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a b s t r a c t

This study implements a two-box model coupled with ultrafine particle (UFP) multicomponent micro-
physics for a compartmentalised street canyon. Canyon compartmentalisation can be described parsi-
moniously by three parameters relating to the features of the canyon and the atmospheric state outside
the canyon, i.e. the heterogeneity coefficient, the vortex-to-vortex exchange velocity, and the box height
ratio. The quasi-steady solutions for the two compartments represent a balance among emissions,
microphysical aerosol dynamics (i.e. evaporation/condensation of semi-volatiles, SVOCs), and exchange
processes, none of which is negligible. This coupled two-box model can capture significant contrasts in
UFP number concentrations and a measure of the volatility of the multi-SVOC-particles in the lower and
upper canyon. Modelled ground-level UFP number concentrations vary across nucleation, Aitken, and
accumulation particle modes as well-defined monotonic functions of canyon compartmentalisation
parameters. Compared with the two-box model, a classic one-box model (without canyon compart-
mentalisation) leads to underestimation of UFP number concentrations by several tens of percent
typically. By quantifying the effects of canyon compartmentalisation, this study provides a framework for
understanding how canyon geometry and the presence of street trees, street furniture, and architectural
features interact with the large-scale atmospheric flow to determine ground-level pollutant
concentrations.

© 2018 Published by Elsevier Ltd.
1. Introduction

Urban air pollution induced by road traffic is a key environ-
mental concern (Murena et al., 2009). As one of the major urban
pollutants, particulate matter (PM) has received much attention in
the scientific community (Dall'Osto et al., 2011; Heal et al., 2012).
PM10 (with an aerodynamic diameter dp< 10 mm) and PM2.5
(dp< 2.5 mm) are currently regulated in terms of the mass con-
centrations of particles (US EPA, 2017b; European Commission,
2017). Although regulations for ultrafine particle (UFP or PM0.1,
dp< 0.1 mm) do not yet exist, UFP is a very significant contribution
to total particle number concentrations (Harrison et al., 2000). UFP
may accumulate in the lungs (Panis et al., 2010) or penetrate cells/
by Dr. Hageman Kimberly Jill.
tissue (Geiser et al., 2005), causing health effects because of their
small sizes. Semi-volatile components of UFP may also contribute
to secondary organic aerosol formation (Baldauf et al., 2016).

An urban street canyon is a linear urban feature having buildings
on both sides of a street (Li et al., 2008). In such an environment,
ground-level atmospheric flow is restricted by the buildings, which
may lead to reduced air ventilation between the street canyon and
the overlying atmospheric background (Salim et al., 2011). Ac-
cording to the canyon aspect ratio (AR, the ratio of building heightH
to street width W), street canyons may be categorized into deep
(AR�2), regular (0< AR<2), and avenue (AR�0.5) (Vardoulakis
et al., 2003). Deep street canyons present worst-case scenarios for
the dispersion of air pollutants (Li et al., 2009), since there may be
multiple segregated vortices formed in the canyon, which can lead
to even poorer ventilation conditions. Below, we call such segre-
gated inhibition of mixing within the street canyon, compartmen-
talisation. The presence of street trees, street furniture, and
architectural features can also lead to compartmentalisation in
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shallower street canyons and may create multiple split vortices
with reduced exchange. Street trees (Gromke et al., 2008) or
architectural elements, e.g. roof shapes (Takano and Moonen,
2013), balconies (Murena and Mele, 2016) and elevated express-
ways (Huang and Zhou, 2013), may produce an internal ‘lid’ that
constrains the height of the primary street vortex (Gromke and
Ruck, 2007).

The microphysical and/or chemical processes associated with
mixing across compartments, together with emissions and the
exchange with background air can be parsimoniously repre-
sented by a two-box model. The concept of a two-box model was
previously introduced and evaluated against field measurements
(Murena et al., 2011; Murena, 2012) to predict carbon monoxide
(CO) concentration (taken as a passive scalar because of its long
chemical lifetime) in a deep street canyon and no chemical
processes were considered. The traditional one-box model
(originally assuming a single vortex in a regular canyon) may not
be appropriate for deep street canyon scenarios (with canyon
compartmentalisation) (Murena et al., 2011; Murena, 2012).
Zhong et al. (2015) adopted simple NOx-O3 (nitrogen oxides-
ozone) photochemistry into a two-box model (representing two
segregated vortices found in their large eddy simulation LES of a
deep canyon with AR¼ 2) and there was a good agreement be-
tween the LES model and the two-box model. Zhong et al. (2017)
further coupled more complex O3-NOx-VOC (nitrogen oxides-
ozone-volatile organic compounds) chemistry into both LES and
a two-box model for a deep street canyon. Concentrations of
oxidants were found to be increased by about 30e40% via the
additional OH/HO2 (hydroxyl/hydroperoxyl radicals) chemistry
compared with simple NOx-O3 photochemistry adopted in Zhong
et al. (2015). The pre-processing within the canyon could
enhance oxidant fluxes from the canyon to the overlying atmo-
spheric background, with an even greater effect for deep street
canyons than shallower street canyons. Zhong et al. (2016)
employed the two-box model coupled with O3-NOx-VOC chem-
istry to investigate effects of governing parameters (i.e. hetero-
geneity coefficient, exchange velocity and box height ratio) for a
variety of emission scenarios and to identify under which con-
ditions NO2 (nitrogen dioxide) at the pedestrian level would
exceed its air quality limit value.

The current study extends the two-box modelling approach
by including the multicomponent microphysics of UFP in urban
street canyon compartments. The canyon-box modelling
approach is similar conceptually to that of Pugh et al. (2012b) but
has been coded independently. The UFP code for the present
study is shared with that of CiTTy-Street-UFP (Nikolova et al.,
2016), i.e. the CiTTyCAT (Pugh et al., 2012a) model coupled
with UFP microphysics.
2. Methods

2.1. Framework of a two-box model coupled with UFP

The two-box model based on vortex structure from the LES
model for a deep street canyon (AR¼ 2) was previously imple-
mented for both simple NOx-O3 and more complex O3-NOx-VOC
chemistry, and evaluated against the LES-chemistry models (Zhong
et al., 2015, 2016, 2017). The extension of this simplified two-box
model to the multicomponent microphysics of UFP concerning
emissions, microphysical aerosol dynamics (i.e. evaporation/
condensation of semi-volatiles, SVOCs), and exchange processes in
a compartmentalised street canyon (Fig. 1) for both particulate and
gas phases is described below. For the particulate phase:
dQq;j;U

dt
¼ wt;L

HU

�
Nj;L � Nj;U

�
cq;j;Lmj �

wt;U

HU

�
Nj;U � Nj;b

�
cq;j;Umj

þ DQq;j;U

(1)

dQq;j;L

dt
¼ �wt;L

HL

�
Nj;L � Nj;U

�
cq;j;Lmj þ Eq;j;L þ DQq;j;L (2)

where “q” represents the component q; “j” is the size bin j; “L” and
“U” represent the lower and upper boxes, respectively; “b” repre-
sents the overlying background; “Q” denotes the mass concentra-
tion in the particulate phase; “N” is the number concentration; “c”
is the mass fraction; “m” is the mass of one representative particle
in a sectional bin; “wt” is the exchange velocity (the exchange/
diffusion process are based on the number concentration gradient);
“H” is the height of the box; “E” is the emission rate into the lower
box volume per unit time; DQ denotes the source terms for the
particulate phase from the UFP module due to aerosol trans-
formation processes (e.g. condensation/evaporation in this study).

For the gas phase,

dcq;U
dt

¼ wt;L

HU

�
cq;L � ci;U

��wt;U

HU

�
cq;U � cq;b

�
þ Dcq;U (3)

dcq;L
dt

¼ �wt;L

HL

�
cq;L � cq;U

�þ Eq;L þ Dcq;L (4)

where c is the mass concentration in the gas phase; Dc denotes the
source terms for the gas phase from the UFP module due to aerosol
transformation processes; other symbols are same as those in
Equations (1) and (2). In this study, the source terms (Equations
(1)e(4)) are derived from the UFP module due to particle
condensation/evaporation (further details in Section 2.2), rather
than from the chemistry module in previous studies (Zhong et al.,
2015, 2016, 2017). The number of UFP components used in the
model is 18: 1 non-volatile core and 17 surrogate Semi-Volatile
Organic Compounds (SVOC) (parameterised as n-alkanes from
C16H34 to C32H66) (Nikolova et al., 2016). The present model runs
use 15 sectional size bins, ranging from 6.7 nm to 501.4 nm in a
uniform logarithmic scale. The UFP number concentration in a size
bin is calculated based on the total mass concentrations in a size bin
(divided by the dry aerosol mass per particle in the given size bin).
There are 17 tracers in the gas-phase corresponding to each SVOC
component. Sequential ordinary differential equations in themodel
are solved on a 0.3 s time step for emission/exchange processes and
adaptive time steps for aerosol evaporation/condensation
processes.

For deep canyons (AR� 2), the spontaneous formation of pri-
mary and secondary vortices motivates the use of multiple boxes
(Fig. 1a and b); for other values of AR, street trees, street furniture,
and architectural features may all lead to zones of inhibited mixing
(Fig. 1c and d) that motivate a multi-box approach (Gromke and
Ruck, 2007; Huang and Zhou, 2013; Gromke et al., 2008).

2.2. Condensation/evaporation of semi-volatiles

The condensation/evaporation process of semi-volatiles (SVOCs)
is one of the most important aerosol transformation processes in
predicting the fate of ultrafine particles in urban air (Harrison et al.,
2016). This process is driven by the difference between the partial
pressure of a gas species and its saturation vapour pressure over a
particle surface (Jacobson, 2005), which will alter the size of the
particle. The condensation/evaporation rate of each component (q)



Fig. 1. Framework of the coupled two-box and one-box models: examples of a deep, smooth-walled canyon (aeb) and a regular canyonwith tree canopy interrupting/restricting the
circulation at the lower canyon (ced). “C” and “i” denotes the concentration of ith tracer in both particulate and gas phases (Equations (1)e(4), (15), (16)).
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of SVOCs, i.e. for n-alkanes from C16H34 to C32H66, in a size bin j is
estimated based on the mass flux between the gas phase and
particles, i.e.

dmq;j

dt
¼ aq;jFS

2pdjMqDq

RT

�
e∞q � Xq;ja

q;j
K evapq

�
(5)

where dj is the particle diameter (m);Mq is the molar mass of SVOC
component q (g mol�1), and Xq,j is the mole fraction of component q
in size bin j; Dq is the vapour diffusivity of component q (m2 s�1); R
is the universal gas constant (J mol�1 K�1); T is temperature (K); e∞q
is the ambient partial pressure of component q (Pa), which can be
calculated from gas concentrations of SVOCs via the ideal gas law.
The initial gas conditions for SVOCs are specified as a urban back-
ground site (Harrad et al., 2003) (Table S1); evapq is the saturation
vapour pressure (Pa) of SVOC component q over a pure, flat, surface,
and is estimated at a temperature of 278.15 K representing a winter
scenario (Table S1) based on EPI suite v4.1 (US EPA, 2017a) (widely
used for the estimation of saturation vapour pressures in the
literature (Harrison et al., 2016; Nikolova et al., 2016; Sangiorgi
et al., 2014; Shin et al., 2014; Wei et al., 2016); aq;jK is the Kelvin
effect term of SVOC component q in size bin j:

aq;jK ¼ exp

 
4dvq
RTdj

!
(6)

with d the particle surface tension (Nm�1) and vq the molar volume
of SVOC component q (m3 mol�1); aq;jFS is the Fuchs-Sutugin
correction factor for non-continuous effects:

aq;jFS ¼ 1þ Knj

1þ
�

4
3Aq

þ 0:377
�
Knj þ 4

3Aq
Kn2j

(7)

with Aq the accommodation coefficient for SVOC component q on
the particle surface e a value of 1 is specified for each component
(Julin et al., 2014) and Knj the Knudsen number applicable to the
gas condensing onto, or evaporating from, particles in size bin j:
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Knj ¼
2l
dj

(8)

l is themean free path of the air (m). A positive value of dmq;j

dt (kg s�1)
represents a condensation process (i.e., a positive particle velocity
along the particle-size axis) while a negative value represents an
evaporation process for a SVOC component q at size bin j.

The source term of each component q in the gas phase (Equa-
tions (3) and (4)) due to the condensation and evaporation pro-
cesses can be derived:

Dcq;L ¼ �
X
j

Njdmq;j

dt
(9)

For the particulate phase, the particle would change to a new
size (dn) due to the condensation and evaporation processes and a
redistribution scheme is required to redistribute particle number
and mass concentration onto the sectional size bin. It is assumed
that dn falls between two adjacent sectional size bin, j and jþ1.

Nj ¼
d3jþ1 � d3n
d3jþ1 � d3j

Nn (10)

Njþ1 ¼
d3n � d3j
d3jþ1 � d3j

Nn (11)

Qq;j ¼
d3jþ1 � d3n
d3jþ1 � d3j

Nncq;nmj (12)

Qq;jþ1 ¼
d3n � d3j
d3jþ1 � d3j

Nncq;nmjþ1 (13)

The source term for the particular phase (Equations (1) and (2))
due to the condensation and evaporation processes can be then
diagnosed after the redistribution on a sectional size bin.

Here, we use a simple particle composition metric to show the
impact of compartmentalisation on UFP composition, i.e. the mass-
fraction-weighted SVOC carbon number (MFWCN):

Cj ¼
X17
q¼1

cq;j;SVOCCq (14)

where cq,j,SVOC is the mass fraction of the SVOC component
(excluding non-volatile core) with carbon number, Cq, in size bin j.
2.3. Canyon compartmentalisation

For the purpose of assessing the effect of canyon compartmen-
talisation, the one-box model (assuming a “well-mixed” box for the
whole street canyon without compartmentalisation) is also
configured and can be described below. For the particulate phase:

dQq;j;1

dt
¼ �wt;1

H1

�
Nj;1 � Ni;b

�
cq;j;1mj þ Eq;j;1 þ DQq;j;1 (15)

For the gas phase:

dcq;1
dt

¼ �wt;1

H1

�
cq;1 � cq;1

�þ Eq;1 þ DSq;1 (16)

Similarly, the symbols are represented by “1” while “U” and “L”
are used in the two-box model (Equations (1)e(4)). Deposition of
pollutants to hard or vegetated surfaces within the (one- or two-
box) street canyon is not considered; this has been shown else-
where to be a significant component of the pollutant mass balance
when retention times are high (Pugh et al., 2012b). Using the SVOC
scheme discussed here, and a single-box approach, Nikolova et al.
(2016) calculated UFP number concentrations at steady-state, and
found reductions of ~4% and ~5% in total UFP number for low wind
speed conditions due to deposition and coagulation, respectively.

It is assumed that Ni;L from the more realistic two-box model is
the “true” value of UFP number concentration and there would be
an error if the well-mixed “one-box” model is used to predict the
UFP number concentration in the lower canyon, i.e.

DNj;L ¼ Nj;1 � Nj;L (17)

Further, the percentage of underestimation by the “one-box”
model (compared with the more “realistic” two-box model) to
predict the number concentration in the lower part of the com-
partmentalised canyon (where human exposure takes place) can be
defined as follows:

4j;L ¼
DNj;L

Nj;L
� 100% (18)

Canyon compartmentalisation can be described parsimoniously
by three parameters, i.e. the heterogeneity coefficient (h), the ex-
change velocity ðwt;1Þ, and the box height ratio (a) (See Equations
S1-S7 in Supporting Information for details), representing the in-
fluence of the key features of street canyon and the key drivers of
wind/turbulence. Zhong et al. (2016) defined the heterogeneity
coefficient to represent the spatial variability across the two boxes,
i.e. h ¼ 1� cps;U

cps;1
¼ 1� wt;1

wt;U
(S5) ranging from 0 to 1. A value of h ¼ 0

represents two homogenous (well-mixed) boxes, and a higher
value of h means the concentration difference between the two
boxes would become higher. An increased value of h can be inter-
preted as a reduced exchange between the lower and upper canyon,
which may be associated with less vehicle-induced turbulence,
fewer roughness elements, or the presence of a dense tree canopy
(Pugh et al., 2012b; Vos et al., 2013). The exchange velocity in the
one-box model,wt;1, is defined based on a steady state of the street
canyon system with a passive scalar emission and is dependent
more on the large scale meteorological conditions. An increased
value of wt,1 can be interpreted as a higher wind speed above the
canyon or a higher turbulent intensity near the roof-top level
induced, e.g., by roof-top geometries. The box height ratio is
defined as the ratio of the lower box height to the whole canyon
height, i.e. a ¼ HL=H1 (S3). The box height ratio will be determined
by the street canyon geometry as well as the flow structure
emerging from the interaction with the above-canyon flow. An
increased value of a can be interpreted as a larger vortex below
capped by a smaller vortex above, which may be formed in a
pitched-roof scenario, or when the canyon-bottom air is driven by
thermals due to solar radiation or other heating sources. The ex-
change velocities to be used in the two-box model (Fig. 1) can be
then derived as wt;U ¼ wt;1

1�h (S6) and wt;L ¼ awt;1
h (S7).

The two-box model requires input parameters (such as het-
erogeneity coefficient; exchange velocities; box height ratio; initial/
background/emitted gas and particle composition) and generates
time-dependent gas and particle-number concentrations in the
upper and lower boxes, along with UFP size distributions and size-
dependent particle compositions. The microphysical parameters
(including initial gas concentration and compositional saturation
vapour pressures shown in Table S1) in the UFPmodule are detailed
in Supporting Information. In what follows, we focus on model
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results for scenarios with varied heterogeneity coefficient, ex-
change velocity, and box height ratio, in order to investigate the
interplay between UFP microphysics and in-canyon mixing.

2.4. Model scenarios

An overview of case settings to represent the key parameters in
the two-box model is given in Table 1. In the “BASE” Case, h ¼ 0.5,
wt;1 ¼ 0:02 m s�1 and a¼ 0.5 are set; h ¼ 0.5 reflects a median
level of heterogeneity (Murena et al., 2008); wt;1 ¼ 0:02 m s�1

represents a low wind speed above the street canyon (~2m s�1)
and may be derived based on street canyon large-eddy simulations
(Zhong et al., 2015; Bright et al., 2013); a¼ 0.5 means that the two
boxes have the same volume. Emissions of UFPs are assumed to be
released into the lower box only. The emission size distribution of
UFPs used in this study is a bi-modal log-normal distribution with
peaks at 35 nm and 65 nm (previously used by Nikolova et al.
(2016)), which have a mass fraction of 1% and 90% non-volatile
core, respectively; The fractional composition of SVOC in the par-
ticles (i.e. n-alkanes from C16H34 to C32H66) is then scaled based on
the measured emission data in a road tunnel (He et al., 2008) (a
confined space and less influenced by atmosphere conditions,
which may be used for the specification of traffic emission). The
particle number emission factor is based on Jones and Harrison
(2006). The background UFP size distribution has a major peak at
100 nm with a minor peak at 25 nm, i.e. similar to the curve-fit
profile for BT tower in London (Dall'Osto et al., 2011), represent-
ing an overlying urban background above street canyons which is
less influenced by local emissions. In order to investigate the effect
of one parameter, cases with changes of this parameter are
configured while keeping other parameters same as those in Case
BASE. As the lower canyon is the primary place of interest for hu-
man exposure, this study will mainly focus on the number con-
centration size distribution of UFPs in the lower canyon box for
different scenarios.

3. Results and discussion

3.1. BASE case number concentration size distribution

Fig. 2 (a) illustrates the number concentration size distribution
(NCSD) of UFPs simulated by the two-box model and the one-box
model for Case BASE at a quasi-steady state (Zhong et al., 2016),
here at output time, t¼ 240min (a characteristic time scale for
street canyon exchange may be estimated by H1/wt1). The two-box
model can capture a significant contrast in NCSD between the
Table 1
Overview of the model scenarios.

Case Heterogeneity coefficient (h) Exchange velocity wt,1 (m s�1) Exchan

BASE 0.5 0.02 0.02
h-LL 0.1 0.02 0.10
h-L 0.3 0.02 0.033
h-H 0.7 0.02 0.014
h-HH 0.9 0.02 0.011
wt,1-LL 0.5 0.012 0.012
wt,1-L 0.5 0.016 0.016
wt,1-H 0.5 0.024 0.024
wt,1-HH 0.5 0.028 0.028
a-LL 0.5 0.02 0.004
a-L 0.5 0.02 0.012
a-H 0.5 0.02 0.028
a-HH 0.5 0.02 0.036

Note: ‘BASE’ is the base case. ‘h’ denotes the heterogeneity coefficient; ‘wt,1’ denotes the
and ‘HH’ represent an even lower, lower, higher and even higher value than the correspo
Equations S6 and S7 for the input parameters in the two-box model.
lower and upper boxes. The NCSD in the lower box (where UFP
emissions are released) is more influenced by emissions, with
much higher levels than those in the upper box (which is more
influenced by the overlying background atmosphere). This is
consistent with the findings for photo-chemically reactive gas
species (Zhong et al., 2015, 2016, 2017). The one-boxmodel predicts
a single NCSD between those in the lower and upper box from the
two-box model. There is also clear evidence of evaporation of UFP
for all distributions and the shrinkage of peak diameter (centred at
bin 5 with bin bounds of [19.8 nm, 26.9 nm]) compared with the
UFP emission profile (centred at bin 7 with bin bounds of [36.6 nm,
49.9 nm]), which may be due to the rapid evaporation especially
caused by the lower carbon-number with much higher saturation
vapour pressures (Table S1). The decrease in particle size due to
evaporation of UFP was also indicated by field observations
(Harrison et al., 2016).

The quasi-steady NCSD in the model street canyon environment
is a balance between emissions, aerosol dynamics (e.g. evaporation/
condensation of semi-volatiles), and exchange processes, none of
which is negligible. The results from the one-box model tend to
give underestimations compared with the two-box model in terms
of the lower box concentration. In a deep or poorly mixed com-
partmentalised canyon environment, the single box assumption is
not appropriate and a more “realistic”, but still computationally
tractable, two-box assumption more plausibly represents the sit-
uation. The underestimations by the one-box model are quantified
in following sections for different scenarios.

Fig. 2 (b) further illustrates the mass-fraction-weighted SVOC
carbon number (MFWCN, defined in Equation (14)) for case BASE.
MFWCN represents particle SVOC composition as a single real
number related to the carbon number of each surrogate n-alkane in
the particle. Since saturation vapour pressures decrease exponen-
tially with increasing carbon number (Table S1), a higher MFWCN
means a less volatile particle (as awhole), and vice versa. Therefore,
it is reasonable to use MFWCN as an indicator of an “aggregated
volatility” of a multi-SVOC-particle. Detailed multicomponent mass
concentration size distributions for case BASE are shown in Fig. S1,
where mass concentrations of SVOCs are relatively lower for
smaller size bins (due to strong evaporation).

In the model, size-dependent composition evolves from the
size-independent compositions of the emissions and background
(Fig. 2b), as aerosol particles of a given size relax towards different
quasi-steady MFWCNs in each canyon compartment. Particle
evaporation is important in determining the quasi-steady
MFWCNs; they are not produced by a simple blending of the
emissions and background MFWCNs. The one-box model has
ge velocity wt,L (m s�1) Exchange velocity wt,U (m s�1) Box height ratio (a)

0.04 0.5
0.022 0.5
0.029 0.5
0.067 0.5
0.20 0.5
0.024 0.5
0.032 0.5
0.048 0.5
0.056 0.5
0.04 0.2
0.04 0.35
0.04 0.65
0.04 0.8

exchange velocity in the one-box model; ‘a’ denotes the box height ratio. ‘LL’, ‘L’, ‘H’
nding component in the case BASE, respectively. wt,L and wt,U are derived based on



Fig. 2. (a) Number concentration size distribution of UFP and (b) mass-fraction-weighted SVOC carbon number (MFWCN, Equation (14)), at the quasi-steady state by the 2-box
model and the 1-box model for Case BASE.
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MFWCNs between those for the lower box and the upper box from
the two-box model, but somewhat nearer that of the lower box,
indicating a non-linearity in the dynamical balance among emis-
sions, microphysical aerosol dynamics (i.e. evaporation/condensa-
tion of SVOCs), and exchange processes.
3.2. Effect of heterogeneity coefficient

Fig. 3 (a) illustrates the effect of heterogeneity coefficient (h) on
the NCSD of UFP in the lower canyon at a quasi-steady state, i.e. for
Case h-LL ðh ¼ 0:1Þ, Case h-L ðh ¼ 0:3Þ, Case BASE (h¼0.5), Case h-H
(h¼0.7) and Case h-HH (h¼0.9). These profiles have similar patterns
with peak diameters in bin 5 ([19.8 nm, 26.9 nm]). As expected, the
number concentrations in the lower canyon increase with the in-
crease in heterogeneity coefficient. This lower-box enhancement is
less significant for both small particles (sub-10 nm with very fast
evaporation due to the Kelvin effect) and very large particles (di-
ameters above 200 nm, with more limited capacity to change size
by evaporation due to Kelvin effect). Lower heterogeneity co-
efficients may be attributed to more local traffic-induced turbu-
lence in the lower canyon (Murena et al., 2011) and less dense tree
canopy (Gromke and Ruck, 2012), which would increase the
ventilation between the lower and upper canyon boxes and thereby
increasing the removal rate of particles from the pedestrian level to
higher altitudes of the street canyon. Fig. 3 (b) illustrates the effect
of heterogeneity coefficient on number concentrations of UFP for
different modes, i.e. integrating the number size distribution in
Fig. 3 (a) over nucleation mode (dp: <30 nm), Aitken mode (dp:
30e100 nm) and accumulation mode (dp: >100 nm), in the lower
canyon at quasi-steady state. In general, the number concentrations
of UFP at those modes increase with the increase in the heteroge-
neity coefficient, also indicated by Fig. 3 (a). The number concen-
trations of UFP have the lowest values and slopes (as a function of
the heterogeneity coefficient) in the accumulation mode, followed
by the nucleation mode and then the Aitken mode. This new
finding of different slopes per mode suggests that the variation of
NCSD with different values of h (associated with in-canyon venti-
lation) is not constant with particle size. The shallowest slope, for
the accumulation mode, is possibly due to the relatively lower UFP
emissions in that mode. The nucleation mode has relatively higher
slope, partially attributed to the additional source of particles into
this mode from the evaporation of particles in the Aitkenmode. The
highest slope, in the Aitken mode, is attributed to the fact that the
peak diameter of UFP emissions is in the Aitken mode.

Fig. 3 (c) illustrates the percentage of underestimation by the
‘one-box’model on the NCSD in the lower canyon under a variety of
heterogeneity coefficients (h), compared to the NCSD from the two-
box model. The underestimation in the number concentration in
the lower canyon increases with the heterogeneity coefficient (e.g.
as local traffic-induced turbulence decreases or tree canopy density
increases) and is higher for smaller size bins (where evaporation is
more dominant than larger size bins). The underestimation could
reach up to about 48% for bin 1 in Case HC-HH and can be as low as
about 5% for bin 15 in Case HC-LL. Fig. 3 (d) further shows that the
percentage of underestimation by the ‘one-box’ model is more
pronounced in nucleation mode than other modes (Aitken mode
followed by accumulation mode). This may indicate that the
diameter shrinkage (from other modes to nucleation mode) due to
the evaporation would increase the error due to the single well-
mixed box assumption.
3.3. Effect of exchange velocity

Fig. 4 (a) illustrates the effect of exchange velocity (wt,1) on NCSD
of UFP in the lower canyon at the quasi-steady state, i.e. for Case
wt,1-LL (wt,1¼0.012m s�1), Case wt,1-L (wt,1¼0.016m s�1), Case
BASE (wt,1¼0.02m s�1), Case wt,1-H (wt,1¼0.024m s�1) and Case
wt,1-HH (wt,1¼0.028m s�1). The exchange velocity may be signif-
icantly influenced by the external wind and turbulence above the
canyon, as well as the atmospheric stability (Ramamurthy et al.,
2007). The model predicts that the NCSD of UFP is higher when
the exchange velocity is lower; this behaviour is especially pro-
nounced for bins near the nucleation-mode peak diameters (in bin
5 with bin bounds of [19.8 nm, 26.9 nm]). The lowest exchange
velocity (0.012m s�1) in the Case EX-LL represents the worst
ventilation scenarios and the NCSD is highest; Particles are not
efficiently ventilated out of the street canyon under lower exchange
velocities. This model behaviour is expected: under low wind
conditions there will be poor ventilation and particles/pollutants
will tend to be trapped in the street canyon; and this effect will be
size-dependent because of the different concentration gradients for
different particle sizes (cf. the background and box NCSDs in
Fig. 4a). Fig. 4 (b) also shows that the number concentrations in the
Aitken mode drop more quickly as the exchange velocity increases



Fig. 3. Effect of heterogeneity coefficient (h) on (a) number concentration size distribution of UFP, (b) number concentrations of UFP for different modes, (c) the percentage of
underestimation by the ‘one-box’ model in different size and (d) in different modes, for the lower canyon at the quasi-steady state.
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than the nucleation mode. The number concentration in the
accumulation mode decreases modestly with the increase in the
exchange velocity. The accumulation mode may be less influenced
by evaporation and more influenced by exchange. The effect of
evaporation at other modes tends to be more significant.

Fig. 4 (c) shows the percentage of underestimation by the ‘one-
box’model on the number concentration in the lower canyon under
a variety of exchange velocities (wt,1), compared to the two-box
model. Underestimation by the ‘one-box’ model decreases
slightly with an increase in the exchange velocity, and this effect is
more significant for larger diameter particles. The ‘one-box’ model
will perform better for scenarios with stronger wind conditions.
These size-dependent patterns reflect the characteristics for a sin-
gle heterogeneity coefficient (i.e. h¼ 0.5 used for all cases) in Fig. 3
(c). The change of heterogeneity coefficient plays a dominant role in
this underestimation by the ‘one-box’ model in such scenarios.
Fig. 4 (d) further indicates that the percentage of underestimation
by the ‘one-box’ model at the nucleation mode tends to be less
influenced by the changes in exchange velocities, but would have
more significant effect for the accumulation mode. The accumula-
tion mode in the model is closer to a microphysically-passive scalar
and more influenced by the exchange and emissions. On the other
hand, the nucleation mode is influenced significantly by evapora-
tion and the slight changes in the underestimation by the ‘one-box’
model in Fig. 4 (d) indicates that the effect of evaporation is more
pronounced than the effect of exchange.

3.4. Effect of box height ratio

Fig. 5 (a) illustrates the effect of box height ratio (a) on the NCSD
of UFP in the lower canyon at the steady state, i.e. for Case a-LL
(wt;0 ¼ 0.2), Case a-L (a ¼ 0.35), Case BASE (a ¼ 0.5), Case a-H (a
¼ 0.65) and Case a-HH (a ¼ 0.8). Number concentrations of UFP are
significantly influenced by the box height ratio and there are
extremely high number concentrations at the Nucleation mode
peak diameter (bin 5) for the smaller box height ratios. Fig. 5 (b)
shows that the dependence of the number concentrations of UFP on
a has the same rank order of modes as in Fig. 3 (b) and Fig. 4. (b), i.e.
with the highest number concentrations for the Aitken mode fol-
lowed by the nucleation mode and the accumulation mode. Num-
ber concentrations decrease with increased box height ratios for all
modes and those decreases are more pronounced at lower box
height ratios than at higher box height ratios.

Fig. 5 (c) shows the percentage of underestimation by the ‘one-
box’model on the number concentration in the lower canyon under
a variety of box height ratios (a), compared to the two-box model.
As expected, the underestimation by the ‘one-box’ model signifi-
cantly decreases with the increase in the of box height ratio. For



Fig. 4. Effect of exchange velocity (wt,1) on (a) number concentration size distribution of UFP, (b) number concentrations of UFP for different modes, (c) the percentage of un-
derestimation by the ‘one-box’ model in different size and (d) in different modes, for the lower canyon at the quasi-steady state.
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Case a-HH (a ¼ 0.8), this underestimation is smallest among all the
tested cases, ranging from about 15% (bin 1) to about 5% (bin 15).
For higher a values, the upper box is very thin and could serve as a
shear layer at the canyon roof level (in one-boxmodel scenarios). In
this sense, the one-box model would be very close to the two-box
model in terms of predicting the number concentration in the
lower canyon. Fig. 5 (d) further shows that the ‘one-box’ model
performs better for higher box height ratios for all modes. This is
because, at higher box height ratios, the upper box in the two-box
model functions as equivalent to a shear layer in the one-boxmodel
and the one-box model tends to be closer to the two-box model.
The underestimation ‘error’ is larger for the Aitken mode and
nucleation mode.
4. Conclusions

A two-box model for a compartmentalised street canyon was
coupled with ultrafine particle (UFP) microphysics to examine the
number concentration size distribution (NCSD) of UFP at ground-
level (where human exposure occurs). The model captures the
significant contrasts in UFP number concentrations and a measure
of the volatility of the multi-SVOC-particles in the lower and upper
parts of a street canyon. At quasi-steady state in the model, the
NCSD of UFPs in each street canyon compartment is a balance
between the processes of emission (in the lower box only), ex-
change, and evaporation/condensation of semi-volatiles, none of
which is negligible. Modelled ground-level UFP number concen-
trations vary across nucleation, Aitken, and accumulation particle
modes as well-defined monotonic functions of canyon compart-
mentalisation parameters.

Parameters driving the two-box model account for the position
of, and exchange of air between, atmospheric compartments
induced by the atmospheric flow acting on details of canyon ge-
ometry and by the intensity of traffic-induced turbulence. Previous
modelling studies have tended to focus on aspect ratio as the driver
for partitioning of the canyon into relatively isolated compart-
ments; we note that our results apply equally to shallower canyons
where street trees, street furniture, and architectural features
produce compartmentalisation. The dominating processes across
the three-dimensional undulating interfaces between the com-
partments in real-world street canyons are represented by three
adjustable parameters: heterogeneity coefficient, box-height ratio,
and exchange velocity. These conceptual parameters may be
derived empirically from other more complex numerical models or
field measurements. A full parametric sensitivity study is beyond
the scope of the present work. Assuming that a deep or otherwise
compartmentalised canyon is represented by a single well-mixed
box leads to underestimation of the number concentrations of



Fig. 5. Effect of box height ratio (a) on (a) number concentration size distribution of UFP, (b) number concentrations of UFP for different modes, (c) the percentage of underes-
timation by the ‘one-box’ model in different size and (d) in different modes, for the lower canyon at the quasi-steady state.
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UFP by several tens of percent typically (size-dependent). In gen-
eral, the error due to a single well-mixed box assumption is
somewhat larger for the nucleation mode than for the Aitken or
Accumulation modes.

Understanding the role of canyon compartmentalisation in
determining pollutant concentrations provides the opportunity for
new and existing street canyons to be engineered to promote
ventilation (e.g. by increasing the local traffic-related turbulence,
removing any unnecessary architectural elements/trees interfere
with and obstruct the flow, or increasing surface heating), so long
as the primary cause of high pollutant concentrations in street
canyons remains ground-level traffic. When and if urban pollution
sources are predominantly at rooftop level and above (e.g. when
and if woodfuel heating becomes prevalent in urban areas), it may
be advantageous to promote compartmentalisation of street
canyon air to slow pollutant transport to the ground level. The
presence of street vegetation can not only provide a sink term to
reduce pollutant concentration due to deposition, but also reduce
the ventilation conditions and the compartment of the street
canyon to increase pollutant concentration by altering the street
canyon flow. Santiago et al. (2017) investigated extensively the
impact of street vegetation on pollutant concentration, focusing the
comparison between the effect of deposition and the effect of
ventilation reduction. For scenarios with lower tree canopy and
with higher deposition velocity, the effect of deposition would be
more significant than the effect of ventilation reduction, whichmay
lead to lower pollutant concentrations within the street canyon.
When the tree canopy with high-density leaves is close to the
building height, the effect of ventilation reduction would be
dominant and cause an increase in the street level pollutants.
Higher tree canopy may have more effect on the ventilation for the
whole canyon, while the lower tree canopy may have more effect
on the local ventilation and hence the heterogeneity. Deposition
over vegetation was not considered in this study. Future studies
may extend the current two-box street canyonmodel to investigate
extensively the effect of vegetation on pollutant concentrations.
The evaluation of the current model may be against future nu-
merical LES-UFP models.
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