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Efficient Adaptive Algorithms for Elliptic PDEs with Random Data∗

Alex Bespalov† and Leonardo Rocchi†

Abstract. We present a novel adaptive algorithm implementing the stochastic Galerkin finite element method
for numerical solution of elliptic PDE problems with correlated random data. The algorithm em-
ploys a hierarchical a posteriori error estimation strategy which also provides effective estimates
of the error reduction for enhanced approximations. These error reduction indicators are used in
the algorithm to perform a balanced adaptive refinement of spatial and parametric components of
Galerkin approximations. The results of numerical tests demonstrating the efficiency of the algo-
rithm for three representative PDEs with random coefficients are reported. The software used for
numerical experiments is available online.

Key words. stochastic Galerkin methods, stochastic finite elements, PDEs with random data, adaptive meth-
ods, a posteriori error estimation, singularities, parametric PDEs
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DOI. 10.1137/17M1139928

1. Introduction. The development of efficient numerical algorithms for PDE problems
with correlated random data is important for reliable uncertainty quantification. One of
the methods that is commonly used in this context is the stochastic Galerkin finite element
method (sGFEM). In this method, a parametric reformulation of the given PDE with random
data is discretized, and approximations are sought in tensor product spaces X ⊗ P, where
X is a finite element space associated with a physical domain and P is a set of multivariate
polynomials over a finite-dimensional manifold in the parameter domain. If a large number
of random variables is used to represent the input data and highly refined spatial grids are
used for finite element approximations on the physical domain, then computing the sGFEM
solution becomes prohibitively expensive, due to huge dimension of the space X ⊗ P. One
way to avoid this is to use an adaptive approach, in which spatial (X-) and stochastic (P-)
components of approximations are judiciously chosen and incrementally refined in the course
of numerical computation.

Although adaptive sGFEMs are still in the beginning of their development, there have
been several very recent works that addressed the design and analysis aspects of these methods
(see [10, 5, 11, 7, 12, 13]). In particular, the adaptive algorithms developed in [10, 11] are driven
by spatial and stochastic error indicators derived from explicit residual-based a posteriori error
estimators, whereas local equilibration error estimators are employed in [12].
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244 ALEX BESPALOV AND LEONARDO ROCCHI

The main focus of this paper is on designing efficient adaptive sGFEM algorithms that
ensure a balanced refinement of spatial and stochastic components. Similarly to [10, 11,
12], our adaptive algorithm exploits the energy orthogonality inherent to Galerkin projection
methods and employs Dörfler marking [9] for both spatial finite elements and stochastic basis
functions. However, in contrast to these works, we build upon our results in [5, 7] and use
a posteriori estimates of error reduction to steer adaptive refinement. Another novelty of
our adaptive algorithm is how the balance between spatial and stochastic approximations is
ensured. It is common to perform either spatial or stochastic refinement at each iteration of the
algorithm. Traditionally, the choice between the two refinements is based on the dominant
error estimator contributing to the total error estimate (cf. [10, 11, 7, 12, 13]); we employ
this strategy in Version 1 of our adaptive algorithm. An alternative strategy is implemented
in Version 2 of the algorithm: here, the refinement type is chosen by comparing the error
reduction estimates for marked finite elements and for marked stochastic basis functions.

In this paper, we use representative parametric PDE problems posed over square, L-shaped,
and slit domains to perform a systematic numerical study of the two versions of the adaptive
algorithm. In particular, we compare the performance and convergence properties of both
versions and reveal how the choice of Dörfler marking parameters (for both spatial refinement
and polynomial enrichment) affects the performance of the algorithm for spatially regular and
spatially singular problems.

An outline of the paper is as follows. Section 2 introduces the model problem that can
be seen as a parametric reformulation of a representative elliptic PDE with random data.
In sections 3 and 4, we describe the sGFEM for numerical solution of the model problem,
recall the construction of hierarchical a posteriori error estimators and the associated error
reduction indicators, and discuss computational aspects of our error estimation strategy. In
section 5, two versions of the new adaptive algorithm are presented and described in detail.
The results of numerical experiments are reported and analyzed in section 6.

2. Parametric model problem. Let D ⊂ R2 be a bounded (spatial) domain with a Lip-
schitz polygonal boundary ∂D, and let Γ :=

∏∞
m=1 Γm be the parameter domain, with Γm

being bounded intervals in R. Let H1
0 (D) be the usual Sobolev space of functions in H1(D)

vanishing at the boundary ∂D in the sense of traces, and let 〈·, ·〉 denote the duality pairing
between H1

0 (D) and its dual space H−1(D). We consider the homogeneous Dirichlet problem
for the parametric steady-state diffusion equation

(2.1)
−∇ · (a(x,y)∇u(x,y)) = f(x), x ∈ D, y ∈ Γ,

u(x,y) = 0, x ∈ ∂D, y ∈ Γ,

where f ∈ H−1(D), ∇ denotes differentiation with respect to spatial variables only, and the
parametric diffusion coefficient is represented as

(2.2) a(x,y) = a0(x) +

∞∑
m=1

ymam(x), x ∈ D, y = (y1, y2, . . .) ∈ Γ,

for a family of spatially varying functions am(x), m ∈ N0, and with the series converging
uniformly in L∞(D).

D
ow

nl
oa

de
d 

03
/0

9/
18

 to
 1

47
.1

88
.1

08
.1

79
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

EFFICIENT ADAPTIVE ALGORITHMS FOR PARAMETRIC PDEs 245

As an example, decomposition (2.2) may come from a Karhunen–Loève expansion of a
random field with given covariance function (see, e.g., [17, 2, 22, 19]). In this case, the
parameter-free term a0(x) in (2.2) represents the mean of the random field, the coefficients
am(x), m ∈ N, are orthogonal in L2(D), and the parameters ym, m ∈ N, are the images
of independent and identically distributed mean-zero random variables with unit variance.
One can ensure that these bounded random variables take values in [−1, 1] by rescaling the
functions am(x) (see [22, Lemma 2.20]). Therefore, in what follows, we will assume that
Γm := [−1, 1] for all m ∈ N.

Convergence of the series in (2.2) and positivity of a(x,y) for each x ∈ D and y ∈ Γ are
ensured by making the following assumptions:

(i) we suppose that a0(x) ∈ L∞(D) is uniformly bounded away from zero, that is, there
exist two constants αmin

0 , αmax
0 such that

(2.3) 0 < αmin
0 ≤ a0(x) ≤ αmax

0 a.e. in D;

(ii) we assume that am(x) ∈ L∞(D), m ∈ N, are such that

(2.4) τ :=
1

αmin
0

∞∑
m=1

‖am‖L∞(D) < 1.

Now, for all y ∈ Γ, we can define the linear operator A(y) ∈ L(H1
0 (D), H−1(D)) as follows:

(2.5) 〈A(y)v, w〉 :=

∫
D
a(x,y)∇v(x) · ∇w(x) dx ∀ v, w ∈ H1

0 (D).

Because of expansion (2.2), the operator A(y) admits the decomposition

(2.6) A(y) = A0 +

∞∑
m=1

ymAm, y ∈ Γ,

where Am ∈ L(H1
0 (D), H−1(D)), m ∈ N0, are defined by

(2.7) 〈Amv, w〉 :=

∫
D
am(x)∇v(x) · ∇w(x) dx ∀ v, w ∈ H1

0 (D).

It easy to see that the assumption on a0(x) (see (2.3)) implies that 〈A0v, w〉 is a symmetric,
continuous, and coercive bilinear form, i.e.,

(2.8)
|〈A0v, w〉| ≤ αmax

0 ‖v‖H1
0 (D)‖w‖H1

0 (D) ∀ v, w ∈ H1
0 (D),

〈A0v, v〉 ≥ αmin
0 ‖v‖2H1

0 (D) ∀ v ∈ H1
0 (D),

whereas the assumption on coefficients am(x) (see (2.4)) ensures convergence of the series in
(2.6) in L(H1

0 (D), H−1(D)) uniformly in y; see [22, Lemma 2.21]. Furthermore, (2.3) and
(2.4) together imply the boundedness of both A(y) and A(y)−1 for all y ∈ Γ, i.e.,

(2.9) sup
y∈Γ
‖A(y)‖L(H1

0 ,H
−1) ≤ αmax and sup

y∈Γ
‖A(y)−1‖L(H−1,H1

0 ) ≤ α−1
min,

where αmax := αmax
0 (1 + τ) and αmin := αmin

0 (1− τ); see [22, Proposition 2.22].
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246 ALEX BESPALOV AND LEONARDO ROCCHI

Let us now write the weak formulation of problem (2.1). To this end, we introduce a
measure π = π(y) on (Γ,B(Γ)), where B(Γ) is the Borel σ-algebra on Γ. We assume that π is
a product measure given by

(2.10) π(y) =
∞∏
m=1

πm(ym), y ∈ Γ,

where each πm is a symmetric probability measure on (Γm,B(Γm)), with B(Γm) representing
the Borel σ-algebra on Γm. Then L2

π(Γ) represents the Lebesgue space of functions v : Γ →
R that are square integrable on Γ with respect to the measure π, and 〈·, ·〉π denotes the
associated inner product. We will denote by V := L2

π(Γ;H1
0 (D)) the Bochner space of strongly

measurable functions v : D × Γ→ R such that

‖v‖V :=

(∫
Γ
‖v(·,y)‖2H1

0 (D)dπ(y)

)1/2

< +∞.

Then the weak formulation of (2.1) reads as follows: find u ∈ V such that

(2.11) B(u, v) = F (v) ∀ v ∈ V,

with the symmetric bilinear form and the linear functional given by

(2.12) B(u, v) :=

∫
Γ
〈A(y)u(y), v(y)〉 dπ(y) and F (v) :=

∫
Γ
〈f, v(y)〉dπ(y).

By using decomposition (2.6), we can rewrite the bilinear form in (2.12) as

(2.13) B(u, v) := B0(u, v) +

∞∑
m=1

Bm(u, v) ∀u, v ∈ V,

with the component bilinear forms Bm(·, ·), m ∈ N0, defined as

B0(u, v) :=

∫
Γ
〈A0u(y), v(y)〉 dπ(y),(2.14)

Bm(u, v) :=

∫
Γ
〈Am(y), v(y)〉 ym dπ(y) ∀m ∈ N.(2.15)

It is evident that inequalities (2.9) imply that B(·, ·) is continuous and coercive with αmax

and αmin being the continuity and coercivity constants, respectively. Furthermore, f ∈
L2
π(Γ;H−1(D)). Therefore, the existence of the unique solution u ∈ V satisfying (2.11) is

guaranteed by the Lax–Milgram lemma.
We observe that B(·, ·) defines an inner product in V which induces the norm ‖v‖B :=

B(v, v)1/2 that is equivalent to ‖v‖V . On the other hand, inequalities (2.8) imply that B0(·, ·)
given by (2.14) also defines an inner product in V inducing the norm ‖v‖B0 := B0(v, v)1/2

which is equivalent to ‖v‖V . Therefore, the norms induced by B and B0 are equivalent, i.e.,
the following two-sided inequality holds:

(2.16) λB(v, v) ≤ B0(v, v) ≤ ΛB(v, v) ∀ v ∈ V,

with the constants λ := αmin
0 /αmax and Λ := αmax

0 /αmin.
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3. Stochastic Galerkin discretizations. We introduce now the sGFEM for discretization
of the weak formulation (2.11). For any finite-dimensional subspace VN ⊂ V , problem (2.11)
can be discretized by using Galerkin projection onto VN . This defines a unique function
uN ∈ VN satisfying

B(uN , v) = F (v) ∀ v ∈ VN .

The starting point in constructing the finite-dimensional subspace VN ⊂ V is to notice that the
Bochner space V = L2

π(Γ;H1
0 (D)) is isometrically isomorphic to the tensor product Hilbert

space H1
0 (D) ⊗ L2

π(Γ) (see, e.g., [22, Theorem B.17, Remark C.24]). Therefore, VN can
be defined by mimicking this tensor product structure. More specifically, we construct two
approximation spaces X ⊂ H1

0 (D) and PP ⊂ L2
π(Γ) independently of each other and then

define VN := X ⊗ PP ⊂ H1
0 (D)⊗ L2

π(Γ) ∼= V .
For the finite-dimensional subspace of H1

0 (D), we will use the finite element space X =
X(T ) of continuous piecewise linear functions on a shape-regular and conforming triangulation
T of D.

Let us now introduce the finite-dimensional (polynomial) subspaces of L2
π(Γ). For each

m ∈ N, let {pmn }n∈N0 denote the set of univariate polynomials on Γm = [−1, 1] that are
orthonormal with respect to the inner product 〈·, ·〉πm in L2

πm(Γm). For any polynomial pmn ,
the subscript n indicates the polynomial degree and we denote by cmn the leading coefficient
of pmn . The set {pmn }n∈N0 is an orthonormal basis of the space L2

πm(Γm). Furthermore, as
a consequence of the symmetry of πm, these polynomials satisfy the following three-term
recurrence (e.g., see [16]):

(3.1) pm0 ≡ 1; βmn+1 p
m
n+1(ym) = ym p

m
n (ym)− βmn pmn−1(ym), ym ∈ Γm, n ∈ N,

where βmn = cmn−1/c
m
n for n ∈ N. For example, if ym are the images of uniformly distributed

mean-zero random variables, that is, πm satisfies dπm(ym) = 1
2dym, then {pmn }n∈N0 is the

set of scaled Legendre polynomials which are orthonormal with respect to 〈·, ·〉πm and βmn =
n(4n2 − 1)−1/2.

In order to construct an orthonormal basis for the space L2
π(Γ), we introduce the following

set of finitely supported sequences:

(3.2) I :=
{
ν = (ν1, ν2, . . . ) ∈ NN

0 ; #supp(ν) <∞
}
,

where supp(ν) := {m ∈ N; νm 6= 0} and # denotes the cardinality of a set. The set I and any
of its subsets will be called index sets, and their elements ν ∈ I will be called indices. Then
we consider the following tensor product polynomials:

(3.3) Pν(y) :=

∞∏
m=1

pmνm(ym) =
∏

m∈supp(ν)

pmνm(ym) ∀ ν ∈ I

(here, the last equality holds, because pm0 ≡ 1 for any m ∈ N). The countable set of these
multivariate polynomials indexed by ν ∈ I forms an orthonormal basis of L2

π(Γ) (see, e.g.,
[19, Theorem 9.55]).
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Given a finite index set P ⊂ I, the space of tensor product polynomials

(3.4) PP := span{Pν ; ν ∈ P}

defines a finite-dimensional subspace of L2
π(Γ), and its dimension is dim(PP) = #P. Note

that each Pν ∈ PP is a polynomial in a finite number of “active” parameters ym for which
the corresponding νm is nonzero. Moreover, the nonzero values νm determine the polynomial
degrees in these “active” parameters.

With both spaces X ⊂ H1
0 (D) and PP ⊂ L2

π(Γ) at hand, we can now define the finite-
dimensional subspace VN = VXP := X ⊗PP and rewrite the discrete formulation of (2.11) in
the following way: find uXP ∈ VXP such that

(3.5) B(uXP, v) = F (v) ∀ v ∈ VXP.

Hereafter we implicitly assume that P always contains the zero-index 0 := (0, 0, . . . ).
The approximation provided by uXP can be improved by computing the Galerkin solution

u∗XP in the enhanced subspace V ∗XP ⊃ VXP. The enhanced subspace can be obtained by

enriching the finite element space X ⊂ H1
0 (D) and/or the polynomial space PP ⊂ L2

π(Γ). Let
X∗ ⊂ H1

0 (D) denote the enriched finite element space such that X∗ ⊃ X. The space X∗, for
example, can be obtained from X by adding new piecewise linear basis functions corresponding
to the nodes introduced by a uniform refinement of T (see, e.g., [1, Figure 5.2] for examples
of such basis functions). Alternatively, the space X∗ can be constructed by augmenting X
with higher-order basis functions on the same triangulation T . In both cases, the enhanced
X∗ can be decomposed as

(3.6) X∗ = X ⊕ Y,

where Y is called the detail space and it satisfies Y ⊂ H1
0 (D) and X ∩ Y = {0}.

Since 〈A0·, ·〉 defines an inner product inH1
0 (D), it is well-known that there exists a positive

constant γ ∈ [0, 1) depending only on X and Y such that the strengthened Cauchy–Schwarz
inequality holds (e.g., see [1, 14])

(3.7) |〈A0uX , vY 〉| ≤ γ 〈A0uX , uX〉1/2〈A0vY , vY 〉1/2 ∀ uX ∈ X, ∀ vY ∈ Y.

The polynomial space PP can be enriched by “activating” new parameters ym and/or
by including higher-order polynomials in the “active” parameters in P. This is done by
constructing an enriched index set P∗ = P∪Q with Q ⊂ I satisfying P∩Q = ∅. We will call
Q the detail index set. Therefore, the enriched polynomial space PP∗ can be decomposed as

(3.8) PP∗ = PP ⊕ PQ,

where PQ represents the polynomial space associated with Q such that PP ∩PQ = {0}. Note
that decomposition (3.8) is orthogonal with respect to the inner product 〈·, ·〉π.

We use the finite-dimensional subspaces X,Y ⊂ H1
0 (D) and the index sets P,Q ⊂ I to

define the following finite-dimensional tensor product spaces:

(3.9) VYP := Y ⊗ PP and VXQ := X ⊗ PQ.
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Hence, we can define the enriched finite-dimensional subspace of V as

(3.10) V ∗XP := VXP ⊕ VYP ⊕ VXQ.

Now, let u∗XP ∈ V ∗XP be the Galerkin projection onto the enriched space V ∗XP, so that

B(u∗XP, v) = F (v) ∀ v ∈ V ∗XP.

As commonly done in the analysis of hierarchical a posteriori error estimators (see, e.g., [1,
Chapter 5]), we will assume that the Galerkin solution u∗XP ∈ V ∗XP is indeed an improvement
over uXP ∈ VXP, that is, there exists a constant β ∈ [0, 1) such that

(3.11) ‖u− u∗XP‖B ≤ β‖u− uXP‖B.

Note that since VXP ⊂ V ∗XP, inequality (3.11) always holds with some β ≤ 1 due to the
best approximation property of Galerkin projections. We also refer to [5, Remark 3.1] for the
representation of β that holds due to the tensor product structure of approximation spaces
VXP and V ∗XP.

4. Hierarchical a posteriori error estimators. In this section, we recall the construction
of hierarchical a posteriori estimators for the discretization error e := u − uXP ∈ V (this
error estimation strategy in the context of the sGFEM was first described in [5] and further
developed in [7]). Similar to what is done in nonparametric a posteriori error analysis (see,
e.g., [1, 25]), we project the weak formulation satisfied by the error onto the enriched space
V ∗XP given by (3.10) to obtain

(4.1) B(e, v) = F (v)−B(uXP, v) ∀ v ∈ V ∗XP.

Then, using the bilinear form B0(·, ·) given by (2.14) instead of B(·, ·) on the left-hand side
of (4.1) and exploiting the tensor product structure of V ∗XP, we consider the following two
independent problems posed on the lower-dimensional subspaces VYP and VXQ given by (3.9):
find the spatial error estimator eYP ∈ VYP and the parametric error estimator eXQ ∈ VXQ

such that

B0(eYP, v) = F (v)−B(uXP, v) ∀ v ∈ VYP,(4.2)

B0(eXQ, v) = F (v)−B(uXP, v) ∀ v ∈ VXQ.(4.3)

Combining together the two estimators, we define

(4.4) η := ( ‖eYP‖2B0
+ ‖eXQ‖2B0

)1/2.

It is easy to see that η = ‖eYP+eXQ‖B0 due to the orthogonality of polynomial spaces PP and
PQ with respect to the inner product 〈·, ·〉π. The following result shows that η is an efficient
and reliable estimate for the energy norm of the discretization error e := u− uXP.

Proposition 4.1 (see [7, Theorem 4.1]). Let u ∈ V be the solution of (2.11) and let
uXP ∈ VXP be the Galerkin approximation satisfying (3.5). Suppose that the saturation
assumption (3.11) holds. Then, the a posteriori error estimate η defined by (4.4) satisfies

(4.5)
√
λ η ≤ ‖u− uXP‖B ≤

√
Λ√

1− β2
√

1− γ2
η,
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250 ALEX BESPALOV AND LEONARDO ROCCHI

where λ,Λ are the constants in (2.16), γ ∈ [0, 1) is the constant in the strengthened Cauchy–
Schwarz inequality (3.7), and β ∈ [0, 1) is the constant in (3.11).

Remark 4.2. Despite global reliability and efficiency of hierarchical error estimates (as in
Proposition 4.1), the associated local error indicators (see (4.10) below) are, in general, not
reliable in the sense that the effectivity indices (defined as the ratio of the error estimate to
the true error in the energy norm; cf. (6.3)) may become less than unity (see, e.g., [3], [15,
section 1.5.2] as well as the results of numerical experiments in section 6 below).

While it is evident from Proposition 4.1 that η given by (4.4) can be used to control
the error in the Galerkin approximation at each iteration of the adaptive algorithm, it turns
out that the component estimators eYP and eXQ contributing to η can be used to guide the
adaptive process. Indeed, it has been shown in [5] that the B0-norm of eYP (resp., the B0-norm
of eXQ) provides an effective estimate of the error reduction that would be achieved if we were
to enrich only the finite element space X (resp., the polynomial space PP) and to compute the
corresponding enhanced approximation. Suppose, for instance, that the polynomial space PP
is enriched. Then, the corresponding enhanced approximation uXP∗ ∈ VXP ⊕ VXQ =: VXP∗

satisfies

(4.6) B(uXP∗ , v) = F (v) ∀ v ∈ VXP∗ .

Since the bilinear form B(·, ·) is symmetric, the Pythagorean theorem and the Galerkin or-
thogonality yield the equality

‖e‖2B = ‖u− uXP∗‖2B + ‖uXP∗ − uXP‖2B.

This shows that the error reduction achieved by enriching only the space PP is given by
‖uXP∗ −uXP‖2B. The same argument applies if we enrich only the finite element space X and
compute the enhanced approximation uX∗P ∈ VXP ⊕ VYP =: VX∗P satisfying

(4.7) B(uX∗P, v) = F (v) ∀ v ∈ VX∗P.

In this case, the error reduction is given by the quantity ‖uX∗P−uXP‖2B. The following result
establishes the two-sided bounds for both error reductions.

Proposition 4.3 (see [5, Theorem 5.1]). Let uXP∈VXP be the Galerkin approximation
satisfying (3.5), and let uX∗P∈VX∗P and uXP∗∈VXP∗ be the enhanced approximations satis-
fying (4.7) and (4.6), respectively. Then, the following estimates for the error reduction hold:

√
λ‖eYP‖B0 ≤ ‖uX∗P − uXP‖B ≤

√
Λ√

1− γ2
‖eYP‖B0 ,(4.8)

√
λ‖eXQ‖B0 ≤ ‖uXP∗ − uXP‖B ≤

√
Λ‖eXQ‖B0 ,(4.9)

where eYP ∈ VYP and eXQ ∈ VXQ are defined by (4.2) and (4.3), respectively, λ and Λ are
the constants in (2.16), and γ ∈ [0, 1) is the constant in (3.7).

It is important to note that given the problem data and the computed Galerkin approxima-
tion uXP, the two estimates ‖eYP‖B0 and ‖eXQ‖B0 are computable for any finite-dimensional
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subspace Y ⊂ H1
0 (D) and for any finite index set Q ⊂ I such that X∩Y = {0} and P∩Q = ∅.

On the one hand, a combination of ‖eYP‖B0 and ‖eXQ‖B0 provides a reliable and efficient
estimate η for the energy error ‖u−uXP‖B (see Proposition 4.1). On the other hand, Proposi-
tion 4.3 shows that the error reductions ‖uX∗P−uXP‖B and ‖uXP∗−uXP‖B can be estimated
by ‖eYP‖B0 and ‖eXQ‖B0 , respectively. We emphasize that our choice of the detail subspace
Y and the detail index set Q may depend on whether we want to estimate the error in the
Galerkin approximation uXP or estimate the error reduction achieved by enhancing this ap-
proximation. In particular, we can employ a large detail space Y ⊂ H1

0 (D) (e.g., based on
a uniform refinement of the current triangulation) and a large detail index set Q ⊂ I \P in
order to obtain an accurate estimate of the error ‖u− uXP‖B. Computational aspects of this
procedure are discussed next.

4.1. Computational aspects of the error estimation. Let uXP ∈ VXP = X ⊗ PP be
the computed Galerkin solution satisfying (3.5), where X = X(T ) is the space of continuous
piecewise linear functions associated with a triangulation T and PP is the polynomial space
on Γ (see (3.4)) associated with an index set P. We will denote by N the overall number of
degrees of freedom, which is given by

N = dim (X(T )⊗ PP) = dim(X(T )) · dim(PP) = #N ·#P,

where N denotes the set of interior vertices of the triangulation T .
We will now describe how the estimate η (see (4.4)) for the energy error ‖u − uXP‖B is

actually computed. The spatial estimator eYP ∈ VYP = Y ⊗ PP contributing to η satisfies
the discrete formulation (4.2). In our computations, we choose the finite element detail space
Y as the span of linear Lagrange basis functions defined at the edge midpoints of T and
corresponding to the uniform refinement of T obtained using the criss-cross subdivision (see
[1, Figure 5.2]). In order to solve (4.2) we use a standard element residual technique (e.g., see
[1]). Specifically, on each element K ∈ T we compute the local (spatial) error estimator by
solving the local residual problem associated with (4.2): find eYP|K ∈ VYP|K satisfying

B0,K(eYP|K , v) = FK(v) +

∫
Γ

∫
K
∇ · (a(x,y)∇uXP(x,y)) v(x,y) dx dπ(y)

− 1

2

∫
Γ

∫
∂K\∂D

a(s,y)

s
∂uXP

∂n

{
v(s,y) ds dπ(y)(4.10)

for any v ∈ VYP|K . Here VYP|K := Y |K ⊗ PP with Y |K being the restriction of Y to the
element K ∈ T , B0,K(·, ·) and FK(·) denote the elementwise bilinear form and the linear

functional, respectively, and
q∂uXP

∂n

y
represents the flux jump in the Galerkin solution uXP

across interelement edges. There are two important features of this error estimation technique
(see [5, section 6.2] for details): (i) the linear algebra associated with solving (4.10) is very
simple; (ii) the computation of error estimators can be vectorized or parallelized over finite
elements in T .

Turning now to the parametric estimator eXQ ∈ VXQ = X ⊗ PQ defined by (4.3), we
exploit the theoretical results obtained in [7, section 4.2] in order to choose an appropriate
detail index set Q and to decompose eXQ into contributions from the estimators associated
with individual indices µ ∈ Q.
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First, for a given index set P, let us consider the infinite index set

Q∞ :=
{
µ ∈ I \P; µ = ν ± ε(m) ∀ ν ∈ P, ∀m ∈ N

}
,

where ε(m) := (ε
(m)
1 , ε

(m)
2 , . . . ) denotes the Kronecker delta sequence such that ε

(m)
j = δmj for

all j ∈ N. It turns out that for any finite index set Q ⊂ I \ (P∪Q∞) the error estimator eXQ

is identically zero (see Lemma 4.3 and Corollary 4.1 in [7]). This motivates our choice of the
(finite) detail index set Q ⊂ Q∞ to be used for computing eXQ:

(4.11) Q :=
{
µ ∈ I \P; µ = ν ± ε(m) ∀ ν ∈ P, ∀m = 1, . . . ,MP + 1

}
,

where the counter parameter MP is defined as follows:

MP :=

{
0 if P = {0},
max

{
max(supp(ν)); ν ∈ P \ {0}

}
otherwise.

Then, for each index µ ∈ Q, we compute the estimator e
(µ)
XQ ∈ X ⊗ Pµ by solving the linear

system associated with the following discrete formulation:

(4.12) B0(e
(µ)
XQ, v) = F (v)−B(uXP, v) ∀ v ∈ X ⊗ Pµ.

Two important observations are due here: (i) the coefficient matrix of the linear system

associated with (4.12) is the same for all µ ∈ Q; thus, the estimators e
(µ)
XQ can be computed

efficiently by factorizing this matrix and performing #Q independent forward and backward

substitutions; (ii) by Proposition 4.3, the norm ‖e(µ)
XQ‖B0 provides an estimate of the error

reduction that would be achieved by computing the enhanced Galerkin approximation uXP∗ ∈
X⊗ (PP⊕Pµ) (i.e., by adding only one new basis function Pµ to the polynomial space on Γ).

Finally, by using [7, Lemma 4.2], the overall parametric error estimator eXQ and its norm
‖eXQ‖B0 are computed from the contributions associated with individual indices in Q as
follows:

eXQ =
∑
µ∈Q

e
(µ)
XQ, ‖eXQ‖B0 =

∑
µ∈Q
‖e(µ)
XQ‖

2
B0

1/2

.

Once all elementwise estimators eYP|K (K ∈ T ) and all contributing parametric estimators

e
(µ)
XQ (µ ∈ Q) are computed, the total error estimate η is calculated via

(4.13) η =

∑
K∈T

∥∥eYP|K
∥∥2

B0,K
+
∑
µ∈Q

∥∥e(µ)
XQ

∥∥2

B0

1/2

,

where ‖ · ‖2B0,K
= B0,K(·, ·).
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5. Adaptive algorithm for the sGFEM. In this section, we present an adaptive sGFEM
algorithm for numerical solution of the parametric diffusion problem (2.1). The algorithm can
be extended in an obvious way to other parametric PDE problems with affine dependence on
(random) parameters. The algorithm follows the standard adaptive iteration: starting with
a coarse triangulation T0 and an initial index set P0 it generates a sequence of nested finite
element spaces {X(Tk)}k≥0 (X(Tk) ⊆ X(Tk+1) ⊂ H1

0 (D)), a sequence of nested index sets
{Pk}k≥0 (Pk ⊆ Pk+1 ⊂ I), and a sequence of refined sGFEM approximations {uk}k≥0 by
iterating the following loop (see, e.g., [23]):

(5.1) SOLVE =⇒ ESTIMATE =⇒ MARK =⇒ REFINE.

At each iteration, the REFINE module either performs a local refinement of the underlying
triangulation T or enriches the set P of active indices. Two versions of the algorithm will be
presented, which are different in the way the choice between mesh refinement and enrichment
of the index set is made. Before discussing this aspect of the algorithm, let us describe the
subroutines associated with four modules in (5.1). Throughout this section, we will use the
subscript (or superscript) k (k ≥ 0) for triangulations, index sets, Galerkin solutions, etc.,
associated with the kth iteration of the adaptive loop (5.1).

At each iteration k ≥ 0, the finite element space X(Tk) associated with a conforming
and shape-regular triangulation Tk is tensorized with the polynomial space PPk

. The unique

sGFEM solution uk ∈ V
(k)
XP := X(Tk) ⊗ PPk

satisfying (3.5) is computed by the subroutine
SOLVE as follows:

uk = SOLVE (Tk,Pk, a, f) ,

where a and f are the problem data (see (2.1), (2.2)).
In order to control the error in the Galerkin solution uk, local (spatial) estimators

{eYP|K}K∈Tk and individual (parametric) estimators {e(µ)
XQ}µ∈Qk

are computed as described
in section 4.1 by the subroutine ESTIMATE:[

{eYP|K}K∈Tk , {e
(µ)
XQ}µ∈Qk

]
= ESTIMATE

(
uk, Tk,Pk,Qk, a, f

)
.

Here, the detail index set Qk ⊂ I \Pk is built via (4.11). The total error estimate ηk is then
calculated via (4.13).

If a prescribed tolerance ε is met by the Galerkin solution uk (i.e., if ηk < ε), then the

adaptive process stops. Otherwise, an enriched finite-dimensional subspace V
(k+1)
XP ⊃ V

(k)
XP

needs to be constructed and a more accurate Galerkin solution needs to be computed. At this
stage in the adaptive loop, the module MARK identifies a subset Mk ⊆ Tk of finite elements
to be refined and a subset Mk ⊆ Qk of indices to be added to the current index set (although
the marking is performed for both finite elements and indices, we recall that only one part

of the approximation space V
(k)
XP will be enriched afterward). We employ the Dörfler strategy

[9] for marking finite elements and indices. Specifically, we fix two threshold parameters
θX , θP ∈ (0, 1] and build a minimal subset of marked elements Mk ⊆ Tk satisfying

(5.2)
∑

K∈Mk

‖eYP|K‖2B0,K ≥ θX
∑
K∈Tk

‖eYP|K‖2B0,K ,
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as well as a minimal subset of marked indices Mk ⊆ Qk such that∑
µ∈Mk

‖e(µ)
XQ‖

2
B0
≥ θP

∑
µ∈Qk

‖e(µ)
XQ‖

2
B0
.

As usual for Dörfler marking, larger values of the threshold parameter lead to larger subsets of
marked elements (resp., indices), and it is guaranteed that sufficiently many elements (resp.,
indices) are selected so that their combined contribution to the total spatial (resp., parametric)
error estimate constitutes a fixed proportion thereof. In the algorithm, the subsets Mk and
Mk are returned by the same subroutine MARK:

(5.3) Mk = MARK
(
{‖eYP|K‖B0,K

}K∈Tk , θX
)
, Mk = MARK

(
{‖e(µ)

XQ‖B0}µ∈Qk
, θP
)
.

At this point in the adaptive loop, the algorithm needs to choose whether to enrich the
finite element space or the polynomial space. Then, based on the chosen enrichment type
and given the output of the subroutine MARK, the module REFINE in (5.1) either performs
refinement of the current triangulation or enriches the current index set.

While polynomial enrichment is simply made by adding all marked indices to the current
index set, i.e., by setting

Pk+1 = Pk ∪Mk,

a refinement rule has to be set up in order to obtain a refined triangulation of Tk. At the kth
iteration of the adaptive loop, a refined triangulation is returned by the subroutine

(5.4) Tk+1 = REFINE(Tk,Mk)

implementing the longest edge bisection (LEB) strategy [21] with a recursive edge-marking
procedure that ensures the conformity of the triangulation Tk+1. The LEB strategy is a variant
of the newest vertex bisection algorithm (see, e.g., [20, 4, 18, 24]). We will denote by Rk⊆ Tk
the set of all refined elements at the kth iteration of the adaptive loop. Note that Rk ⊇Mk.
It is also easy to see that Rk = Tk \ Tk+1, where Tk+1 is the output of the subroutine REFINE

in (5.4).
Let us now describe how the algorithm chooses between mesh refinement and polynomial

enrichment at each iteration of the adaptive loop (5.1). In this respect, we distinguish two
versions of the adaptive algorithm.

Version 1. In this version of the algorithm, we compare the overall spatial and parametric
error estimates,

(5.5) ηT :=

∑
K∈Tk

∥∥eYP|K
∥∥2

B0,K

1/2

and ηQ :=

∑
µ∈Qk

∥∥e(µ)
XQ

∥∥2

B0

1/2

,

respectively, that contribute to the total error estimate ηk (see (4.13)).
If ηT ≥ ηQ, then local mesh refinement is performed and a new finite element space will

be constructed at the next iteration of the algorithm, while the polynomial space will stay
unchanged. Otherwise, i.e., if ηQ > ηT , the index set is enriched and, at the next iteration
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of the algorithm, an enriched polynomial space will be formed, while the finite element space
will stay unchanged.

The idea to compare two contributions to the total error estimate in order to decide on the
enrichment type is not new. On the one hand, this idea was used in the adaptive algorithms
described in [10, 11] and [12], where residual-based and local equilibration error estimators
were employed. On the other hand, it was used in the adaptive algorithm with uniform mesh
refinement presented in [7]. Note, however, that the estimate ηT combining all elementwise

contributions
{∥∥eYP|K

∥∥2

B0,K

}
K∈Tk

does not necessarily provide an effective estimate of the

error reduction that would be achieved if only the elements in the set Rk⊆Tk were refined.
Likewise, ηQ does not necessarily estimate the error reduction that would be achieved by
adding the marked indices Mk ⊂ Qk. These observations motivate the second version of our
adaptive algorithm.

Version 2. In this version, before deciding on the type of enrichment, we run the sub-
routine REFINE in (5.4) in order to obtain the set Rk of all elements that would be refined in
case the mesh refinement is chosen. With the detail index set Mk of marked indices already
in our hands (see (5.3)), we consider the following two quantities:

(5.6) ηR :=

 ∑
K∈Rk

∥∥eYP|K
∥∥2

B0,K

1/2

and ηM :=

 ∑
µ∈Mk

‖e(µ)
XQ‖

2
B0

1/2

.

Note that ηR ≤ ηT and ηM ≤ ηQ, where ηT and ηQ are defined in (5.5). Furthermore, as
summation in (5.6) is over the elements to be refined (resp., over the marked indices to be
added to the current index set), the quantity ηR (resp., ηM) does provide an effective estimate
of the error reduction that would be achieved as a result of mesh refinement (resp., polynomial
enrichment); cf. Proposition 4.3. Therefore, in the spirit of algorithms driven by dominant
error reduction estimates, the enrichment type in this version is chosen by comparing the
quantities ηR and ηM in (5.6). More precisely, if ηR ≥ ηM, then the mesh refinement is
performed; otherwise, the index set is enriched.

The complete adaptive algorithm incorporating the two versions described above is listed
in Algorithm 5.1.

6. Numerical experiments. Let us report the results of some numerical experiments that
were performed for the parametric model problem (2.1). These results illustrate some aspects
of the design of adaptive algorithms for parametric PDEs and demonstrate the performance
of two versions of the adaptive algorithm described in section 5. All numerical experiments
were performed using the open source MATLAB toolbox Stochastic T-IFISS [6] on a desk-
top computer equipped with an Intel Core CPU i5-4590@3.30GHz and 8.00GB RAM. In all
experiments, when running Algorithm 5.1 we use the initial index set given by

(6.1) P0 := {(0, 0, 0, . . . ), (1, 0, 0, . . . )}.
Experiment 1. In the first experiment, we demonstrate the performance of two versions

of Algorithm 5.1 for the parametric model problem (2.1) posed on the square domain D =
(0, 1)2. We follow Eigel et al. [10, section 11.1] and choose the expansion coefficients am(x),
m ∈ N0 in (2.2) to represent planar Fourier modes of increasing total order. Specifically,
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Algorithm 5.1. Adaptive stochastic Galerkin finite element algorithm.

Input: data a, f ; coarse mesh T0, initial index set P0;

marking thresholds θX , θP; tolerance ε.

Output: final Galerkin solution uk, final energy error estimate ηk.

1 for k = 0, 1, 2, . . . do

2 uk = SOLVE(Tk,Pk, a, f);

3
[
{eYP|K}K∈Tk , {e

(µ)
XQ}µ∈Qk

]
= ESTIMATE (uk, Tk,Pk,Qk, a, f);

4 ηk =
(∑

K∈Tk ‖eYP|K‖2B0,K
+
∑

µ∈Qk
‖e(µ)
XQ‖

2
B0

)1/2
;

5 if ηk < ε then break;

6 Mk = MARK({‖eYP|K‖B0,K
}K∈Tk , θX);

7 Mk = MARK({‖e(µ)
XQ‖B0}µ∈Qk

, θP);

8 % at this point, one of the two versions of the algorithm will run

9 if Version 1 then

10 ηT = (
∑

K∈Tk‖eYP|K‖2B0,K
)1/2; ηQ = (

∑
µ∈Qk

‖e(µ)
XQ‖

2
B0

)1/2;

11 if ηT ≥ ηQ then Tk+1 = REFINE(Tk,Mk); Pk+1 = Pk;

12 else Tk+1 = Tk; Pk+1 = Pk ∪Mk;

13 else % if Version 2

14 T = REFINE(Tk,Mk); Rk = Tk \ T ;

15 ηR = (
∑

K∈Rk
‖eYP|K‖2B0,K

)1/2; ηM = (
∑

µ∈Mk
‖e(µ)
XQ‖

2
B0

)1/2;

16 if ηR ≥ ηM then Tk+1 = T ; Pk+1 = Pk;

17 else Tk+1 = Tk; Pk+1 = Pk ∪Mk;

18 end

19 end

we set

(6.2) a0(x) = 1, am(x) = ᾱm−σ̃ cos(2πβ1(m)x1) cos(2πβ2(m)x2), x ∈ D.

Here,
β1(m) = m− k(m)(k(m) + 1)/2 and β2(m) = k(m)− β1(m)

with k(m) = b−1/2+
√

1/4 + 2mc, σ̃ > 1, and 0 < ᾱ < 1/ζ(σ̃), where ζ denotes the Riemann
zeta function. Note that with this choice of expansion coefficients, the weak formulation
(2.11) always admits a unique solution u ∈ V . This is because αmin

0 = αmax
0 = 1 in (2.3) and

τ = ᾱζ(σ̃) < 1 as required by (2.4). In particular, setting σ̃ = 2 in (6.2), we select ᾱ such that
τ = ᾱζ(σ̃) = 0.9. This choice of parameters corresponds to a slow decay of the amplitudes
ᾱm−σ̃ and gives ᾱ ≈ 0.547 (cf. [10, section 11.1]). Furthermore, we set f(x) = 1 for allD
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Figure 6.1. (a) Initial coarse triangulation T0 in Experiment 1; (b) adaptively refined triangulation produced
by Version 1 of Algorithm 5.1 in Experiment 1; (c)–(d) the mean field E[uXP] and the variance Var(uXP) of
the computed sGFEM solution for the model problem in Experiment 1.

x = (x1, x2) ∈ D and assume that the parameters ym in (2.2) are the images of uniformly
distributed independent mean-zero random variables, so that πm = πm(ym) is the associated
probability measure on Γm = [−1, 1] and dπm = 1

2dym. The same model problem as described
above has been used in numerical experiments in [10, 11, 7, 12, 13].

We run Version 1 and Version 2 of Algorithm 5.1 with the same sets of input parameters
and data. More precisely, we use the initial (coarse) triangulation T0 depicted in Figure 6.1(a)
and the initial index set P0 given by (6.1). For marking purposes, we use two sets of Dörfler
marking parameters: (i) θX = 0.5, θP = 0.9; (ii) θX = 0.2, θP = 0.9. The same stopping
tolerance ε = 1.5e-3 is set in all cases. The results of these computations are presented in
Table 6.1 and in Figures 6.1, 6.2, and 6.3.

Figure 6.1(b) shows the locally refined triangulation produced by Version 1 of the adap-
tive algorithm in case (i) when an intermediate tolerance equal to 7.0e-3 was met (similar
triangulations were produced in all other cases). Figure 6.1(c)–(d) shows the mean and the
variance of the computed sGFEM solution. Note that due to the regularity of the solution
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Table 6.1
The results of running two versions of Algorithm 5.1 with two sets of Dörfler marking parameters for the

model problem in Experiment 1.

Case (i): θX = 0.5, θP = 0.9 Case (ii): θX = 0.2, θP = 0.9

Version 1 Version 2 Version 1 Version 2

t, sec 395 289 605 479

K 27 26 64 61

ηK 1.2652e-03 1.4438e-03 1.2509e-03 1.4369e-03

#TK 87,520 65,750 86,552 64,156

#NK 43,381 32,546 42,903 31,753

#PK 23 23 23 23

NK 997,763 748,558 986,769 730,319

P k = 0 (0 0) k = 0 (0 0) k = 0 (0 0) k = 0 (0 0)
(1 0) (1 0) (1 0) (1 0)

k = 9 (0 1) k = 8 (0 1) k = 21 (0 1) k = 10 (0 1)
(2 0) (2 0) (2 0) (2 0)

k = 15 (0 0 1) k = 13 (0 0 1) k = 35 (0 0 1) k = 23 (0 0 1)
(1 1 0) (1 1 0) (1 1 0) (1 1 0)
(3 0 0) (3 0 0) (3 0 0) (3 0 0)

k = 20 (0 0 0 1) k = 19 (0 0 0 1) k = 48 (0 0 0 1) k = 36 (0 0 0 1)
(1 0 1 0) (1 0 1 0) (1 0 1 0) (1 0 1 0)
(2 1 0 0) (2 1 0 0) (2 1 0 0) (2 1 0 0)

k = 24 (0 0 0 0 1) k = 22 (0 0 0 0 1) k = 56 (0 0 0 0 1) k = 44 (0 0 0 0 1)
(0 2 0 0 0) (0 2 0 0 0) (0 2 0 0 0) (0 2 0 0 0)
(1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0)
(2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0)
(3 1 0 0 0) (3 1 0 0 0) (3 1 0 0 0) (3 1 0 0 0)
(4 0 0 0 0) (4 0 0 0 0) (4 0 0 0 0) (4 0 0 0 0)

k = 27 (0 0 0 0 0 1) k = 26 (0 0 0 0 0 1) k = 64 (0 0 0 0 0 1) k = 51 (0 0 0 0 0 1)
(0 1 1 0 0 0) (0 1 1 0 0 0) (0 1 1 0 0 0) (0 1 1 0 0 0)
(1 0 0 0 0 1) (1 0 0 0 0 1) (1 0 0 0 0 1) (1 0 0 0 0 1)
(1 0 0 0 1 0) (1 0 0 0 1 0) (1 0 0 0 1 0) (1 0 0 0 1 0)
(1 2 0 0 0 0) (1 2 0 0 0 0) (1 2 0 0 0 0) (1 2 0 0 0 0)
(2 0 0 1 0 0) (2 0 0 1 0 0) (2 0 0 1 0 0) (2 0 0 1 0 0)
(3 0 1 0 0 0) (3 0 1 0 0 0) (3 0 1 0 0 0) (3 0 1 0 0 0)

and since the magnitude of the variance is much smaller than the magnitude of the mean field,
the triangulation is refined toward the corners of the domain.

In Table 6.1, for each computation we show the computational time t (in seconds), the
total number of iterations K, the final error estimate ηK , the number of finite elements and
the number of interior vertices of the final mesh TK , the cardinality of the final index set PK ,
as well as the evolution of the index set P.

By looking at the results in Table 6.1, we observe some differences in the performance
of two versions in terms of computational times, the final number of elements, and the total
number of degrees of freedom (cf. the values of t, #TK , and NK in Table 6.1). In particular,
Version 2 took fewer iterations and reached the tolerance faster than Version 1 (about 27% of
time saved in case (i)). In case (i) and case (ii), both versions produced the same final index
set PK with 23 indices corresponding to polynomials of total degree 4 in 6 active parameters.
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Figure 6.2. Energy error estimates at each step of the adaptive algorithm with θX = 0.5, θP = 0.9 (case
(i)) for the model problem in Experiment 1.

Figure 6.3. Energy error estimates at each step of the adaptive algorithm with θX = 0.2, θP = 0.9 (case
(ii)) for the model problem in Experiment 1.

We also note that by design, Version 2 triggers polynomial enrichments at earlier iterations
than Version 1. This results in a balanced refinement of spatial and parametric components
of Galerkin approximations generated by running Version 2 and is one of the reasons why
Version 2 is faster and overall more efficient than Version 1 for the model problem in this
experiment.

By looking now at Figures 6.2 and 6.3 we observe that the total error estimates decay with
an overall rate of about O(N−1/3) for both versions and for both sets of marking thresholds.
However, due to spatial regularity of the solution, we expect the error estimates to decay
with the optimal rate O(N−1/2) during mesh refinement steps, cf. [11] (mesh refinements can
be identified on the graphs as the steps where YP-error estimates decay). It turns out that
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260 ALEX BESPALOV AND LEONARDO ROCCHI

neither version achieves this optimal decay rate during mesh refinement stages in case (i)
(θX = 0.5); see Figure 6.2 (also cf. [11, Figure 1] in the case θX = 0.4 and [7, Figure 1] for
the case of uniform mesh refinement (θX = 1)). However, in case (ii) (θX = 0.2), Figure 6.3
shows that the decay rate during mesh refinement steps is very close to the optimal one for
Version 2, while it is still far from being optimal for Version 1. We also note that, since
polynomial enrichments are triggered earlier by Version 2, the associated reductions in the
total error estimates during these steps are smaller than the error reductions that occur during
polynomial enrichment steps when running Version 1.

We conclude this experiment by testing the effectivity of the error estimation at each step
of the adaptive algorithm. To that end, we compare the error estimates ηk with the energy
norm of a reference error eref

k := uref − uk, where uref ∈ V ref
XP := Xref ⊗ PPref

is an accurate
(reference) solution. Using Galerkin orthogonality and the symmetry of the bilinear form B,
we have

‖eref
k ‖B = (‖uref‖2B − ‖uk‖2B)1/2,

and then the effectivity indices are computed as follows:

(6.3) θk = ηk / ‖eref
k ‖B ∀ k ≥ 0.

For the model problem in this experiment, we use the reference Galerkin solution uref from [7,
section 6]. The effectivity indices for both versions of the adaptive algorithm for case (ii) are
plotted in Figure 6.4 (the plots are very similar in case (i)). We can see that the effectivity
indices are less than unity throughout all iterations and tend to be close to 0.8 as iterations
progress.

Based on the results of Experiment 1, we conclude that Version 2 of the adaptive algo-
rithm is more efficient than Version 1 for the considered parametric problem on the square
domain. Indeed, Version 2 reaches the desired tolerance faster and with a smaller number
of total degrees of freedom; furthermore, the corresponding total error estimates decay with
an optimal rate during mesh refinement steps, provided that the spatial marking threshold

Figure 6.4. The effectivity indices for the sGFEM solutions in Experiment 1 at each iteration of the
adaptive algorithm with θX = 0.2, θP = 0.9 (case (ii)).D
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θX is sufficiently small (our experiments suggest to chose θX = 0.2). On the other hand, the
overall convergence rate is essentially the same for both versions of the algorithm and for both
sets of marking parameters considered in this experiment.

Experiment 2. In the second experiment, we compare the performance of two versions
of Algorithm 5.1 for the same parametric model problem (2.1) as in Experiment 1 but now
posed on the L-shaped domain D = (−1, 1)2 \ (−1, 0]2. Exactly the same model problem has
been solved numerically in [10, 11, 12, 13].

We use the initial (coarse) triangulation T0 depicted in Figure 6.5(a) and the initial index
set P0 given by (6.1). For marking purposes, we use two sets of Dörfler marking parameters: (i)
θX = 0.5, θP = 0.8; (ii) θX = 0.2, θP = 0.8. The same stopping tolerance ε = 5.0e-3 is set in
all cases. The results of these computations are presented in Table 6.2 and in Figures 6.5, 6.6,
and 6.7.

Figure 6.5(b) shows the locally refined triangulation produced by Version 2 of Algo-
rithm 5.1 with θX = 0.2, θP = 0.8 (case (ii)) when an intermediate tolerance 2.5e-2 was met

Figure 6.5. (a) Initial coarse triangulation T0 in Experiment 2; (b) adaptively refined triangulation produced
by Version 2 of Algorithm 5.1 in Experiment 2; (c)–(d) the mean field E[uXP] and the variance Var(uXP) of
the computed sGFEM solution for the model problem in Experiment 2.D
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Table 6.2
The results of running two versions of Algorithm 5.1 with two sets of Dörfler marking parameters for the

model problem in Experiment 2.

Case (i): θX = 0.5, θP = 0.8 Case (ii): θX = 0.2, θP = 0.8

Version 1 Version 2 Version 1 Version 2

t, sec 371 395 476 419

K 27 27 65 63

ηK 4.7170e-03 4.7160e-03 4.8340e-03 4.9659e-03

#TK 103,206 103,304 89,480 67,770

#NK 51,133 51,182 44,317 33,533

#PK 13 13 13 18

NK 664,729 665,366 576,121 603,594

P k = 0 (0 0) k = 0 (0 0) k = 0 (0 0) k = 0 (0 0)
(1 0) (1 0) (1 0) (1 0)

k = 12 (0 1) k = 11 (0 1) k = 29 (0 1) k = 20 (0 1)
(2 0) (2 0) (2 0) (2 0)

k = 19 (0 0 1) k = 17 (0 0 1) k = 45 (0 0 1) k = 35 (0 0 1)
(1 1 0) (1 1 0) (1 1 0) (1 1 0)

k = 22 (0 0 0 1) k = 21 (0 0 0 1) k = 53 (0 0 0 1) k = 43 (0 0 0 1)
(1 0 1 0) (1 0 1 0) (1 0 1 0) (1 0 1 0)
(3 0 0 0) (3 0 0 0) (3 0 0 0) (3 0 0 0)

k = 26 (0 0 0 0 1) k = 25 (0 0 0 0 1) k = 62 (0 0 0 0 1) k = 52 (0 0 0 0 1)
(1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0) (1 0 0 1 0)
(2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0) (2 0 1 0 0)
(2 1 0 0 0) (2 1 0 0 0) (2 1 0 0 0) (2 1 0 0 0)

k = 60 (0 0 0 0 0 1)
(0 2 0 0 0 0)
(1 0 0 0 1 0)
(3 1 0 0 0 0)
(4 0 0 0 0 0)

(triangulations with a similar pattern were produced in all other cases). In Figure 6.5(c)–(d),
the mean and the variance of the computed sGFEM solution are depicted. We observe that
the adaptively refined mesh effectively identifies the area of singular behavior of the mean field
(in the vicinity of the reentrant corner), where we can see much stronger mesh refinement than
in other areas of the domain. Note that since the magnitude of the mean is much higher than
the one for the variance, a “roughness” of variance in some areas of the domain does not have
a significant impact on mesh refinement in those areas.

Table 6.2 shows the final outputs of all computations in this experiment. By looking at
the results for case (i) (θX = 0.5, θP = 0.8), we do not observe significant differences between
the approximations produced by two versions of the algorithm. Indeed, the tolerance was
reached after the same number of iterations (K = 27), the same final index set (with 13
indices) was generated, and the number of elements in final triangulations was comparable for
both versions. Also, both versions took nearly the same time to reach the tolerance, although
Version 1 was slightly faster than Version 2.

In the case when θX = 0.2, θP = 0.8 (case (ii)), the differences between the two versions
are evident. To start with, Version 1 needed two iterations more than Version 2 to reach the
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Figure 6.6. Energy error estimates at each step of the adaptive algorithm with θX = 0.5, θP = 0.8 (case
(i)) for the model problem in Experiment 2.

Figure 6.7. Energy error estimates at each step of the adaptive algorithm with θX = 0.2, θP = 0.8 (case
(ii)) for the model problem in Experiment 2.

tolerance. Furthermore, Version 1 produced a more refined triangulation than Version 2 did
(cf. the values of #TK in Table 6.2). On the other hand, Version 2 generated a more developed
index set with more active parameters and higher degree of polynomial approximation in these
parameters. This explains why Version 2 terminated with a slightly bigger number of total
degrees of freedom in this case. More importantly, Version 2 was about 12% faster than
Version 1; as already observed in Experiment 1, this was due to polynomial enrichments
triggered at earlier iterations.

By looking now at Figures 6.6 and 6.7 we see that the overall convergence rate for the total
error estimate is about O(N−1/3) for both versions and for both sets of marking thresholds.
However, we expect the error estimates to decay with the optimal rate O(N−1/2) during mesh
refinement steps; cf. [11]. The optimal rate is not achieved in case (i) due to the fact that
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Figure 6.8. The effectivity indices for the sGFEM solutions in Experiment 2 at each iteration of the
adaptive algorithm with θX = 0.5, θP = 0.8 (case (i)).

Figure 6.9. The effectivity indices for the sGFEM solutions in Experiment 2 at each iteration of the
adaptive algorithm with θX = 0.2, θP = 0.8 (case (ii)).

the marking threshold θX = 0.5 is not sufficiently small (see, e.g., [8, 9]). In case (ii), i.e., for
θX = 0.2, the decay rate during mesh refinement steps is close to the optimal one only for
Version 2. This observation is consistent with the one made in Experiment 1 on the square
domain.

Following the procedure described in Experiment 1, we now compute the effectivity indices
θk given by (6.3) at each step of the algorithm. In particular, we employ the reference
Galerkin solution computed with quadratic (P2) spatial approximations over a fine grid (the
final triangulation produced by Version 2 in case (i) with an additional uniform refinement)
and using a large index set (the final index set generated by Version 2 in case (ii)). The
effectivity indices are plotted in Figure 6.8 (case (i)) and Figure 6.9 (case (ii)). In each case,
the effectivity indices lie within the interval (0.8, 0.93) throughout all iterations.
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Thus, in agreement with the results of Experiment 1, we conclude that for the parametric
model problem on the L-shaped domain, Version 2 of Algorithm 5.1 is more efficient than
Version 1, if the spatial marking threshold θX is sufficiently small. In particular, our experi-
ments suggest to choose θX = 0.2. In this case, Version 2 produces more accurate parametric
approximations by generating a richer index set, and the associated total error estimates decay
with an optimal rate during mesh refinement steps.

Experiment 3. In this experiment, we consider the parametric model problem (2.1)
posed on the square domain with a crack, i.e.,

D = (−1, 1)2 \ {(x1, x2) ∈ R2 : −1 < x1 ≤ 0, x2 = 0}.

We set f(x) = exp(−(x1 + 0.5)2 − (x2 − 0.5)2) for all x = (x1, x2) ∈ D and consider the
following parametric diffusion coefficient (cf. [19, Example 9.37]):

(6.4) a(x,y) = 1 +
1√
3

∞∑
i=0

∞∑
j=0

√
νijφij(x)yij ,

where φ00(x) := 1, ν00 := 1/4,

φij(x) := 2 cos(iπx1) cos(jπx2), νij :=
1

4
e−π(i2+j2), i, j ≥ 1,

and yij ∈ [−1, 1] (i, j ∈ N0) are the images of the uniformly distributed mean-zero random
variables. We rewrite the sum in (6.4) in terms of a single index m so that the values νm
appear in descending order:

a(x,y) = 1 +
1√
3

∞∑
m=1

√
νmφm(x)ym, y ∈ Γ.

For the model problem described above, we again run two versions of Algorithm 5.1 with
the initial (coarse) triangulation T0 depicted in Figure 6.10(a) and the initial index set P0

given by (6.1). Aiming to understand the influence of both marking thresholds θX and θP,
we perform computations with three sets of Dörfler marking parameters:

(i) θX = 0.2, θP = 0.9; (ii) θX = 0.5, θP = 0.9; (iii) θX = 0.5, θP = 0.5.

The same stopping tolerance ε = 2.0e-3 was set in all computations. The results of these
computations are presented in Tables 6.3 and 6.4 and in Figures 6.10 and 6.11.

Figure 6.10(b) shows the locally refined triangulation produced by Version 2 of Algo-
rithm 5.1 with θX = 0.5, θP = 0.9 (case (ii)) when an intermediate tolerance 1.0e-2 was met. In
Figure 6.10(c)–(d), the mean and the variance of the computed sGFEM solution are plotted.
As in previous experiments, we see that the algorithm performs effective adaptive mesh re-
finement in the areas where the mean and the variance of the solution are not sufficiently
smooth. For the model problem in this experiment, the strongest mesh refinement occurs in
the vicinity of the crack tip.
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Figure 6.10. (a) Initial coarse triangulation T0 in Experiment 3; (b) adaptively refined triangulation
produced by Version 2 of Algorithm 5.1 in Experiment 3; (c)–(d) the mean field E[uXP] and the variance
Var(uXP) of the computed sGFEM solution for the model problem in Experiment 3.

By looking at the results in Tables 6.3 and 6.4, we can see that among six computations
carried out in this experiment, the best performance in terms of computational time was
achieved by Version 2 of the algorithm with θX = 0.2, θP = 0.9 (case (i)). In particular,
it was 30% faster than Version 1 with the same marking thresholds. In agreement with the
results of previous experiments, Version 2 produced less refined triangulations and triggered
polynomial enrichment earlier than Version 1 in all three cases. Furthermore, in case (i),
Version 2 needed two iterations less to reach the set tolerance, and the final index set was
more developed than the index set generated by Version 1 in this case (15 versus 9 indices).
The advantages of using a smaller marking threshold θX are again more evident when running
Version 2: the final triangulation in case (i) has nearly twice fewer elements than in cases (ii)
and (iii); the index set is more developed in case (i) than in two other cases.

If we now compare numerical results in cases (ii) and (iii) (i.e., for fixed θX = 0.5 and
varying θP), we can see little difference in the spatial and parametric approximations generated
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Table 6.3
The results of running Version 1 of Algorithm 5.1 with three sets of Dörfler marking parameters for the

model problem in Experiment 3.

Case (i): θX = 0.2, θP = 0.9 Case (ii): θX = 0.5, θP = 0.9 Case (iii): θX = 0.5, θP = 0.5

t, sec 1321 1655 1723

K 80 36 37

ηK 1.9868e-03 1.8075e-03 1.8076e-03

#TK 213,830 286,915 286,891

#NK 106,240 142,699 142,687

#PK 9 9 9

NK 956,160 1,284,291 1,284,183

P k = 0 (0 0) k = 0 (0 0) k = 0 (0 0)
(1 0) (1 0) (1 0)

k = 46 (0 1) k = 21 (0 1) k = 21 (0 1)
(2 0) (2 0) (2 0)

k = 51 (0 0 1) k = 24 (0 0 1) k = 24 (0 0 1)
(1 1 0) (1 1 0)

k = 68 (0 0 0 1) k = 31 (0 0 0 1) k = 30 (1 0 1)
(1 0 1 0) (1 0 1 0) (1 1 0)
(3 0 0 0) (3 0 0 0)

k = 35 (0 0 0 1)
(3 0 0 0)

by both versions of the algorithm in these two cases (see the last two columns in Tables 6.3
and 6.4). This suggests that for this larger value of θX , both versions do not perform optimally,
irrespective of the value of θP (which is consistent with our observations in Experiments 1
and 2). Furthermore, Version 1 reaches the tolerance faster than Version 2 in case (ii) and in
case (iii). This conclusion is in agreement with numerical results for the parametric problem
with spatially singular solution in Experiment 2, and it indicates that in terms of efficiency,
Version 2 is more sensitive to overrefined triangulations than Version 1.

By looking at Figure 6.11 we observe that in case (i) (i.e., for θX = 0.2), both versions of
the algorithm converge faster during mesh refinement steps than in cases (ii) and (iii) (where
θX = 0.5). When running Version 2 in case (i), the convergence rate during mesh refinement
steps is very close to the optimal one of O(N−1/2). On the other hand, the overall decay rate
for total error estimates is about O(N−0.4) in all three cases (i)–(iii) and for both versions of
the algorithm.

Finally, focusing on cases (i) and (ii), we compute the effectivity indices θk via (6.3).
Similarly to the procedure used for Experiment 2, we employ a reference Galerkin solution
computed with quadratic (P2) approximations over a fine grid and using the index set gen-
erated by Version 2 in case (i). The resulting effectivity indices are plotted in Figure 6.12
(case (i)) and Figure 6.13 (case (ii)). As in previous experiments, the effectivity indices are
less than unity for all iterations; for this model problem, however, they tend to increase as
iterations progress and reach the values close to 0.9.
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Table 6.4
The results of running Version 2 of Algorithm 5.1 with three sets of Dörfler marking parameters for the

model problem in Experiment 3.

Case (i): θX = 0.2, θP = 0.9 Case (ii): θX = 0.5, θP = 0.9 Case (iii): θX = 0.5, θP = 0.5

t, sec 935 1811 1841

K 78 36 37

ηK 1.9591e-03 1.8068e-03 1.8069e-03

#TK 153,312 287,256 287,212

#NK 760,48 142,869 142,847

#PK 15 9 9

NK 1,140,720 1,285,821 1,285,623

P k = 0 (0 0) k = 0 (0 0) k = 0 (0 0)
(1 0) (1 0) (1 0)

k = 36 (0 1) k = 19 (0 1) k = 19 (0 1)
(2 0) (2 0) (2 0)

k = 41 (0 0 1) k = 22 (0 0 1) k = 22 (0 0 1)
(1 1 0) (1 1 0)

k = 57 (0 0 0 1) k = 29 (0 0 0 1) k = 28 (1 0 1)
(1 0 1 0) (1 0 1 0) (1 1 0)
(3 0 0 0) (3 0 0 0)

k = 76 (0 0 2 0) k = 34 (0 0 0 1)
(0 1 1 0) (3 0 0 0)
(0 2 0 0)
(1 0 0 1)
(2 0 1 0)
(2 1 0 0)

The results of Experiment 3 lead us to the same conclusion about the efficiency of Ver-
sion 2 of Algorithm 5.1 as did the results of Experiments 1 and 2: provided that a sufficiently
small (spatial) marking threshold θX is selected (θX = 0.2 in all three experiments), Version 2
reaches the set tolerance faster and leads to the error estimates decaying with the optimal
rate during mesh refinement steps. Interestingly, this conclusion holds for parametric model
problems with spatially singular solutions as well as for problems with spatially regular solu-
tions. In addition, the results of Experiment 3 suggest that higher values of the (parametric)
marking threshold θP should be preferred, as they lead to fewer iterations and therefore faster
computations (this conclusion holds for both versions of the algorithm). We note, however,
that selecting θP = 1 (i.e., marking all indices in the detail index set Q) is generally not

desirable, because the estimates
∥∥e(µ)

XQ

∥∥
B0

(µ ∈ Q) vary significantly in their magnitude, with
a high proportion of them being much smaller than a few large estimates. Therefore, marking
the indices in Q that correspond to very small estimates and subsequently adding these indices
to the index set P does not lead to significant error reduction but increases computational
cost. Finally, and this is again in agreement with results of the previous experiments, the
overall convergence rate is essentially the same for both versions of the algorithm and for all
considered cases of marking thresholds; note that this rate is slightly higher in the case of the
model problem in Experiment 3.D
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Figure 6.11. Energy error estimates at each step of the adaptive algorithm for the model problem in
Experiment 3.
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Figure 6.12. The effectivity indices for the sGFEM solutions in Experiment 3 at each iteration of the
adaptive algorithm with θX = 0.2, θP = 0.9 (case (i)).

Figure 6.13. The effectivity indices for the sGFEM solutions in Experiment 3 at each iteration of the
adaptive algorithm with θX = 0.5, θP = 0.9 (case (ii)).

7. Concluding remarks. The development of efficient adaptive algorithms is critical for
effective numerical solution of elliptic PDEs with correlated random data. An important
contribution of this paper is that it presents an innovative adaptive algorithm driven by precise
estimates of the error reductions that would be achieved by pursuing different refinement
strategies. There are two distinctive features in our approach. First, the approximation error
is controlled in the algorithm via hierarchical a posteriori error estimates that are shown to be
reliable, efficient, and computationally effective. Second, the error reduction estimates are used
in the algorithm (specifically, in its second version) not only to guide adaptive refinement but
also to choose between spatial and parametric refinement at each iteration of the algorithm.
As demonstrated in extensive numerical experiments for parametric PDE problems, this latter
feature ensures well-balanced refinement of spatial and parametric components of Galerkin
approximations and leads to optimal convergence during mesh refinement steps, provided that
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the marking thresholds θX , θP are selected appropriately (the experiments suggest to choose
θX = 0.2 and θP ∈ {0.8, 0.9} for spatially regular as well as for spatial singular problems).
Finally, the software that implements our adaptive algorithm for a range of parametric elliptic
PDEs is available online and can be used to reproduce numerical results presented in the paper.
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