
 
 

University of Birmingham

Termination of Eukaryotic Replication Forks
Gambus, Agnieszka

DOI:
10.1007/978-981-10-6955-0_8

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Gambus, A 2018, Termination of Eukaryotic Replication Forks. in DNA Replication: From Old Principles to New
Discoveries. vol. 1042, Advances in Experimental Medicine and Biology, vol. 1042, Springer, pp. 163-187.
https://doi.org/10.1007/978-981-10-6955-0_8

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
This is a post-peer-review, pre-copyedit version of a publication appearing in DNA Replication: From Old Principles to New Discoveries. The
final authenticated version is available online at: https://doi.org/10.1007/978-981-10-6955-0_8

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 20. Apr. 2024

https://doi.org/10.1007/978-981-10-6955-0_8
https://doi.org/10.1007/978-981-10-6955-0_8
https://birmingham.elsevierpure.com/en/publications/1e3a6901-e475-4a20-a715-4eb8f103c458


	 1	

	

Termination	of	eukaryotic	replication	forks	

Agnieszka	Gambus	

	

Institute	of	Cancer	and	Genomic	Sciences,	University	of	Birmingham,	

Vincent	Drive,	Birmingham,	B15	2TT,	UK	

a.gambus@bham.ac.uk	

	

	

	

Abstract	

Termination	of	DNA	replication	forks	takes	place	when	two	replication	

forks	coming	from	neighbouring	origins	meet	each	other	usually	in	the	midpoint	

of	the	replicon.	At	this	stage,	the	remaining	fragments	of	DNA	have	to	be	

unwound,	all	remaining	DNA	replicated	and	newly	synthesised	strands	ligated	

to	produce	continuous	sister	chromatids.	Finally,	the	replication	machinery	has	

to	be	taken	off	chromatin	and	entwisted	sister	chromatids	resolved	

topologically.		

Over	the	last	few	decades	we	have	learned	a	lot	about	the	assembly	of	the	

helicase	and	replisome	and	the	initiation	stage	of	DNA	replication.	We	also	know	

much	more	about	the	ability	of	forks	to	cope	with	replication	stress.	However,	

only	within	the	recent	few	years	we	gained	the	first	glimpse	of	the	mechanism	of	

replication	fork	termination.	In	this	chapter	I	will	summarise	the	recent	findings	

on	replication	termination,	weigh	this	against	the	past	literature	and	discuss	

relevant	consequences	and	views	for	the	future.		
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1.	Introduction	

	

To	maintain	genomic	stability	it	is	essential	that	every	step	of	DNA	

replication	is	faultlessly	executed.	Mistakes	during	eukaryotic	replication	that	

are	not	efficiently	repaired	can	lead	to	mutations	and	genome	rearrangements	

that	promote	changes	leading	to	development	of	cancer	and	other	disorders.	

DNA	replication	can	be	divided	into	three	stages:	initiation,	elongation	and	

termination.	Initiation	of	DNA	replication	happens	when	licensed	origins	of	

replication	fire	creating	two	DNA	replication	forks,	which	move	in	opposite	

directions.	The	elongation	stage	involves	the	progression	of	replication	forks	as	

they	unwind	and	replicate	DNA.	Finally,	termination	happens	when	two	

replication	forks	from	neighbouring	origins	converge	and	the	duplication	of	

remaining	fragment	of	DNA	is	neatly	completed.	Over	the	years	we	have	learnt	a	

lot	about	the	mechanisms	of	DNA	replication	initiation	and	elongation	(briefly	

explained	below),	but	until	recently	our	knowledge	of	replication	termination	

was	very	restricted.	The	last	few	years	have	brought	a	breakthrough	in	our	

understanding	of	mechanisms	of	replication	termination:	we	have	learnt	that	

converging	replication	forks	can	pass	each	other	when	terminating	and	we	have	

also	unravelled	the	workings	of	disassembly	of	terminated	replisomes.		

	

2.	Replication	fork	termination	occurs	throughout	S	phase	

	

When	does	replication	termination	take	place?	In	our	mind	replication	

termination	should	happen	mostly	at	the	end	of	the	whole	replication	process,	

so	in	the	terms	of	cell	cycle	stages	-	at	the	end	of	S-phase.	In	reality	however,	

DNA	replication	forks	encounter	forks	from	neighbouring	origins	throughout	the	

entire	S-phase.	Forks	emanating	from	origin	clusters	firing	in	early	S-phase	will	

also	terminate	in	early	S-phase;	with	average	replicon	size	of	31	kbp	(Moreno	et	

al.,	2016;	Picard	et	al.,	2014)	and	an	average	fork	speed	of	1.5	kb/min	(Conti	et	

al.,	2007)	it	takes	about	10	minutes	for	the	two	neighbouring	forks	to	reach	one	

another.	In	fact	there	is	likely	more	termination	occurring	in	mid	S-phase	than	in	

late	S-phase	as	the	strict	replication	timing	programme	driving	replication	in	
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each	cell	means	that	only	difficult-to-replicate	regions	are	replicated	in	late	S-

phase	(Gilbert,	2010).	

	

3.	Replication	initiation	and	elongation	

	

To	ensure	that	all	of	the	large	eukaryotic	genomes	are	duplicated	in	full	

before	each	cell	division,	eukaryotic	DNA	replication	starts	from	multiple	origins	

of	replication.	Human	cells	have	on	average	about	50	thousand	of	them	spread	

throughout	the	genome.	It	is	also	essential	that	DNA	is	replicated	just	once	per	

cell	cycle	as	re-replication	of	parts	of	the	genome	is	a	threat	for	the	maintenance	

of	genome	integrity.	To	achieve	this,	the	replicative	helicase	(protein	complex,	

which	unwinds	double	stranded	DNA	during	replication)	can	be	loaded	onto	

DNA	only	before	the	onset	of	S-phase	when	CDK	activity	is	low,	and	can	be	

activated	only	during	S-phase	when	CDK	activity	is	high.	Origins	of	replication	

are	therefore	“licensed”	in	late	M	and	G1	stages	of	the	cell	cycle,	by	loading	of	the	

core	of	the	replicative	helicase:	Mcm2-7	(Minichromosome	maintenance	

2,3,4,5,6,7)	complexes.	Double	hexamers	of	the	Mcm2-7	complex	are	loaded	

onto	origins	through	the	concerted	action	of	ORC	(Origin	Recognition	Complex),	

Cdc6	and	Cdt1	factors.	These	double	hexamers	encircle	the	double	stranded	

DNA	and	are	arranged	in	N-terminus	to	N-terminus	orientation	with	the	C-

terminal	helicase	domains	on	the	outside.	There	are	multiple	Mcm2-7	double	

hexamers	loaded	around	each	origin	of	replication,	which	may	be	facilitated	by	

their	ability	to	slide	on	double	stranded	DNA	(Evrin	et	al.,	2009;	Gambus	et	al.,	

2011;	Remus	et	al.,	2009).	

The	initiation	of	DNA	replication	requires	the	activity	of	two	S-phase	

kinases:	Cdc7/Dbf4	(DDK	–	Dbf4	dependent	kinase)	and	Cdk/cyclin	(CDK	–	

Cyclin	dependent	kinase).	DDK	phosphorylates	double	hexamers	of	Mcm2-7	

while	CDK	drives	association	of	GINS	(Go-Ichi-Ni-San,	complex	of	Sld5,	Psf1,	Psf2	

and	Psf3	or	GINS1,2,3,4)	and	Cdc45	with	the	Mcm2-7	complexes,	forming	the	

CMG	complex	(Cdc45/Mcm2-7/GINS),	which	is	an	active	replicative	helicase	

(Ilves	et	al.,	2010;	Moyer	et	al.,	2006;	Simon	et	al.,	2016).	The	initiation	process	

leads	to	rearrangement	of	Mcm2-7	complexes:	the	double	hexamers	split	into	
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two	CMGs	and	each	of	them	now	likely	encircles	just	single	stranded	DNA	(Costa	

et	al.,	2011;	Gambus	et	al.,	2006;	Yardimci	et	al.,	2010).		

During	the	elongation	stage	of	DNA	replication	the	helicase	(CMG	complex)	

travels	at	the	tip	of	the	replication	fork,	unwinding	the	double	stranded	DNA	and	

exposing	single	strands	that	can	act	as	a	template	for	DNA	synthesis	by	DNA	

replication	polymerases.	The	MCM	motor	of	CMG	belongs	to	the	superfamily	of	

AAA+	ATPases	and	is	a	3’-5’	DNA	translocase,	which	encircles	the	leading	strand	

of	the	replication	fork	(reviewed	in	(Pellegrini	and	Costa,	2016)).	The	Pola-

primase	complex	initiates	DNA	synthesis	with	a	short	RNA	primer	that	is	then	

elongated	for	another	20-nt	by	Pola	polymerase	activity.	The	leading	strand	is	

believed	to	be	synthesised	mainly	by	DNA	Pole	(DNA	polymerase	epsilon)	in	a	

continuous	manner,	while	the	lagging	strand	is	thought	to	be	completed	by	DNA	

Pold	(DNA	polymerase	delta)	(Daigaku	et	al.,	2015;	Georgescu	et	al.,	2015;	

Pavlov	et	al.,	2006).	The	latter	synthesises	short	Okazaki	fragments	in	the	

opposite	direction	to	the	movement	of	the	fork	and	these	fragments	need	to	

therefore	be	processed	and	ligated	to	produce	the	continuous	DNA	strand	

(maturation	of	Okazaki	fragments).	DNA	Pole	is	therefore	following	the	helicase	

and	indeed	has	a	number	of	connections	linking	it	directly	to	the	helicase	to	

facilitate	the	smooth	progression	of	the	fork	(see	below	and	reviewed	in	

(Pellegrini	and	Costa,	2016)).		

DNA	unwinding	generates	a	compensatory	increase	in	the	intertwining	of	

parental	strands,	which	can	be	converted	into	helical	overwinding	(positive	

supercoiling)	of	the	unreplicated	portions	of	the	DNA	ahead	of	the	forks	(Postow	

et	al.,	2001;	Wang,	2002).	This	mechanical	strain	can	be	transmitted	to	

replicated	DNA	by	rotation	at	the	branching	point	of	the	replication	fork,	thus	

generating	intertwining	of	the	daughter	duplexes	(known	as	precatenates)	

(Been	and	Champoux,	1980)	(Figure	1).	Recent	research	in	budding	yeast	has	

shown	however	that	during	normal	progression	of	replication	forks,	fork	

rotation	and	precatenation	are	actively	inhibited	by	components	of	the	

replisome	Timeless/Tof1	and	Tipin/Csm3	(Schalbetter	et	al.,	2015).	Instead,	

supercoils	generated	during	replication	elongation	can	be	relaxed	by	both	type	I	

and	type	II	topoisomerases	(Wang,	2002).	Indeed,	the	current	view	assumes	that	

positive	supercoiling	is	mainly	relaxed	by	type	I	enzymes	(Topo	I,	S.cerevisiae	
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Top1)	anywhere	in	the	unreplicated	region	(Postow	et	al.,	2001).	The	replisome	

progression	complex	(RPC)	built	around	CMG	at	the	tip	of	the	fork	contains	

Top1,	positioning	it	perfectly	for	its	function	ahead	of	the	fork	(Gambus	et	al.,	

2006)	(Figure	1).	Interestingly,	yeast	cells	without	Top1	and	also	top2	mutants	

can	replicate	DNA,	but	replication	is	not	possible	when	both	proteins	are	

defective	(Bermejo	et	al.,	2007;	Brill	et	al.,	1987).		

Importantly,	replication	forks	do	not	move	through	naked	DNA	but	

through	a	chromatin	structure.	Nucleosomes	therefore	need	to	be	dismantled	

ahead	of	the	forks	and	rebuilt	behind	the	forks.	The	efficient	repositioning	of	

parental	histones	is	essential	for	full	reconstitution	of	epigenetic	markings	

throughout	the	replicating	genome.	Studies	of	SV40	replication	forks	provided	

evidence	for	the	existence	of	only	200-300	bp	of	apparently	nucleosome-free	

DNA	behind	the	replication	fork	(Gasser	et	al.,	1996)	and	the	nucleosomes	in	

yeast	were	shown	recently	to	be	positioned	immediately	after	the	fork	passage	

and	restrict	Okazaki	fragments	sizes	(Smith	and	Whitehouse,	2012).	Progressing	

replication	forks	need	also	to	remove	other	proteins	attached	to	DNA,	for	

example	the	unfired	Mcm2-7	double	hexamers,	which,	loaded	in	excess,	serve	as	

dormant	origins	ready	to	rescue	collapsed	forks.	Finally,	sister	chromatids	are	

topologically	embraced	and	held	together	until	mitosis	by	cohesin	ring	

complexes.	This	cohesion	is	established	during	DNA	replication	as	forks	

progress	(reviewed	by	(Uhlmann,	2009)).	

	

4.	Where	does	termination	of	eukaryotic	replication	forks	happen?	

	

The	simplest	answer	to	this	question	is:	wherever	the	two	neighbouring	

forks	meet	each	other.	Recent	analysis	of	genome-wide	replication	profiles	in	

budding	yeast,	both	through	high-resolution	replication	profiling	(Hawkins	et	

al.,	2013)	and	through	deep	sequencing	of	Okazaki	fragments	(McGuffee	et	al.,	

2013),	showed	that	termination	generally	occurs	midway	between	two	adjacent	

replication	origins.	The	precise	position	of	termination	depends	on	the	relative	

activation	time	of	each	of	the	origins	and	their	variable	efficiency.	Okazaki	

fragment	mapping	in	human	cells	(HeLa	and	GM06990)	also	confirmed	such	

mid-point	localisation	(Petryk	et	al.,	2016).		
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	Eukaryotes	not	only	have	specific	spatial	patterns	but	also	possess	

temporal	patterns	of	genome	replication,	which	are	executed	by	regulated	

activation	of	replication	origins	throughout	S-phase.	High-throughput	

experiments	allowed	the	identification	of	a	genome-wide	temporal	order	of	

replication	(Gilbert,	2010).	In	early	S-phase,	“active”	chromatin	is	replicated	

with	origins	of	replication	located	in	general	in-between	the	genes.	Not	

surprisingly	therefore,	many	termination	events	in	early	S-phase	were	found	to	

overlap	with	transcribed	genes.	In	late	S-phase	however,	when	heterochromatin	

is	replicated,	many	termination	zones	were	found	in	large	non-expressed	

regions	of	DNA	(Petryk	et	al.,	2016).	

This	sequence	independent	localisation	of	termination	sites	is	in	sharp	

contrast	to	the	organisation	of	termination	events	in	E.coli	chromosome	where	

termination	takes	place	within	a	broad	region	containing	several	specialised	

fork	barriers	i.e.	Tus-TER	complexes,	which	confine	fork	fusion	to	a	site	of	270	

kb	(reviewed	in	(Dimude	et	al.,	2016)).	Due	to	these	defined	prokaryotic	

Termination	Regions	(TER),	for	a	number	of	years	termination	of	eukaryotic	

replication	forks	was	studied	only	at	the	existing	few	loci	within	the	eukaryotic	

genome,	which	contain	specialised	replication	fork	barriers	(RFBs).	The	best	

characterised	of	such	sites	are	the	RTS1	site	in	S.pombe,	which	regulates	mating	

type	switching	(Brewer	and	Fangman,	1988),	and	the	rDNA	locus	within	

ribosomal	DNA	repeats	of	metazoa	and	yeasts	(Dalgaard	and	Klar,	2000).	The	

RFB	barriers	are	able	to	arrest	one	of	the	two	neighbouring	forks	and	therefore	

create	specific	termination	sites	(Bastia	and	Zaman,	2014;	Dalgaard	et	al.,	2009).	

To	minimise	fork	pausing	at	RFBs	the	protein	displacement	helicase	Rrm3	helps	

to	displace	the	barriers	to	allow	replication	passage	and	is	required	for	fork	

termination	at	these	sites.	In	yeast	lacking	Rrm3	tenfold	accumulation	of	

termination	structures	(“X”	shaped	DNA	structures	in	2D	DNA	gels)	was	

observed,	while	only	twofold	accumulation	of	paused	forks	at	the	barrier	(Ivessa	

et	al.,	2003;	Ivessa	et	al.,	2000).	But	Rrm3	is	not	required	for	bulk	replisome	

unloading	during	normal	termination	(Maric	et	al.,	2014),	so	it	is	needed	only	for	

fork	convergence	at	rare	situations	when	one	fork	is	paused.	

In	2010,	Fachinetti	et	al,	identified	71	termination	regions	(TERs)	in	

budding	yeast,	through	a	combination	of	Chromatin	immunoprecipitation	(ChiP)	



	 7	

and	BrdU	incorporation	experiments.	Their	work	found	that	the	majority	of	

these	regions	contain	fork	pausing	elements,	such	as	transcription	clusters,	and	

that	efficient	termination	at	the	identified	sites	requires	activity	of	Rrm3	and	

Top2	(Fachinetti	et	al.,	2010).	However,	the	more	recent	high-resolution	

approaches	suggest	that	these	TERs	actually	represent	sites	with	a	higher	than	

average	probability	of	termination	as	they	are	flanked	by	early-firing	efficient	

origins.	Importantly,	changes	of	origin	firing	pattern	moved	the	termination	

positioning	both	in	non-TER	and	TER	replicons,	indicating	that	it	is	the	timing	

and	efficiency	of	origin	firing	and	not	fork	pausing	elements	that	dictate	the	

precise	place	of	replication	fork	convergence	(Hawkins	et	al.,	2013;	McGuffee	et	

al.,	2013).	

	

5.	How	do	replication	forks	converge?	

	

Figure	2	summarises	our	current	model	of	replication	fork	termination.	To	

allow	convergence	of	two	approaching	DNA	replication	forks	all	of	the	proteins	

bound	to	DNA	between	them	must	be	evicted	(Figure	2A).	Unwinding	of	final	

stretches	of	DNA	can	present	a	problem	for	the	forks	as	the	torsional	stress	

created	ahead	of	the	fork	cannot	be	easily	released	due	to	lack	of	access	for	Top	I	

(see	below	for	more	details)	and	has	to	be	translated	into	precatenates,	which	

accumulate	behind	the	fork	(Figure	2B).	Two	converging	forks	present	two	large	

protein	machineries	approaching	one	another	and	heading	for	head-on	collision	

while	unwinding	the	remaining	DNA	between	them	(Figure	2C).	After	forks	

converge,	all	of	the	remaining	DNA	needs	to	be	replicated	and	the	RNA-DNA	

primer	of	the	last	Okazaki	fragment	on	the	lagging	strand	needs	to	be	processed	

(Figure	2D,E).	Once	this	is	complete,	DNA	needs	to	be	ligated	into	a	continuous	

strand	and	replisomes	need	to	be	disassembled	(Figure	2E).	Finally,	the	

entangled	sister	chromatids	need	to	be	resolved	into	two	separate	strands	

(Figure	2G).	

	

Recent	years	have	brought	a	breakthrough	in	our	understanding	of	the	

above	processes.	Beautiful	work	from	Prof	Johannes	Walter’s	lab	shed	light	on	

the	mechanism	by	which	forks	converge	and	termination	is	resolved	(Dewar	



	 8	

Walter	2015).	To	synchronise	termination	events	and	facilitate	their	analysis,	

they	constructed	plasmids	with	an	array	of	lac	repressors	(LacRs)	bound	to	lac	

operators	(LacOs),	which	can	be	disrupted	by	IPTG.	Such	plasmids	replicated	in	

cell-free	Xenopus	laevis	egg	extract	accumulated	blocked	forks	at	the	edges	of	the	

array.	The	blocked	forks	were	then	released	by	addition	of	IPTG,	and	proceeded	

to	terminate	within	the	DNA	fragment	comprising	the	array.	Using	this	system,	

Dewar	et	al.	could	monitor:	unwinding	of	DNA	as	forks	approach	each	other,	

synthesis	of	DNA,	ligation	of	the	replicated	DNA	and	decatenation	of	daughter	

molecules.	Strikingly,	the	rate	of	DNA	synthesis	within	the	array	was	almost	

perfectly	linear	after	IPTG	addition	and	resembled	the	fork	progression	speed	

reported	in	the	same	extracts.	It	suggests	therefore	that	converging	forks	do	not	

slow	significantly	before	they	meet;	they	do	not	collide	with	each	other	or	stall	

but	rather	pass	each	other	(Dewar	et	al.,	2015)	(Figure	2C	and	D).	Such	passage	

can	be	possible	as	CMGs	encircle	the	leading	strand	of	the	replication	fork	and	

therefore	approach	each	other	on	opposite	strands	when	converging	at	

termination	(Ali	et	al.,	2016;	Costa	et	al.,	2011;	Fu	et	al.,	2011).	Interestingly,	

however,	recent	reports	suggest	that	large	protein	barriers	on	the	lagging	strand	

can	indeed	slow	down	progression	of	the	fork	(Duxin	et	al.,	2014;	Langston	and	

O'Donnell,	2017).	Does	the	approaching	neighbour	replisome,	which	is	on	the	

lagging	strand,	not	present	such	a	barrier?	Is	there	an	active	mechanism	

regulating	the	smooth	passage	of	the	replisomes?	Or	are	the	replisomes	idling	at	

the	edge	of	the	barrier,	in	the	attempt	to	unwind	it,	especially	prepared	to	deal	

with	barriers	laying	ahead	and	hence	better	at	passing	each	other	smoothly?	

More	work	is	needed	to	answer	these	questions.	

The	results	presented	by	Dewar	et	al.	also	suggest,	at	least	in	the	context	of	

the	plasmid	template,	that	torsional	stress	building	up	ahead	of	the	forks	does	

not	slow	down	fork	convergence	(Dewar	et	al.,	2015)	(see	also	below	for	role	of	

topoisomerases)	(Figure	2B).	The	removal	of	proteins	(nucleosomes)	ahead	of	

the	fork	could	not	be	directly	addressed	in	this	setup	due	to	the	artificial	

“clearing	up”	of	chromatin	ahead	of	the	fork	due	to	removal	of	the	lac	array.	

Interestingly,	the	reconstitution	of	eukaryotic	DNA	replication	in	vitro		with	

purified	budding	yeast	proteins	revealed	in	fact	that	nucleosomal	packaging	

does	appear	to	inhibit	replication	termination.	As	the	elongation	stage	of	the	
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reaction	was	efficient,	but	termination	alone	was	blocked,	it	suggests	that	the	

termination	stage	may	be	especially	sensitive	to	the	presence	of	chromatin	

structure	(Devbhandari	et	al.,	2017)	(Figure	2A).	

	

6.	The	completion	of	DNA	synthesis	

	

Data	provided	by	Dewar	at	al,	suggest	that	leading	strand	DNA	is	replicated	

up	to	a	few	bases	away	from	the	end	of	the	last	Okazaki	fragment	of	the	

encountered	lagging	strand	(Figure	2D	and	E).	There	is	no	evidence	for	

persistent	gaps	between	these	strands	upon	termination	(Dewar	et	al.,	2015).	

These	data,	however,	do	not	explain	which	polymerase	carries	on	synthesis	of	

last	fragments	of	DNA	and	maturation	of	the	last	Okazaki	fragment.	The	RNA-

DNA	primer	of	each	Okazaki	fragment	on	the	lagging	strand	is	removed	by	

concerted	action	of	DNA	Pold	and	Fen1	endonuclease	(reviewed	in	

(Balakrishnan	and	Bambara,	2013)).	DNA	Pold	can	support	strand-displacement	

re-synthesis	of	the	DNA	previously	synthesised	by	Pola	and	in	doing	so	can	

progress	until	it	encounters	the	nucleosome	or	another	DNA	binding	protein,	

both	of	which	are	efficiently	repositioned	behind	the	replication	fork	(Smith	and	

Whitehouse,	2012).	Interestingly,	fragments	of	DNA	synthesised	by	Pola	can	be	

detected	in	mature	genome	mostly	at	the	junctions	of	Okazaki	fragments,	usually	

at	the	nucleosome	midpoint	(dyad	position).	In	total	about	1.5%	of	mature	

genome	was	shown	to	be	synthesised	by	Pola	(Reijns	et	al.,	2015).	

Is	the	last	Okazaki	fragment	matured	by	DNA	Pole?	The	holoenzyme	of	

DNA	Pole	is	unable	to	carry	on	extended	strand	displacement	synthesis	in	in	

vitro	reconstitution	experiments,	unless	its	3’-5’	exonuclease	activity	is	removed,	

and	it	cannot	mature	Okazaki	fragments	on	lagging	strand	(Devbhandari	et	al.,	

2017;	Ganai	et	al.,	2016).	However,	DNA	Pole	in	the	context	of	the	replisome	

tightly	associates	with	the	CMG	complex	through	the	Dpb2	subunit	of	Pole	and	

GINS	and	forms	a	functional	unit	(Langston	et	al.,	2014;	Muramatsu	et	al.,	2010;	

Sengupta	et	al.,	2013).	A	recent	negative-stain	electron	microscopy	

reconstruction	of	a	CMG-Pole	complex	visualised	the	close	association	of	this	

complex	(Pellegrini	and	Costa,	2016;	Sun	et	al.,	2015)	and	we	found	that	the	
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post-replication	replisome	in	both	C.elegans	and	X.laevis	interacts	with	Pole	and	

not	Pold	(Sonneville	et	al.,	2017).	This	interaction	of	Pole	with	the	replisome	

likely	acts	as	additional	processivity	factor	for	Pole,	in	addition	to	action	of	PCNA	

(Kang	et	al.,	2012;	Langston	et	al.,	2014;	Yeeles	et	al.,	2017).	It	would	be	

interesting	to	investigate	Pole	strand-displacement	activity	in	the	context	of	the	

replisome.	In	support	of	the	Pole	role	at	termination,	analysis	of	the	genome-

wide	location	of	ribonucleotides	incorporated	into	DNA	by	mutants	of	Pold	and	

Pole	especially	prone	to	such	mis-incorporations	discovered	a	substantial	bias	

toward	Pold	proximal	to	origins	which	declined	toward	the	centre	of	the	

replicons	where	Pole	synthesis	was	more	evident	(Daigaku	et	al.,	2015).	This	

would	suggest	that	Pole	carries	out	the	replication	at	sites	of	termination.		

Can	Pole	mature	the	last	Okazaki	fragment?	Can	it	sustain	strand	

displacement	synthesis	when	supported	by	both	PCNA	and	the	CMG?	It	remains	

to	be	unravelled.	Importantly,	DNA	Pole	on	its	own	does	not	interact	with	Fen1	

(Garg	et	al.,	2004),	therefore	another	processing	mechanism	would	be	required	

to	complete	maturation	of	the	last	Okazaki	fragment,	unless	Fen1	is	brought	in	

by	a	different	component	of	the	terminating	replisome.	Alternatively,	Pole	can	

slide	along	the	last	Okazaki	fragment	together	with	the	post-termination	

replisome,	making	room	for	Pold	to	displace	and	mature	the	last	RNA/DNA	

primer.	Much	is	to	be	discovered	about	the	ability	of	the	terminated	CMG	to	

move	away	from	the	termination	site	especially	in	the	context	of	re-established	

nucleosomes.	However,	Pold	has	been	shown	previously	to	play	a	role	in	leading	

strand	synthesis	in	vivo	(Daigaku	et	al.,	2015;	Johnson	et	al.,	2015;	Waga	et	al.,	

2001).	Moreover,	recent	data	obtained	from	the	budding	yeast	in	vitro	

reconstitution	system	of	replication	using	purified	proteins	revealed	that	

polymerase	switching	may	be	more	common	than	expected.	Pold	can	play	an	

important	role	in	establishing	leading-strand	synthesis	(Yeeles	et	al.,	2017)	and	

Pold	assembled	at	the	leading	strand	was	shown	to	be	displaced	if	Pole	was	

added	after	DNA	synthesis	has	initiated	(Georgescu	et	al.,	2014).	More	research	

is	required	to	show	which	of	the	polymerases	finishes	the	replication	job.	

	

7.	Role	of	topoisomerases	during	DNA	replication	termination	
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The	ability	of	topoisomerases	to	act	ahead	of	the	replication	forks	becomes	

very	limited	as	two	replication	forks	converge	(Sundin	and	Varshavsky,	1980).	

In	this	circumstance,	fork	rotation	and	precatenation	become	the	primary	

pathway	of	DNA	relaxing	ahead	of	the	fork.	Catenated,	double	stranded	DNA	

(intertwined	sister	chromatids)	can	only	be	resolved	by	type	II	topoisomerases	

(Topo	II,	S.cerevisiae	Top2)	(Figure	2B).	Experiments	with	Topo	II	inhibitors	in	

Xenopus	egg	extract	showed	that	Topo	II	can	be	trapped	behind,	but	not	in	front	

of	the	forks,	and	resolves	replication	intermediates	in	a	non-redundant	manner	

with	Topo	I	(Hyrien,	2009;	Lucas	et	al.,	2001).	Interestingly,	Top2	depletion	in	

yeast	does	not	stop	cells	from	completing	DNA	replication,	nor	passing	through	

mitosis,	although	they	do	dramatically	mis-segregate	and	break	their	

chromosomes	due	to	sister	chromatid	catenation.	On	the	other	hand,	inhibition	

of	Top2	enzymatic	activity	in	a	way	that	Top2	is	still	able	to	bind	DNA	but	unable	

to	catalyse	strand	breakage,	causes	incomplete	DNA	replication	and	induces	

G2/M	cell	cycle	arrest		(Baxter	and	Diffley,	2008).	Similarly,	inhibition	of	Topo	II	

activity	in	higher	eukaryotes	with	the	small	molecule	inhibitor	ICRF-193	was	

shown	to	block	termination	of	DNA	replication	in	Xenopus	egg	extract	and	

induce	G2	arrest	in	human	cells	without	the	high	level	of	DNA	strand	breaks	

associated	with	Topo	II	poisons	(Cuvier	et	al.,	2008;	Downes	et	al.,	1994;	

Skoufias	et	al.,	2004).	ICRF-193	traps	Topo	II	on	the	DNA	in	the	form	of	a	non-

covalent	intermediate	named	the	closed	clamp	(Roca	et	al.,	1994).	It	is	unclear	

therefore	whether	replication	termination	defects	observed	upon	addition	of	

ICRF-193	to	Xenopus	egg	extracts	is	due	to	inhibition	of	Topo	II	activity	or	some	

other	effect	of	the	closed	clamps,	such	as	changes	to	nucleosome	spacing	and	

chromatin	structure	(Gaggioli	et	al.,	2013;	Germe	and	Hyrien,	2005).	

In	agreement	with	the	role	of	Topo	II	in	replication	fork	termination,	post-

termination	replisomes	from	C.	elegans	and	X.	laevis	contain	Topo	II,	unlike	the	

budding	yeast	Replisome	Progression	Complex,	which	represents	active	helicase	

and	contains	Top1	(Gambus	et	al.,	2006;	Sonneville	et	al.,	2017).	Moreover,	

Dewar	et.al.	reported	that	site-specific	termination	plasmids	(described	above)	

require	Topo	II	for	decatenation	of	daughter	plasmids,	but	Topo	II	activity	is	not	
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needed	for	fork	convergence	and	DNA	ligation	(Dewar	et	al.,	2015)	(Figure	2B	

and	F).		

	

8.	Replisome	disassembly	

	

The	data	presented	by	Dewar	at	al.	suggest	that	the	dissolution	of	the	

replisome	in	the	plasmid-based	system	is	the	last	stage	of	replication	fork	

termination,	executed	after	ligation	of	leading	and	lagging	strands	(Dewar	et	al.,	

2015)(Figure	2E).	Work	in	budding	yeast	and	Xenopus	laevis	egg	extract	

discovered	the	first	elements	of	this	dissolution	mechanism,	which	was	found	to	

be	a	highly	evolutionary	conserved	process	(Maric	et	al.,	2014;	Moreno	et	al.,	

2014)(Figure	3A	and	B).	In	both	model	organisms	the	Mcm7	subunit	of	the	CMG	

complex	becomes	polyubiquitylated	when	forks	terminate.	The	ubiquitin	chains	

attached	to	Mcm7	are	linked	through	lysine	48	(K48)	but	ubiquitylated	Mcm7	is	

not	degraded	directly	on	chromatin	as	inhibition	of	proteasomal	activity	does	

not	inhibit	CMG	disassembly.	Instead,	a	protein	remodeller	Cdc48	(p97,	VCP,	

segregase)	recognises	the	ubiquitylated	CMG	and	through	its	ATPase	activity	

removes	the	CMG	complexes	from	chromatin	(Maric	et	al.,	2014;	Moreno	et	al.,	

2014).	It	is	unclear	at	present	whether	the	ubiquitylated	Mcm7	is	degraded	

upon	removal	from	chromatin	or	de-ubiquitylated.	A	recent	report	by	Fullbright	

et	al.	suggests	that	during	unperturbed	DNA	replication	in	Xenopus	egg	extract	

ubiquitylated	Mcm7	is	likely	to	be	de-ubiquitylated	(Fullbright	et	al.,	2016).	

Interestingly,	ubiquitylation	of	human	Mcm7	(both	endogenous	and	

exogenously	expressed	in	cells)	was	reported	in	the	past,	but	the	fate	of	the	

ubiquitylated	form	of	Mcm7	and	the	function	of	the	ubiquitylation	was	not	clear	

(Buchsbaum	et	al.,	2007;	Kuhne	and	Banks,	1998).	

	

8.1	SCFDia2	ubiquitin	ligase	in	budding	yeast.	

In	budding	yeast	the	ubiquitin	ligase,	which	ubiquitylates	Mcm7	is	SCFDia2	

(Maric	et	al.,	2014).	SCFDia2	is	a	multisubunit	ligase	built	around	a	Cdc53	cullin	

scaffold	(homologue	of	Cullin	1	in	higher	eukaryotes)	(Figure	3A).	Dia2	is	the	

substrate	specific	receptor,	F-box	protein,	which	binds	through	the	substrate	

adaptor	(Skp1)	to	the	N-terminal	part	of	Cdc53.	The	C-terminus	of	Cdc53,	on	the	
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other	hand,	binds	RING	domain	factor	Hrt1,	connecting	the	ligase	to	the	

ubiquitin	conjugating	enzyme	(E2)	Cdc34	(SCF	=	Skp1+Cullin1+F-box)	(Figure	

4B).	SCFDia2	was	shown	to	be	essential	for	Mcm7	ubiquitylation,	specifically	in	

the	context	of	CMG	during	S-phase	–	both	in	vitro	and	in	vivo.	Moreover	cells	

lacking	Dia2	(dia2D)	retain	CMG	complexes	on	chromatin	after	S-phase	until	the	

next	G1	stage	of	the	cell	cycle	(Maric	et	al.,	2014).	Not	surprisingly	budding	yeast	

cells	lacking	Dia2,	although	viable,	are	defective	in	S-phase	progression	and	

present	high	rates	of	endogenous	DNA	damage	and	genome	instability.	They	are	

also	unable	to	grow	at	low	temperatures	and	are	sensitive	to	DNA-damaging	

agents	that	affect	replication	fork	progression	(Blake	et	al.,	2006;	Koepp	et	al.,	

2006).		

Dia2	contains	a	protein-protein	interaction	N-terminal	tetratricopeptide	

repeat	(TPR)	domain,	nuclear	localisation	signal	(NLS),	an	F-box	that	connects	it	

to	the	rest	of	the	SCF	ligase	and	a	C-terminal	substrate	recognition	domain	

comprising	of	leucine-rich	repeats	(LRR).	The	TPR	domain	of	Dia2	was	shown	to	

interact	with	Mrc1	and	Tof1	components	of	the	replisome	progression	complex	

(RPC)	built	around	the	CMG	helicase	(Gambus	et	al.,	2006;	Morohashi	et	al.,	

2009).	As	a	result,	Dia2	was	detected	interacting	with	RPC	in	S-phase	and	this	

interaction	was	preserved	when	cells	were	treated	with	hydroxyurea	(HU)	to	

stall	progressing	replication	forks	(Morohashi	et	al.,	2009).	Interestingly	cells	

lacking	the	TPR	domain	within	Dia2	(dia2-DTPR)	do	not	present	the	severe	

phenotype	of	dia2D	cells	–	with	the	exception	of	synthetic	lethality	with	rrm3D	

(a	helicase	supporting	passage	of	forks	past	protein-DNA	barriers).	Cells	lacking	

the	TPR	domain	in	Dia2	were,	however,	shown	consequently	to	have	a	partial	

defect	in	Mcm7	ubiquitylation	and	CMG	disassembly	(Maculins	et	al.,	2015).	It	

seems	that	attaching	SCFDia2	to	the	replisome	via	the	TPR	domain	increases	the	

efficiency	of	CMG	ubiquitylation.	It	may	not	be	essential	for	normal	CMG	

disassembly	as	the	LRR	domain	can	still	recognise	its	substrate	even	without	the	

tethering,	but	there	may	be	situations	when	this	stabilised	interaction	with	the	

replisome	is	more	vital	–	for	example	when	forks	struggle	to	pass	DNA-protein	

barriers	in	the	absence	of	Rrm3.	

	

8.2.	CRL2Lrr1	ubiquitin	ligase	in	higher	eukaryotes	



	 14	

Recent	research	from	our	and	two	other	groups	discovered	that	in	higher	

eukaryotes	the	ubiquitin	ligase	ubiquitylating	Mcm7	at	termination	of	

replication	forks	is	not	an	SCF	but	a	Cullin2-based	ubiquitin	ligase	with	a	

Leucine	Rich	Repeat	1	protein	(Lrr1)	as	a	substrate	receptor	(Cullin-Ring	Ligase	

2	with	Lrr1	=	CRL2Lrr1)(Dewar	et	al.,	2017;	Sonneville	et	al.,	2017)	(Figure	4	C).	

Both	in	Xenopus	egg	extract	and	in	C.elegans	embryos,	inhibition	or	

downregulation	of	Cullin	1	ligase	activity	did	not	influence	Mcm7	ubiquitylation	

nor	helicase	disassembly	during	S-phase	((Sonneville	et	al.,	2017)	and	our	

unpublished	data).	On	the	other	hand	siRNA	downregulation	of	CUL-2	/	LRR-1	

complex	in	C.elegans	embryos	and	immunodepletion	of	CRL2Lrr1	in	egg	extract	

blocked	both	phenotypes	(Dewar	et	al.,	2017;	Sonneville	et	al.,	2017)	(Figure	

3B).	CRL2Lrr1	was	also	shown	to	be	the	only	cullin	type	ubiquitin	ligase	that	

interacts	with	post-termination	replisomes	in	Xenopus	egg	extract	and	C.elegans	

embryos	and	accumulates	at	the	sites	of	termination	in	plasmid-based	

termination	system	described	above	(Dewar	et	al.,	2017;	Sonneville	et	al.,	2017).	

Importantly,	both	studies	found	that	CRL2Lrr1	interacts	specifically	with	

terminating	CMG	and	not	with	actively	unwinding	helicase	nor	double	Mcm2-7	

hexamers	of	dormant	origins.	The	regulated	binding	of	CRL2Lrr1	to	post-

termination	replisome	represents	therefore	the	first	known	step	of	replisome	

disassembly.	Finally,	the	ubiquitin	ligase	activity	of	CRL2Lrr1	is	necessary	for	the	

Mcm7	ubiquitylation	and	helicase	disassembly,	as	a	mutant	of	Cul2-Rbx1	

complex,	which	cannot	be	activated	by	neddylation,	is	unable	to	rescue	the	

CRL2Lrr1	immunodepleted	egg	extract	unlike	a	wild	type	fully	functioning	

complex	(Sonneville	et	al.,	2017).	

What	is	CRL2Lrr1?		Previous	work	has	shown	that	C.elegans	LRR-1	is	an	

essential	gene	(Piano	et	al.,	2002).	LRR-1	is	required	for	embryonic	development	

but	maternal	rescue	allows	analysis	of	lrr-1	loss	of	function	in	adult	tissues.	lrr-1	

mutants	are	sterile	owing	to	severe	defects	in	germ	cell	proliferation	(Merlet	et	

al.,	2010;	Starostina	et	al.,	2010).	Inactivation	of	lrr-1	induces	DNA	damage,	

which	may	arise	due	to	DNA	re-replication	problems	(ssDNA/RPA-1	foci	

accumulate	in	lrr-1	germ	cells,	which	also	contain	greater	than	4N	DNA	content).	

This	in	turn	leads	to	hyperactivation	of	ATL-1/CHK-1	pathway	(ATR/Chk1	

pathway	in	vertebrates),	which	delays	mitotic	entry	and	results	in	embryonic	
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lethality.	Inactivation	of	ATL-1/CHK-1	checkpoint	components	supresses	the	

proliferation	defect	and	fully	restores	lrr-1	mutant	fertility	(Burger	et	al.,	2013;	

Merlet	et	al.,	2010).	How	the	re-replication	/	DNA	damage	is	induced	in	lrr-1	

worms	is	not	as	yet	determined.	Interestingly,	an	RNAi-based	suppressor	screen	

of	lrr-1	and	cul-2	mutants	identified	two	genes	encoding	components	of	the	GINS	

complex,	as	well	as	CDC-7	and	MUS-101,	which	are	needed	for	CMG	activation	

(Ossareh-Nazari	et	al.,	2016).	These	data	suggest	that	reducing	CMG	levels	on	

chromatin	can	supress	the	DNA	damage	created	in	lrr-1	mutants	and	supress	

their	lethality.	This	is	in	agreement	with	LRR-1’s	role	in	Mcm7	ubiquitylation	as	

lower	levels	of	CMG	on	chromatin	would	compensate	for	a	defect	in	CMG	

unloading.	

On	the	other	hand,	another	study	found	that	C.elegans	lrr-1	mutants	germ	

cells	arrest	with	2C	DNA	content,	which	may	be	due	to	accumulation	of	CDK	

inhibitor	CKI-1	as	deletion	of	one	copy	of	CKI-1	or	cki-1	RNAi	treatment	can	

rescue	lrr-1	mutant	germ	cells	numbers.	In	support	of	the	CUL-2	/	LRR-1	role	in	

targeting	CKI-1	for	degradation,	study	in	human	cells	found	that	overexpressed	

CKI-1	was	degraded	faster	when	LRR-1	was	also	overexpressed	(Starostina	et	

al.,	2010).	Interestingly,	LRR1	or	CUL2	knockdown	in	HeLa	cells	did	not	induce	a	

strong	cell	cycle	arrest	and	LRR1	was	shown	to	be	important	to	regulate	levels	

of	cytoplasmic	p21	(human	CKI)	to	control	actin	cytoskeleton	remodelling	

(Starostina	et	al.,	2010).	Further	studies	are	required	to	analyse	in	depth	the	role	

of	LRR1	in	human	cells	and	the	interplay	between	different	substrates	of	this	

ubiquitin	ligase.	

	

Several	questions	remain	–	what	is	the	signal	for	polyubiquitylation	of	

Mcm7	and	removal	of	helicase?	How	are	CMGs	protected	from	ubiquitylation	

during	elongation	and	efficiently	ubiquitylated	at	termination	(Figure	2)?	Dewar	

et	al	hypothesise	that	it	may	be	conformational	changes	within	CMG	upon	

transition	from	encircling	single-stranded	DNA	to	double-stranded	DNA	of	last	

Okazaki	fragment	that	provide	this	post-termination	specificity	(Dewar	et	al.,	

2015).	In	support	of	this	hypothesis,	it	was	shown	that	CMG	is	indeed	able	to	

slide	on	double-stranded	DNA	(Kang	et	al.,	2012).		
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We	should	also	keep	in	mind	that	many	substrate	specific	receptors	of	

CRLs	recognise	their	substrates	only	when	they	are	post-translationally	

modified	e.g.	F-box	receptors	of	SCF	often	recognise	phosphorylated	proteins,	

VHL	interacting	with	CRL2	recognises	Hif1a	upon	its	hydroxylation.	It	is	

possible	therefore	that	terminating	CMG	is	first	modified	in	a	yet	undiscovered	

manner	before	being	ubiquitylated.	Budding	yeast	Mcm2-7	complex	has	been	

recently	shown	to	be	SUMOylated	upon	loading	at	origins	in	G1	stage	of	cell	

cycle	before	Mcm2-7	phosphorylation.	The	level	of	Mcm2-6	SUMOylation	

decreases	during	S-phase	as	MCM	becomes	phosphorylated	and	activated,	with	

exception	of	Mcm7,	which	SUMOylation	was	retained	during	S-phase	(Wei	and	

Zhao,	2016).	Additionally,	deubiquitylating	enzyme	Usp7	was	described	recently	

as	a	SUMO-specific	DUB,	removing	ubiquitin	from	SUMOylated	proteins	and	

maintaining	high	SUMO	/	low	ubiquitin	ratio	at	replication	forks	(Lecona	et	al.,	

2016;	Lopez-Contreras	et	al.,	2013).	A	theory	was	therefore	proposed	that	

SUMO-driven	ubiquitylation	could	act	as	a	signal	for	the	termination	of	DNA	

replication	(Lecona	and	Fernandez-Capetillo,	2016).	Usp7	was	also	previously	

shown	to	interact	with	MCM	binding	protein	MCM-BP	and	to	cooperate	with	it	to	

unload	the	Mcm2-7	complexes	from	chromatin	at	the	end	of	S-phase	

(Jagannathan	et	al.,	2014;	Nishiyama	et	al.,	2011).	Is	Usp7	DUB	activity	for	

SUMOylated	proteins	linked	with	its	MCM-BP	interaction?	Is	Mcm7	in	higher	

eukaryotes	modified	by	SUMO?	Is	SUMOylation	of	Mcm7	regulating	its	

ubiquitylation	at	termination	events?	More	work	is	needed	to	understand	fully	

this	complex	process.		

Another	possibility	in	need	of	investigation	is	involvement	of	priming	

ubiquitin	ligase.	Indeed	ARIH1,	an	Ariadne	family	Ring-Between-Ring	(RBR)	

ubiquitin	ligase,	was	shown	recently	to	interact	with	a	number	of	CRLs	including	

CRL2s	and	prime	their	substrates	(Scott	et	al.,	2016).	It	is	probable	therefore,	

that	such	a	priming	ligase	recognises	the	terminating	helicase	and	CRL2Lrr1	only	

acts	on	primed	substrate.		

	

8.3.	The	role	of	p97	segregase	in	replisome	disassembly	

p97,	also	known	as	VCP	in	metazoans,	CDC-48	in	C.elegans,	Cdc48	in	yeast	

and	Ter94	in	insects,	is	a	ubiquitin-dependent	segregase	that	plays	a	central	role	
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in	the	regulation	of	protein	homeostasis.	Once	bound	to	ubiquitylated	

substrates,	this	conserved	hexameric	AAA+	ATPase	utilises	the	energy	released	

from	ATP	hydrolysis	to	undergo	a	conformational	change	across	its	hexamer	

structure	called	interprotomer	motion	transmission	mechanism	(Huang	et	al.,	

2012;	Li	et	al.,	2012).	This	movement	allows	p97	to	remove	substrates	from	

different	cellular	locations	and	complexes,	likely	by	substrate	translocation	

through	p97’s	narrow	central	pore	(Tonddast-Navaei	and	Stan,	2013).	The	

separated	or	unfolded	substrates	can	then	be	directed	to	the	proteasome	and	

degraded	or	de-ubiquitylated	and	recycled	with	the	help	of	DUBs	associating	

with	p97.	p97	carries	on	this	segregase/unfoldase	activity	on	a	myriad	of	

substrates	participating	in	a	large	variety	of	cellular	processes.	Not	surprisingly,	

knockdown	of	both	p97	alleles	causes	early	embryonic	lethality	in	mice	and	

siRNA-depletion	of	p97	in	cells	causes	apoptosis	(Muller	et	al.,	2007;	Wojcik	et	

al.,	2004).		

The	interaction	of	p97	with	its	many	different	substrates	is	mediated	by	a	

group	of	about	30	adaptor	proteins	that	specifically	recruit	ubiquitylated	

proteins	(Meyer	et	al.,	2012;	Yeung	et	al.,	2008).	The	cofactors	usually	bind	to	

the	N-terminal	domain	of	p97	using	p97	interacting	motifs.	The	best	

characterised	major	p97	cofactors	include	Ufd1/Npl4	heterodimer	and	p47,	

which	bind	to	the	p97	in	mutually	exclusive	manner	(Bruderer	et	al.,	2004).	

Further,	minor	cofactors	such	as	FAF1	or	UBXD7	can	then	associate	to	the	p97	

complex	with	a	major	cofactor	(Hanzelmann	et	al.,	2011).	Some	of	the	cofactors,	

such	as	UBXD7,	can	also	interact	with	various	ubiquitin	ligases	and	streamline	

the	process	of	ubiquitin-dependent	substrate	removal/degradation	(reviewed	in	

(Meyer	et	al.,	2012)).	

The	role	of	p97	during	DNA	replication	was	first	suggested	in	C.elegans	

embryos.	RNAi-mediated	depletion	of	the	CDC-48	complex	lead	to	a	defect	in	cell	

division:	mitotic	entry	was	delayed	as	a	result	of	the	activation	of	the	DNA	

damage	checkpoint.	The	severe	chromatin	defects	observed	in	embryos	as	well	

as	mitotic	cells	of	the	gonads	included	mitotic	bridges	and	accumulated	foci	of	

RAD-51	DNA	repair	protein.	Moreover,	embryos	lacking	CDC-48,	UFD-1	or	NPL-

4	are	strongly	reduced	in	DNA	content	(Deichsel	et	al.,	2009;	Mouysset	et	al.,	

2008).	It	was	subsequently	shown	that	embryos	lacking	CDC-48	or	UFD1/NPL-4	
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cofactors	accumulate	origin	licensing	factor	CDT-1	on	mitotic	chromatin	and	

present	persistent	chromatin	association	of	CDC-45/GINS	after	S-phase	is	

completed	(Franz	et	al.,	2011).	This	process	involves	another	p97	cofactor	

UBXN-3/FAF1	(Franz	et	al.,	2016).	Interestingly,	inhibition	of	CDT-1	degradation	

and	its	accumulation	on	chromatin	in	embryos	lacking	CDC-48	or	UFD1/NPL-4	

does	not	lead	to	re-replication	phenotype	in	these	embryos	but	rather	a	strong	

reduction	in	their	DNA	content.		

	In	the	case	of	replisome	disassembly,	the	segregase	function	was	shown	to	

be	essential	to	disassemble	ubiquitylated	post-termination	CMG	in	budding	

yeast,	C.elegans	embryos	and	Xenopus	egg	extract	(Maric	et	al.,	2014;	Moreno	et	

al.,	2014;	Sonneville	et	al.,	2017).	The	ATPase	activity	of	p97	is	essential	for	this	

disassembly	function	as	the	replisome	can	be	blocked	on	chromatin	when	two	

ATPase	domains	of	p97	(D1	and	D2)	are	mutated	or	the	activity	of	p97	is	

blocked	with	a	small	molecule	inhibitor	NMS973	(Dewar	et	al.,	2017;	Moreno	et	

al.,	2014;	Sonneville	et	al.,	2017).	This	replisome	disassembly	defect	phenotype	

is	not	driven	through	Cdt1	de-regulation,	nor	represents	novel	binding	of	

GINS/Cdc45	to	mitotic	chromosomes	(Moreno	et	al.,	2014;	Sonneville	et	al.,	

2017).	In	worm	embryos,	RNAi	directed	inactivation	of	ufd-1	and	npl-4	leads	to	a	

defect	in	replisome	unloading	and	the	Ufd1/Npl4	heterodimer	is	found	to	

interact	with	the	post-termination	replisome	in	Xenopus	egg	extracts	(Dewar	et	

al.,	2017;	Sonneville	et	al.,	2017).	Moreover,	plasmids	with	accumulated	

terminating	forks	contain	enriched	Ubxn7	and	Dvc1/SPRTN	bound	to	them	

(Dewar	et	al.,	2017).	Future	work	will	show	whether	these	additional	co-factors	

play	a	role	in	replisome	disassembly.	

	

8.4.	Back-up	pathway	for	replisome	disassembly	

Importantly,	work	in	C.elegans	embryos	revealed	that	if	the	removal	of	

CMG	complexes	is	not	accomplished	during	S-phase	due	to	defective	CRL2Lrr1	

then	they	can	be	removed	from	chromatin	at	the	beginning	of	mitosis,	in	late	

prophase	(Sonneville	et	al.,	2017)(Figure	3C).	This	back-up	mitotic	pathway	of	

replisome	disassembly	also	requires	p97/Ufd1/Npl4	(worm	CDC-48/UFD-

1/NPL-4)	segregase,	but	to	accomplish	it	p97	requires	yet	another	cofactor:	Fas-

associated	factor	1	FAF1	(worm	UBXN-3)	(Sonneville	et	al.,	2017).		FAF1	is	an	
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evolutionarily	conserved	proapoptotic	factor	that	contains	multiple	protein-

interaction	domains:	ubiquitin-associated	UBA,	ubiquitin-like	UBL1	and	UBL2,	

Fas-interacting	domain	FID,	death	effector	domain-interacting	domain	DEDID,	

Ubiquitin-associated	UAS,	ubiquitin	regulatory	X	UBX	(Lee	et	al.,	2013;	Menges	

et	al.,	2009).	FAF1	is	an	essential	gene	(Adham	et	al.,	2008),	an	established	

modulator	of	apoptosis,	regulates	NFkB	and	is	involved	in	ubiquitin-mediated	

protein	turnover	(reviewed	in	(Menges	et	al.,	2009)).	FAF1	was	also	shown	to	

bind	to	p97-Ufd1-Npl4	complex	via	the	UBX	domain	and	polyubiquitylated	

proteins	via	the	UBA	domain	to	promote	endoplasmic	reticulum	associated	

degradation	ERAD	(Lee	et	al.,	2013).	Finally,	recent	work	from	the	Thorsten	

Hoppe	lab	showed	that	FAF-1/UBXN-3	is	required	for	cell	cycle	progression	in	

C.elegans	embryo	due	to	the	problem	with	CDT-1	degradation	and	its	

inappropriate	maintenance	on	chromatin	during	mitosis,	together	with	CDC-45	

and	GINS	(Franz	et	al.,	2016).	Moreover,	Franz	et	al.	has	shown	that	

downregulation	of	FAF1	by	siRNA	in	human	cells	causes	a	pronounced	

replication	stress	phenotype:	defective	fork	progression,	fork	stalling,	dormant	

origin	firing	and	activation	of	both	S-phase	checkpoint	(ATR/Chk1)	and	DNA	

damage	checkpoint	(ATM/Chk2)	(Franz	et	al.,	2016).	It	remains	to	be	

investigated	whether	this	observed	replication	stress	is	the	result	of	Cdt1	

induced	re-replication,	a	defect	in	unloading	of	the	post-termination	replisomes	

or	one	of	the	many	other	FAF1	functions.	

Intriguingly,	the	back-up	mitotic	pathway	of	replisome	disassembly	in	

C.elegans	embryos	is	modulated	by	the	activity	of	the	SUMO	protease	ULP-4:	co-

depletion	of	ULP-4	with	LRR-1	delayed	the	release	of	CMG	components	from	

chromatin	(Sonneville	et	al.,	2017).	ULP-4	is	a	major	mitotic	SUMO	protease	in	

worms	and	is	present	at	mitotic	chromosomes	and	at	the	spindle	midzone	

(Pelisch	et	al.,	2014).	The	ULP-4	analogous	proteases	in	human	cells	are	SENP6-

7.	It	remains	to	be	unravelled	whether	SUMO	plays	a	regulatory	role	in	the	back-

up	process	or	whether	ULP-4	functions	in	another	way	e.g.	by	bridging	some	

important	interactions	and	allowing	p97	complex	recruitment.	It	would	be	very	

interesting	to	investigate	the	existence	of	such	a	potential	back-up	pathway	in	

human	somatic	cells.	
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9.	The	importance	of	faultless	termination	

Does	deregulation	of	termination	contribute	to	genomic	instability	and	

human	disease?	Cancer	chromosomal	instability	(CIN)	is	observed	in	most	solid	

tumours	and	is	associated	with	poor	prognosis	and	drug	resistance	

(McGranahan	et	al.,	2012).	CIN	leads	to	increased	rate	of	changes	in	

chromosomal	numbers	and	structure,	and	generates	intra-tumour		

heterogeneity.	Recent	data	implicate	a	central	role	for	replication	stress	in	the	

generation	of	CIN	(Burrell	et	al.,	2013).	Can	faulty	termination	provide	a	source	

of	replication	stress,	which	then	contributes	to	the	generation	of	genomic	

instability	and	CIN?	What	are	the	ways	in	which	problems	during	replication	

fork	termination	could	lead	to	genomic	instability?	At	present	we	have	restricted	

experimental	data	on	consequences	of	problems	with	replication	fork	

termination	but	we	can	speculate	based	on	what	we	know.	

We	know	that	failure	to	decatenate	newly	replicated	sister	chromatids	

upon	termination	of	replication	forks	does	not	tend	to	be	detected	by	G2/M	

checkpoint	but	leads	to	dramatic	missegregation	of	chromosomes	during	

mitosis	(Baxter	and	Diffley,	2008).	What	about	other	stages	of	termination	

process?	

What	would	happen	if	forks	cannot	converge	properly?	What	if	their	

passing	each	other	at	the	termination	stage	is	blocked?	We	can	imagine	that	

problems	during	convergence	of	replication	forks	could	lead	to	similar	torsional	

stresses	as	these	created	by	lack	of	Topoisomerase	I	during	elongation.	

Inhibition	of	Topo	I	activity	in	human	cells,	mouse	embryonic	fibroblasts	and	

Xenopus	laevis	egg	extract	frequently	induces	replication	fork	reversal	(reviewed	

in	(Neelsen	and	Lopes,	2015)).	Fork	reversal	can	have	physiological	roles	during	

replication	but	can	also	have	pathological	consequences,	contribute	to	genome	

instability	in	neurogenerative	syndromes	and	cancer.	A	small	but	reproducible	

number	of	reversed	forks	was	detected	also	in	various	unchallenged	human	cell	

lines,	whilst	deregulation	of	poly(ADP-ribose)	metabolism,	which	regulates	fork	

reversal	and	restart,	induces	high	level	of	reversed	forks	even	in	the	absence	of	

genotoxic	replication	stress	(reviewed	in	(Neelsen	and	Lopes,	2015)).	Fork	

reversal	is	also	very	frequent	in	mouse	embryonic	stem	cells	(Ahuja	et	al.,	2016).	

Where	do	these	reversed	forks	come	from?	Could	problems	with	termination	of	
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replication	forks	be	one	of	the	sources	of	such	reversed	forks?	Interestingly,	

transient	over-replication,	fork	reversal	and	end-processing	by	exonucleases	

were	recently	associated	with	completion	of	replication	termination	in	E.coli	

(Wendel	et	al.,	2014).	More	research	and	visualisation	of	converging	forks	either	

unchallenged	or	upon	termination	perturbations	is	needed	to	elucidate	the	

possibility	of	fork	reversal	at	sites	of	troubled	replication	fork	termination.	

Can	failure	to	complete	DNA	synthesis	at	termination	sites	create	genome	

instabilities?	It	has	been	shown	recently,	that	not	all	of	the	DNA	is	always	

replicated	in	human	cells	during	S-phase	–	unreplicated	segments	resulting	from	

double	fork	stalling	in	large	replicons	are	frequently	present	in	G2.	They	can	be	

partially	resolved	during	mitosis,	create	ultrafine	bridges	during	segregation	in	

mitosis	and	are	subsequently	recognised	in	the	G1	stage	of	the	cell	cycle	by	DNA	

repair	protein	p53-binding	protein	1	(53BP1)	to	be	resolved	in	this	new	cell	

cycle	(Moreno	et	al.,	2016).	Failure	to	complete	of	DNA	synthesis	at	termination	

sites	would	likely	lead	to	a	similar	scenario.	

What	about	inhibiting	disassembly	of	the	replisome?	This	is	the	part	of	the	

termination	process	that	we	understand	best	at	present.	If	disassembly	of	the	

replisome	constitutes	the	last	step	of	replication	termination,	then	the	failure	to	

remove	it	should	not	leave	unligated	DNA	nor	unusual	DNA	structures	(Dewar	et	

al.,	2015).	It	would	leave	however	a	DNA	helicase	on	a	DNA	substrate.	Tested	on	

synthetic	in	vitro	substrates	CMG	can	translocate	on	double	stranded	DNA	and	

then	start	unwinding	DNA	if	a	fork	structure	is	present	(Kang	et	al.,	2012).	One	

can	imagine	therefore	that	the	second-to-last	Okazaki	fragment,	which	may	be	in	

a	mid-maturation	stage	with	a	flap	created	by	Pold,	could	be	such	a	substrate	for	

the	approaching	post-termination	CMG	to	start	de-novo	unwinding.	In	bacteria,	

recent	data	suggest	that	in	termination	zones	3’	ssDNA	flaps	are	created	that,	if	

not	removed	by	RecG	nuclease	(in	RecG	mutants),	can	provide	substrates	for	de	

novo	replication,	leading	to	re-replication	and	creating	pathological	DNA	

structures.	Tus	termination	sequences	limit	the	extent	of	such	re-replication	

initiated	in	termination	zones	(Rudolph	et	al.,	2013).	What	about	eukaryotic	

cells?	They	do	not	have	Tus	terminating	sequences.	Can	faulty	termination	of	

replication	forks	initiate	re-replication?		
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Moreover,	CMG	complexes	left	behind	on	chromatin	would	disturb	proper	

chromatin	re-establishment	and	pose	a	problem	to	processes	for	which	DNA	is	a	

substrate,	such	as	transcription	and	next	replication.	As	mentioned	above,	CMGs	

can	translocate	on	double	stranded	DNA	(Kang	et	al.,	2012),	by	moving	along	

DNA	they	could	displace	other	proteins	bound	to	DNA.	At	present	we	do	not	

know	whether	CMG	sliding	on	dsDNA	can	displace	nucleosomes	or	if	they	will	be	

trapped	by	them.		

A	final	potential	problem	arising	from	lack	of	efficient	disassembly	of	the	

CMG	complexes	at	the	termination	of	replication	forks	is	entrapment	of	Cdc45	

and	GINS	within	these	post-termination	complexes.	Cdc45	was	shown	to	be	a	

rate	limiting	factor	for	DNA	replication	in	mammalian	cells.	It	was	proposed	that	

regulated	expression	levels	of	Cdc45	enforces	reutilisation	of	existing	Cdc45	

during	S-phase,	which	in	turn	can	limit	and	stagger	origin	activation	throughout	

the	S-phase	(Kohler	et	al.,	2016;	Wong	et	al.,	2011).	A	lack	of	Cdc45	available	for	

recycling	can	therefore	potentially	slow	S-phase	progression	and	inhibit	DNA	

synthesis.	Primary	untransformed	human	cells	with	reduced	levels	of	GINS	

components	present	all	the	phenotypes	of	replication	stress	and	accumulation	of	

DNA	damage	(Barkley	et	al.,	2009).	Future	studies	of	replisome	disassembly	in	

human	somatic	cells	is	essential	to	shed	light	at	this	possibility	as	so	far	this	

process	was	investigated	only	in	embryonic	systems	(Xenopus	laevis	egg	extract	

and	C.elegans	embryos)	which	have	higher	levels	of	Cdc45	and	GINS.	

Is	there	experimental	evidence	that	faulty	disassembly	of	the	replisome	

can	lead	to	genome	instability?	S.	cerevisiae	cells	lacking	Dia2,	which	are	unable	

to	remove	post-termination	CMG	from	chromatin,	are	viable	but	present	very	

high	levels	of	genomic	instabilities	(described	above).	LRR-1	–	the	CRL2	Mcm7	

specific	receptor	in	higher	eukaryotes	is	an	essential	gene	in	C.elegans,	most	

likely	due	to	also	other	than	Mcm7	substrates,	as	CMG	becomes	unloaded	by	a	

back-up	system	in	lrr-1	embryos.	However,	partial	downregulation	of	LRR-1	

together	with	downregulation	of	the	back-up	pathway	factors:	FAF-1/UBXN-3	or	

ULP4	results	in	synthetic	lethality,	suggesting	that	inhibition	of	CMG	removal	by	

partial	blocking	of	both	pathways	results	in	non-viable	worms	(Sonneville	et	al.,	

2017).	FAF1	itself	is	a	factor	often	downregulated	or	mutated	in	multiple	

cancers.	It	may	be	its	proapoptotic	function	that	drives	this	downregulation,	but	
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in	consequence	these	cancers	could	exhibit	higher	levels	of	genomic	instability	

due	to	their	replication	fork	termination	problems.	It	is	crucial	therefore	that	we	

investigate	the	process	of	replisome	disassembly	in	human	cells	to	confirm	its	

analogy.	

Factors	that	drive	replication	initiation	and	the	assembly	of	CMG,	such	as	

Cdc7	kinase	and	TopBP1	(Cut5)	initiation	factor,	are	currently	being	explored	as	

potential	anti-cancer	therapy	targets	in	tumours	that	present	defects	in	

chromosome	replication	(Chowdhury	et	al.,	2014;	Montagnoli	et	al.,	2010).	Can	

CMG	disassembly	also	serve	as	a	potential	target	for	future	therapies?	Could	we	

target	the	S-phase	pathway	of	CMG	disassembly	in	cancers	with	mutated	or	

downregulated	FAF1?	For	this	we	need	to	understand	the	CMG	disassembly	

process	in	much	more	detail	and	crucially	confirm	its	conservation	in	human	

cells.	It	seems	likely	that	ubiquitylation	is	rate	limiting	for	CMG	disassembly,	

although	it	needs	to	be	demonstrated	by	mapping	the	ubiquitylation	sites	and	

creating	an	un-modifiable	mutant.	It	is	clear,	however,	that	Mcm7	ubiquitylation	

is	regulated	in	a	precise	fashion	on	many	levels,	both	spatially	and	temporally.	

Finally,	many	factors	implicated	in	DNA	replication	fork	termination	and	

replisome	disassembly,	such	as	p97	segregase	and	Usp7	are	also	targets	of	small	

molecule	inhibitors	used	or	being	tested	for	antitumour	therapies	(Magnaghi	et	

al.,	2013;	Reverdy	et	al.,	2012).		A	better	understanding	of	CMG	disassembly	

pathway	and	replication	fork	termination	in	human	cells	might	help	us	to	

explain	the	mode	of	action	of	these	inhibitors	in	clinic.	

	

Figure	legends	

	

Figure	1.	Topoisomerases	at	replication	fork.	Topo	I	relaxes	the	positive	

supercoiling	building	up	ahead	of	the	fork.	Sometimes	this	supercoiling	can	lead	

to	rotation	of	the	fork	and	intertwining	of	the	daughter	strands	of	DNA	behind	

the	fork	(precatenates).	These	are	resolved	by	Topo	II.	

	

Figure	2.	Model	of	termination	of	eukaryotic	replication	forks.	When	two	

neighbouring	replication	forks	approach	each	other	from	opposite	directions,	all	

of	the	proteins	organising	DNA	in	between	the	forks	(nucleosomes	and	others)	
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have	to	be	removed,	while	Topo	I	relaxes	the	torsional	stress	(positive	

supercoiling)	(A).	When	two	terminating	forks	converge	the	supercoiling	of	DNA	

between	them	cannot	be	resoled	by	Topo	I	due	to	lack	of	space	for	it	to	act.	

Instead,	terminating	forks	depend	on	transmission	of	this	torsional	stress	

behind	the	forks	creating	precatenates	resolved	by	Topo	II	(B).	During	

convergence	two	replisome	approach	each	other	moving	on	opposite	strands	of	

DNA	(leading	strand	of	each	fork)	(C).	The	replisomes	can	pass	each	other	and	

most	likely	CMG	slides	onto	the	double	stranded	DNA	of	last	Okazaki	fragment	

(D).	The	synthesis	of	DNA	needs	to	be	completed,	the	last	Okazaki	fragment	

matured	and	DNA	ligated.	Replisome	is	then	ubiquitylated	and	removed	by	

p97/VCP/Cdc48	segregase	(E).	Intertwined	sister	chromatids	need	to	be	

resolved	by	Topo	II	(F).	The	final	product:	two	individual	sister	chromatids	with	

reconsitituted	chromatin	structure	(G).	

	

Figure	3.	Model	of	replisome	disassembly	at	the	termination	of	replication	

forks.	In	budding	yeast	S.cerevisiae	the	Mcm7	subunit	of	the	terminating	

replisome	is	ubiquitylated	by	SCFDia2	and	removed	from	chromatin	by	Cdc48	

segregase	(A).	In	Xenopus	egg	extract	and	C.elegans	embryos	CRL2Lrr1	

ubiquitylates	Mcm7	during	termination	of	replication	forks	and	CDC-48/p97	

segragase	removes	it	from	chromatin	with	help	of	Ufd1/Npl4	cofactors	(B).	If	

the	mechanism	of	removal	of	the	replisome	during	termination	of	forks	in	S-

phase	does	not	work	C.elegans	embryos	have	a	back-up	mechanism	removing	

replisomes	in	prophase	in	mitosis.	This	mechanism	requires	CDC-48/p97	and	

Npl4/Ufd1	but	also	UBXN-3/FAF1	cofactor	and	is	regulated	by	ULP-4/Senp6,7	

(C).	

	

Figure	4.	Model	of	cullin	ligases	ubiquitylating	Mcm7	during	termination	

of	replication	forks.	General	model	of	organisation	of	cullin	family	members	(A).	

Model	of	SCFDia2	ubiquitylating	Mcm7	in	S.cerevisiae	(B).	Model	of	CRL2Lrr1	

ubiquitylating	Mcm7	in	C.elegans	embryos	and	Xenopus	egg	extract	(C).	
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