism in animal 7 

models. This may reflect: 1) the time and investment taken to generate and phenotype animal 8 

models relative to the pace at which international consortia are identifying new gene variants; 9 

and 2) the difficulty assigning GWAS signals to specific genes, since they generally map to 10 

non-coding regions of the genome. Whilst functional validation could be speeded up by using 11 

non-mammalian species such as drosophila and zebrafish, or even cells lines, these do not 12 

allow assessment of gene effects on multi-systemic traits such as glucose homeostasis and 13 

adiposity.  14 

Most studies to date have relied on global knockout or Cre-Lox models to delete the gene of 15 

interest. Whilst this allows functional interrogation of gene variants that have restricted 16 

expression patterns (e.g. SLC30A8- largely expressed in the islet and retina [91]), it is less 17 

useful for those that are ubiquitously expressed. In such cases, conditional approaches may 18 

allow the identification of the tissue(s) where the variant may act to influence phenotype 19 

(with the important caveat that many SNPs may also affect neighboring loci). Whether the 20 

gene should be deleted (e.g. with Cre-Lox) or overexpressed (e.g. with Tet-ON) can be 21 

determined from expression quantitative trait loci (eQTL) analyses, which link possession of 22 

the variant with up- or down-regulation of gene expression. It should also be noted that SNPs 23 

may not necessarily occur in isolation, and the contributions of gene interactions to 24 

phenotype may require more than one gene to be manipulated. Another caveat is that over-25 
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expression or deletion may not recapitulate the subtle changes in expression levels that occur 1 

in humans with possession of gene variants, and variants may affect neighboring gene loci 2 

[92].  3 

Nonetheless, animal models have already provided unique insight into GWAS-identified 4 

genes, often revealing new facets of cell function along the way, even if this is not necessarily 5 

how gene variants may influence disease in humans (due to the caveats listed above). FTO 6 

encodes 2-Oxoglutarate–Dependent Nucleic Acid Demethylase, and SNPs in this gene are 7 

associated with obesity [93]. Fto-/- mice have been shown to possess reduced fat mass and 8 

increased energy expenditure, pointing to a protective role of FTO in obesity (reviewed in 9 

[90]). Although hypothalamic FTO expression levels are high, regional Cre-mediated FTO 10 

deletion led to decreased food intake without effects on energy expenditure and body 11 

composition, pointing to effects if FTO deficiency in multiple body compartments, including 12 

the brain and adipose tissue [90]. Gene variants in TCF7L2, encoding for a transcription 13 

factor downstream of Wnt signalling, are strongly associated with T2DM. As predicted from 14 

RNA-silencing studies in isolated tissue [94], Tcf7l2 deletion specifically in beta-cells using 15 

Ins1Cre+/-:Tcf7l2-/- mice impairs glucose tolerance [95]. Another gene strongly associated 16 

with T2DM is SLC30A8, which encodes zinc transporter 8 (ZnT8), involved in importing 17 

Zn2+ into the beta-cell cytoplasm where it is required for proper insulin crystallisation [91]. 18 

Global ZnT8 results in glucose intolerance, although depending on the colony studied this 19 

was sex-specific, disappeared with age, or did not occur at all (reviewed in [92]). The reasons 20 

for this are unknown, but may involve metabolic adaptation, genetic background (mixed 21 

versus C57BL6) or housing conditions [92]. By contrast beta-cell-specific knockout of ZnT8 22 

consistently reveals impaired glucose tolerance [96, 97], whilst beta-cell-specific over-23 

expression mildly improves the same parameter [97]. Together, these data show the utility of 24 
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animal models for functionally validating GWAS, allowing conditional gene KO or over-1 

expression in the in vivo setting.  2 

See Schematic 1 for a diabetes mouse model phenotyping workflow 3 

Mouse models for understanding gene by environment interactions in metabolic disease 4 

Complex metabolic diseases such as obesity and T2DM typically result from gene-by-5 

environment (GXE) interactions. Whilst the genetic risk factors for development of metabolic 6 

disease can be identified using GWAS and genetically-engineered mouse models, GXE are 7 

more difficult to dissect due to the inability to control environment (in human studies at 8 

least), and the single genetic background of inbred mice. The latter can be partly 9 

circumvented using recombinant inbred strain families, genetic reference populations (GRP) 10 

where an isogenic line represents each genotype due to brother-sister mating, thus resembling 11 

rare human populations [98]. This allows studies to be replicated in multiple cohorts from 12 

lines spanning differing levels of genetic complexity [98]. Combined with eQTL analyses, 13 

GRPs provide a powerful platform to understand how certain regions of the genome affect 14 

phenotype, and can even be used to define new gene candidates for human metabolic disease 15 

by comparing against parental sequence data (“reverse” GWAS) [99]. For example, using 16 

140 clinical phenotypes from the BXD GRP showed metabolic traits (glucose tolerance, body 17 

composition, blood pressure etc.) were shown to be highly variable and hereditary, and could 18 

be associated with known gene variants [99].  19 

CRISPR-Cas9: the future for models of metabolic disease? 20 

CRISPR-Cas9 technology allows single nucleotides to be edited with high precision in the 21 

endogenous genome, opening up the possibility to produce mouse models harboring identical 22 

gene variants to those identified by GWAS in humans. This is showcased by studies of FTO 23 
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where the rs1421085 T-to-C single nucleotide polymorphism was found to switch BAT to 1 

WAT, reducing mitochondrial thermogenesis and increasing lipid storage [100]. CRISPR-2 

Cas9 replication of the T-to-C in the equivalent primary adipocytes from a non-risk allele 3 

carrier mimicked this switch [100]. Whilst similar studies can be envisaged in rodents, 4 

especially where genotyped human tissue is difficult to access (e.g. pancreas), it is worth 5 

noting that the sequences housing gene variants identified by GWAS in man may not be 6 

present in mice [92]. Lastly, whilst CRISPR-Cas9 can be used to create Cre deleter lines, as 7 

alluded to above [43], homologous recombination still remains a rare event conferring 8 

minimal advantages over conventional knock-in approaches at present.  9 

Summary 10 

Mouse models have been incredibly important for furthering our understanding of metabolic 11 

disease. An extensive genetic toolbox of mice now exists, allowing the precise spatial and 12 

temporal manipulation of gene expression in cells and tissues involved in metabolic 13 

homeostasis. From this review, it should be clear that no perfect animal model exists, and 14 

lines of enquiry should always be complemented and confirmed by other experimental 15 

models (e.g. cell lines, human tissue, clinical data), and preferably a second mouse model, 16 

where a well-validated option exists. Interpretation of data from mouse experiments also 17 

requires careful consideration of the controls. For example, in Cre-Lox models, the floxed 18 

allele should be maintained on a varying Cre background and vice versa to determine any 19 

effects of the Cre per se or interactions between loss/gain of a Cre on a floxed background or 20 

vice versa. Similarly, animals fed HFD should always be assessed in parallel to littermates 21 

fed standard chow to avoid the dataset being confounded by heterogeneity in responsiveness. 22 

Lastly, there is an assumption that all animal facilities are the same. However, small 23 

variations in housing conditions (light, temperature, noise) have large effects on metabolic 24 
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parameters. We should therefore work toward better enforced consensus guidelines that 1 

regulate the housing conditions for animal models of metabolic disease.   2 

Practice points 3 

• Metabolic disorders stem from a complex interplay between different cells and 4 

tissues. 5 

• Metabolic disease such as obesity and T2DM are polygenic and strongly influenced 6 

by environment. 7 

• Mouse models with single genetic backgrounds allow the contributions of specific 8 

cells and tissues to metabolic homeostasis to be dissected out.  9 

• Genetic reference populations allow the effect of environment on phenotypic traits to 10 

be better understood.  11 

• No mouse model is perfect and careful attention should be paid to controls and 12 

housing conditions.   13 

• Future studies may rely more and more on CRISPR-Cas9, which allows precise gene 14 

editing.  15 

Research Agenda 16 

• Mouse models that better mimic human obesity and diabetes progression are required, 17 

whether spontaneous mutation, caloric excess or genetic mutants.  18 

• Consensus guidelines are required for mouse metabolic phenotyping, including 19 

standardised driver/deleter-line validation and housing conditions. 20 

• Use of “open-source” genetically-modified mouse depositories should be encouraged, 21 

as this will accelerate phenotyping, as well as help uncover any potential issues more 22 

quickly.  23 
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Schematics and Tables 1 

 2 

Schematic 1: diabetes mouse model phenotyping workflow  3 
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Schematic 2 obesity mouse model phenotyping workflow 2 
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Table 1: Spontaneous mutation and caloric excess mouse models 1 

Cause Strain Comments References 
Spontaneous mutation 
in leptin (Lepob) gene 

Obese or ob/ob • Rapid weight gain.  
• Hyperphagia. 
• Insulin resistance. 
• Hyperinsulinemia. 
• Altered energy expenditure. 
• Dyslipidemia (although HDL and 

not LDL like humans). 
• Transient hyperglycemia (abates 

from 14-16 wks). 
• Model of rare monogenic obesity. 

 

[2, 3]. 

Spontaneous mutation 
in leptin receptor (Lepr) 
gene 

Diabetes or db/db • Similar to ob/ob strain. 
• Infertility. 
• Sex-specific metabolic phenotype. 
• Metabolism may be improved in 

heterozygotes. 
• Model of rare monogenic obesity. 

 

[8-10] 

Inheritance of single 
recessive Tannidd1 
gene 

TALLYHO JngJ 
mouse 

• Hyperglycemia and 
hyperinsulinemia but without 
hypoleptinermia. 

• Gradual onset phenotype. 
• Preserved energy balance. 
• Polygenic T2D secondary to 

obesity model. 
• Controls complicated by mixed 

genetic background. 
 

[11, 12] 

60% calories by fat High fat diet (HFD) 
mouse 

• Moderate weight gain. 
• Hyperglycemia.  
• Hyperinsulinemia. 
• Insulin resistance.  
• Impaired insulin release.  
• Hypertension. 
• Adiposity. 
• Heterogeneity in responsiveness 

to HFD (some animals are low 
responders). 

• Strain and sex-dependent. 

[13, 14, 17, 18] 
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Table 2: Pancreatic Cre-deleter lines for diabetes research 1 

Cell type Promoter Comments References 
Beta-cell  Rat insulin promoter 

(RIP) (also termed 
Ins2) 

• Good recombination efficiency in 
beta-cells. 

• Expression in various brain 
regions depending upon strain 
used. 

• GH minigene may be present. 
 

[36, 37, 41] 

Endocrine and 
exocrine pancreas 

Pancreatic and 
duodenal homeobox 
1 (Pdx1) 
 
(non-inducible) 

• Good recombination efficiency in 
beta-cells. 

• Expression in the hypothalamus.  
• Pancreas-wide deletion. 
• GH minigene may be present. 

 
 

[36, 37, 41] 

Beta-cell  
 
Or 
 
Endocrine and 
exocrine pancreas 

Pancreatic and 
duodenal homeobox 
1 (Pdx1) 
 
(tamoxifen-inducible) 

• Moderate recombination 
efficiency in beta-cells. 

• Expression in the hypothalamus 
depending on strain. 

• Some strains show no 
recombination in brain. 

• Beta-cell-specific if activated in 
adult. 

• GH minigene may be present. 
 
 

[37, 39]. 

Beta-cell Insulin 1 (Ins1) 
 
(transgenic) 

• Good recombination efficiency in 
beta-cells. 

• Some strains show no 
recombination in brain. 

• GH minigene may be present. 
 
 

[37, 41] 

Beta-cell Insulin 1 (Ins1) 
 
(knock-in) 

• Excellent recombination efficiency 
in beta-cells. 

• Virtually no leakiness. 
• More natural gene expression due 

to use of endogenous locus. 
• No GH minigene present. 
• Recently developed strain- further 

phenotypic validation required.  
 

[40, 45] 

Alpha-cell 
 
L-cell 

Glucagon (Gcg) 
 
(Preproglucagon, 
Cre) 

• Recombination efficiency in 
alpha-cells has declined since line 
creation. 

• Poor recombination efficiency 
(~30%) in enteroendocrine L-
cells. 

• Haploinsuffiency due to loss of a 
preproglucagon (Ppg) gene. 
 

[25, 36, 43-45]. 

Alpha-cell 
 
L-cell 

Glucagon (Gcg) 
 
(Proglucagon, iCre) 
 

• Good recombination efficiency in 
alpha-cells.  

• Good recombination efficiency in 
enteroendocrine L-cells.  

• Some expression in the beta-cell 
complement (~20%). 

• Hindbrain expression. 
 

[44, 45] 

Alpha-cell 
 
 

Glucagon (Gcg) 
 
(Glucagon, Cre-ER, 

• Excellent recombination efficiency 
in alpha-cells.  

• Poor recombination efficiency in 

[43]. 

37 
 



CRISPR) 
 

enteroendocrine L-cells.  
• No haploinsufficiency. 

 
Delta-cell 
 
 

Somatostain (Sst) 
 
 

• Good recombination efficiency in 
delta-cells. 

• Sst gene depletion in brain? 
• General lack of phenotypic 

validation. 
 

[35, 46]. 
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Table 3: Muscle, liver and adipose Cre-deleter lines for obesity and diabetes research 1 

Cell type Promoter Comments References 
Muscle  Muscle Creatine 

Kinase (MCK) 
 
 
 

• Good recombination efficiency in 
skeletal and cardiac muscle. 

• Expression restrained during 
development. 

[48] 

Muscle Human Alpha-
Skeletal Actin   
(HSA) 
 
(HSA-Cre and HSA-
Cre-ERT2) 

• Adult striated muscle fibres and 
embryonic striated muscle cells of 
the somites and heart 

• Tamoxifen inducible version with 
good temporal regulation. 

[49] 
 
 
 

Muscle Myogenic Factor 5 
(Myf5) 
 
 

• Cre expression in skeletal muscle, 
dermis. 

• Cre expression also in non-
muscle. 
 

[50] 

Muscle Myosin Light Chain 
1/3 fast 
(MLC1/3f) 
 
 

• Cre recombinase expression in 
skeletal muscle tissue, including 
gastrocnemius, tibialis anterior 
and biceps femoris muscles. 

• Cre expression not detected in 
brain, liver, heart or stomach. 
 

[51] 

Muscle Myogenin 
Differentiation 1 
(MyoD1) 

• Cre expression in committed 
myogenic cells and skeletal 
muscle.  
 

[52] 

Muscle Myogenin (MyoG) • Recombination good in all skeletal 
muscle.  
 

[53] 

Muscle Paired Box 7 (Pax7) 
 
(Pax7-Cre, Pax7-
CreER, Pax7-
CreERT2) 
 

• Cre expression in progenitor cells 
of skeletal muscle lineage and 
satellite cells. 

• Tamoxifen-inducible expression 
available, leading to ablation of 
satellite cells. 

 

[54] 
 
 

Liver 
 
 

Albumin 
 
(Alb-Cre, SA-Cre-
ERT2) 
 
 

• Efficient recombination in 
hepatocytes  

• Good temporal resolution with 
tamoxifen in inducible Cre-line 

 

[55, 56]  

Liver Transthyretin 
 
(TTR-Cre, TTR-
CreER) 

• Deletion in foetal liver, visceral 
endoderm and yolk sac 

• Tamoxifen inducible version has 
specific recombination in foetal 
and adult liver. 
 

[57, 58] 

Liver Albumin+Alpha 
fetoprotein 
(Alfp-Cre) 

• Liver specific Cre-recombinase 
expression. 

• Possible expression of human 
growth hormone from transgene. 
 

[59] 

Adipose Fatty Acid binding 
protein 4 
(aP2) 

• Recombination in adipocytes, 
adipocyte precursor, brain, 
embryonic tissues, endothelial 
cells, macrophages. 

• Differing recombination 
efficiencies in WAT vs BAT. 

[62] 

Adipose Adiponectin 
(Adipoq-Cre, Adipoq-

• High specificity for adipocytes. 
• Tamoxifen-inducible version with 

[63] 
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CreERT) good temporal resolution and cell 
specificity. 
 

Adipose Platelet derived 
growth factor alpha 
(Pdgfrα-Cre, Pdgfrα-
CreERT) 

• Cre expresson in adipocyte 
precursor cells in WAT. 

• Tamoxifen-inducible version with 
good temporal resolution and cell 
specificity. 
 

[66] 
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