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Atrial	fibrillation	(AF)	affects	over	33	million	individuals	worldwide,1	is	a	common	cause	of	stroke,2	

and	has	a	complex	heritability.3	We	conducted	the	largest	meta-analysis	of	genome-wide	association	

studies	for	AF	to	date,	consisting	of	over	half	a	million	individuals	including	65,446	with	AF.	We	

performed	combined	and	ancestry-specific	meta-analyses	as	well	as	conditional	and	joint	analyses.	In	

total,	we	identified	97	loci	significantly	associated	with	AF	including	67	of	which	were	novel	in	a	

combined-ancestry	analysis,	and	3	in	a	European	specific	analysis.	We	sought	to	identify	AF-associated	

genes	at	the	GWAS	loci	by	performing	RNA-sequencing	and	expression	quantitative	trait	loci	(eQTL)	

analyses	in	101	left	atrial	samples,	the	most	relevant	tissue	for	AF.	We	also	performed	transcriptome-

wide	analyses	that	identified	57	AF-associated	genes,	42	of	which	overlap	with	GWAS	loci.	The	

identified	loci	implicate	genes	enriched	within	cardiac	developmental,	electrophysiological,	and	

contractile	or	structural	pathways.	These	results	extend	our	understanding	of	the	biological	pathways	

underlying	AF	and	may	facilitate	the	development	of	therapeutics	for	AF.		

	

Atrial	fibrillation	(AF)	is	the	most	common	heart	rhythm	disorder,	and	is	a	leading	cause	of	heart	failure	

and	stroke.2	Prior	genome-wide	association	studies	(GWAS)	have	identified	at	least	30	loci	associated	

with	AF.4–9	We	conducted	a	large-scale	analysis	with	over	half	a	million	participants,	including	65,446	

with	AF,	from	more	than	50	studies.	Our	AF	sample	was	composed	of	84.2%	European,	12.5%	Japanese,	

2%	African	American,	and	1.3%	Brazilian	and	Hispanic	populations	(Supplementary	Table	S1).	We	used	

the	Haplotype	Reference	Consortium	(HRC)	reference	panel	to	impute	variants	from	SNP	array	data	for	

75%	of	the	samples	(Figure	1).	In	the	remainder,	we	included	HRC	overlapping	variants	from	1000	

Genomes	imputed	data,	or	from	a	combined	reference	panel.	We	analyzed	8,328,530	common	variants	

(minor	allele	frequency	(MAF)	>5%),	2,884,670	low	frequency	variants	(1%>	MAF	≥5%),	and	936,779	rare	

variants	(MAF	≤1%).	
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The	combined-ancestry	meta-analysis	revealed	94	AF-associated	loci,	67	of	which	were	novel	at	

genome-wide	significance	(P-value	(P)	<	1x10-8).	This	conservative	threshold	accounts	for	testing	

independent	variants	with	MAF	≥0.1%	using	a	Bonferroni	correction,	while	use	of	a	more	commonly	

utilized	threshold	of	5x10-8	resulted	in	the	identification	of	an	additional	10	loci	(Supplementary	Table	

S2).	The	majority	of	sentinel	variants	(N=92)	were	common	(MAF	>5%),	with	relative	risks	ranging	from	

1.04	to	1.55.	Two	low-frequency	sentinel	variants	were	identified	within	the	genes	C1orf185	and	UBE4B	

(Figure	2,	Table	1,	Supplementary	Table	S3,	Supplementary	Figure	S1).		

	

We	then	conducted	a	gene	set	enrichment	analysis	with	the	results	from	the	combined-ancestry	

meta-analysis	using	MAGENTA.	We	identified	55	enriched	gene	sets	or	pathways	that	largely	fall	into	

cardiac	developmental,	electrophysiological,	and	cardiomyocyte	contractile	or	structural	functional	

groups	(Supplementary	Table	S4).	In	total,	48	of	the	67	novel	loci	contain	one	or	more	genes	within	

500kb	of	the	sentinel	variant	that	were	part	of	an	enriched	gene	set	or	pathway	(Supplementary	Figure	

S2).		

	

Next,	we	performed	ancestry-specific	meta-analyses.	Among	individuals	of	European	ancestry,	we	

identified	3	additional	loci	associated	with	AF,	each	of	which	had	a	sub-threshold	association	(P	<	1x10-6)	

in	the	combined-ancestry	meta-analysis.	These	loci	were	located	close	to	or	within	the	genes	CDK6,	

EPHA3,	and	GOSR2	(Supplementary	Table	S5,	Supplementary	Figure	S3-4).	The	region	most	significantly	

associated	with	AF	in	Europeans,	Japanese,	and	African	Americans	(Supplementary	Figure	S5-6)	was	on	

chromosome	4q25,	upstream	of	the	gene	PITX2	(Supplementary	Figure	S7).	We	did	not	observe	

significant	heterogeneity	of	effect	estimates	across	ancestries	for	most	associations,	suggesting	that	top	

genetic	susceptibility	signals	for	AF	have	a	relatively	constant	effect	across	ancestries	(Table	1,	

Supplementary	Table	S3,	Supplementary	Figure	S8).	The	proportion	of	heritability	explained	by	the	loci	
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from	the	European	ancestry	analysis	was	42%,	compared	to	previously	reported	25%10	(Supplementary	

Table	S6).	

	

In	conditional	and	joint	analyses	of	the	European	ancestry	results,	we	found	11	loci	with	multiple,	

independent	AF-associated	signals.	At	a	locus	centered	on	a	cluster	of	sodium	channel	genes,	we	

identified	3	regions	that	independently	associate	with	AF	within	SCN10A,	SCN5A	and	a	third	signal	

between	both	genes.	At	the	previously	described	TBX5	locus,8	we	detected	a	novel	independent	signal	

close	to	TBX3.	Pairwise	linkage	disequilibrium	(LD)	estimates	between	independent	variants	at	both	loci	

were	extremely	low	(r2	<0.03;	Supplementary	Table	S7).	

	

For	13	AF	loci,	the	sentinel	variant	or	a	proxy	(r2	>0.6)	was	a	missense	variant.	A	missense	variant	

(rs11057401)	in	CCDC92	was	predicted	to	be	damaging	by	4	of	5	in	silico	prediction	algorithms	

(Supplementary	Table	S8);	and	was	previously	associated	with	coronary	artery	disease.11	Since	most	AF-

associated	variants	reside	in	non-coding	regions	we	sought	to	determine	if	the	sentinel	variants	or	their	

proxies	(r2	>0.6)	fell	within	regulatory	regions	in	heart	tissues	based	on	chromatin	states	from	the	

Roadmap	Epigenomics	Consortium.	At	64	out	of	67	novel	loci,	variants	were	located	within	regulatory	

elements	(Supplementary	Table	S9).	Compared	to	1000	Genomes	control	loci,	AF-associated	loci	were	

significantly	enriched	within	regulatory	elements	(Supplementary	Figure	S9).		

	

We	then	sought	to	link	risk	variants	to	candidate	genes	by	assessing	their	effect	on	gene	expression	

levels.	First,	since	AF	often	arises	from	the	pulmonary	veins	and	left	atrium	(LA),	we	performed	RNA	

sequencing,	genotyping,	and	eQTL	analyses	in	101	human	left	atrial	samples	without	structural	heart	

disease	from	the	Myocardial	Applied	Genomics	Network	repository.	Second,	we	identified	eQTLs	from	

right	atrial	(RA)	and	left	ventricular	(LV)	cardiac	tissue	from	the	Genotype	Tissue	Expression	(GTEx)	
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project.	Finally,	we	performed	a	transcriptome-wide	analysis	using	the	MetaXcan12	method,	which	infers	

the	association	between	genetically	predicted	gene	expression	and	disease	risk.		

	

We	observed	eQTLs	to	one	or	more	genes	at	17	novel	loci.	Of	the	10	eQTLs	detected	in	LA	tissue	8	

were	also	detected	in	RA	or	LV,	with	consistent	directionality.	For	example,	we	observed	that	rs4484922	

was	an	eQTL	for	CASQ2	in	LA	tissue	only.	Although	we	detected	more	AF	loci	with	eQTLs	in	the	RA	or	LV	

data,	for	many	of	these	(n=8)	the	results	pointed	to	multiple	genes	per	locus	(Supplementary	Table	S10-

12).	LA	eQTL	studies	may	facilitate	the	prioritization	of	candidate	genes,	but	are	currently	limited	by	

sample	size.	

	

For	the	transcriptome-wide	analyses	we	used	GTEx	human	atrial	and	ventricular	expression	data	as	

a	reference.	We	identified	57	genes	significantly	associated	with	AF.	Of	these,	42	genes	were	located	at	

AF	loci,	whereas	the	remaining	15	were	>500	kb	from	an	AF	sentinel	variant	(Supplementary	Table	S13,	

Figure	3).		The	probable	candidate	genes	at	each	locus	are	summarized	in	Supplementary	Table	S12.	For	

example,	at	the	locus	with	lead	variant	rs4484922	we	observed	results	from	all	downstream	analyses	

pointing	towards	the	nearest	gene	CASQ2,	at	rs12908437	towards	the	gene	IGFR1,	and	at	rs113819537	

towards	the	gene	SSPN.	However,	for	many	loci	the	evaluation	of	candidate	genes	remains	challenging.	

	

We	then	sought	to	assess	the	pleiotropic	effects	of	identified	AF	risk	variants.	First,	we	queried	the	

NHGRI-EBI	GWAS	Catalog	to	detect	associations	to	other	phenotypes	(Supplementary	Table	S14).	

Second,	using	the	UK	Biobank,13	we	performed	a	phenome-wide	association	study	(pheWAS)	for	12	AF	

risk	factors	(Supplementary	Table	S15).	As	illustrated	in	Figure	4,	distinct	clusters	of	variants	were	

associated	with	AF	as	well	as	height,	BMI,	and	hypertension.	The	pleiotropic	effects	at	rs880315	(CASZ1)	
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to	blood	pressure14	and	hyptertension14,	also	observed	in	the	UK	Biobank	(hypertension,	P	=	2.56x10-34),	

might	imply	a	shared	molecular	pathway	between	hypertension	and	AF.		

	

In	sum,	we	identified	a	total	of	97	distinct	AF	loci	from	65,446	AF	cases	and	more	than	522,000	

referents.	In	recent	pre-publication	results,	Nielsen	et	al.,	reported	111	loci	from	60,620	AF	cases	and	

more	than	970,000	referents,15	including	more	than	18,000	AF	cases	from	our	prior	report.8	We	

therefore	performed	a	preliminary	meta-analysis	for	the	top	loci	in	non-overlapping	participants	from	

these	two	large	efforts	with	a	resulting	total	of	over	93,000	AF	cases	and	more	than	1	million	referents.		

In	aggregate,	we	identified	at	least	134	distinct	AF-associated	loci	(Supplementary	Table	S16).	

	

Four	major	themes	emerge	from	the	identified	AF	loci.	First,	two	AF	loci	contain	genes	that	are	

primary	targets	for	current	antiarrhythmic	medications	used	to	treat	AF.	The	SCN5A	gene	encodes	a	

sodium	channel	in	the	heart,	and	the	target	of	sodium-channel-blockers	such	as	flecainide	and	

propafenone.	Similarly,	KCNH2	encodes	the	alpha	subunit	of	the	potassium	channel	complex,	the	target	

of	potassium-channel-inhibiting	medications	such	as	amiodarone,	sotalol,	and	dofetilide.	SCN5A	and	

KCNH2	have	previously	been	implicated	in	AF	through	GWAS,8	candidate	gene	analysis16	and	family-

based	studies.17,18	

	

Second,	transcriptional	regulation	appears	to	be	a	key	feature	of	AF	etiology.	TBX3	and	the	adjacent	

gene	TBX5	have	been	shown	to	regulate	the	development	of	the	cardiac	conduction	system.19	Similarly,	

the	NKX2-5	gene	is	an	early	cue	for	cardiac	development	and	has	been	associated	with	congenital	heart	

disease20	and	heart	rate21	(Supplementary	Table	S14).	Further,	reduced	function	of	the	transcription	

factor	PITX2	has	been	associated	with	AF,	shortening	of	the	left	atrial	action	potential,	and	with	
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modulation	of	sodium	channel	blocker	therapy	in	the	adult	left	atrium.22–24	A	transcriptional	co-

regulatory	network	governed	by	TBX5	and	PITX2	has	been	shown	to	be	critical	for	atrial	development.25		

	

Third,	the	transcriptome-wide	analyses	revealed	a	number	of	compelling	findings.	Decreased	

expression	of	PRRX1	associated	with	AF,	a	result	consistent	with	findings	where	reduction	of	PRRX1	in	

zebrafish	and	stem	cell-derived	cardiomyocytes	was	associated	with	action	potential	shortening.26	

Further,	increased	expression	of	TBX5	and	KCNJ5	associated	with	AF,	a	finding	consistent	with	gain-of-

function	mutations	in	TBX5	reported	in	a	family	with	Holt-Oram	syndrome	and	a	high	penetrance	of	

AF.27	Similarly,	KCNJ5	encodes	a	potassium	channel	that	underlies	a	component	of	the	IKAch	current,	a	

channel	that	is	upregulated	in	AF.	Thus,	prior	studies	support	both	the	role	of	PRRX1,	TBX5,	and	KCNJ5	in	

AF	and	the	observed	directionality.	

	

Fourth,	many	of	the	novel	loci	implicate	genes	that	underlie	Mendelian	forms	of	arrhythmia	

syndromes.	Mutations	in	CASQ2	lead	to	catecholaminergic	polymorphic	ventricular	tachycardia.28,29	

Pathogenic	variants	in	PKP2	impair	cardiomyocyte	communication	and	structural	integrity,	and	are	a	

common	cause	of	arrhythmogenic	right	ventricular	cardiomyopathy.30,31	Mutations	in	GJA5,	KCNH2,	

SCN5A,	KCNJ2,	MYH7,	NKX2-5,	have	been	mapped	in	a	variety	of	inherited	arrhythmia,	cardiomyopathy,	

or	conduction	system	diseases.32	Our	observations	highlight	the	pleiotropy	of	variation	in	genes	

specifying	cardiac	conduction,	morphology,	and	function,	and	underscore	the	complex,	polygenic	nature	

of	AF.	

	

In	conclusion,	we	conducted	the	largest	AF	meta-analysis	to	date	and	report	a	more	than	three-fold	

increase	in	the	number	of	loci	associated	with	this	common	arrhythmia.	Our	results	lay	the	groundwork	

for	functional	evaluations	of	genes	implicated	by	AF	risk	loci.	Our	findings	also	broaden	our	
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understanding	of	biological	pathways	involved	in	AF	and	may	facilitate	the	development	of	therapeutics	

for	AF.	
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Figure	1.	Study	and	analysis	flowchart	

	

Top,	overview	of	the	participating	studies,	number	of	AF	cases	and	referents,	and	the	percent	of	

samples	imputed	with	each	reference	panel.	Middle,	summary	of	the	primary	analyses	and	the	newly	

discovered	loci	for	AF.	Bottom,	overview	of	the	secondary	analyses	to	evaluate	AF	risk	variants	and	loci.		
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Figure	2.	Manhattan	plot	of	combined-ancestry	meta-analysis	

	

The	plot	shows	67	novel	(red)	and	27	known	(blue)	genetic	loci	associated	with	AF	at	a	significance	level	

of	P	<	1x10-8	(dashed	line),	for	the	combined-ancestry	meta-analysis.	The	y-axis	has	a	break	between	–

log10(P)	of	30	and	510	to	emphasize	the	novel	loci.	
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Figure	3.	Volcano	plot	of	MetaXcan	results	from	human	heart	tissues.	
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The	plots	show	the	results	from	MetaXcan	based	on	left	ventricle	(a,	N=190)	and	right	atrial	appendage	(b,	N=159)	tissue	from	GTEx.	Each	

plotted	point	represents	the	association	results	from	MetaXcan	for	an	individual	gene.	The	x-axis	shows	the	effect	size	for	MetaXcan	associations	

of	predicted	gene	expression	and	AF	risk	for	each	tested	gene.	The	y-axis	shows	the	–log10(P)	for	the	MetaXcan	associations	per	gene.	Genes	

with	positive	effect	(red)	showed	an	association	of	increased	predicted	gene	expression	with	AF	risk.	Genes	with	negative	effect	(blue)	showed	

an	association	of	decreased	predicted	gene	expression	with	AF	risk.	The	highlighted	genes	are	significant	after	Bonferroni	correction	for	all	

tested	genes	and	tissues	with	a	P	<	5.36x10-6.	The	result	for	one	gene	for	right	atrial	appendage	(b)	is	not	shown	(SNX4,	Effect	=	6.94,	P	=	0.2).	
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Figure	4.	Cross-trait	associations	of	AF	risk	variants	with	AF	risk	factors	in	the	UK	Biobank.	

	

The	heatmap	shows	associations	of	novel	and	known	sentinel	variants	at	AF	risk	loci	from	the	combined-

ancestry	meta-analysis.	Shown	are	variants	and	phenotypes	with	significant	associations	after	multiple	

testing,	correcting	for	12	phenotypes	via	Bonferroni	with	P	<	4.17x10-3.	Listed	next	to	the	phenotypes	on	

the	y-axis	are	the	number	of	cases	for	binary	traits	or	total	sample	size	for	quantitative	traits.	

Hierarchical	clustering	was	performed	on	a	variant	level	using	the	complete	linkage	method	based	on	

Euclidian	distance.	The	coloring	represents	the	Z-score	oriented	towards	AF	risk,	red	indicates	increased	

value	of	trait	or	increased	risk	for	disease	in	the	same	direction	of	AF	risk,	and	blue	indicates	increased	

value	of	trait	or	increased	risk	for	disease	in	the	opposite	direction	of	AF	risk.	Abbreviations,	BMI,	body-

mass	index,	CAD,	coronary	artery	disease,	PVD,	pulmonary	vascular	disease.	
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Table	1.	Novel	loci	in	combined-ancestry	meta-analysis	

Rsid	 Chr	 hg19	 Risk/Ref	
Allele	

RAF	
[%]	 RR	 95%	CI	 P	 Nearest	Gene(s)	 Func	 imp	

Qual	 I2HET	 PHET	

rs187585530	 1	 10167425	 A/G	 0.53	 1.55	 1.36-1.77	 1.18x10-10	 UBE4B	 missense	 0.81	 0	 1.000	
rs880315	 1	 10796866	 C/T	 37	 1.04	 1.03-1.06	 5.04x10-09	 CASZ1	 intronic	 0.97	 40.7	 0.150	
rs146518726	 1	 51535039	 A/G	 3	 1.18	 1.12-1.24	 2.05x10-10	 C1orf185	 intronic	 0.96	 0	 1.000	
rs4484922	 1	 116310818	 G/C	 68	 1.07	 1.05-1.08	 4.57x10-16	 CASQ2	 intronic	 0.98	 0	 0.689	
rs79187193	 1	 147255831	 G/A	 95	 1.12	 1.08-1.16	 8.07x10-10	 GJA5	 upstream	 0.97	 39.8	 0.190	
rs4951261	 1	 205717823	 C/A	 38	 1.05	 1.03-1.06	 1.17x10-09	 NUCKS1	 intronic	 0.99	 0	 0.788	
rs6546620	 2	 26159940	 C/T	 75	 1.07	 1.05-1.09	 2.96x10-14	 KIF3C	 intronic	 0.95	 33	 0.201	
rs6742276	 2	 61768745	 A/G	 61	 1.05	 1.03-1.06	 2.42x10-11	 XPO1	 upstream	 0.99	 0	 0.731	
rs72926475	 2	 86594487	 G/A	 87	 1.07	 1.05-1.10	 3.49x10-10	 REEP1,KDM3A	 intergenic	 0.97	 38.7	 0.180	
rs56181519	 2	 175555714	 C/T	 74	 1.08	 1.06-1.10	 1.52x10-19	 WIPF1,CHRNA1	 intergenic	 0.94	 0	 0.519	
rs295114	 2	 201195602	 C/T	 60	 1.07	 1.05-1.09	 1.76x10-20	 SPATS2L	 intronic	 1.00	 21.9	 0.275	
rs2306272	 3	 66434643	 C/T	 32	 1.05	 1.04-1.07	 4.54x10-11	 LRIG1	 missense	 0.99	 30.6	 0.218	
rs17490701	 3	 111587879	 G/A	 86	 1.07	 1.05-1.10	 5.43x10-11	 PHLDB2	 intronic	 0.97	 46.8	 0.111	
rs4855075	 3	 179170494	 T/C	 14	 1.06	 1.04-1.08	 4.00x10-09	 GNB4	 upstream	 0.95	 10.1	 0.348	
rs3822259	 4	 10118745	 T/G	 68	 1.05	 1.03-1.06	 1.93x10-09	 WDR1	 upstream	 0.96	 0	 0.922	
rs3960788	 4	 103915618	 C/T	 42	 1.05	 1.04-1.07	 2.09x10-12	 SLC9B1	 intronic	 0.98	 35.7	 0.183	
rs55754224	 4	 114428714	 T/C	 25	 1.05	 1.03-1.07	 9.25x10-09	 CAMK2D	 intronic	 0.99	 0	 0.511	
rs10213171	 4	 148937537	 G/C	 8	 1.11	 1.08-1.14	 6.09x10-14	 ARHGAP10	 intronic	 0.96	 0	 0.584	
rs174048	 5	 142650404	 C/T	 16	 1.07	 1.05-1.09	 1.05x10-11	 ARHGAP26,NR3C1	 intergenic	 0.99	 0	 0.852	
rs6882776	 5	 172664163	 G/A	 67	 1.06	 1.05-1.08	 3.18x10-14	 NKX2-5	 upstream	 0.95	 0	 0.858	
rs73366713	 6	 16415751	 G/A	 86	 1.11	 1.09-1.14	 5.80x10-21	 ATXN1	 intronic	 0.94	 0	 0.879	
rs34969716	 6	 18210109	 A/G	 31	 1.09	 1.07-1.11	 2.91x10-25	 KDM1B	 intronic	 0.80	 19.5	 0.290	
rs3176326	 6	 36647289	 G/A	 80	 1.06	 1.04-1.08	 7.95x10-11	 CDKN1A	 intronic	 0.95	 0	 0.450	
rs117984853	 6	 149399100	 T/G	 9	 1.12	 1.09-1.15	 8.38x10-17	 UST	 downstream	 0.83	 56.5	 0.100	
rs55734480	 7	 14372009	 A/G	 27	 1.05	 1.03-1.07	 7.34x10-10	 DGKB	 intronic	 0.94	 0	 0.441	
rs6462078	 7	 28413187	 A/C	 75	 1.06	 1.04-1.08	 1.35x10-11	 CREB5	 intronic	 0.98	 22.2	 0.278	
rs74910854	 7	 74110705	 G/A	 7	 1.10	 1.07-1.13	 3.36x10-09	 GTF2I	 intronic	 0.74	 24.4	 0.265	



Page	25	of	41	

rs62483627	 7	 106856002	 A/G	 24	 1.05	 1.03-1.07	 5.17x10-09	 COG5	 intronic	 0.98	 15.1	 0.318	
rs7789146	 7	 150661409	 G/A	 80	 1.06	 1.04-1.08	 6.51x10-10	 KCNH2	 intronic	 0.96	 66	 0.0193	
rs7846485	 8	 21803735	 C/A	 87	 1.09	 1.07-1.12	 3.71x10-15	 XPO7	 intronic	 0.99	 0	 0.676	
rs62521286	 8	 124551975	 G/A	 7	 1.13	 1.10-1.16	 1.24x10-16	 FBXO32	 intronic	 0.96	 0	 0.678	
rs35006907	 8	 125859817	 A/C	 33	 1.05	 1.03-1.06	 2.76x10-09	 MTSS1,LINC00964	 regulatory	reg.	 0.97	 0	 0.542	
rs6993266	 8	 141762659	 A/G	 54	 1.05	 1.03-1.06	 9.73x10-10	 PTK2	 intronic	 0.99	 5.7	 0.374	
rs4977397	 9	 20235004	 A/G	 57	 1.04	 1.03-1.06	 8.60x10-09	 SLC24A2,MLLT3	 intergenic	 0.95	 38.3	 0.166	
rs4743034	 9	 109632353	 A/G	 23	 1.05	 1.03-1.07	 3.98x10-09	 ZNF462	 intronic	 1.00	 0	 0.963	
rs10760361	 9	 127178266	 G/T	 65	 1.04	 1.03-1.06	 7.03x10-09	 PSMB7	 upstream	 0.97	 0	 0.680	
rs7919685	 10	 65315800	 G/T	 53	 1.06	 1.04-1.07	 5.00x10-16	 REEP3	 intronic	 1.00	 49.2	 0.0965	
rs11001667	 10	 77935345	 G/A	 22	 1.06	 1.05-1.08	 1.06x10-11	 C10orf11	 intronic	 0.98	 26.8	 0.243	
rs1044258	 10	 103605714	 T/C	 66	 1.05	 1.03-1.06	 1.07x10-09	 C10orf76	 3'	UTR	 0.98	 14	 0.325	
rs1822273	 11	 20010513	 G/A	 27	 1.07	 1.05-1.09	 8.99x10-17	 NAV2	 intronic	 0.98	 0	 0.764	
rs949078	 11	 121629007	 C/T	 27	 1.05	 1.04-1.07	 4.77x10-11	 SORL1,MIR100HG	 intergenic	 0.97	 0	 0.600	
rs113819537	 12	 26348429	 C/G	 74	 1.05	 1.03-1.07	 2.23x10-09	 SSPN	 upstream	 0.98	 0	 0.597	
rs12809354	 12	 32978437	 C/T	 15	 1.08	 1.06-1.11	 5.48x10-16	 PKP2	 intronic	 0.97	 31.5	 0.211	
rs7978685	 12	 57103154	 T/C	 28	 1.06	 1.04-1.07	 5.99x10-12	 NACA	 downstream	 0.98	 2.4	 0.393	
rs35349325	 12	 70097464	 T/C	 54	 1.05	 1.04-1.07	 9.04x10-13	 BEST3	 upstream	 0.96	 0	 0.863	
rs11180703	 12	 76223817	 G/A	 56	 1.05	 1.03-1.06	 3.58x10-10	 KRR1,PHLDA1	 intergenic	 0.97	 0	 0.482	
rs12810346	 12	 115091017	 T/C	 15	 1.07	 1.05-1.09	 2.34x10-09	 TBX5-AS1,TBX3	 intergenic	 0.84	 0	 0.428	
rs12298484	 12	 124418674	 C/T	 67	 1.05	 1.03-1.06	 2.05x10-09	 DNAH10	 intronic	 1.00	 0	 0.973	
rs9580438	 13	 23373406	 C/T	 32	 1.06	 1.04-1.07	 1.01x10-13	 LINC00540,BASP1P1	 intergenic	 0.98	 0	 0.485	
rs28631169	 14	 23888183	 T/C	 20	 1.07	 1.05-1.09	 3.80x10-14	 MYH7	 intronic	 0.97	 14.5	 0.319	
rs2145587	 14	 32981484	 A/G	 28	 1.08	 1.06-1.10	 2.32x10-21	 AKAP6	 intronic	 0.94	 0	 0.888	
rs73241997	 14	 35173775	 T/C	 16	 1.07	 1.05-1.10	 1.10x10-13	 SNX6,CFL2	 intergenic	 0.98	 62.2	 0.0318	
rs10873299	 14	 77426711	 A/G	 38	 1.05	 1.03-1.07	 9.62x10-11	 LRRC74,IRF2BPL	 intergenic	 0.96	 4.4	 0.381	
rs62011291	 15	 63800013	 G/A	 23	 1.05	 1.04-1.07	 6.14x10-09	 USP3	 intronic	 0.96	 0	 0.727	
rs12591736	 15	 70454139	 G/A	 82	 1.06	 1.04-1.08	 2.47x10-09	 TLE3,UACA	 intergenic	 0.92	 0	 0.966	
rs12908004	 15	 80676925	 G/A	 16	 1.08	 1.06-1.10	 1.95x10-14	 LINC00927,ARNT2	 intronic	 0.96	 57.4	 0.0520	
rs12908437	 15	 99287375	 T/C	 39	 1.05	 1.03-1.06	 1.25x10-10	 IGF1R	 intronic	 0.98	 0	 0.818	
rs2286466	 16	 2014283	 G/A	 81	 1.07	 1.05-1.09	 3.53x10-14	 RPS2	 synonymous	 0.92	 0	 0.882	
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rs8073937	 17	 7435040	 G/A	 37	 1.05	 1.04-1.07	 1.02x10-11	 POLR2A,TNFSF12	 intergenic	 0.96	 12.3	 0.335	
rs72811294	 17	 12618680	 G/C	 89	 1.07	 1.05-1.09	 6.87x10-09	 MYOCD	 intronic	 0.95	 32.3	 0.206	
rs242557	 17	 44019712	 G/A	 61	 1.04	 1.03-1.06	 4.35x10-09	 MAPT	 intronic	 0.94	 62.1	 0.0319	
rs7219869	 17	 68337185	 G/C	 44	 1.05	 1.03-1.06	 1.49x10-10	 KCNJ2,CASC17	 intergenic	 0.99	 16.1	 0.312	
rs9953366	 18	 46474192	 C/T	 66	 1.05	 1.04-1.07	 9.03x10-11	 SMAD7	 intronic	 0.93	 0	 0.565	
rs2145274	 20	 6572014	 A/C	 91	 1.11	 1.08-1.14	 6.97x10-13	 CASC20,BMP2	 regulatory	reg.	 0.96	 19	 0.295	
rs7269123	 20	 61157939	 C/T	 58	 1.05	 1.03-1.06	 5.59x10-09	 C20orf166	 intronic	 0.85	 68.7	 0.0123	
rs2834618	 21	 36119111	 T/G	 90	 1.12	 1.09-1.14	 2.93x10-18	 LOC100506385	 intronic	 0.93	 21.6	 0.277	
rs465276	 22	 18600583	 G/A	 61	 1.05	 1.04-1.07	 1.84x10-11	 TUBA8	 intronic	 0.90	 0	 0.654	
Abbreviations,	Chr,	chromosome,	CI,	confidence	interval,	Func,	functional	consequence	(most	severe	consequence	by	variant	effect	predictor),	HET,	

heterogeneity,	I2,	I-square,	impQual,	average	imputation	quality,	P,	P-value,	RAF,	risk	allele	frequency,	reg,	region,	RR,	relative	risk.	
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Methods	

Samples	

Participants	from	more	than	50	studies	were	included	in	this	analysis.	Participants	were	collected	from	

both	case-control	studies	for	atrial	fibrillation	(AF)	and	population	based	studies.	The	majority	of	studies	

were	part	of	the	Atrial	Fibrillation	Genetics	(AFGen)	consortium	and	the	Broad	AF	Study	(Broad	AF).	

Additional	summary	level	results	from	the	UK	Biobank	(UKBB)	and	the	Biobank	Japan	(BBJ)	were	

included	(Figure	1).	Cases	include	participants	with	paroxysmal	or	permanent	atrial	fibrillation,	or	atrial	

flutter,	and	referents	were	free	of	these	diagnoses.	Adjudication	of	atrial	fibrillation	for	each	study	is	

described	in	the	Supplementary	Notes.	Ascertainment	of	AF	in	the	UK	Biobank	includes	samples	with	

one	or	more	of	the	following	codes	1)	Non-cancer	illness	code,	self-reported	(1471,	1483),	2)	Operation	

code	(1524),	3)	Diagnoses	–	main/secondary	ICD10	(I48,	I48.0-4,	I48.9),	4)	Underlying	

(primary/secondary)	cause	of	death:	ICD10	(I48,	I48.0-4,	I48.9)	5)	Diagnoses	–	main/secondary	ICD9	

(4273),	6)	Operative	procedures	–	main/secondary	OPCS	(K57.1,	K62.1-4).1–3	Baseline	characteristics	for	

each	study	are	reported	in	Supplementary	Table	S17.	We	analyzed:	55,114	cases	and	482,295	referents	

of	European	ancestry,	1,307	cases	and	7,660	referents	of	African	American	ancestry,	8,180	cases	and	

28,612	referents	of	Japanese	ancestry,	568	cases	and	1,096	referents	from	Brazil	and	277	cases	and	

3,081	referents	of	Hispanic	ethnicity.	Samples	from	the	UK	Biobank,	the	Broad	AF	Study,	and	the	

following	studies	from	the	AFGen	consortium:	SiGN,	EGCUT,	PHB	and	the	Vanderbilt	Atrial	Fibrillation	

Registry,	were	previously	not	included	in	primary	AF	GWAS	discovery	analyses.	There	is	minimal	sample	

overlap	from	the	studies	MGH	AF,	BBJ	and	AFLMU	between	this	and	previous	analyses.	Ethics	approval	

for	participation	was	obtained	individually	by	each	study.	
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Genotyping	and	Genotype	Calling	

Samples	within	the	Broad	AF	Study	were	genotyped	at	the	Broad	Institute	using	the	Infinium	

PsychArray-24	v1.2	Bead	Chip.	They	were	genotyped	in	19	batches,	grouped	by	origin	of	the	samples	

and	with	a	balanced	case	control	mix	on	each	array.	Common	variants	(≥1%	MAF)	were	called	with	

GenomeStudio	v1.6.2.2	and	Birdseed	v1.33,4	while	rare	variants	(<1%	MAF)	were	called	with	zCall.5	

Batch	specific	quality	control	(QC)	was	performed	on	each	call-set	including	>95%	sample	call	rate,	

Hardy-Weinberg-Equilibrium	(HWE)	P	>	1x10-6	and	variant	call-rate	>97%.	For	common	variants,	a	

consensus	merge	was	performed	between	the	call-sets	from	GenomeStudio	and	Birdseed.	For	each	

genotype	only	concordant	calls	between	the	two	algorithms	were	kept.	The	common	variants	from	the	

consensus	call	were	then	combined	with	the	rare	variants	calls	from	the	zCall	algorithm.	Samples	from	

all	batches	were	joined	prior	to	performing	pre-imputation	QC	steps.	Detailed	procedures	for	

genotyping	and	genotype	calling	for	the	SiGN	study,6	the	UK	Biobank,7,8	and	the	Biobank	Japan9	are	

described	elsewhere.	Details	on	genotyping	and	calling	for	all	participating	studies	are	listed	in	

Supplementary	Table	S18.	

	

Imputation	

Pre-imputation	QC	filtering	of	samples	and	variants	was	conducted	based	on	recommended	guidelines	

as	described	in	Supplementary	Table	S19.	QC	steps	were	performed	by	each	study	and	are	described	in	

Supplementary	Table	S18.	Most	studies	with	European	ancestry	samples	performed	imputation	with	

the	HRC	reference	v1.110	panel	on	the	Michigan	Imputation	Server.11	Studies	without	available	HRC	

imputation	were	included	based	on	imputation	to	the	1000	Genomes	Phase	1	integrated	v3	panel	

(March	2012).12	Participants	of	the	SiGN	study	were	imputed	to	a	combined	reference	panel	consisting	

of	1000	Genomes	phase	1	plus	Genome	of	the	Netherlands.13	Studies	from	Brazil	were	imputed	with	the	

HRC	reference	v1.1	panel.	Studies	of	Japanese	ancestry	or	Hispanic	ethnicity	were	imputed	to	the	1000G	
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Phase	1	integrated	v3	panel	(March	2012).	Studies	of	African	American	ancestry	were	imputed	to	the	

HRC	reference	v1.1	panel	or	the	1000G	Phase	1	integrated	v3	panel	(March	2012).	Studies	were	advised	

to	use	the	HRC	preparation	and	checking	tool	(http://www.well.ox.ac.uk/~wrayner/tools/)	prior	to	

imputation.	Prephasing	and	imputation	methods	for	each	study	are	described	in	Supplementary	Table	

S18.		

	

Primary	statistical	analyses		

Genome-wide	association	testing	on	autosomal	chromosomes	was	performed	using	an	additive	genetic	

effect	model	based	on	genotype	probabilities.	Each	ancestry	group	was	analyzed	separately	for	each	

study.	For	the	Broad	AF	Study,	the	primary	statistical	analysis	was	performed	jointly	on	unrelated	

individuals,	excluding	one	of	each	pair	for	related	samples	with	PI_HAT	>0.2	as	calculated	in	PLINK	

v1.90.14,15	Samples	with	sex	mismatches	and	sample	call	rate	<97%	were	excluded.	Ancestry	groups	were	

defined	with	ADMIXTURE16	based	on	genotyped,	independent,	and	high	quality	variants,	using	the	

supervised	method	with	1000Genomes	phase	1	v3	samples	as	reference.	A	cutoff	of	80%	European	

ancestry	was	used	to	define	the	European	subset	and	a	cutoff	of	60%	African	ancestry	was	used	to	

define	the	African	American	subset.	A	Brazilian	cohort	within	the	Broad	AF	Study	was	analyzed	

separately.	Principal	components	were	calculated	within	each	ancestry	group	with	EIGENSTRAT17.	For	

the	UK	Biobank,	a	European	subset	was	selected	within	samples	with	self-reported	white	race	(British,	

Irish,	or	other)	and	similar	genetic	ancestry.	Genetic	similarity	was	defined	with	the	aberrant	package	in	

R18	based	on	principal	components,	following	the	same	method	as	described	for	the	UK	Biobank.8	We	

excluded	samples	with	sex	mismatches,	outliers	in	heterozygosity	and	missing	rates,	samples	that	carry	

sex	chromosome	configurations	other	than	XX	or	XY,	and	samples	that	were	excluded	from	the	kinship	

inference	procedure	as	flagged	in	the	UK	Biobank	QC	file.	We	further	removed	one	sample	for	each	pair	

of	third	degree	or	closer	relatives	(kinship	coefficient	>0.0442),	preferentially	keeping	samples	with	AF	
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case	status.	Primary	analyses	for	all	other	studies	were	performed	at	the	study	sites	and	the	summary	

level	data	of	the	results	were	provided.	Prevalent	cases	were	analyzed	in	a	logistic	regression	model	and	

most	incident	cases	were	analyzed	in	a	Cox	proportional	hazards	model.	Studies	with	both	prevalent	and	

incident	cases	analyzed	these	either	separately	using	a	logistic	regression	model	or	Cox	proportional	

hazards	model	respectively,	or	jointly	in	a	logistic	regression	model	(Supplementary	Table	S18).	

Summary	level	results	were	filtered,	keeping	variants	with	imputation	quality	>0.3	and	MAF	*	

imputation	quality	*	N	events	≥10.	Post-imputation	QC	steps	were	also	performed,	which	included	a	

check	of	allele	frequencies,	inspection	of	Manhattan-plots,	QQ-plots,	PZ-plots,	and	the	distribution	of	

effect	estimates	and	standard	errors,	calculation	of	genomic	inflation	(λGC),	and	consistent	directionality	

for	known	AF	risk	variants.19		

	

Meta-analyses	

Summary	level	results	were	meta-analyzed	jointly	with	METAL	using	a	fixed	effect	model	with	inverse-

variance	weighted	approach,	correcting	for	genomic	control.20	Separate	meta-analyses	were	conducted	

for	each	ancestry.	The	results	for	the	Japanese9	and	Hispanic1	specific	analyses	have	previously	been	

reported	and	were	not	included	as	separate	results.	Variants	were	included	if	they	were	present	in	at	

least	two	studies	and	showed	an	average	MAF	≥0.1%.	To	correct	for	multiple	testing,	a	genome-wide	

significance	threshold	of	P	<	1x10-8	was	applied	for	each	analysis.	This	threshold	is	based	on	a	naive	

Bonferroni	correction	for	independent	variants	with	MAF	≥0.1%,	using	an	LD	threshold	of	r2	<0.8	to	

estimate	the	number	of	independent	variants	based	on	European	ancestry	LD.21	As	these	meta-analyses	

are	based	on	effect	estimates	and	standard	errors	from	both	logistic	regression	and	Cox	proportional	

hazards	regression,	we	report	variant	effects	as	relative	risk,	calculated	as	the	exponential	of	effect	

estimates.	For	sentinel	variants	reaching	genome-wide	significance	in	the	combined	ancestry	meta-

analysis,	we	assessed	if	effect	estimates	were	homogeneous	across	ancestries	by	calculating	an	I2	
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statistic22	across	ancestry	specific	meta-analyses.	We	account	for	multiple	testing	across	94	variants	

using	a	Bonferroni	correction,	resulting	in	a	significance	threshold	of	P	<	5.32x10-4	for	the	heterogeneity	

test.		

	

Broad	AF	LD	reference	and	proxies	

A	linkage	disequilibrium	(LD)	reference	file	was	created	including	26,796	European	ancestry	individuals	

from	the	Broad	AF	study.	The	LD	reference	was	based	on	HRC	imputed	genotypes.	Monomorphic	

variants	and	variants	with	imputation	quality	<0.1	were	removed	prior	to	conversion	to	hard	calls.		A	

genotype	probability	(GP)	threshold	filter	of	GP	>0.8	was	applied	during	hard	call	conversion.	For	multi-

allelic	sites	the	more	common	alleles	were	kept.	Variants	were	included	in	the	final	reference	file	if	the	

variant	call	rate	was	>70%.		

We	identified	proxies	of	sentinel	variants	as	variants	in	LD	of	r2	>0.6	based	on	the	Broad	AF	LD	reference	

file,	using	PLINK	v1.90.14,15		

	

Meta-analysis	of	provisional	loci	

We	meta-analyzed	111	variants	from	externally	reported23	provisional	loci	within	predominantly	non-

overlapping	samples	from	the	Broad	AF	Study,	BBJ,	EGCUT,	PHB,	SiGN	and	the	Vanderbilt	AF	Registry	

with	METAL.	The	predominantly	non-overlapping	samples	included	a	total	of	32,957	AF	cases	and	

83,546	referents,	with	minimal	overlap	from	the	studies	MGH	AF,	BBJ	and	AFLMU.	We	subsequently	

meta-analyzed	these	results	with	the	reported	provisional	results	with	METAL	using	a	fixed	effect	model	

with	inverse-variance	weighted	approach.	We	analyzed	a	total	of	93,577	AF	cases	and	1,053,762	

referents.	We	compared	our	discovery	results	with	the	provisional	loci	using	the	same	significance	cutoff	

of	P	<	5x10-8	for	both	results.	Overlapping	loci	were	identified,	if	the	reported	sentinel	variants	were	
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located	within	500KB	of	each	other.	For	overlapping	loci	with	differing	sentinel	variants	we	calculated	

the	LD	between	the	sentinel	variants,	based	on	the	Broad	AF	LD	reference	panel	of	European	ancestry.	

	

Variant	consequence	on	protein	coding	sequence	

The	most	severe	consequence	for	variants	was	identified	with	the	Ensembl	Variant	Effect	Predictor	

version	89.7	using	RefSeq	as	gene	reference	and	the	option	"pick"	to	identify	one	consequence	per	

variant	with	the	default	pick	order.24	We	queried	sentinel	variants	and	their	proxies	to	identify	tagged	

variants	with	HIGH	and	MODERATE	impact	including	the	following	consequences:	"transcript_ablation",	

"splice_acceptor_variant",	"splice_donor_variant",	"stop_gained",	"frameshift_variant",	"stop_lost",	

"start_lost",	"transcript_amplification",	"inframe_insertion",	"inframe_deletion",	"missense_variant"	

and	"protein_altering_variant".	We	evaluated	each	identified	consequence	on	the	protein	coding	

sequence	with	in	silico	prediction	tools	to	assess	potentially	damaging	effects.	The	evaluation	included	

MutationTaster25	(disease	causing	automatic	or	disease	causing),	SIFT26	(damaging),	LRT27	(deleterious),	

Polyphen228	prediction	based	on	HumDiv	and	HumVar	(probably	damaging	or	possibly	damaging).	

	

Chromatin	states	

1)	Chromatin	state	annotation.	We	identified	chromatin	states	for	sentinel	variants	and	their	proxies	

from	the	Roadmap	Epigenomics	Consortium	25-state	model	(2015)29	using	HaploReg	v4.30	We	looked	for	

chromatin	states	occurring	in	any	included	tissues	as	well	as	chromatin	states	occurring	in	heart	tissue.	

Heart	tissues	include	E065:	Aorta,	E083:	Fetal	Heart,	E095:	Left	Ventricle,	E104:	Right	Atrium	and	E105:	

Right	Ventricle.		

2)	Regulatory	region	enrichment.	1,000	sets	of	control	loci	were	generated	by	matching	SNPs	to	

sentinel	variants	from	the	AF	combined-ancestry	analysis,	with	the	SNPSnap31	tool.	We	used	the	

European	1000	Genomes	Phase	3	population	to	match	via	minor	allele	frequency,	gene	density,	distance	
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to	nearest	gene	and	LD	buddies	using	r2	>0.6	as	LD	cutoff	and	otherwise	default	settings.	We	excluded	

input	SNPs	and	HLA	SNPs	from	the	matched	SNPs.	Loci	were	defined	as	SNPs	and	their	proxies	with	r2	

>0.6	based	on	LD	from	the	European	1000	Genomes	Phase	3	population.	We	identified	SNPs	in	

regulatory	regions	across	all	tissues	and	in	cardiac	tissues	(E065,	E095,	E104,	E105)	based	on	the	

Roadmap	Epigenomics	Consortium	25-state	model	(2015)29	using	HaploReg	v4.30	Regulatory	regions	

included	the	following	states:	2_PromU,	3_PromD1,	4_PromD2,	9_TxReg,	10_TxEnh5,	11_TxEnh3,	

12_TxEnhW,	13_EnhA1,	14_EnhA2,	15_EnhAF,	16_EnhW1,	17_EnhW2,	18_EnhAc,	19_DNase,	22_PromP	

and	23_PromBiv.	We	calculated	the	percent	overlap	of	each	annotation	per	locus,	defined	as	number	of	

SNPs	per	locus	that	fall	in	regulatory	regions	divided	by	total	number	of	SNPs	per	locus.	Statistical	

significance	was	calculated	with	a	permutation	test	from	the	perm	package	in	R.		

	

Expression	quantitative	trait	loci	(eQTL)	

Variants	identified	from	GWAS	were	assessed	for	overlap	with	eQTLs	from	two	sources:	

1)	Left	atrial	(LA)	tissue	from	the	Myocardial	Applied	Genomics	Network	(MAGNet)	repository.	We	

performed	RNA	sequencing	(RNA-seq)	on	101	left	atrial	tissue	samples	from	the	MAGNet	repository	

(http://www.med.upenn.edu/magnet/)	on	the	Illumina	HiSeq	4000	platform	at	the	Broad	Institute	

Genomic	Services.	Left	atrial	tissue	was	obtained	at	the	time	of	cardiac	transplantation	from	normal	

donors	with	no	evidence	of	structural	heart	disease.	All	left	atrial	samples	were	from	individuals	of	

European	ancestry.		A	summary	of	the	clinical	characteristics	for	these	samples	is	shown	in	

Supplementary	Table	S20.	Reads	were	aligned	to	the	reference	genome	by	STAR32	and	assigned	to	

genes	based	on	the	GENCODE	gene	annotation.33	Gene	expression	was	measured	in	fragments	per	

kilobase	of	transcript	per	million	mapped	reads	(FPKM)	and	subsequently	quantile-normalized	and	

adjusted	for	age,	sex,	and	the	first	10	principal	components.	Genotyping	was	performed	on	the	Illumina	

OmniExpressExome-8v1	array	and	imputed	to	the	HRC	reference	panel.	Principal	components	were	
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calculated	with	the	smartpca	program	from	EIGENSOFT17	and	European	ancestry	was	confirmed	by	

assessing	principal	components	in	the	samples	combined	with	1000	Genomes	European	samples.12	

Associations	between	gene	expression	and	genotypes	were	tested	in	a	linear	regression	model	with	

QTLtools,34	in	order	to	detect	cis-eQTLs,	defined	as	eQTLs	within	1MB	of	the	transcription	start	site	of	a	

gene.	To	account	for	multiple	testing,	a	false	discovery	rate	(FDR)	was	used	to	identify	significant	eQTLs	

with	a	FDR	<5%.	

2)	Genotype-Tissue	Expression	(GTEx)	project.35	We	queried	the	GTEx	version	6p	database	for	cis-eQTLs	

with	significant	associations	to	gene	expression	levels	in	the	two	available	heart	tissues:	left	ventricle	

and	right	atrial	appendage.36		

	

Association	between	predicted	gene	expression	and	risk	of	atrial	fibrillation	

To	investigate	the	association	between	predicted	gene	expression	and	AF	disease	risk,	we	employed	the	

method	MetaXcan.37	MetaXcan	extends	the	previous	method	PrediXcan38	to	predict	the	association	

between	gene	expression	and	a	phenotype	of	interest,	using	summary	association	statistics.	Gene	

expression	prediction	models	were	generated	from	eQTL	datasets	using	Elastic-Net	to	identify	the	most	

predictive	set	of	SNPs.	Only	models	that	significantly	predict	gene	expression	in	the	reference	eQTL	

dataset	(FDR	<0.05)	were	considered.	Pre-computed	MetaXcan	models	for	the	two	available	heart	

tissues	(left	ventricle	and	right	atrial	appendage)	in	the	genotype-tissue	expression	project	version	6p	

(GTEx)36	were	used	to	predict	the	association	between	gene	expression	and	risk	of	AF.	Summary	level	

statistics	from	the	combined	ancestry	meta-analysis	were	used	as	input.	4859	genes	were	tested	for	left	

ventricle	and	4467	genes	were	tested	for	right	atrial	appendage.	Bonferroni	correction	was	applied	to	

account	for	the	number	of	genes	tested	across	both	tissues,	resulting	in	a	significance	threshold	of	P	<	

5.36x10-6,	calculated	as	0.05/(4859	+	4467).	
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Conditional	and	joint	analyses	

Conditional	and	joint	analyses39	of	GWAS	summary	statistics	were	performed	with	Genome-wide	

Complex	Trait	Analysis	(GCTA)40	using	a	stepwise	selection	procedure	to	identify	independently-

associated	variants	on	each	chromosome.	We	used	the	Broad	AF	LD	reference	file	for	LD	calculations.		

	

Gene	set	enrichment	analysis	(GSEA)	

A	Meta-Analysis	Gene-set	Enrichment	of	variaNT	Associations	(MAGENTA)	2.441	was	performed	with	a	

combined	gene	set	input	database	(GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA)	based	on	

publicly	available	data.	The	analysis	was	conducted	using	the	summary	level	results	from	the	combined	

ancestry	meta-analysis.	4046	gene	sets	were	included	and	multiple	testing	was	corrected	via	false	

discovery	rate	(FDR).	Gene	sets	were	manually	assigned	to	one	or	more	of	the	following	functional	

groups:	developmental,	electrophysiological,	contractile/structural,	and	other.	Genes	within	500	

kilobases	of	a	sentinel	variant	were	identified	based	on	the	longest	spanning	transcribed	region	in	the	

RefSeq	gene	reference.	For	each	gene	set,	genes	close	to	significant	loci	were	listed.	The	selected	genes	

were	assigned	to	one	or	more	functional	groups	based	on	their	affiliation	to	gene	sets.	Functional	

groups	from	gene	sets	with	a	single	label	were	preferentially	assigned.	

	

Association	with	other	phenotypes	

To	determine	if	the	sentinel	AF	risk	variants	had	associations	with	other	phenotypes,	two	sources	of	

data	were	used:	

1)	GWAS	catalog.	We	queried	the	NHGRI-EBI	Catalog	of	published	genome-wide	association	studies42,43	

(accessed	2017-08-31)	to	detect	associations	of	AF	risk	variants	with	other	phenotypes.	
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2)	UK	Biobank	phenome-wide	association	study	(PheWAS).	A	PheWAS	was	conducted	in	the	UK	

Biobank	in	European	ancestry	individuals.	Ancestry	definition	and	sample	QC	exclusions	were	performed	

in	the	same	manner	as	for	the	primary	statistical	analysis,	as	described	above.	We	further	removed	one	

sample	for	each	pair	of	second	degree	or	closer	relatives	(kinship	coefficient	>0.0884),	preferentially	

keeping	the	sample	with	case	status	or	non-missing	phenotype.	We	included	the	following	phenotypes:	

height,	body	mass	index	(BMI),	smoking,	hypertension,	heart	failure,	stroke,	mitral	regurgitation,	

bradyarrhythmia,	peripheral	vascular	disease	(PVD),	hypercholesterolemia,	coronary	artery	disease	

(CAD),	and	type	II	diabetes.	Phenotype	definitions	are	shown	in	Supplementary	Table	S21.	Number	of	

samples	analyzed,	as	well	as	case	and	referents	counts	for	each	phenotype	are	listed	in	Supplementary	

Table	S22.	Binary	phenotypes	were	analyzed	with	a	logistic	regression	model	and	quantitative	

phenotypes	with	a	linear	regression	model	using	imputed	genotype	dosages	in	PLINK	2.00.15	As	

covariates	we	included	sex,	age	at	first	visit,	genotyping	array,	and	the	first	10	principal	components.		

	

Proportion	of	heritability	explained	

We	calculated	SNP-heritability	(h2g)	of	AF-associated	loci	with	the	REML	algorithm	in	BOLT-LMM	v2.244	in	

120,286	unrelated	samples	of	European	ancestry	from	a	subset	of	the	UK	Biobank	dataset	comprising	a	

prior	interim	release	as	previously	described	in	separate	work	from	our	group.2	We	defined	loci	based	

on	a	1MB	(+/-	500KB)	window	around	84	sentinel	variants	from	the	European	ancestry	meta-analysis.	

We	transformed	the	h2
g	estimates	into	liability	scale	(AF	prevalence	=	2.45%	in	UK	Biobank).	We	then	

calculated	the	proportion	of	h2
g	explained	at	AF	loci	by	dividing	the	h2g	estimate	of	AF-associated	loci	by	

the	total	h2g	for	AF,	that	was	based	on	811,488	LD-pruned	and	hard-called	common	variants	(MAF	≥1%).2		

	

Data	availability	

The	datasets	generated	during	and/or	analyzed	during	the	current	study	are	available	from	the	
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corresponding	author	on	reasonable	request.	The	summary	level	results	of	this	study	are	available	on	

the	Cardiovascular	Disease	Knowledge	Portal	(http://www.broadcvdi.org/).		
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