UNIVERSITYOF BIRMINGHAM University of Birmingham Research at Birmingham

Gestational dyslipidaemia and adverse birthweight outcomes: a systematic review and meta-analysis

Wang, Jingya; Moore, David; Subramanian, Anuradhaa; Cheng, Kar; Toulis, Konstantinos; Qiu, Xiu; Saravanan, Ponnusamy; Price, Malcolm; Nirantharakumar, Krishnarajah

DOI: 10.1111/obr.12693

License: None: All rights reserved

Document Version Peer reviewed version

Citation for published version (Harvard):

Wang, J, Moore, D, Subramanian, A, Cheng, K, Toulis, K, Qiu, X, Saravanan, P, Price, M & Nirantharakumar, K 2018, 'Gestational dyslipidaemia and adverse birthweight outcomes: a systematic review and meta-analysis', Obesity Reviews. https://doi.org/10.1111/obr.12693

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Checked for eligibility: 27/02/2018 "This is the peer reviewed version of the following article: Wang, J., Moore, D., Subramanian, A., Cheng, K. K., Toulis, K. A., Qiu, X., Saravanan, P., Price, M. J., and Nirantharakumar, K. (2018) Gestational dyslipidaemia and adverse birthweight outcomes: a systematic review and meta-analysis. Obesity Reviews, which has been published in final form at https://doi.org/10.1111/obr.12693. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

References

1. Buhling KJ, Henrich W, Starr E, et al. Risk for gestational diabetes and hypertension for women with twin pregnancy compared to singleton pregnancy. Archives of gynecology and obstetrics. 2003;**269(1)**:33-6.

2. Jiang S, Jiang J, Xu H, et al. Maternal dyslipidemia during pregnancy may increase the risk of preterm birth: A meta-analysis. Taiwanese Journal of Obstetrics and Gynecology. 2017;**56(1)**:9-15.

3. Laleh E, Soheila A, Vajihe M, Ashraf J. Effect of different maternal metabolic characteristics on fetal growth in women with gestational diabetes mellitus. Iranian Journal of Reproductive Medicine. 2013;**11(4)**:325-34.

4. Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes Care. 2008;**31(9):**1858-63.

5. Son GH, Kwon JY, Kim YH, Park YW. Maternal serum triglycerides as predictive factors for large-for- gestational age newborns in women with gestational diabetes mellitus. Acta Obstetricia et Gynecologica Scandinavica. 2010;**89(5)**:700-4.

6. Couch SC, Philipson EH, Bendel RB, Wijendran V, Lammi-Keefe CJ. Maternal and cord plasma lipid and lipoprotein concentrations in women with and without gestational diabetes mellitus: Predictors of birth weight? Journal of Reproductive Medicine for the Obstetrician and Gynecologist. 1998;**43(9)**:816-22.

7. Olmos PR, Rigotti A, Busso D, et al. Maternal hypertriglyceridemia: A link between maternal overweight-obesity and macrosomia in gestational diabetes. Obesity. 2014;**22(10)**:2156-63.

8. Vinod KM, Sheri T, Uma P. Maternal serum lipids during pregnancy and infant birth weight: the influence of prepregnancy BMI. Obesity. 2011;**19(7)**:1476-81.

9. McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity and mortality among newborn infants. New England journal of medicine. 1999;**340(16)**:1234-8.

10. Jarvie E, Hauguel-de-Mouzon S, Nelson SM, et al. Lipotoxicity in obese pregnancy and its potential role in adverse pregnancy outcome and obesity in the offspring. Clinical Science. 2010;**119(3)**:123-9.

11. Ehrenberg HM, Huston-Presley L, Catalano PM. The influence of obesity and gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. American journal of obstetrics and gynecology. 2003;**189(4)**:944-8.

12. Ramsay JE, Ferrell WR, Crawford L, et al. Maternal obesity is associated with dysregulation of metabolic, vascular, and inflammatory pathways. The Journal of Clinical Endocrinology & Metabolism. 2002;**87(9)**:4231-7.

13. Ryan E. Diagnosing gestational diabetes. Diabetologia. 2011;**54(3)**:480-6.

14. Barrett HL, Nitert MD, Jones L, et al. Determinants of maternal triglycerides in women with gestational diabetes mellitus in the Metformin in Gestational Diabetes (MiG) study. Diabetes Care. 2013;**36(7):**1941-6.

World Obesity Journals

1 Title Page

2	Gestational Dyslipidaemia and the Risk of Extreme Birth Weight: A
3	Systematic Review and Meta-analysis
4	Jingya Wang, MPH ^{1,2} , David Moore, PhD ² , Anuradhaa Subramanian, MPH ² , Kar Keung
5	Cheng, PhD ² , Konstantinos A. Toulis, MD ² , Xiu Qiu, MD ¹ , Ponnusamy Saravanan, PhD ⁴ ,
6	Malcolm James Price, PhD ² , Dr. Krishnarajah Nirantharakumar, MD ²
7	1. Division of Birth Cohort Study, Guangzhou Women and Children's Medical Centre,
8	Guangzhou Medical University, Guangzhou, China, 510500.
9	2. Institute of Applied Health Research, University of Birmingham, Birmingham, United
10	Kingdom, B15 2TT.
11	3. Division of Health Sciences, Warwick Medical School, University of Warwick,
12	Coventry, United Kingdom, CV4 7AJ.
13	Joint corresponding authors:
14	Krishnarajah Nirantharakumar, MD, Institute of Applied Health Research, Public Health
15	Building, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom,
16	<u>k.nirantharan@bham.ac.uk</u> , +44 (0)121 414 8344
17	Malcolm James Price, PhD, Institute of Applied Health Research, Public Health Building,
18	University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom,
19	<u>m.price.2@bham.ac.uk</u> , +44 (0)121 414 2530
	1

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

60

Abstract

Background

Objective

Methods

years old.

Results

overweight or obese prior to pregnancy.

and treatment recommendations.

1 2

Low and high birthweight is known to increase the risk of acute and longer term adverse

outcomes, such as stillbirth, infant mortality, obesity, type 2 diabetes, and cardiovascular

diseases. Gestational dyslipidaemia is associated with a numbers of adverse birth outcomes,

but evidence regarding on birth weight is still inconsistent to reliably inform clinical practice

To explore the relationship between maternal gestational dyslipidaemia and neonatal health

We searched systematically Embase, MEDLINE, PubMed, CINAHL Plus, and Cochrane

Library up to 1st August 2016 (with an updated search in MEDLINE at the end of July 2017),

for longitudinal studies that assessed the association of maternal lipid levels during

pregnancy with neonatal birth weight, or metabolic and inflammatory parameters up to 3

Data from 46 publications including 31,402 pregnancies suggests that maternal high

triglycerides and low high-density-lipoprotein cholesterol levels throughout pregnancy are

associated with increased birth weight, higher risk of large-for-gestational age and

macrosomia; and lower risk of small-for-gestational age. The findings were consistent across

the studied populations, but stronger associations were observed in women who were

outcomes namely, birth weight, metabolic factors, and inflammatory parameters.

3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
10	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
27	
2/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
18	
40 40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	
72	

World Obesity Journals

43 Conclusions

44	This	meta-	analysis	suggested	that	the	potential	under-re	cognised	adverse	effects	0
45	<mark>intraı</mark>	aterine	exposure	e to matern	<mark>al dy</mark>	<mark>slipid</mark>	<mark>aemia ma</mark>	y warran	t further	investigati	<mark>on into</mark>	the
46	<mark>relati</mark>	<mark>onship</mark>	between	maternal d	<mark>yslipi</mark>	<mark>daem</mark>	ia and bir	h weight	in large p	prospective	<mark>e cohort</mark>	<mark>s o</mark> i
47	in rar	ndomis	ed trials									

1		
2	10	Abbreviations
4	49	Abbi Cviations.
5	50	I BW: low birth weight
6	50	LD w. low onth weight
7		
8	51	SGA: small for gestational age
9 10		
10	52	LGA large for gestational age
12		
13		
14	53	GDM: gestational diabetes mellitus
15		
16	54	RCT: Randomised Controlled Trial
17		
19	55	TC: total abalactoral
20	55	TC. total cholesterol
21		
22	56	HDL: high-density lipoprotein
23		
24 25	57	LDL: low-density linoprotein
26	01	
27	-	
28	58	VLDL: very low-density lipoprotein
29		
30	59	TG: triglycerides
37		
33	60	FEAs: total free fatty acids
34	00	11 AS. total free fatty acids
35		
36	61	BMI: Body Mass Index
37		
39	62	MCP-1: Monocyte Chemoattractant Protein-1
40		
41	62	II 6. interlaukin 6
42	05	IL-0. Interleukin 0
43		
44 45	64	TNF-α: Tumour Necrosis Factor alpha
46		
47	65	118 HSD1: 11-beta-Hydroxysteroid Dehydrogenase Type 1
48		
49	"	
50	66	CRP: U-reactive protein
52		
53	67	T1: the first trimester
54		
55	68	T2: the second trimester
56 57	55	
57 58		
59		

69 T3: the third trimester

- 70 mg/dL: milligrams per decilitre
- 71 mmol/L: millimoles per litre
- 72 RC: regression coefficients
- 73 OR: odds ratio
- 74 MD: mean difference
- 75 GWAS: genome-wide association study

76 Introduction

Low and high birth weight has been linked to the risk of stillbirth and infant mortality.¹ In a longer life course, both low birth weight(LBW) or small for gestational age(SGA), and large for gestational age(LGA) or macrosomia are known to increase the future risk of obesity, type 2 diabetes, and cardiovascular disease.^{2,3} The estimated prevalence of macrosomia in developed countries varies from 5% to 20%, and a parallel increase in macrosomic births was observed in both developed and developing countries over the last two to three decades.⁴ These life course associations have often been attributed to the impact of an adverse intrauterine environment, particularly, fuels (glucose, lipids, and amino acids) transported from the maternal end.⁵ Previous reviews have shown that maternal obesity and gestational diabetes mellitus(GDM) are two identified risk factors of low and high birthweight.⁶⁻⁸ However, as one of common metabolic disorders, the adverse effects of gestational dyslipidaemia on neonates birth weight/birth weight centiles are not widely recognized in clinical practice.

Dyslipidaemia has been considered a risk factor for a number of adverse health outcomes, in particular cardiovascular disease and type 2 diabetes.^{9, 10} Previous reviews have shown that dyslipidaemia during pregnancy are associated with increased risk of GDM, preeclampsia, and pre-term delivery¹¹⁻¹³, but epidemiological evidence on birthweight is conflicting¹⁴⁻¹⁶. Furthermore, previous evidence indicates that excessive maternal intrauterine lipid exposures may program the development of foetus organs from early life, resulting in metabolic dysfunction.^{17, 18} If maternal dyslipidaemia is a significant contributor to birth weight and implicated in neonatal metabolic dysfunction, then interventions before and during pregnancy to mitigate dyslipidaemia might improve offspring's adverse birth and metabolic health outcomes.

Obesity Reviews

100 We performed a comprehensive systematic review and meta-analysis to explore the 101 association, and quantify the magnitude of effect between maternal dyslipidaemia and 102 neonatal outcomes namely, birthweight, metabolic factors, and inflammatory parameters.

103 Methods

104 Search strategy and selection criteria

The protocol for this review was registered on PROSPERO (CRD42016048568) and the review is reported in accordance with the PRISMA¹⁹ and MOOSE²⁰ guidelines. We searched systematically Embase, MEDLINE, PubMed, Scopus, CINAHL Plus, and Cochrane library (CENTRAL) up to August 1, 2016, without language or year restrictions. An updated search was made in MEDLINE before manuscript submission until the end of July 2017. The search of bibliographic databases combined index and free text terms relating to lipids (e.g. "lipids", "lipoproteins", "fatty acids", "triglycerides", "cholesterol") with those relating to pregnancy (e.g. "pregnan*", "gestation*", "gravidity", "mothers") and birthweight (e.g. "birth weight", "small for gestational age", "large for gestational age", "macrosomia"). The full strategies are provided in S1 Appendix. Cohort and Randomised Controlled Trial (RCT) filters were used to target longitudinal observational studies and the secondary analysis of RCT studies.²¹ Additional searches were conducted in Grey Literature Report and Open Grey. Reference lists of included studies were screened and checked for relevance.

118 Search results, after removal of duplicates, were screened for relevance using title and 119 abstract information. Fully texts of relevant articles were assessed for eligibility against the 120 selection criteria. Screening and selection were undertaken by two reviewers independently 121 in consultation with a third reviewer when required.

122 This review included studies of healthy pregnant women and pregnant women with GDM or123 obesity, which investigated the association between maternal lipid levels during pregnancy

Obesity Reviews

(total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein
cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triglycerides (TG),
and total free fatty acids (FFAs)) and neonatal anthropometric, metabolic, and inflammatory
parameters.

Studies of pregnant women with conditions that could influence maternal metabolic status before pregnancy (hepatitis, polycystic ovary syndrome, familial hyperlipidaemia, acquired immunodeficiency syndrome, type I & type 2 diabetes, hypertension, thrombophilia, history of thromboembolism, rheumatologic disorders, cardiac dysfunction, or history of taking relevant lipid-lowering medications) were excluded.

The primary outcome was birthweight measured within the first week after delivery. Neonatal anthropometric parameters, including LBW, SGA, LGA, and macrosomia, were considered as different indexes of birthweight. Secondary outcomes included: anthropometric parameters in children less than three years old (e.g. weight gain after delivery, Body Mass Index (BMI) and skinfold thickness); biological indicators (glucose, TC, HDL-C, LDL-C, VLDL-C, TG, FFAs and insulin levels; and insulin resistance) and neonatal inflammatory factors (Monocyte Chemoattractant Protein-1 (MCP-1), interleukin 6 (IL-6), Tumour Necrosis Factor (TNF- α) and 11-beta-Hydroxysteroid Dehydrogenase Type 1 (11 β HSD1) and C-reactive protein(CRP), as well as leptin levels) measured in cord blood or blood samples taken from neonates (<3 years old). Due to the diverse definition of GDM, obesity, SGA, LGA, and macrosomia in different populations, we accepted the definition specified by authors.

Data extraction and quality assessment

A STROBE-based pre-designed form²² was used for data extraction, including the following
information: study characteristics(study name, design, language, and location),

Obesity Reviews

participants(setting, eligibility/exclude criteria, and sample size), maternal characteristics
(age, parity, pre-pregnancy BMI, and gestational length), follow-up (enrolment time, length
of follow-up, data collection methods, and loss to follow-up rate), exposures (definition,
fasting status, measured gestational weeks, and measurement methods) and outcomes
(definition and measurement time point)(S2 Appendix).

The Newcastle-Ottawa Scale was used to characterise and stratify the methodological quality
of included studies (S3 Appendix).²³ Studies quality was classified as 'low' (≤5), 'medium'(6
& 7), or 'high'(8 & 9) quality. In addition, domains relating to sample selection,
comparability between groups, and method of outcome assessment were considered
separately.

Data extraction and quality assessment were conducted by two reviewers independently in
consultation with a third reviewer when required (S4 Appendix). Missing information was
requested from authors by email (S5 Appendix).

161 Data synthesis

Included studies were categorised by trimester based on the mean/median gestational age for
the lipid measurement (first trimester (T1): 1-13, second trimester (T2): 14-27, and third
trimester (T3): ≥28 gestation weeks). For studies reporting lipid levels multiple times within

one trimester, data from the trimester with the largest sample size was adopted. Studies with different types of population (example GDM or obesity) were divided into two or three subsets to enable us to assess and report separately. Lipid measurements reported in milligrams per decilitre (mg/dL) were converted to millimoles per litre (mmol/L) using a standard unit conversion factors.²⁴

Obesity Reviews

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
3U 21	
31	
32 33	
22 24	
25	
32	
30	
27 27	
20	
رد 40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	

60

170 Results of birthweight were reported in various ways, for instance, regression coefficients 171 and correlation coefficients. Findings were summarised in tables and visually represented as 172 horizontal histogram, displaying the direction as well as statistical significance of results 173 comprehensively (post analysis).

174 Summary estimates were pooled using random effects meta-analysis, according to assessment 175 (birthweight, of outcomes LGA. SGA. and macrosomia). timing of lipids 176 measurement(T1/T2/T3) and statistic reported in the primary study (regression coefficients, 177 odds ratio (OR), or mean difference (MD)). Unadjusted and adjusted estimates reported in the 178 articles were entered into random-effects models separately. Confounding factors that were 179 adjusted (maternal age, pre-pregnancy BMI, gestational weight gain, gestational glucose level, 180 pre-term birth, gestational lipid levels, gestational age, and neonatal gender) for each result were recorded for further sensitivity analyses. The I² statistic was used to quantify the degree 181 of heterogeneity beyond that expected by chance in each analysis.²⁵ The potential for 182 183 publication bias could not be assessed via funnel plots as the requirement for ten or more studies per meta-analysis was not met.²⁶ Due to the heterogeneity in baseline characteristics 184 185 of included studies, we were not able to compare non-GDM women to GDM women. 186 Sensitivity analysis was performed by choice of co-variates controlled for in the model. All 187 analyses were conducted using Review Manager version 5.3 (Nordic Cochrane Centre, 188 Copenhagen, Denmark) and R 3.3.2(The R Foundation for Statistical Computing).

- 189 **Results**
- 190 Study selection

191 Of the 13,705 unique records identified by the searches, 46 publications^{14-16, 27-69} reporting 192 from 42 studies were included in the review (Figure 1). These studies included 31,402 193 pregnancies. Of the 46 included publications, 16 contributed to the quantitative analysis due

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 25
35 26
30 27
رد د د
20
39 40
40 11
41
42 43
45 44
45 45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 2

194 to the diversity of reporting formats (regression coefficients, correlation coefficients, mean

- 195 differences, trend analyses, or without exact effect estimates) and lack of data required for
- 196 calculations. No additional eligible studies were found in the updated search till July 2017.
- 197 Characteristics of included studies

198 **Table** describes the baseline characteristics of the 46 included publications. Most articles 199 were published in English language and as full text articles with only one⁴⁴ study written in German. and one⁴³ published as an abstract. The studies were published between 1985 and 200 201 2016. The number of pregnancies ranged from 38 to 5,535. Based on the World Bank Income Classification of countries ⁷⁰, 25 out of 42 studies were from high income economies^{14, 16, 27}, 202 28, 35, 41, 44-49, 51, 53, 55-62, 66-68, 16 from upper middle economies^{15, 30-34, 37, 38, 40, 42, 43, 50, 54, 63, 65, 69} 203 and one middle income³⁹. Forty studies were prospective cohorts^{14, 15, 28-36, 38-50, 52, 54-57, 59-69}. 204 three were retrospective cohorts^{27, 37, 58}, and three were secondary analyses of cohorts in 205 RCTs^{16, 51, 53}. 206

207 Quality of included studies

Forty-five publications (excluding the abstract⁴³) were assessed for methodological quality. Ten, 21, and 14 studies were assessed as methodologically high^{15, 29, 41, 47-49, 52, 54, 60, 67}, moderate^{14, 16, 27, 30-32, 37, 38, 40, 44, 46, 50, 51, 55-57, 61, 62, 64, 68, 69} and low quality^{28, 33-36, 39, 42, 45, 53, 58, 59,} $^{63, 65, 66}$ respectively(S6 Appendix). Three (7%) of 45 included studies had low risk for study selection while 40(93%) had medium risk. For comparability bias, 15(33%) had low risk, 13(29%) had medium risk, and 17(38%) had high risk. Sixteen (36%) studies were regarded to have a low risk of outcome assessment bias, with the rest (29 studies) having medium risk.

215 Maternal lipid levels during pregnancy and birth weight

Figure 2 shows the relationship between maternal lipid levels during pregnancy andbirthweight (S7 Appendix). There were strong associations noted for HDL-C and TG

Obesity Reviews

3	218	throughout pregnancy with birthweight. For HDL-C, both studies ⁵⁵ reporting in T1, six ^{15, 16, 31}
4 5	219	^{37, 49, 55} out of 11 ^{15, 16, 31, 34, 37, 49, 50, 55, 59, 62} studies reporting in T2, and 11 ^{14, 15, 28, 41, 49, 54, 55, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61}
6 7 8	220	⁶⁸ out of 18 ^{14-16, 28, 39, 41, 42, 46, 49, 50, 54, 55, 58, 61, 63, 65, 68} studies reporting in T3 showed an inverse
9 10	221	association with birthweight, while one ¹⁵ in T2 and one ¹⁶ in T3 reported a positive
11 12	222	association. For TG, four ^{52, 55, 57} out of five ^{35, 52, 55, 57} studies reporting in T1, ten ^{15, 31, 34, 37, 49, 55}
13 14	223	^{59, 62, 67} out of 12 ^{15, 16, 31, 34, 37, 49, 50, 55, 59, 62, 67} studies reporting in T2, and 20 ^{15, 16, 39, 41, 46, 49, 50}
15 16	224	54-56, 58, 61, 63-65, 67, 69 out of 27 ^{14-16, 28, 36, 39, 41, 42, 46, 49-51, 53-56, 58, 61, 63-65, 67, 69} studies reporting in
17 18 10	225	T3 found a positive association with birthweight, while three ^{14, 28, 51} studies in T3 reported an
20 21	226	inverse association. Of the seven studies reporting the association between maternal FFAs
22	227	level in T3 and birthweight ^{36, 46, 49, 53, 56, 61, 68} , four reported a positive association ^{49, 53, 56, 68} ,
24 25	228	while none reported inverse association. For TC, seven ^{15, 16, 27, 37, 48, 49, 55} out of 12 ^{15, 16, 27, 31, 48}
26 27	229	^{50, 55, 59, 62} studies in T2, and eight ^{15, 16, 48, 54-56, 65, 69} out of 22 ^{14-16, 28, 36, 39, 41, 42, 45, 46, 48-50, 53-56, 58}
28 29	230	^{61, 63, 65, 69} studies in T3 reported a positive association, while one ⁵⁵ in T2 and three ^{28, 41, 55} in
30 31	231	T3 found an inverse association. There was no evident association between maternal LDL-C
32 33	232	level and birthweight ^{14, 16, 28, 31, 37, 39, 41, 42, 46, 50, 54, 55, 58, 59, 62, 63, 65, 68} or between maternal
34 35 36	233	VLDL-C level and birthweight ^{46, 68} .

Figure 3 shows the pooled estimates for the effect of maternal lipids throughout pregnancy on birthweight using all available data (S7 Appendix). In general, the results of meta-analyses are consistent with the overall results summary (Figure 2). Maternal HDL-C was inversely associated with birthweight, particularly in T3 (adjusted RC, -70.17g per mmol/L, p<0.001). Increased maternal TG levels were significantly associated with birthweight for T1 (adjusted RC, 86.72g per mmol/L, p<0.001) and T3 (adjusted RC, 89.58g per mmol/L, p=0.01). Positive associations between TC and birthweight were observed in T1(adjusted RC, 22.67g of birthweight per mmol/L maternal lipid, p=0.02), T2 (adjusted RC, 24.74g per mmol/L, p=0.01), and T3(adjusted RC, 9.14g per mmol/L, p=0.13).

Obesity Reviews

Stronger associations were observed among pregnant women with pre-pregnancy overweight or obesity in the two relevant studies (S5 Appendix).^{50, 55} The degree of heterogeneity within all meta-analyses in T3 was detected with I² values ranging from 0 to 93%. The heterogeneity decreased markedly when studies controlled for pre-pregnancy BMI, gestational weight gain,

glucose level, and gestational age (S7 Appendix).

248 Maternal lipid levels during pregnancy and LGA, SGA, and macrosomia

Figure 4 shows the pooled adjusted OR for LGA as well as SGA, according to each type of maternal lipids in T3 (S8 & S9 Appendix). Pooled estimates for rising maternal HDL-C level revealed potentially decreased odds of LGA (OR, 0.77; 95% CI, 0.59 to 1.01; p=0.06), and significantly increased odds of SGA (OR, 1.96; 95% CI, 1.04 to 3.71; p=0.04). In contrast, increased maternal TG levels were associated with increased odds of LGA (OR, 1.08; 95% CI, 1.01 to 1.15; p=0.02), and decreased odds of SGA (OR, 0.66; 95% CI, 0.49 to 0.90; p=0.007). In addition, ten^{30, 38-40, 53, 54, 56, 58, 65, 69} out of $11^{14, 30, 38-40, 53, 54, 56, 58, 65, 69}$ studies reporting the association between maternal TG and LGA in T3 reported positive statistically significant associations. Of six studies investigating the relationship between maternal HDL-C and macrosomia^{30, 33, 34, 38, 47, 65}, four studies reported decreased risk of macrosomia (three statistically significant)^{30, 33, 34, 47}, especially for T2 with higher HDL-C(S10 Appendix). For the relationship of TG with macrosomia, five^{33, 38, 43, 47, 64} out of six^{30, 33, 38, 43, 47, 64} studies reported statistically significant positive OR values across three trimesters. No association was observed between maternal TC as well as LDL-C levels and LGA, SGA, and macrosomia.

Maternal lipid levels during pregnancy and other outcomes of interest

For secondary outcomes, positive correlations were found by all six publications investigating the association between different maternal lipids and different cord blood lipids, but results are inconsistent with each other^{36, 44-46, 53, 66}. No association was observed between

268	maternal lipids and infant postnatal weight, weight gain, or sum of skinfolds thickness up to 2
269	years old ^{16, 29, 51, 52} . No study investigated the relationship of maternal lipid levels during
270	pregnancy with neonatal glucose, insulin, inflammatory factors and leptin levels in our
271	searches.

Discussion

273 Summary of the findings

This is the first systematic review pooling data from 40 longitudinal observational studies and two RCT secondary analysis studies providing quantitative estimates of the magnitude of association between maternal lipid levels at various stages of pregnancy and neonatal health outcomes. Throughout pregnancy, low maternal HDL-C and high TG levels are associated with increased birthweight. Low HDL-C and high TG increased the risk of LGA/macrosomia and lowered the risk of SGA babies. Maternal TC level throughout pregnancy and FFAs level in the third trimester are positively associated with a small increase in birthweight. Associations are stronger among populations with pre-pregnancy obesity. The findings provide evidence for the critical role of dyslipidaemia in gestational metabolism and neonatal health, and will contribute to future research and management of gestational dyslipidaemia.

Potential mechanisms

The results are mostly consistent with previous published evidence. Maternal lipid metabolism is mainly in lipogenesis state in the earlier half of pregnancy, but then switches into catabolic state.^{71, 72} When the lipid accumulation exceeds the storage capacity of adipose tissue, the buffering function of the adipocytes is decreased, leading to elevated serum FFAs and TG.⁷³⁻⁷⁵ Compared to pregnant women with smaller pre-pregnancy BMI, women who are overweight or obese will not only progress to catabolic state earlier, but also have less capacity to inhibit lipolysis.¹⁸ Women with obesity prior to pregnancy usually present with

292 more central adipose accumulation and severe dyslipidaemia^{76, 77}, resulting in steep
 293 concentration gradient across the placenta.⁷⁸

Both in vivo and epidemiological evidence suggest that excessive maternal intrauterine lipid exposure could affect the development of foetus organs systematically, which can then alter initial foetus metabolism and feeding behaviours permanently.^{18, 79} Previous animal studies observed that foetal metabolic abnormalities mediated by maternal obesity and high-fat diet often manifest as increased body weight, fat mass, blood glucose, cholesterol and blood pressure levels; and decreased insulin sensitivity and ectopic lipid storage in newborns.¹⁸ The latest multi-ancestry genome-wide association study (GWAS) meta-analysis also demonstrated that cholesterol biosynthesis is one of the most important metabolic pathways involved in birthweight.¹⁷ Strengths and weakness

The major strengths of this study are the comprehensive searches, adherence to robust review methodology and thorough analyses. Special care was taken in the handling of missing data, which was addressed by personal contact with the authors in an attempt to minimise reporting bias. The inclusion of longitudinal studies ensured the temporal association between exposures and outcomes, which also permitted a trimester-specific analysis. The major limitation of the study was the substantial heterogeneity, possibly due to the diversity of settings, study populations, lipid measurement methods and diverse gestational age of the studied populations. However, this heterogeneity was addressed by subgroup analysis.

It would be intriguing to explore the effects of maternal dyslipidaemia independent of maternal hyperglycaemia. Unfortunately, this was not feasible due to the nature of data reported in individual study. GDM women are known to have higher TG levels and lower HDL-C levels compared with non-GDM women.¹¹ However, elevated maternal TG levels and lower HDL-C levels are associated with the risk of LGA and macrosomia in both GDM

Obesity Reviews

2		
2	316	women ^{$38, 53, 58$} and non-GDM women ^{$30, 39, 40, 52, 54, 69$} . For women with type 1 diabetes/GDM.
4		
5	317	maternal hyperglycaemia is not the sole contributor to increased birth weight since foetuses
6		
7	318	may develop LGA despite them having optimal glycaemic control ⁸⁰ Several other studies
8	510	may develop Dorr despite them having optimal gryedenne control. Develar other studies
9	310	found that linid levels during pregnancy similar to glucose levels, are also strong metabolic
10	517	found that tiple levels during pregnancy, similar to gracose levels, are also strong measone
11	320	determinants for footal growth 15, 29, 31, 32, 35, 37, 41, 47, 53, 56, 61, 64 Our consitivity analyses result
12	320	determinants for foetal growth . Our sensitivity analyses result
13	221	also also and the site of the second
14	321	also snown there is little effect on the relationship between gestational HDL-C/1G levels and
15	200	
16	322	birth weight when removing those studies controlled for glucose $(S/.13 \& S/.23)$.
17		
18	323	Collectively, this evidence suggests that maternal dyslipidaemia may be an independent,
19		
20	324	unrecognised risk factor of LGA/macrosomia.
21		
22	225	
23	325	Unfortunately, paucity of the required primary data prevented the pre-specified subgroup
24		
25	326	analyses on the basis of different definitions used for GDM and obesity across studies. Thus,
26		
2/	327	this should be acknowledged as a source of clinical heterogeneity when interpreting the
28		
29	328	findings of the present study. Another limitation of this study is that we are unable to control
30		
22	329	for the effect of GDM treatment on lipid levels. However, it has been noticed that initiation
32		
34	330	of therapy (diet control, insulin, or metformin) may modestly influence TG levels ⁸¹ , yet to a
35		
36	331	direction that would obscure rather than magnify differences between normal and GDM
37		
38	332	nregnancies. Similarly, our sensitivity analyses shown a moderate decrease on triglycerides
39	552	prognationed. Similarly, our sensitivity analyses shown a moderate derease on ingrycerides
40	333	effect estimate when removing studies that excluded nre-term hirths (S7 25)
41	555	encer estimate when removing studies that excluded pre-term bituis (37.23).
42		
43	334	It should be acknowledged that our primary outcome, birth weight, is a quite inexact measure
44		
45	335	of foetal growth although it has been widely measured and utilized in clinical and research

of foetal growth, although it has been widely measured and utilized in clinical and research
areas. We tried to extend our target outcomes from birth weight parameters to other neonatal
growth parameters, biological indicators, and inflammatory factors, however, we did not find
sufficient studies.

339 Implications

Our results provides compelling evidence on the role of maternal circulating HDL-C and TG levels on birth outcomes, and suggest that the under-recognised adverse effects of intrauterine exposure to maternal dyslipidaemia may need further investigation in large prospective cohorts or in randomised trials. Although the importance of screening for preconceptional dyslipidaemia has been noted in recent guidelines to alert for risk assessment for GDM^{82, 83}, its independent adverse effects remain largely underestimated in routine clinical practice and recommendations regarding the management of dyslipidaemia preconceptionally or during pregnancy are still lacking. Our findings do question the current clinical practice and support the monitoring of gestational dyslipidaemia before or during pregnancy. Moreover, our findings may be a call for action regarding the implementation of strategies to address maternal dyslipidaemia (such as carefully planned dietary interventions, increasing physical activity, and/or Omega-3 fatty acids supplementation). Meanwhile, gestational dyslipidaemia, as an important feature of obesity and GDM, might be a potential treatment target for clinical interventions. These steps need to be evaluated by global health policy makers through randomised controlled trials, evidence synthesis and consensus.⁸⁴⁻⁸⁶

355 Conclusion

Our findings demonstrate that maternal low HDL-C and high TG levels are positively associated with neonatal birthweight. No effect was documented for total or LDL cholesterol. Findings are of clinical importance in considering the management of gestational dyslipidaemia, for example using lifestyle interventions and omega-3 fatty acid supplementation to improve maternal and neonatal outcomes.

Obesity Reviews

361 Acknowledgments: We thank Christine Sommer, H. Hauner, T.G.M. Vrijkotte, Aisling
362 Geraphty, Ewa Wender-Ozegowska for providing us with requested data.

Contributors: KN, QX, KK, and JW conceived the research question. JW defined the question, designed the study, and conducted searches, data extraction, quality assessment, and data analysis. AS and KN contributed as second reviewers for the data extraction and quality assessment. DM, KN, and MJP advised on study design and contributed to data analysis. KK, OX, PS, and KAT also provided input for study design. All authors contributed to the interpretation of the results. JW led the writing of the manuscript with critical input from all other authors. All authors, external and internal, had full access to all data (including statistical reports and tables) in the study and can take responsibility for the integrity of the data and the accuracy of the data analysis. JW is the guarantor.

Funding: JW is supported by the LiSiguang scholarship provided by the University of Birmingham and the China Scholarship Council jointly. The funder had no role in study design, data collection, data analysis, data interpretation, or writing of the report. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Competing interests: All authors have completed the ICMJE uniform disclosure form at 378 www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the 379 submitted work; no financial relationships with any organisations that might have an interest 380 in the submitted work in the previous three years; no other relationships or activities that 381 could appear to have influenced the submitted work.

Ethical Approval: Not required.

Data sharing: No additional data available.

World Obesity Journals

Transparency: The lead author (JW) affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

to per peries

1		
2 3 4	388	References
5 6	389	1. McIntire DD, Bloom SL, Casey BM, Leveno KJ. Birth weight in relation to morbidity
7 8	390	and mortality among newborn infants. New England journal of medicine.
9 10 11	391	1999; 340(16): 1234-8.
12 13 14	392	2. Yu Z, Han S, Zhu G, et al. Birth weight and subsequent risk of obesity: a systematic
15 16 17	393	review and meta-analysis. Obes Rev. 2011;12(7):525-42.
18 19	394	3. Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A. Birth weight
20 21 22	395	and subsequent risk of type 2 diabetes: a meta-analysis. American journal of epidemiology.
22 23 24	396	2007; 165(8): 849-57.
25 26 27	397	4. Koyanagi A, Zhang J, Dagvadorj A, et al. Macrosomia in 23 developing countries: an
28 29	398	analysis of a multicountry, facility-based, cross-sectional survey. The Lancet.
30 31	399	2013; 381(9865): 476-83.
32 33 34	400	5. Barker D. The developmental origins of adult disease. Journal of the American
35 36 27	401	College of Nutrition. 2004; 23(sup6): 588S-95S.
37 38 39	402	6. McDonald SD, Han Z, Mulla S, Beyene J. Overweight and obesity in mothers and
40 41	403	risk of preterm birth and low birth weight infants: systematic review and meta-analyses. Bmj.
42 43	404	2010; 341: c3428.
44 45 46	405	7. Frederick IO, Williams MA, Sales AE, Martin DP, Killien M. Pre-pregnancy body
47 48	406	mass index, gestational weight gain, and other maternal characteristics in relation to infant
49 50 51	407	birth weight. Maternal and child health journal. 2008;12(5):557-67.
52 53	408	8. Kamana K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a
54 55 56	409	literature review. Annals of Nutrition and Metabolism. 2015;66(Suppl. 2):14-20.
57 58 59		20

Obesity Reviews

2
3
4
5
s c
0
7
8
9
10
11
12
12
13
14
15
16
17
18
19
20
21
רב בר
22
23
24
25
26
27
28
20
29
30
31
32
33
34
35
36
37
20
20
39
40
41
42
43
44
45
16
40
47
48
49
50
51
52
53
54
55
55
20
57
58
59
60

1

9. Rader DJ. Effect of insulin resistance, dyslipidemia, and intra-abdominal adiposity on
the development of cardiovascular disease and diabetes mellitus. The American journal of
medicine. 2007;120(3):S12-S8.
10. Lakka H-M, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and

414 cardiovascular disease mortality in middle-aged men. Jama. 2002;**288(21)**:2709-16.

415 11. Ryckman KK, Spracklen CN, Smith CJ, Robinson JG, Saftlas AF. Maternal lipid
416 levels during pregnancy and gestational diabetes: a systematic review and meta-analysis.
417 BJOG: An International Journal of Obstetrics & Gynaecology. 2015;122(5):643-51.

418 12. Ray J, Diamond P, Singh G, Bell C. Brief overview of maternal triglycerides as a risk

419 factor for pre-eclampsia. BJOG: An International Journal of Obstetrics & Gynaecology.

420 2006;**113(4):**379-86.

Jiang S, Jiang J, Xu H, et al. Maternal dyslipidemia during pregnancy may increase
the risk of preterm birth: A meta-analysis. Taiwanese Journal of Obstetrics and Gynecology.
2017;56(1):9-15.

424 14. Retnakaran RY, C. Hanley, A. J. G. Connelly, P. W. Sermer, M. Zinman, B. Hamilton,
425 J. K. Effect of maternal weight, adipokines, glucose intolerance and lipids on infant birth
426 weight among women without gestational diabetes mellitus. Cmaj. 2012;184(12):1353-60.

427 15. Kulkarni SR, Kumaran K, Rao SR, et al. Maternal lipids are as important as glucose
428 for fetal growth: Findings from the pune maternal nutrition study. Diabetes Care.
429 2013;36(9):2706-13.

430 16. Geraghty AA, Alberdi G, O'Sullivan EJ, et al. Maternal Blood Lipid Profile during
431 Pregnancy and Associations with Child Adiposity: Findings from the ROLO Study. PloS one.
432 2016;11(8):e0161206.

Page 33 of 136

Obesity Reviews

2 3	433	17. Horikoshi M, Beaumont RN, Day FR, et al. Genome-wide associations for birth
4 5 6	434	weight and correlations with adult disease. Nature. 2016;538(7624):248-52.
7 8	435	18. Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal
9 10 11	436	metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol.
12 13	437	2010; 299(3): R711-22.
14 15	438	19. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for
16 17 18	439	systematic reviews and meta-analyses: the PRISMA statement. PLoS med.
19 20	440	2009; 6(7): e1000097.
21 22 22	441	20. Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in
23 24 25	442	epidemiology: a proposal for reporting. Jama. 2000;283(15):2008-12.
26 27 28	443	21. Evidence BC. Study design search filters 2012 [updated 20 September 2012.
20 29 30	444	Available from: http://clinicalevidence.bmj.com/x/set/static/ebm/learn/665076.html,
31 32	445	Accessed 22nd March 2017.
33 34 35	446	22. Von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of
36 37	447	Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting
38 39	448	observational studies. International Journal of Surgery. 2007;12(12):1495-9.
40 41 42	449	23. Wells G, Shea B, O'connell D, et al. The Newcastle-Ottawa Scale (NOS) for
43 44	450	assessing the quality of nonrandomised studies in meta-analyses. Ottawa, Ontario: The
45 46 47	451	Ottawa Health Research Institute; 2014.
48 49	452	24. ENDMEMO. Medical Unit Conversion [updated 2016. Available from:
50 51 52 53 54 55 55	453	http://www.endmemo.com/medical/unitconvert/, Accessed 5th December 2016.
57 58		22

2
з
1
4
5
6
7
, 0
0
9
10
11
12
12
13
14
15
16
17
17
18
19
20
21
21 22
22
23
24
25
26
20
27
28
29
30
20
31
32
33
34
25
35
36
37
38
20
22
40
41
42
43
11
44
45
46
47
18
40
49
50
51
52
52
22
54
55
56
57
5/
58
59
60

454 25. Higgins J, Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in

455 medicine. 2002;**21(11)**:1539-58.

456 26. Higgins J, Green S. Recommendations on testing for funnel plot asymmetry. 457 Cochrane Handbook for Systematic Reviews of Interventions Version. 2011;5(0).

458 27. Edison RJ, Berg K, Remaley A, et al. Adverse birth outcome among mothers with
459 low serum cholesterol. Pediatrics. 2007;120(4):723-33.

460 28. Savona-Ventura C, Vassallo J, Craus J, et al. Biological and biochemical
461 characteristics of a Mediterranean population with Gestational Diabetes Mellitus. Journal of
462 Perinatal Medicine. 2016;44(4):377-82.

463 29. Kramer CK, Hamilton JK, Ye C, et al. Antepartum determinants of rapid early-life
464 weight gain in term infants born to women with and without gestational diabetes. Clinical
465 Endocrinology. 2014;81(3):387-94.

466 30. Jin W-Y, Lin S-L, Hou R-L, et al. Associations between maternal lipid profile and
467 pregnancy complications and perinatal outcomes: a population-based study from China.
468 BMC pregnancy and childbirth. 2016;16(1):60.

Wang DX, S. Chen, H. Zhong, L. Wang, Z. The associations between triglyceride to
high-density lipoprotein cholesterol ratios and the risks of gestational diabetes mellitus and
large-for-gestational-age infant. Clinical Endocrinology. 2015;83(4):490-7.

472 32. Lei Q, Niu J, Lv L, et al. Clustering of metabolic risk factors and adverse pregnancy
473 outcomes: A prospective cohort study. Diabetes/Metabolism Research and Reviews.
474 2016;32(8):835-42.

Page 35 of 136

1 2

Obesity Reviews

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
30 21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
10	
50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

475 33. Jianjun Z, Xia Z, Zhiqun W, Yali H. Combination of lipids and uric acid in mid476 second trimester can be used to predict adverse pregnancy outcomes. The journal of
477 Maternal-fetal & neonatal medicine. 2012;25(12):2633-8.

478 34. ZAWIEJSKA A, WENDER-OZEGOWSKA E, J.BRAZERT, SODOWSKI K.
479 Components of metabolic syndrome and their impact on fetal growth in women with
480 gestational diabetes mellitus. J Physiol Pharmacol. 2008;**59(Suppl 4):**5-18.

- 481 35. Harmon KA, Gerard L, Jensen DR, et al. Continuous glucose profiles in obese and
 482 normal-weight pregnant women on a controlled diet: Metabolic determinants of fetal growth.
 483 Diabetes Care. 2011;34(10):2198-204.
 - 484 36. Schaefer-Graf UM, Meitzner K, Ortega-Senovilla H, et al. Differences in the
 485 implications of maternal lipids on fetal metabolism and growth between gestational diabetes
 486 mellitus and control pregnancies. Diabetic Medicine. 2011;28(9):1053-9.
 - 487 37. Liu B, Geng H, Yang J, et al. Early pregnancy fasting plasma glucose and lipid
 488 concentrations in pregnancy and association to offspring size: a retrospective cohort study.
 489 BMC Pregnancy Childbirth. 2016;16(1):56.
 - 490 38. Laleh E, Soheila A, Vajihe M, Ashraf J. Effect of different maternal metabolic
 491 characteristics on fetal growth in women with gestational diabetes mellitus. Iranian Journal of
 492 Reproductive Medicine. 2013;11(4):325-34.
 - 493 39. Slagjana S-K, Brankica K, Valentina V-N, et al. Effect of lipid parameters on foetal
 494 growth in gestational diabetes mellitus pregnancies. Prilozi. 2014;35(2):131-6.
 - 495 40. Hou RL, Zhou HH, Chen XY, et al. Effect of maternal lipid profile, C-peptide, insulin,
 496 and HBA1c levels during late pregnancy on large-for-gestational age newborns. World
 497 Journal of Pediatrics. 2014;10(2):175-81.

41. Christine S, Line S, Kjersti M, Anne KJ, Kåre IB. Effects of early pregnancy BMI,
mid-gestational weight gain, glucose and lipid levels in pregnancy on offspring's birth weight
and subcutaneous fat: a population-based cohort study. BMC Pregnancy Childbirth.
2015;15.(1):84.

42. Patrycja S, Marcin K, Marzena W, Marzena D, Katarzyna C. Family, anthropometric
and biochemical factors affecting birth weight of infants born to GDM women. Ginekologia i
Poloznictwo. 2015;86(7):499-503.

505 43. Lin XH, Tian S, Yang J, et al. High maternal triglyceride levels increase the risk of 506 macrosomia accompanied with childhood obesity and hyper cholesterolemia. Fertility and 507 Sterility. 2013;100(3):S339.

508 44. Brockerhoff PG. Hyperlipoproteinemia in gestation. Changes in the maternal lipid
509 metabolism due to gestation and its nutritional importance for the fetus. Fortschritte der
510 Medizin. 1986;104(13):277-9.

511 45. Ortega RM, Jesús Gaspar M, Cantero M. Influence of maternal serum lipids and 512 maternal diet during the third trimester of pregnancy on umbilical cord blood lipids in two 513 populations of Spanish newborns. International Journal for Vitamin and Nutrition Research. 514 1996;**66(3)**:250-7.

515 46. Couch SC, Philipson EH, Bendel RB, Wijendran V, Lammi-Keefe CJ. Maternal and 516 cord plasma lipid and lipoprotein concentrations in women with and without gestational 517 diabetes mellitus: Predictors of birth weight? Journal of Reproductive Medicine for the 518 Obstetrician and Gynecologist. 1998;**43(9):**816-22.

519 47. Clausen TK, Burski N, Øyen K, Godang JB, Henriksen T. Maternal anthropometric
520 and metabolic factors in the first half of pregnancy and risk of neonatal macrosomia in term
521 pregnancies. A prospective study. European Journal of Endocrinology. 2005;153(6):887-94.

Page 37 of 136

1 2

Obesity Reviews

ך ע	
4 5	
5 6	
0	
/	
ð	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
40	
47	
48	
49 50	
JU 51	
ן כ כ ז	
52 52	
5ر ۲	
54	
52 52	
50	
ر ر 20	
50	
22	

60

522 48. Fiona M, Linda Y, Andrew N. Maternal circulating nutrient concentrations in
523 pregnancy: implications for birth and placental weights of term infants. The American journal
524 of clinical nutrition. 2004;79(1):103-10.

525 49. Crume TL, Shapiro AL, Brinton JT, et al. Maternal fuels and metabolic measures
526 during pregnancy and neonatal body composition: The healthy start study. Journal of Clinical
527 Endocrinology and Metabolism. 2015;100(4):1672-80.

- 528 50. Olmos PR, Rigotti A, Busso D, et al. Maternal hypertriglyceridemia: A link between
 529 maternal overweight-obesity and macrosomia in gestational diabetes. Obesity.
 530 2014;22(10):2156-63.
- 531 51. Brunner S, Schmid D, Huttinger K, et al. Maternal insulin resistance, triglycerides and 532 cord blood insulin in relation to post-natal weight trajectories and body composition in the 533 offspring up to 2 years. Diabet Med. 2013;**30(12)**:1500-7.
- 534 52. Vrijkotte TGM, Krukziener N, Hutten BA, et al. Maternal lipid profile during early
 535 pregnancy and pregnancy complications and outcomes: The ABCD study. Journal of Clinical
 536 Endocrinology and Metabolism. 2012;97(11):3917-25.
- 537 53. Schaefer-Graf UM, Graf K, Kulbacka I, et al. Maternal lipids as strong determinants
 538 of fetal environment and growth in pregnancies with gestational diabetes mellitus. Diabetes
 539 Care. 2008;**31(9)**:1858-63.
- 540 54. Ye K, Bo QL, Du QJ, et al. Maternal serum lipid levels during late pregnancy and 541 neonatal body size. Asia Pacific Journal of Clinical Nutrition. 2015;**24(1)**:138-43.
 - 542 55. Vinod KM, Sheri T, Uma P. Maternal serum lipids during pregnancy and infant birth
 543 weight: the influence of prepregnancy BMI. Obesity. 2011;19(7):1476-81.

Obesity Reviews

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
20	
27 28	
20	
29	
30 31	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50 50	
60	

1 2

> 544 56. Kitajima M, Oka S, Yasuhi I, et al. Maternal serum triglyceride at 24--32 weeks' 545 gestation and newborn weight in nondiabetic women with positive diabetic screens. 546 Obstetrics and Gynecology. 2001;**97(5)**:776-80.

> 547 57. Nolan CJ, Riley SF, Sheedy MT, Walstab JE, Beischer NA. Maternal serum 548 triglyceride, glucose tolerance, and neonatal birth weight ratio in pregnancy: a study within a 549 racially heterogeneous population. Diabetes Care. 1995;**18(12):**1550-6.

> 550 58. Son GH, Kwon JY, Kim YH, Park YW. Maternal serum triglycerides as predictive
> 551 factors for large-for- gestational age newborns in women with gestational diabetes mellitus.
> 552 Acta Obstetricia et Gynecologica Scandinavica. 2010;89(5):700-4.

553 59. Di Cianni G, Miccoli R, Volpe L, et al. Maternal triglyceride levels and newborn
554 weight in pregnant women with normal glucose tolerance. Diabetic Medicine. 2005;22(1):21555 5.

556 60. G.M.Vrijkotte T, J.Algera S, A.Brouwer I, Eijsden M, B.Twickler M. Maternal 557 triglyceride levels during early pregnancy are associated with birth weight and postnatal 558 growth. The Journal of Pediatrics. 2011;**159(5):**736-42.

559 61. Friis CM, Paasche Roland MC, Godang K, et al. Newborn fat percentage: Role of
560 maternal metabolic state and placental size. PLoS ONE. 2012;8(2):e57467.

561 62. Kathy W, Hannah K, Vicky OD, et al. Offspring birth weight and maternal fasting
562 lipids in women screened for gestational diabetes mellitus (GDM). European Journal of
563 Obstetrics and Gynecology and Reproductive Biology. 2013;170(1):67-70.

564 63. Emet T, Ustuner I, Guven SG, et al. Plasma lipids and lipoproteins during pregnancy 565 and related pregnancy outcomes. Archives of Gynecology & Obstetrics. 2013;**288(1)**:49-55. Page 39 of 136

1 2

Obesity Reviews

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
4/	
48	
49	
5U 51	
5 I 5 1	
52 52	
5ر ۲	
54	
55 56	
50	
رد 22	
50	
リフ	

60

566 64. Knopp RH, Magee MS, Walden CE, Bonet B, Benedetti TJ. Prediction of infant birth 567 weight by GDM screening tests. Importance of plasma triglyceride. Diabetes Care. 568 1992;15(11):1605-13. 569 65. Elaheh M, Zohreh A, Mojgan R, Fariba A, Ali K. Prediction of neonates' macrosomia 570 with maternal lipid profile of healthy mothers. Pediatr neonatol. 2014;55(1):28-34. 571 66. Alberti-Fidanza A, Parizkova J, Fruttini D. Relationship between mothers' and 572 newborns' nutritional and blood lipid variables. European Journal of Clinical Nutrition. 573 1995:49(4):289-98. 574 67. Hwang JY, Choi HI, Kim H, et al. Relationship of maternal grain intake and serum 575 triglyceride levels with infant birth weight: Mothers and Children's Environmental Health 576 (MOCEH) study. European Journal of Clinical Nutrition. 2015;69(6):676-80. 577 68. Knopp RH, Bergelin RO, Wahl PW, Walden CE. Relationships of infant birth size to 578 maternal lipoproteins, apoproteins, fuels, hormones, clinical chemistries, and body weight at 579 36 weeks gestation. Diabetes. 1985;34 (Suppl 2):71-7. 580 69. Ahmad SMS, Hazlina NHN, Che Anuar CY, Faridah AR, Shukri Y. A study on 581 factors affecting newborn weight and large for gestational age (LGA) newborns in non-582 diabetic mothers: The role of maternal serum triglycerides. International Medical Journal. 583 2006;13(1):53-8. 584 70. BANK TW. World Bank Country and Lending Groups 2017 [Available from: 585 https://datahelpdesk.worldbank.org/knowledgebase/articles/906519, Accessed 27th March 586 2017.

587 71. Herrera E. Metabolic adaptations in pregnancy and their implications for the 588 availability of substrates to the fetus. Eur J Clin Nutr. 2000;**54(S1):**S47-51.

Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obstet Gynecol.

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
20	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
40	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

1

589

72.

World Obesity Journals

Netherlands. Diabetologia. 2002;45(11):1484-9.

590 2007;50(4):938-48. 591 Frayn KN. Adipose tissue as a buffer for daily lipid flux. Diabetologia. 73. 592 2002;45(9):1201-10. 593 Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic 74. 594 Syndrome--an allostatic perspective. Biochim Biophys Acta. 2010;1801(3):338-49. 595 75. Klop B, Elte JW, Cabezas MC. Dyslipidemia in obesity: mechanisms and potential 596 targets. Nutrients. 2013;5(4):1218-40. 597 Jarvie E, Hauguel-de-Mouzon S, Nelson SM, et al. Lipotoxicity in obese pregnancy 76. 598 and its potential role in adverse pregnancy outcome and obesity in the offspring. Clinical 599 Science. 2010;119(3):123-9. 600 77. Ehrenberg HM, Huston-Presley L, Catalano PM. The influence of obesity and 601 gestational diabetes mellitus on accretion and the distribution of adipose tissue in pregnancy. 602 American journal of obstetrics and gynecology. 2003;189(4):944-8. 603 Shafrir E, Khassis S. Maternal-fetal fat transport versus new fat synthesis in the 78. 604 pregnant diabetic rat. Diabetologia. 1982;22(2):111-7. 605 79 Brion M-JA, Ness AR, Rogers I, et al. Maternal macronutrient and energy intakes in 606 pregnancy and offspring intake at 10 y: exploring parental comparisons and prenatal effects-. 607 The American journal of clinical nutrition. 2010;91(3):748-56. 608 80. Evers I, De Valk H, Mol B, Ter Braak E, Visser G. Macrosomia despite good 609 glycaemic control in Type I diabetic pregnancy; results of a nationwide study in The 610

Obesity Reviews

2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
1/	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
22	
20	
3/	
38	
39	
40	
41	
42	
43	
44	
15	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50 57	
5/	
58	
59	

60

81. 611 Edward T Carreras, Polk DM. Dyslipidemia: Current Therapies and Guidelines for 612 Treatment. US Cardiology Review. 2017;11(1):10-5.

613 82. Blumer I, Hadar E, Hadden DR, et al. Diabetes and pregnancy: an endocrine society 614 clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism. 615 2013;**98(11):**4227-49.

- 616 83. Practice Bulletin No. 180: Gestational Diabetes Mellitus. Obstetrics & Gynecology. 617 2017;**130(1):**e17-e37.
- 618 84. Barrett HL, Dekker Nitert M, McIntyre HD, Callaway LK. Normalizing metabolism 619 in diabetic pregnancy: is it time to target lipids? Diabetes Care. 2014;**37(5)**:1484-93.
- 620 85. Hunter PM, Hegele RA. Functional foods and dietary supplements for the 621 management of dyslipidaemia. Nature Reviews Endocrinology. 2017;13(5):278-88.
- 622 86. Mente A, Dehghan M, Rangarajan S, et al. Association of dietary nutrients with blood
- ,na. 623 lipids and blood pressure in 18 countries: a cross-sectional analysis from the PURE study.
- Lancet Diabetes Endocrinol. 2017;5(10):774-87. 624

Table Baseline characteristics of included studies

Study ID	Study design	Locations	Population (N)	тс	HDL	LDL	TG	VLDL	FFAs	Tri.	Outcomes
Ye et al.2015 ⁵⁴	Prospective observational study	China	non-GDM (n=1,243)	\checkmark	\checkmark	\checkmark				3	Birthweight LGA, SGA
Wang et al.2015 ³¹	Prospective cohort study	China	General (n=636)	\checkmark	\checkmark	\checkmark	\checkmark			2	Birthweight
Crume et al.2015 ⁴⁹	Prospective cohort study	American	General (n=804)	\checkmark	\checkmark		\checkmark		\checkmark	2,3	Birthweight
Hwang et al.2015 ⁶⁷	Prospective cohort study	Korea	non-GDM (n=1,011)				\checkmark			2,3	Birthweight
Kulkarni et al.2013 ¹⁵	Prospective cohort study	India	non-GDM (n=631)	\checkmark	\checkmark		\checkmark			2,3	Birthweight
Vrijkotte et al.2012 ⁵²	Prospective cohort study	Netherlands	non-GDM (n=4,008)	\checkmark			\checkmark			1	LGA, SGA
Retnakaran et al.2012 ¹⁴	Prospective cohort study	Canada	non-GDM (n=472)	\checkmark	\checkmark	\checkmark				3	Birthweight LGA
Hou et al.2014 ⁴⁰	Prospective observational study	China	non-GDM (n=2,790)	\checkmark	\checkmark	\checkmark	\checkmark			3	LGA
Kramer et al.2014 ²⁹	Prospective cohort study	Canada	General (n=340)	\checkmark	\checkmark		\checkmark			3	Infant weight gain at 3 months
Son et al.2010 ⁵⁸	Retrospective longitudinal observational study	Korea	GDM (n=104)	\checkmark	\checkmark	\checkmark				3	Birthweight LGA
Ahmad et al. 2006 ⁶⁹	Controlled prospective study	Malaysia	non-GDM (n=246)	\checkmark						3	Birthweight LGA
Di et al. 2005 ⁵⁹	Prospective observational study	Italy	OGTT+ (n=83)	\checkmark	\checkmark	\checkmark	\checkmark			2	Birthweight LGA
Couch et al.1998(1) ⁴⁶ Couch et al.1998(2) ⁴⁶	Prospective observational study	American	GDM (n=20) Non-GDM (n=20)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	3	Birthweight Cord vein lipids profile
Ortega et al. 1996 ⁴⁵	Prospective cohort study	Spain	General (n=292)	\checkmark	\checkmark	\checkmark			\checkmark	3	Birthweight Cord arteriovenous lipids profile
Alberti-Fidanza et al. 1995 ⁶⁶	Prospective observational study	Italy	General (n=70)	\checkmark	V		\checkmark			1-3	Mixed venous- arterial cord blood lipids profile
Schaefer-Graf et al. 2008 ⁵³	Secondary analysis of RCT study	German	GDM (n=150)	\checkmark			\checkmark		\checkmark	3	Birthweight, cord blood lipids LGA
Swierzewska et al. 2015 ⁴²	Prospective observational study	Poland	General (n=136)	\checkmark	\checkmark	\checkmark	\checkmark			3	Birthweight
Sommer et al. 2015 ⁴¹	Prospective cohort study	Norway	General (n=699)	\checkmark	\checkmark	\checkmark	\checkmark			3	Birthweight, sum of skinfolds
Slagjana et al. 2014 ³⁹	Prospective cohort study	Yugoslavia	non-GDM (n=200)	\checkmark	\checkmark	\checkmark	\checkmark			3	Birthweight LGA, SGA
Laleh et al. 2013 ³⁸	Prospective cohort	Iran	GDM (n=112)	\checkmark	\checkmark	\checkmark	\checkmark			3	LGA, macrosomia
Whyte et al. 2013 ⁶²	Prospective cohort study	Ireland	General $(n=189)$	\checkmark	\checkmark	\checkmark				2	Birthweight
Zhou et al. 2012 ³³	Prospective cohort study	China	General (n=1,000)	\checkmark	\checkmark	\checkmark	\checkmark			2	Macrosomia
Vrijkotte et al. 2011 ⁶⁰	Prospective cohort study	Netherlands	General (n=2,052)	\checkmark			\checkmark			1	Birthweight Postpartum growth
Vinod et al.2011(1) ⁵⁵ Vinod et al.2011(2) ⁵⁵	Prospective cohort study	American	Overweight (n=71) Normal weight (n=72)	\checkmark	\checkmark	\checkmark				1-3	Birthweight
Zawiejska et al.	Prospective	Poland	GDM		\checkmark		\checkmark			2	Birthweight

Page 43 of 136

2008 ²⁴ observational study(n=357)VVV <t< th=""><th>Study ID</th><th>Study design</th><th>Locations</th><th>Population (N)</th><th>тс</th><th>HDL</th><th>LDL</th><th>TG</th><th>VLDL</th><th>FFAs</th><th>Tri.</th><th>Outcomes</th></t<>	Study ID	Study design	Locations	Population (N)	тс	HDL	LDL	TG	VLDL	FFAs	Tri.	Outcomes
Clausen et al. 2005 ⁴⁷ Prospective cohort study Norway methodic General 	2008 ³⁴	observational study		(n=357)								Macrosomia
Mathews et al. 2003*8Prospective cohort studyUKGeneral (n=78)V2,3Birthweight BirthweightOlmos et al.2014(1)50 Olmos et al.2014(2)50Prospective observational studyChile $GDM + ocnweight(n=10)VVV2,3BirthweightBirthweightOlmos et al.2014(3)50Prospectiveobservational studyTurkeyGeneral(n=46)VVVV2,3BirthweightBirthweight3 monthsLiu et al.2016*7Retrospective cohortstudyChinaGeneral(n=26)VVVV2,3BirthweightBirthweight3 monthsBrunner et al. 2013*1Scondary analyses ofRCT studyGerman(n=264)General(n=264)VVVVV3Birthweightmonthsthrikweightdoservational studyAmerican(n=28)VVVVV3BirthweightmonthsendethrikkeightthrikweightSchaefer-Graf et al.Diservational studyAmerican(n=28)General(n=28)VVVVVV3BirthweightmerabolicparametersKitajiana et al.2015*7Prospectiveobservational studyChina(n=283)General(n=283)VVVVV3BirthweightmerabolicparametersKitajiana et al.2015*7Prospective cohortstudyChina(n=283)Colmo 4VVVVV3Birthweightmerabolicnacrosomin(n=283)Sithweight(n=264)VV$	Clausen et al. 200547	Prospective cohort study	Norway	General $(n=2,050)$	\checkmark	\checkmark	\checkmark	\checkmark			2	Macrosomia
Olmos et al 2014(1) ⁵⁰ Prospective observational study Chile Chile (m=105) GDM + lean (m=105) v v v v z. Birthweight infant weight 3 months Olmos et al 2014(3) ⁵⁰ Prospective observational study Turkey General (m=546) v v v v v v z z Birthweight 3 months Liu et al 2013 ⁶¹ Prospective cohort study China General (m=208) v v v v v z z Birthweight 3 months Brunner et al. 2013 ⁶¹ Secondary analyses of RCT study German General (m=208) v v v v z z Birthweight growth, skinding Schaefer-Graf et al. Prospective observational study American (m=208) General (m=283) v v v v z z Birthweight growth, skinding Schaefer-Graf et al. Prospective observational study American (m=283) v v v v z z Birthweight growth, skinding Lin et al.2013 ⁶¹ Prospective observational study China General (m=283) v v v	Mathews et al. 2003 ⁴⁸	Prospective cohort study	UK	General (n=798)	\checkmark						2,3	Birthweight
(n=46)Ernot et al.2013 ⁶³ Prospective cohort studyGeneral (n=501)VVVVSitthweight a months a months a monthsLiu et al.2016 ³⁷ Retrospective cohort studyChina (n=546)General (n=528)VVVV2Birthweight prospective, the cohservational studyKnopp et al.1992 ⁶⁴ Prospective observational studyAmerican (n=283)NS. (n=521) (n=264)VVVV3Birthweight prospective, (n=264)Schaefer-Graf et al. 2011 ⁵⁶ Prospective observational studyGeneral (n=190)VVVV3Birthweight Birthweight (n=388)Birthweight (n=388)O1Birthweight Birthweight (n=263)Nola et al.1995 ⁵⁷ 2013 ⁶⁶ Prospective observational studyGeneral (n=388)VI1Birthweight (n=388)SI1Birthweight (n=267)Lin et al.2016 ⁶¹ 2014 ⁶⁵ Prospective observational studyChina (n=207)General (n=207)VVV3Birthweight (n=263)Lie et al.2016 ⁶¹ 2014 ⁶⁵ Prospective observational studyChina (n=361)General (n=5,353)VVV3Birthweight (n=361)Lie et al.2016 ⁶¹ 2014 ⁶⁵ Prospective studyChina (n=531)General (n=531)VVV3Birthweight (n=361)	Olmos et al. $2014(1)^{50}$ Olmos et al. $2014(2)^{50}$ Olmos et al. $2014(3)^{50}$	Prospective observational study	Chile	GDM + lean (n=128) GDM + overweight (n=105) GDM + obese	\checkmark	\checkmark		\checkmark			2,3	Birthweight
Liu et al. 2016 ¹⁷ Retrospective cohort study China General (n=1,546) $\sqrt{1}$	Emet et al. 2013^{63}	Prospective observational study	Turkey	(n=46) General (n=801)	\checkmark	\checkmark	\checkmark	\checkmark			3	Birthweight, infant weight at 3 months
Brunner et al. 2013 ⁵¹ Secondary analyses of RCT studyGermanGeneral (n=208)VBirthweigh pospatrum growth, skindich thicknessKnopp et al.1992 ⁶⁴ Prospective observational studyAmericanNS- (n=521) PSH (n=264)V3Birthweigh pospatrum growth, skindich thicknessKnopp et al.1985 ⁶⁸ Prospective observational studyAmericanNS- (n=521) PSH (n=264)V3Birthweigh Birthweigh German (n=283)VVV3Birthweigh Birthweight Birthweight DetaratersSchaefer-Graf et al. 2011 ⁵⁶ Prospective observational studyGerman Confnon-GDM (n=190)VVV3Birthweight Birthweight Birthweight DetaratersNolan et al.1995 ⁵⁷ Observational study observational studyAustralia (n=388)General (n=27)VVV3Birthweight Birthweight BirthweightLin et al.2016 ³² Prospective 	Liu et al.2016 ³⁷	Retrospective cohort study	China	General (n=1,546)	\checkmark	\checkmark	\checkmark	\checkmark			2	Birthweight
Knopp et al. 199264Prospective observational studyAmericanNS- (n=261) (n=264) \checkmark 3BirthweightKnopp et al. 198568Prospective observational studyAmericanCeneral (n=190) \checkmark \checkmark \checkmark \checkmark \checkmark 3BirthweightSchaefer-Graf et al. 2011 ³⁶ Prospective observational studyGermannon-GDM 	Brunner et al. 2013 ⁵¹	Secondary analyses of RCT study	German	General (n=208)				\checkmark			3	Birthweight, postpartum growth, skinfolds thickness
Knopp et al. 1985Prospective observational studyAmericanGeneral (n=283) $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ $\sqrt{3}$ Birthweigh BirthweighSchaefer-Graf et al. 2011 ³⁶ Prospective observational studyGermannon-GDM (n=190) $\sqrt{1}$ \sqrt	Knopp et al.1992 ⁶⁴	Prospective observational study	American	NS- (n=521) PS+ (n=264) GDM (n=96)				\checkmark			3	Birthweight
Schaefer-Graf et al. 2011^{36} Prospective observational studyGermannon-GDM (n=190) $$ $$ $$ 3 Birthweight Gerdblood metabolic parametersNolan et al.1995 ⁵⁷ Prospective 	Knopp et al.1985 ⁶⁸	Prospective observational study	American	General (n=283)		\checkmark	\checkmark		\checkmark	\checkmark	3	Birthweight
Nolan et al. 1995^{57}Prospective observational studyAustraliaGeneral (n=38) \checkmark 1BirthweightLin et al. 2013^{43}Prospective observational studyChinaGeneral (ND) \checkmark NDMacrosomiaFriis et al. 2012^{61}Prospective observational studyNorwayGeneral (n=207) \checkmark \checkmark \checkmark 3BirthweightLei et al. 2016^{32}Prospective cohort 	Schaefer-Graf et al. 2011 ³⁶	Prospective observational study	German	non-GDM (n=190)	\checkmark			\checkmark		\checkmark	3	Birthweight, Cord blood metabolic parameters
Lin et al. 2013^{43} Prospective observational studyChinaGeneral (ND) \checkmark NDMacrosomiaFriis et al. 2012^{61} Prospective observational studyNorwayGeneral (n=207) \checkmark \checkmark \checkmark 3BirthweightLei et al. 2016^{32} Prospective cohort studyChinaGeneral (n=5,535) \checkmark \checkmark \checkmark 2LGA, SGAKitajima et al. 2001^{56} Prospective cohort observational studyJapanOGTT + (n=146) \checkmark \checkmark \checkmark \checkmark 3Birthweight LGAMossayebiet al.Prospective cohort studyJapanGeneral (n=154) \checkmark \checkmark \checkmark \checkmark 3Birthweight LGA, macrosomiaGeraghty et al. 2016^{16} Secondary analyses of RCT studyUKnon-GDM (n=331) \checkmark \checkmark \checkmark \checkmark 2,3Pospective observational studyJin et al. 2016^{30} Prospective cohort studyChina (n=12)non-GDM 	Nolan et al.1995 ⁵⁷	Prospective observational study	Australia	General (n=388)				\checkmark			1	Birthweight
Friis et al. 2012 ⁶¹ Prospective observational studyNorwayGeneral (n=207) $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ 3 Birthweight Birthweight 	Lin et al.2013 ⁴³	Prospective observational study	China	General (ND)				\checkmark			ND	Macrosomia
Lei et al. 2016^{32} Prospective cohort studyChinaGeneral (n=5,535) $$ $$ 2 LGA, SGAKitajima et al. 2001^{56} Prospective observational studyJapanOGTT + 	Friis et al.2012 ⁶¹	Prospective observational study	Norway	General (n=207)	\checkmark	\checkmark		\checkmark		\checkmark	3	Birthweight
Kitajima et al. 200156Prospective observational studyJapanOGTT + (n=146) $\sqrt{\sqrt{3}}$ Birthweight LGAMossayebietal. 	Lei et al.2016 ³²	Prospective cohort study	China	General (n=5,535)		\checkmark		\checkmark			2	LGA, SGA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Kitajima et al. 2001 ⁵⁶	Prospective observational study	Japan	OGTT + (n=146)				\checkmark			3	Birthweight LGA
Geraghty et al. 201616Secondary analyses of RCT studyUKnon-GDM (n=331) $-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt{-\sqrt$	Mossayebi et al. 2014 ⁶⁵	Prospective cohort study	Iran	General (n=154)	\checkmark	\checkmark	\checkmark	\checkmark			3	Birthweight LGA, macrosomia
Jin et al. 2016^{30} Prospective cohort studyChinanon-GDM (n=934) $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ LGA, SGA macrosomiaBrockerhoff 198644Prospective observational studyGermanND (n=112) $\sqrt{1}$ $\sqrt{1}$ $\sqrt{1}$ 2 Cord blood lipids profileHarmon et al. 2011^{35} Prospective observational studyAmericannon-GDM (n=38) $\sqrt{1}$ $\sqrt{1}$ BirthweightRobin et al. 2007^{27} Retrospective cohort studyAmericanGeneral (n=957) $\sqrt{1}$ $\sqrt{1}$ BirthweightCharles et al. 2016^{28} Perspective observational studyMediterranean countriesGeneral (n=1062) $\sqrt{1}$ $\sqrt{1}$ Birthweight	Geraghty et al. 2016 ¹⁶	Secondary analyses of RCT study	UK	non-GDM (n=331)	\checkmark	\checkmark	\checkmark	\checkmark			2,3	Birthweight Postpartum growth, sum of skinfolds
Brockerhoff 198644Prospective observational studyGermanND (n=112) $\sqrt{1}$ $\sqrt{1}$ 2Cord blood lipids profileHarmon et al. 201135Prospective observational studyAmericannon-GDM (n=38) $\sqrt{1}$ 1BirthweightRobin et al. 200727Retrospective cohort studyAmericanGeneral (n=957) $\sqrt{1}$ 2BirthweightCharles et al. 201628Perspective observational studyMediterranean countriesGeneral (n=1062) $\sqrt{1}$ $\sqrt{1}$ 3Birthweight	Jin et al. 2016 ³⁰	Prospective cohort study	China	non-GDM (n=934)	\checkmark	\checkmark	\checkmark	\checkmark			1-3	LGA, SGA, macrosomia
Harmon et al. 201135Prospective observational studyAmericannon-GDM (n=38) $\sqrt{1}$ BirthweightRobin et al. 200727Retrospective cohort studyAmericanGeneral (n=957) $\sqrt{1}$ BirthweightCharles et al. 201628Perspective observational studyMediterranean countriesGeneral (n=1062) $\sqrt{1}$ Birthweight	Brockerhoff 1986 ⁴⁴	Prospective observational study	German	ND (n=112)		\checkmark	\checkmark		\checkmark		2	Cord blood lipids profile
Robin et al. 2007^{27} Retrospective cohort studyAmericanGeneral (n=957) $$ 2BirthweightCharles et al. 2016^{28} Perspective observational studyMediterranean countriesGeneral (n=962) $$ <td>Harmon et al. 2011³⁵</td> <td>Prospective observational study</td> <td>American</td> <td>non-GDM (n=38)</br></td> <td></td> <td></td> <td></td> <td>\checkmark</td> <td></td> <td>\checkmark</td> <td>1</td> <td>Birthweight</td>	Harmon et al. 2011 ³⁵	Prospective observational study	American	non-GDM 				\checkmark		\checkmark	1	Birthweight
Charles et al. 2016^{28} Perspective Mediterranean General countries (n=1062) $\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	Robin et al. 2007 ²⁷	Retrospective cohort study	American	General (n=957)	\checkmark						2	Birthweight
	Charles et al. 2016^{28}	Perspective observational study	Mediterranean countries	General (n=1062)		\checkmark	\checkmark				3	Birthweight

Abbreviation: Trimester(Tri), Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglycerides(TG), free fatty acids(FFAs), large-for-gestational age(LGA), small for gestational age(SGA), randomized controlled trial(RCT), and no documented(ND). 626

Title: Figure 1. Flow-diagram of study selection

171x244mm (72 x 72 DPI)
Number of studies

253x115mm (72 x 72 DPI)

P.C.

Statistically insignificant inverse associations

Statistically insignificant positive associations

Statistically significant positive associations

20

25

15

Statistically significant inverse associations

58 59

60

Title: Figure 3 Summary of findings of meta-analysis for the associations between maternal lipids and birth weight throughout pregnancy

Notes: The number of participants (studies) included into quantitative analysis/ overall number of participants (studies) that reported the outcome of interest.

The number of participants (studies) included into quantitative analysis/ overall number of participants (studies) that reported the outcome of interest.

339x166mm (72 x 72 DPI)

		No. of	No. of							Adjusted OP
	Lipids	participante	studie						l-squared	(95% CI)
-	LGA	participanto							roquarea	
	тс	2138/9312	2/11						0%	1.03(0.94,1.12)
	HDL-C	2692/6452	3/8						55%	0.77(0.59,1.01)
	LDL-C	2610/6447	3/8						68%	1.06(0.86,1.31)
	TG	2764/9694	4/11						46%	1.08(1.01,1.15)
ş	SGA									,,
	TC	1846/2046	2/3		_	_			0%	1.00(0.82,1.21)
	HDL-C	1846/2046	2/3			Τ			→ 27%	1.96(1.04.3.71)
	LDL-C	1846/2046	2/3	_		-		-	44%	0.91(0.60.1.39)
	TG	1846/2046	2/3	<	-	_			0%	0.66(0.49.0.90)
	10	1040/2040	2/0	0.50	0.75	1.0 1	25 1.5	2.0 2.5	3.0	0.00(0.40,0.00)
						Odds ratio	(95% CI)			
Notes:	The n	umber of p part	icipan	s (stuc	studies) dies) tha	include at report	ed into q	juantitative outcome of	analysis/ interest.	overall nur
				3	336x16	5mm (7)	2 x 72 C	OPI)		
					World	Obesity	Journal	s		

2	
3	
4	
5	
6	
7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
22	
∠⊃ ⊃1	
24	
25	
26	
2/	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
30	
40	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55	
50	
5/	
58	
59	
60	

Supplementary material <u>Context</u>	
S1 Appendix Sample search in Medline	4
S2 Annendix Data extraction form	5
S_2 A set of k_2 Normon effective S_2 and S_2	
53 Appendix Newcastle-Ottawa Scale	7
S4 Appendix Basic characteristics extraction form	8
S5 Appendix Results extraction form	32
S6 Appendix Quality assessment form	50
S7 Appendix Data analysis for birthweight	51
Data summary	
S7.1 Table Results summary of the association of maternal lipid levels with birthweight throughout pregnancy.	
Total cholesterol (TC)	
S7.2 Table Results summary of the association of maternal TC level with birthweight	52
Meta-analysis	54
S7.1 Figure Overall meta-analysis of crude regression coefficients for the association between maternal TC levels and birthweight throughout pregnancy	54
S7.2 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal T levels and birthweight throughout pregnancy	ГС 54
Subgroup analysis	55
S7.3 Figure Adjusted regression coefficient_General vs. non-GDM_the 2nd trimester_Random effect mode	el 55
S7.4 Figure Adjusted regression coefficient_ General vs. non-GDM_ the 3 rd trimester_ Random effect model	55
Sensitivity analysis	56
S7.5 Figure Adjusted regression coefficients_ exclude studies control for pre-pregnancy BMI or gestational weight gain	56
S7.6 Figure Adjusted regression coefficients_ exclude studies control for maternal glucose level	56
S7.7 Figure Crude regression coefficients_ exclude studies control for pre-term birth	57
S7.8 Figure Adjusted regression coefficients_ exclude studies that did not control for pre-term birth	57
High-Density lipoprotein Cholesterol (HDL-C)	58
S7.3 Table Results summary of the association of maternal HDL-C level with birthweight	58
Meta-analysis	59
S7.9 Figure Overall meta-analysis of crude regression coefficients for the association between maternal HD. levels and birthweight throughout pregnancy	L-C 59
S7.10 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal HDL-C levels and birthweight throughout pregnancy	59
Subgroup analysis	60
S7.11 Figure Adjusted regression coefficient_ General vs. non-GDM_ the 3rd trimester_ Random effect mod	lel
Sensitivity analysis	00 60
S7.12 Figure Adjusted regression coefficients exclude studies control for pre-pregnancy RMI or vestational	55 1
weight gain	60
S7.13 Figure Adjusted regression coefficients_ exclude studies control for maternal glucose level	60
S7.14 Figure Adjusted regression coefficients_ exclude studies control for pre-term birth	61
Low-Density lipoprotein Cholesterol (LDL-C)	62
S7.4 Table Results summary of the association of maternal LDL-C level with birthweight	62
Meta-analysis	63
S7.15 Figure Overall meta-analysis of crude regression coefficients for the association between maternal LL C levels and birthweight throughout pregnancy)L- 63
S7.16 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal LDL-C levels and birthweight throughout pregnancy	63

1	
2	Sensitivity analysis
3	S7.17 Figure Adjusted regression coefficients_ exclude studies that did not control for pre-term birth
4	S7.18 Figure Adjusted regression coefficients_ exclude studies that did not control for other maternal lipid
5	levels
0 7	Triglycerides (TG)65
7 8	S7.5 Table Results summary of the association of maternal TG level with birthweight
9	Meta-analysis
10	S7.19 Figure Overall meta-analysis of crude regression coefficients for the association between maternal TG
11	levels and birthweight throughout pregnancy
12	S7.20 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal TG
13	levels and birthweight throughout pregnancy
14	Subgroup analysis
15	ST 21 Figure Adjusted regression coefficient General vs. non-GDM the 3rd trimester Random effect model
16	57.21 Figure Aujusieu regression coefficient_General vs. non-GDM_the Sta trimester_Kanaom effect model 68
1/ 10	Sensitivity analysis
10	ST 22 Figure A digstad rearrangian coefficients, the 2rd trimester, evolute studies control for the preamance
20	BMI or gestational weight gain
21	S7 23 Figure A diusted regression coefficients, the 3rd trimester, avaluate studies control for maternal alugose
22	1 svel
23	S7.24 Figure Adjusted regression coefficients, the 3rd trimester, exclude studies control for other maternal
24	linid levels
25	S7.25 Figure Adjusted regression coefficients the 3rd trimester avaluate studies control for $rresterm birth = 60$
26	57.26 Figure Adjusted regression coefficients, the 2nd trimester, exclude studies that did not control for
27	57.20 Figure Adjusted regression coefficients_ the Sra trimester_exclude studies that all not control for gestational age
28	Free Fatty A side (FFA s)
29	Free Faily Acids (FFAS)
30	S7.6 Table Results summary of the association of maternal FFAs levels with birthweight
32	Very Low-density lipoprotein cholesterol (VLDL)
33	S7.7 Table Results summary of the association of maternal VLDL-C levels with birthweight
34	Supplementary 8 Data analysis for Large for gestational age71
35	Total cholesterol (TC)
36	S8.1 Table Results summary of the association of maternal TC levels with I GA 71
37	Soli Table Results summary of the association of matchiar TC revers with LOA
38	meta-anarysis
39	S8.1 Figure Meta-analysis of adjusted odds ratio for the association between maternal TC levels and LGA /2
40 41	S8.2 Figure Meta-analysis for mean difference of maternal TC levels between LGA and reference groups in the
41	third trimester
43	High-density lipoprotein cholesterol (HDL-C)73
44	S8.2 Table Results summary of the association of maternal HDL-C levels with LGA73
45	Meta-analysis74
46	S8.3 Figure Meta-analysis of adjusted odds ratio for the association between maternal HDL-C levels and LGA
47	in the third trimester74
48	S8.4 Figure Meta-analysis for mean difference of maternal HDL-C levels between LGA and reference groups in
49	the third trimester
50	Sensitivity analysis74
51	S8.5 Figure Sensitivity analysis_ Adjusted odds ratio_ Exclude study adjust for other maternal lipid levels74
52 53	Low-density lipoprotein cholesterol (LDL-C)
55	S8.3 Table Results summary of the association of maternal LDL-C levels with LGA 75
55	Meta-analysis
56	SQ 4 Eigung Mata analysis of a division of da natio for the approximation between which the LDD Clark
57	50.4 Figure Meia-analysis of adjusted odds ratio for the association between maternal LDL-C levels and LGA in the third trimester
58	Sonoitivity analysis
59	
60	58.5 Figure Sensitivity analysis _ Adjusted odds ratio _ The third trimester _ exclude studies adjust for other maternal lipid levels

Triglycerides (TG)	
S8.4 Table Results summary of the association of maternal TG levels with LGA	
Meta-analysis	
<i>S8.6 Figure Meta-analysis of adjusted odds ratio for the association between maternal throughout pregnancy</i>	TG levels and LGA
S8.7 Figure Forest plots of crude odds ratio for the association between maternal TG le throughout pregnancy	vels and LGA
S8.8 Figure Forest plots of adjusted odds ratio for the association between maternal To throughout pregnancy	G levels and LGA
Sensitivity ananlysis	
S8.9 Figure Sensitivity analysis_ Exclude studies adjust for other maternal lipid levels	
Free fatty acids (FFAs)	••••••
S8.5 Table Results summary of the association of maternal FFAs levels with LGA	
Supplementary 9 Data analysis for Small for gestational age (SGA)	••••••
Total cholesterol (TC)	
S9.1 Table Results summary of the association of maternal TC levels with SGA	
S9.1 Figure Meta-analysis of adjusted odds ratio for the association between maternal TC throughout pregnancy	levels and SGA
High-density lipoprotein cholesterol (HDL-C)	•••••
S9.2 Table Results summary of the association of maternal HDL-C levels with SGA	
S9.2 Figure Meta-analysis of adjusted odds ratio for the association between maternal HD throughout pregnancy	L-C levels and SGA
Low-density lipoprotein cholesterol (LDL-C)	••••••
S9.3 Table Results summary of the association of maternal LDL-C levels with SGA	
S9.3 Figure Meta-analysis of adjusted odds ratio for the association between maternal LDI the third trimester.	L-C levels and SGA i
Triglycerides (TG)	•••••
S9.4 Table Results summary of the association of maternal TG levels with SGA	
S9.4 Figure Meta-analysis of adjusted odds ratio for the association between maternal TG throughout pregnancy	levels and SGA
Supplementary 10 Data analysis for Macrosomia	
Total cholesterol (TC)	
S10.1 Table Results summary of the association of maternal TC levels with macrosomia	
High-density lipoprotein cholesterol (HDL-C)	
S10.2 Table Results summary of the association of maternal HDL-C levels with macroson	nia
S10.1 Figure Forest plots of adjusted odds ratio for the association between maternal HDL macrosomia throughout pregnancy	-C levels and
Low-density lipoprotein cholesterol (LDL-C)	••••••
S10.3 Table Results summary of the association of maternal LDL-C levels with macrosom	nia
Triglycerides (TG)	••••••
S10.4 Table Results summary of the association of maternal TG levels with macrosomia	

- S1 Appendix Sample search in Medline
- 3 1. exp Lipids/ or lipid\$.mp.
- 4 2. lipoprotein\$.mp. or exp Lipoproteins/
- 5 3. exp Fatty Acids/ or fat* acids.mp.
- 6 4. triglycerides.mp. or exp Triglycerides/
- 7 5. exp Lipoproteins, VLDL/ or exp Cholesterol, VLDL/ or VLDL.mp.
- 8 6. LDL.mp. or exp Cholesterol, LDL/ or exp Lipoproteins, LDL/
- 9 7. IDL.mp. or exp Lipoproteins, IDL/
- 10 8. exp Lipoproteins, HDL/ or exp Cholesterol, HDL/ or HDL.mp.
- 11 9. exp Cholesterol/ or cholesterol.mp. or exp Cholesterol Esters/
- 12 10. hyperlipid?emia\$.mp. or exp Hyperlipidemias/
- 13 11. dyslipid?emia\$.mp. or exp Dyslipidemias/
- 14 12. hypertriglycerid?emia\$.mp. or exp Hypertriglyceridemia/
- 13. hypercholesterol?emia.mp. or exp Hypercholesterolemia/
- 16 14. metabolic.mp.
- 15. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14
- 17 16. exp Maternal Health/ or maternal.mp.
- 17. exp Pregnanes/ or pregnan*.mp.
 - 18. exp Pregnancy/ or gestation*.mp.
- 20 19. gravidity.mp. or exp Gravidity/
- 21 20. mother\$.mp. or exp Mothers/
- 22 21. 16 or 17 or 18 or 19 or 20
- 23 22. (birth weight or birthweight).mp. or exp Birth Weight/ or exp Infant, Low Birth Weight/
- 24 23. overweight.mp. or exp Obesity/ or exp Overweight/ or exp Body Weight/
- 25 24. (SGA or Small for gestational age).mp. or exp Infant, Small for Gestational Age/
- 26 25. (LGA or Large for gestational age).mp.
- 27 26. exp Fetal Macrosomia/ or macrosomia.mp.
- 28 27. exp "Growth and Development"/ or exp Growth/ or (growth or development).mp. or exp Fetal Growth Retardation/
- 29 or exp Fetal Development/ or exp Child Development/
- 30 28. weight gain.mp. or exp Weight Gain/
- 31 29. (hyperglyc?emia or hypoglyc?emia).mp. or exp Hyperglycemia/ or exp Hypoglycemia/
 - 30. (insulin* or hyperinsulinism or IR).mp. or exp Insulin/ or exp Insulin Resistance/ or exp Hyperinsulinism/
 - 31. exp Glucose Intolerance/ or glucose.mp. or exp Glucose/ or exp Glucose Metabolism Disorders/
- 32. skinfold thickness.mp. or exp Skinfold Thickness/
- 35 33. (monocyte chemoattractant protein-1 or MCP-1).mp.
- 36 34. (interleukin 6 or IL-6).mp.
- 35. exp Tumor Necrosis Factor-alpha/ or tumour necrosis factor-alpha.mp.
- 36. exp 11-beta-Hydroxysteroid Dehydrogenase Type 1/ or HSD1.mp.
- 39 37. exp Leptin/ or leptin.mp.
- 38. exp Inflammation/ or inflammat*.mp.
 - 39. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or
- 41 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38
- 42 40. (neonatal or fetal or foetal or fetus or foetus or infant or offspring or new born).mp. or exp Infant/ 43 41. 15 and 21 and (20 and 40)
 - 41. 15 and 21 and (39 and 40)
 - 42. (animal or mouse or mice or rodent or sheep or mutton or pig or hoggory or hog or swine or rabbit\$).mp.
 - 43. 41 not 42
 - 44. cohort studies/ or longitudinal studies/ or follow-up studies/ or prospective studies/ or retrospective studies/ or cohort.ti,ab. or longitudinal.ti,ab. or prospective.ti,ab. or retrospective.ti,ab.
- 48 45. "randomized controlled trial".pt.
 - 46. (random\$ or placebo\$ or single blind\$ or double blind\$ or triple blind\$).ti,ab.
- 50 47. (retraction of publication or retracted publication).pt.
 - 48. or/44-47
- 52 49. (animals not humans).sh.
- 53 50. ((comment or editorial or meta-analysis or practice-guideline or review or letter or journal correspondence) not
 54 "randomized controlled trial").pt.
- 55 51. (random sampl\$ or random digit\$ or random effect\$ or random survey or random regression).ti,ab. not "randomized
 56 controlled trial".pt.
- 57 52. or/49-51
- 58 53. 48 not 52
- 59 54. 43 and 53
- 60

32

33

44

45

46

47

49

S2 Appendix Data extraction form

A. Reference information

- 1. ID number
- 2. Title
- 3. Author
- 4. Journal
- 5. Publication Year
- 6. Language
- 7. Sponsor

B. Study design

1 2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

- 1. Study design
- 2. Setting
- 3. Locations
- 4. Data collection

C. Participants

- 1. Eligibility criteria (source and methods of selection of participants)
- 2. Matching criteria (if applicable)
 - a. Matching criteria
- b. Attempts were made within the design or analysis to balance the comparison groups for potential confounders (YES/NO).
 - c. The groups are comparable at baseline, including all major confounding and prognostic factors

(YES/NO).

- 3. Sample Size
 - a. Number of both exposed and unexposed groups
 - b. Report numbers of individuals at each stage of study
 - c. Give reasons for non-participation at each stage (YES/NO)
 - d. Does the size of samples have enough power to detect the difference of primary outcomes?

(YES/NO)

- 4. Demographic, clinical and social characteristics
 - a. Age
 - b. Ethnicity
 - c. Pre-pregnant BMI/weight
 - d. Marital status
 - e. Education
 - f. Other potential confounders information

D. Follow-up

- 1. Enrolment time
- 2. Length of follow-up
 - a. Length of follow-up (average and total amount)

b. All groups were followed up for an equal length of time (or analysis was adjusted to allow for differences in length of follow-up)

- 3. Methods of follow-up
- 4. Lost to follow-up
 - a. Attrition rate in each group
 - b. How many participants in each group were no outcome data available? (number & proportion)
 - c. Does it comparable? (YES/NO)

E. Exposure

- 1. Definition of exposures
- 2. When did they take samples
- 3. Exposure measurement

F. Outcomes

- 1. Primary outcomes (definition and measurement)
- 2. Secondary outcomes (definition and measurement)

G. Statistical methods

- 1. Statistical methods, including those used to control for confounding
- 2. Describe any methods used to examine subgroups and interactions
- 3. How missing data were addressed
- 4. Explain how lost to follow-up was addressed
- 5. Describe any sensitivity analysis

H. Results

1. Number of outcomes events or summary measures over time

1 2 3 4 5 6 7 8 9	 2. Give unadjusted estimates and, if applicable, confound der-adjusted estimates and their precision (e.g. 95% confidence interval). Make clear which confounders were adjusted for and why they were included 3. Report category boundaries when continuous variables were categorized 4. Alpha value and beta value 1. Limitations Interpretation Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence. 2. Generalizability (external validity)
10	J. Other notes
12	
13	
14	
15	
16	
17	
18	
20	
21	
22	
23	
24	
25 26	
20	
28	
29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
41	
43	
44	
45	
46	
47	
48 70	
49 50	
51	
52	
53	
54	
55	

- 56 57
- 58
- 59 60

S3 Appendix Newcastle-Ottawa Scale

Selection

1 2

- 1. Representativeness of exposed cohort population
 - 1) Truly representative of the average, community-dwelling target pregnant women \star
 - 2) Somewhat representative of the average, community-dwelling target pregnant women \bigstar
 - 3) Selected group of pregnant women, e.g. only certain socio-economic groups/areas
 - 4) No description of the derivation of the cohort
- 2. Selection of the unexposed cohort
 - 1) Drawn from the same source as the exposed cohort \bigstar
 - 2) Drawn from a different source
 - 3) No description of the derivation of the unexposed cohort
- 3. Ascertainment of exposures
 - 1) Laboratory diagnosed \bigstar
 - 2) Secure record (e.g. health care/clinical record) \bigstar
 - 3) Written self-report
 - 4) Other/ no description

4. Demonstration that outcome of interest was not present at start of study

- 1) Yes \bigstar
- 2) No

Comparability

- 1. Comparability of cohort based on the design or analysis
 - 1) Study controls for
 - 1 Outcomes measured at delivery: gestational age \bigstar
 - 2 Outcomes measured over 1 month after delivery: neonatal age \bigstar
- 2) Study controls for any two of additional factors (e.g. neonatal gender, maternal age, parity, socio-economic

level, cigarette exposures, delivery mode and so on) \star

Outcome

- 1. Assessment of outcomes
 - 1) Independent blind assessment \bigstar
 - 2) Record linkage \bigstar
 - 3) Self-report
 - 4) Other/ no description
- 2. Was follow up long enough for outcomes to occur
 - 1) Yes, if the study follow their subjects until outcomes occur \bigstar
 - 2) No, if the study follow their subjects until outcomes occur
- 3. Adequacy of follow up of cohorts
 - 1) Complete follow up : all subjects accounted for \bigstar
- 2) Subjects lost to follow up unlikely to introduce bias: number lost $\leq 20\%$, or description of those lost suggesting no different from those followed \star
 - 3) Follow up rate <80% and no description of those lost
 - 4) No statement

S4 Appendix Basic	characteristics	extraction	form
-------------------	-----------------	------------	------

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
Ye et al. 2015	<u>Study design:</u> Prospective observational study <u>Language:</u> English <u>Location:</u> China	<u>Setting:</u> Maternal and Child Health centres (MCH) of Hefei. <u>Eligibility criteria:</u> Women (≥18 years) who given birth in MCH centres of Hefei around $36^{th} - 41^{st}$ gestation week. <u>Exclude criteria:</u> 1) Gestational diabetes, overt diabetes, hypertension and heart disease. 2) Preterm births (before 37 weeks) or multiple pregnancies. 3) No information on birth weight. <u>Sample size : n=1,243</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 27.9 ± 4.3 <u>Primiparous</u> 1012 (81.4) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 20.5 ± 2.5 <u>Gestational length</u> 39.6 ± 1.0 <u>Fasting blood</u> No Statement	Enrolment timeGestational age at entry $(36^{th} - 41^{st} gestation week)$ $(1^{st} Jan 2011 - 31^{st} July)$ 2012)LengthFollow up until birthMethodsClinical follow-upData collectionQuestionnaire, clinicalmedical recordsLoss to follow-up0	Maternal serum TG, TC, HDL, LDL were measured close to delivery (36-41 weeks, in most case 1 week to delivery)	<u>Birth weight</u> was retrieved from medical records after delivery. <u>LGA:</u> infants with birth weight > 90 th percentile for local population after adjusting for gestational age and sex. <u>SGA:</u> birth weight $< 10^{th}$ <u>AGA:</u> 10 th ≤birth weight $\leq 90^{th}$	8
Wang et al. 2015	Study design: Cohort Language: English Location: China	Setting:No statementEligibility criteria:1) Chinese women with a singletonpregnancy and a live delivery; 2) haveGDM screening at 24-28 weeks ofgestation; 3) presented for booking at orbefore 16 weeks and gave birth at or after36 weeks; 4) compete antenatal and birthdata.Exclude criteria:Type 1 or type 2 diabetes; hyperlipidaemia,hypertension, cardiovascular diseases ormetabolic syndrome before pregnancy; ahistory of severe systemic disease (livercirrhosis, chronic renal failure, severeanaemia or immune disorders); anduntreated endocrinopathies(hyperadrenalism, hypoadrenalism,hyperthyroidism or hypothyroidism)Sample size: n= 636	Median (25 th -75 th) <u>Age (vear)</u> Non-GDM: 29 (27-31) GDM: 31 (29-34) <u>Parity</u> No statement <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> Non-GDM: 20.03 (18.59- 21.55) GDM: 21.02 (19.24- 22.56) <u>Gestational length</u> Non-GDM: 39 (39-40) GDM: 39 (38-40) <u>Fasting blood</u> Yes.	Enrolment time: Gestational age at entry (at or before 16 th gestation week) (1 st Jan 2013 – 31 st Dec 2013) Length: At least follow up until birth <u>Methods:</u> No statement <u>Data collection:</u> laboratory diagnosis Loss to follow-up: 0	Maternal overnight fasting blood was taken at the time of OGTT (24 th -28 th weeks) for TC, HDL, LDL and TGs laboratory analyses (standard enzymatic procedures on automatic chemistry analyser).	<u>Birthweight.</u>	6

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		(110 GDM and 526 non-GDM)					
Crume et al.2015	<u>Study design:</u> Prospective birth cohort study <u>Language:</u> English <u>Location:</u> American	<u>Setting:</u> Healthy Start Study (n=1,063) conducted in the prenatal obstetrics clinics at University of Colorado Hospital in Aurora, Colorado. <u>Eligibility criteria:</u> Women (\geq 16 years) expecting a singleton birth, living in Colorado, and planning to deliver at University of Colorado Hospital. <u>Exclude criteria:</u> Women with serious chronic diseases (cancer, psychiatric diseases, steroid- dependent asthma, pre-existent diabetes), as well as those who subsequently experienced a foetal death or delivered a severely premature infant (<32 week gestation) were excluded. <u>Sample size : n=804</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 27.7 ± 6.1 <u>Primiparous</u> 287 (35.8) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 25.7 ± 6.3 <u>Gestational length</u> 39.4 ± 1.3 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (≤24 gestation week) (All women were enrolled and delivered as of Nov 1, 2013) Length Follow up at least until birth <u>Methods</u> In-person research visits and hospital preconception visit <u>Data collection</u> Questionnaires, clinical diagnoses and medical records Loss to follow-up 0	Maternal fasting venous blood samples were taken at both two research visits (first, median 17 week, range 11-20 week; second, median 27 week, range 20-34 week) for TGs, TC, HDL- c and FFA laboratory analyses using manufacturer pre-packaged enzymatic kits and the AU400e Chemistry Analyser.	<u>Birth weight</u> was measured using a calibrated scale.	8
Hwang et al.2014	Study design: Prospective cohort study Language: English Location: Korea	<u>Setting:</u> The MOCEH study, a multicentre prospective hospital- and community-based cohort study in South Korea (n=1,751) <u>Eligibility criteria:</u> Pregnant women at mid-stage (15-28 gestation weeks) of a normal (not at risk) pregnancy who were willing to participate the MOCEH study. <u>Exclude criteria:</u> Twins (n=31), spontaneous abortion (n=23), intrauterine growth restriction (n=3), foetus congenital anomaly (n=12). Drop out (n=221), pregnancy complications (hypertension or/and diabetes, n=34). No information on dietary intake data	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}$ 30.1 ± 3.6 <u>Primiparous</u> No statement <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 21.3 ± 3.1 <u>Gestational length</u> 38.9 ± 1.4 <u>Fasting blood</u> No statement	Enrolment time Gestational age at entry (12-28 gestation week) (Aug 2006 to Dec 2010) Length Follow up until 5 years after delivery. <u>Methods</u> Clinical visits <u>Data collection</u> Questionnaires and medical records Loss to follow-up 221(17.94%)	Maternal serum <u><i>TG</i></u> was analysed twice at mid-pregnancy (12-28 gestational weeks) and at late pregnancy (29-42 gestational weeks) by means of an enzymatic method using an autonalyzer.	<u>Birthweight</u> was obtained from birth records.	9
	World Obesity Journals						

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		(n=135), total energy consumption <500 or >4000 kcal/day (n=5), No information on serum TG concentration at mid- or late pregnancy (n=276) <u>Sample size : n=1,011</u>					
Kulkarni et al. 2013	Study design: Population- based birth cohort study Language: English Location: India	<u>Setting:</u> The Pune Maternal Nutrition Study (PMNS), a prospective birth cohort based on six rural villages in India. <u>Eligibility criteria:</u> Women with a singleton pregnancy of <21 weeks' gestation (n=797). <u>Exclude criteria:</u> Spontaneous abortions, fetal anomalies, multiple pregnancy, medical terminations late booking, Late abortions (n=12), late terminations (n=14), still birth (n=8), maternal death (n=1), congenital anomalies (n=9), baby not measured (n=51), mother diabetic (n=1), mother hypertensive (n=1), preterm (n=69) <u>Sample size : n=631</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 21.4 ± 3.6 <u>Primiparous</u> 226 (35.8) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 18.0 ± 1.9 <u>Gestational length</u> 39.4 ± 1.7 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (<21 gestation week) (June 1994 to April 1996) Length Follow up until birth. <u>Methods</u> No statement <u>Data collection</u> Questionnaires and clinical measurement Loss to follow-up 131 (16.44%)	Maternal fasting venous blood samples was collected at 18 and 28 weeks for total cholesterol HDL-C and triglycerides using standard enzymatic kits.	Measured by one of five trained fieldworkers within 72h of birth. <u>Birthweight:</u> measured by a Salter spring balance.	8
Vrijkotte et al.2012	Study design: Prospective cohort study <u>Language:</u> English <u>Location:</u> Netherlands	<u>Setting:</u> The Amsterdam Born Children and Their Development (ABCD) cohort study <u>Eligibility criteria:</u> Pregnant women visit to the obstetric care provider around the 12 th week of gestation agree to participant the ABCD biomarker study (n=4389) <u>Exclude criteria:</u> Women who had multiple gestation or who had no data on the gestational age at blood sampling, women with diabetes (pre- existent as well as pregnancy induced), and	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 30.9 ± 4.9 <u>Primiparous</u> 2314 (57.7) <u>Pre-pregnancy</u> <u>overweight or</u> <u>obese</u> 830 (20.7) <u>Gestational length</u> No statement <u>Fasting blood</u> No.	Enrolment time Gestational age at entry (around 12 th gestation week) (Jan 2003 to Mar 2004) Length Follow up at least until birth. <u>Methods</u> Obstetric care provider visit and the Youth Health Care Registration and the Dutch Perinatal Registration (PRN).	Maternal additional non-fasting blood samples were taken during routine blood collection for laboratory TC and TG levels assessment during their first prenatal visit to the obstetric care provider at around the 12 th week of gestation.	Information on pregnancy outcomes was obtained from the Youth Health Care Registration and the Dutch Perinatal Registration (PRN). <u>SGA:</u> birth weight below the 10 th percentile for gestational age based on gender- and parity- specific standards from the PRN. <u>LGA:</u> birth weight above	8

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		those using lipid-altering medication (e.g. antiepileptic drugs, steroids, insulin, antidepressants, thyroid hormones, or sleep medication) were excluded. <u>Sample size : $n=4,008$</u>		Data collection Questionnaires and Health care registration system. Loss to follow-up 381 (8.68%)		the 90 th percentile for gestational age based on the same gender0and parity-specific standards from the PRN.	
Retnakar en et al. 2012	Study design: Prospective cohort study Language: English Location: Canada	<u>Setting:</u> Ongoing prospective observational cohort study <u>Eligibility criteria:</u> White, Asian and South Asian pregnant women with term (37-41 weeks' gestation inclusive) singleton pregnancies were recruited at the second or early in the third trimester. <u>Exclude criteria:</u> Women with gestational diabetes. <u>Sample size: n=472</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or Median(IQR) <u>Age (year)</u> Lowest tertile birthweight: 33.6±4.0 Middle tertile birthweight: 34.5±4.3 Highest tertile birthweight: 33.6±4.0 <u>Primiparous</u> 251 (53.18) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> Lowest: 22.6(20.7-25.4) Middle: 22.6(20.8-25.8) Highest: 23.6(22.3-27.4) <u>Gestational length</u> Lowest: 38.6±1.1 Middle: 39.2±1.0 Highest: 39.6±1.1 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (around 24 th -28 th gestation week) (No statement about recruitment time) <u>Length</u> Follow up until 3 months postpartum period <u>Methods</u> No statement <u>Data collection</u> No statement <u>Loss to follow-up</u> 0	Maternal fasting serum samples were obtained at the time of the oral glucose tolerance test (late second to early third trimester, median 30 week) for laboratory total cholesterol, HDL- c, LDL-c and triglycerides levels measurements.	Birthweight was measured at delivery. <u>LGA:</u> sex-specific birth weight for gestational age was above the 90 th percentile of Canadian foetal growth curves for the relevant ethnic group (white, Asian or South Asian) <u>Macrosomia:</u> birthweight over 4,000 g	7
Hou et al.2014	<u>Study design:</u> Prospective observational	<u>Setting:</u> Hospital-based study <u>Eligibility criteria:</u>	Median (25 th -75 th) <u>Age (year)</u> 26 (24-29)	$\frac{Enrolment time}{Gestational age at entry} (around 28^{th} - 37^{th} gestation$	Maternal fasting venous blood was collected at the	LGA: birth weight were above the 90 th percentile for gestational age in	7

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	study <u>Language:</u> English <u>Location:</u> China	Pregnant women with naturally conceive, singleton pregnancy during 28-37 week gestation were enrolled into this study <u>Exclude criteria:</u> Diabetes, abnormal glucose tolerance, chromosomal abnormality, inherited metabolic diseases thyroid disease, and risk for foetal chromosomal abnormality New-borns with preterm birth, inherited metabolic diseases, congenital abnormalities and congenital heart diseases. <u>Sample size : $n=2,790$</u>	<u>Primiparous</u> No statement <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 19.93 (18.55- 21.63) <u>Gestational length</u> 39 (38-40) <u>Fasting blood</u> Yes.	week) (No statement about recruitment time) <u>Length</u> Follow up until delivery <u>Methods</u> Clinical visit <u>Data collection</u> Questionnaire, clinical measurement and diagnosis <u>Loss to follow-up</u> 0	enrolment time for laboratory TC, HDL-C,LDL-C and TG assay.	accordance with Neonatal Birth Weight for Gestational Age and Percentile in 15 cities in China.	
Kramer et al. 2014	<u>Study design:</u> Prospective cohort study <u>Language:</u> English <u>Location:</u> Canada	<u>Setting:</u> Ongoing prospective observational cohort study <u>Eligibility criteria:</u> Women with singleton delivery between April 2005 and January 2011, at term (\geq 37 weeks gestation, with infant birthweight >2500 g) <u>Exclude criteria:</u> No <u>Sample size : n=340</u> (GDM, n=90; non-GDM, n=250)	$\overline{\mathbf{x} \pm SD}$ or n (%) <u>Age (year)</u> No statement <u>Primiparous</u> 340 (100) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> No statement <u>Gestational length</u> No statement <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (around 24 th -28 th gestation week) (Apr 2005 - Jan 2011) <u>Length</u> Follow up until 3-month postpartum period <u>Methods</u> Clinical investigation unit <u>Data collection</u> Questionnaire, clinical measurement <u>Loss to follow-up</u> 0	Maternal fasting serum samples were obtained at the time of the oral glucose tolerance test (late second to early third trimester, median 30 week) for laboratory total cholesterol, HDL-c and triglycerides levels measurements.	<u>Infant weight gain at 3</u> <u>months:</u> the difference between weight at 3 months and birthweight. SD scores for weight gain at 3 months were determined for the study population, which was then stratified into two groups: infants weight rapid weight gain in the first 3 months (≥ 0.5 SD) and those without (<0.5 SD)	7
Harmon et al.2011	Study design: Prospective observational studyLanguage: EnglishLocation:	<u>Setting:</u> Normal weight (BMI 20-25 kg/m ²) and obese (BMI 30-38 kg/m ²) women with NGT were enrolled at <15 weeks' gestation from the University of Colorado Hospital vicinity <u>Eligibility criteria:</u> Singleton pregnancies, being aged 18-35 years, being English speaking, and having a fasting blood glucose (FBG) <95 mg/dL.	$\overline{\mathbf{x} \pm \mathbf{SEM}}$ <u>Age (year)</u> Normal weight: 31.2 ± 2.3 Obese: 26.5 ± 4.2 <u>Parity</u> Normal weight: 0.4 ± 0.6 Obese: 1.2 ± 0.9	<u>Enrolment time</u> Gestational age at entry (<15 th gestation week) <u>Length</u> Follow up until birth. <u>Methods</u> No statement <u>Data collection</u> Questionnaire, clinical	Both early (14-16 weeks) and late (26-28 weeks) in gestation, all women had non- esterified free fatty acids (FFAs) measured. Triglycerides were	Birthweight.	6

Obesity Reviews

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	American	birthweight >2500 g) <u>Exclude criteria:</u> Having a history of diabetes, hypertension, triglycerides>300 mg/dL, chronic diseases; tobacco or alcohol use; or treatment with steroids/ β -blockers. Women with positive gestational diabetes diagnosis at baseline or 24-28 weeks' gestation were excluded. <u>Sample size : n=38</u>	Pre-pregnancyBMI (kg/m²)Normal weight: 22.4 ± 1.9 Obese: 33.1 ± 3.4 Gestational lengthNormal weight: 39.4 ± 0.3 Obese: 39.6 ± 0.3 Fasting bloodNo statement	measurement <u>Loss to follow-up</u> 4 (8.20%)	measured in early gestation only.		
Son et al.2010	<u>Study design:</u> Retrospective longitude observational study <u>Language:</u> English <u>Location:</u> Korea	Setting:No statement.Eligibility criteria:Pregnant women diagnosed with GDM by the OGTT with complete maternal overnight fasting blood samples within 2 weeks of GDM diagnosis.Exclude criteria:Women having hypertensive disorder (n=9), thyroid disorder (n=4), connective tissue disease (n=3). Patients who delivered before 35 weeks of gestation (n=14) and cases of foetal congenital malformation (n=10) or multifetal gestations (n=6) were also excluded.Sample size : n=104	$\overline{\mathbf{x} \pm \mathbf{SD}}$ <u>Age (year)</u> 32.7 ± 4.1 <u>Parity</u> 0.7 ± 0.8 <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 23.2 ± 4.1 <u>Gestational length</u> 38.3 ± 1.2 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (24 th -30 th gestation week) Length Follow up until birth. <u>Methods</u> No statement <u>Data collection</u> clinical measurement Loss to follow-up 0	Maternal fasting serum TG, total cholesterol, low- density lipoprotein (LDL) and high- density lipoprotein (HDL) cholesterol concentrations at $24^{\text{th}} - 32^{\text{th}}$ gestation week <u>Hypertriglyceridem</u> <i>ia</i> was defined as a TG level greater than the 75 th percentile value (<3.33 mmol/L)	Infants with birthweights above the 90 th percentile were classified as LGA, based on gestational age and sex-adjusted birthweights from a Korean national database.	5
Ahmad. 2006	<u>Study design:</u> Controlled prospective study <u>Language:</u> English	<u>Setting:</u> Four antenatal clinics (ANC): Hospital Universiti Sains Malaysia, Kota Bharu Health Cinic, Kubang Kerian Health Clinic and Kedai Lalat Health Clinic. <u>Eligibility criteria:</u> Pregnant women attending the antenatal clinics at gestation between 24 to 32 weeks	$\overline{\mathbf{x} \pm \mathbf{SD}}$ $\frac{Age (year)}{30.87 \pm 6.70}$ $\frac{Gravidity}{3.76 \pm 2.69}$ $\frac{BMI (kg/m^2)}{23.36 \pm 4.04}$ $\frac{Gestational length}{2}$	<u>Enrolment time</u> Gestational age at entry (24 th -32 th gestation week) <u>Length</u> Follow up until delivery. <u>Methods</u> Antenatal clinics visit and appointment	Maternal fasting lipid profile was taken at between 24 to 32 weeks gestation for laboratory analyses. (total cholesterol and	At delivery, weight of the newborn were noted. LGA: Neonatal birth weight above the 90 th percentile of gender specific birth weight curve of Malaysia.	7
			World Oberit	v lournale			13

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	<u>Location:</u> Malaysia	gestation. <u>Exclude criteria:</u> Diabetic (diagnosed diabetic prior to conception and gestational diabetes requiring insulin); Hypertension or preeclampsia (hypertensive disorder), lupus and antiphospholipid syndrome, fetal anomaly diagnosed through ultrasound during booking or noted abnormal at birth; multiple gestation; pre-term delivery. <u>Sample size: n=246</u>	39.00 ± 1.29 <u>Fasting blood</u> Yes.	Data collection clinical records Loss to follow-up 50 (13.9%)	triglycerides)		
Di et al.2005	<u>Study design:</u> prospective observational study <u>Language:</u> English <u>Location:</u> Italy	<u>Setting:</u> The diabetes Section of the Department of Endocrinology and Metabolism of the University of Pisa, Italy. <u>Eligibility criteria:</u> Pregnant Caucasian women with positive diabetic screening performed at 24 to 30 th week of gestation, <u>Exclude criteria:</u> Women with hypertensive disorders, thyroid disorder, lupus and anti- phospholipid syndrome. <u>Sample size: $n=180$ (NGT=121)</u> The main analysis of our interest is conducted on NGT women who delivered at term. (n=83)	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}$ 33 ± 4 <u>Primiparous</u> 106 (59) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 23.6 ± 4 <u>Gestational length</u> 39.3(39-40) <u>Fasting blood</u> Yes.	<u>Enrolment time</u> Gestational age at entry (24 th -28 th gestation week) <u>Length</u> Follow up until delivery. <u>Methods</u> Antenatal clinics visit and appointment <u>Data collection</u> clinical records <u>Loss to follow-up</u> 0	Maternal overnight fasting lipid level (Total cholesterol, LDL-C, HDL-C, Triglycerides) at between 24 th and 28 th week of gestation.	Birthweight. Macrosomia: neonatal body weight over 4kg or as a neonatal weight greater than 90 th percentile for gestational age (LGA), according to the reference table.	5
Schaefer -Graf et al.2008	Study design: Secondary analysis of RCT studyLanguage: EnglishLocation:	<u>Setting:</u> Two hospital based diabetic prenatal care clinics. <u>Original study (n=199):</u> Women diagnosed as GDM based on a 75-g OGTT in capillary blood. (capillary fasting glucose <120 mg/dl, postprandial glucose <200 mg/dl). <u>This analysis (n=150):</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ $\frac{Age (years)}{31.2 \pm 4.9}$ $\frac{Parity}{2.05 \pm 1.2}$ $\frac{Pre-pregnancy}{BMI (kg/m^2)}$ 27.8 ± 6.2 $\underline{Gestational \ length}$	$\frac{Enrolment time}{Gestational age at entry} (28.3 \pm 2.4 weeks); (Jan 2000 - Jan 2003) LengthFollow up until day 2 after delivery MethodsClinical visits (28, 32, 36,$	Maternal serum FFAs, cholesterol and triglycerides were measured every clinical visit (28, 32, 36 and close to delivery) using commercial kits.	Birth weight and length were obtained shortly after delivery, and neonatal skinfold thickness at the flank was measured within 48h. Infants with birth weight <10 th percentile were	5

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	German	Accepted insulin therapy; availability of complete maternal blood and cord blood samples.	<u>(weeks)</u> 39.2 ± 1.4 <u>Fasting blood</u> No Statement	39 weeks, labour and day 2 postpartum) <u>Data collection</u> No statement <u>Loss to follow-up</u> 49/199 (24.6 %)		classified as SGA, and those with birth weight $> 90^{th}$ percentile as LGA based on gestational age and sex- adjusted birth weight percentiles derived from a German national database. Cord blood samples ware taken immediately following delivery and serum was stored at - 80°C for TGs, free fatty acids(FFAs) and cholesterol measurements.	
Swierze wska et al. 2015	<u>Study design:</u> Prospective observational study <u>Language:</u> English <u>Location:</u> Poland	<u>Setting:</u> No statement <u>Eligibility criteria:</u> 136 Caucasian women were included into this study: 106 diagnosed with GDM and 31 pregnant women with normal glucose tolerance. <u>Exclude criteria:</u> No statement <u>Sample size :136</u> GDM group: 106 NGT group: 31	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> GDM: 30.2±0.36 NGT: 28.87±0.6 <u>Primiparous</u> No statement. <u>Pre-pregnancy</u> <u>weight (kg)</u> GDM:25.29±0.4 NGT: 23.05±0.52 <u>Gestational length</u> (<u>days)</u> No statement <u>Fasting blood</u> No statement.	Enrolment time Gestational age at entry (No statement); (2012 - 2013) Length Follow up until birth. <u>Methods</u> No statement <u>Data collection</u> Survey, interview Loss to follow-up 0	Maternal venous blood samples were collected twice (27-32 wks and 34-39 wks of gestation) to assess lipid profile (total cholesterol, HDL and LDL cholesterol, triglycerides).	Macrosomia was diagnosed in newborn with the firth weight of ≥4000 g, and LGA if the birth weight exceeded the 90 th percentile.	5
Sommer et al.2015	<u>Study design:</u> Population- based, multi- ethnic,	<u>Setting:</u> The STORK Groruddalen study (n=823), a population-based cohort study of healthy pregnant women attending Child Health	$\overline{\mathbf{x}} \pm \mathbf{SD} \text{ or } \mathbf{n} (\%)$ $\frac{Age (year)}{29.3 \pm 4.8}$ <u>Primiparous</u>	<u>Enrolment time</u> Gestational age at entry (<20 gestation week) In practice, the STORK	Maternal fasting total-, HDL- and LDL-cholesterol and triglycerides	Birth weight was measured with calibrated electronic scales immediately after birth.	9
							15

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	prospective cohort <u>Language:</u> English <u>Location:</u> Norway	Clinics for antenatal care in three administrative city districts in Oslo, Norway. <u>Eligibility criteria for STORK study:</u> 1. lived in the study districts; 2. Planned to give birth at one of two study hospitals; 3. were<20 weeks pregnant; 4. Could communicate in Norwegain or any of the eight translated languages; 5. Were able to give a written consent to participate. <u>Exclude criteria for STORK study:</u> Women with pregestational diabetes or in need of intensive hospital follow-up during pregnancy were excluded <u>In/Exclusion criteria for this analysis:</u> Women with singleton pregnancy who completed both two clinic visits are eligible for this analysis. Women who was abortions or stillbirths < GW 28, complications mother/baby, preterm birth, mother included late in pregnancy, south American origin were excluded from this analysis. <u>Sample size: n=699 (for birthweight); n=512 (for sum of skinfolds)</u>	319 (45.6) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 24.6 ± 4.8 <u>Gestational length</u> (days) 281 ± 9 <u>Fasting blood</u> Yes.	study also includes 77 (9.4 %) and 11 (1.3%) women entry into this study at 20-24 gestation week and later than gestational week 24, respectively. (May 2008 to May 2010) <u>Length</u> Follow up at least until 3 days after birth. <u>Methods</u> Clinic visits <u>Data collection</u> Questionnaires, clinical measurement and laboratory diagnosis. <u>Loss to follow-up</u> 37(5.29%)	were measured from venous blood with a colorimetric method at the central laboratory at clinic visit 2 (week 28).	To assess neonatal subcutaneous fat, skinfolds were measured to the nearest 0.2mm with a skinfold calliper at subscapular, suprailiac, thigh and triceps sites within 72 hours after birth.	
Slagjana et al.2014	Study design: Population- based, multi- ethnic, prospective cohort <u>Language:</u> English <u>Location:</u> Norway	Setting: The Outpatient Department of the University Endocrinology, Diabetes and Metabolic Disorders Clinic Eligibility criteria: GDM women with singleton pregnancy, and the neonates were delivered at the University Gynaecology and Obstetrics Clinic. Exclude criteria: None Sample size: n=200	$\overline{x} \pm SD \text{ or } n (\%)$ <u>Age (year)</u> LGA: 31.4±5.6 AGA: 31.1±5.6 SGA: 32.9±5.1 <u>Primiparous</u> No statement <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> LGA: 28.4±6.1 AGA: 26.5±4.9 SGA: 25.0±4.6	Enrolment time No statement on recruitment date and entry gestational age. Length Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurement and laboratory diagnosis. Loss to follow-up	Maternal overnight fasting blood samples were collected at the second half of pregnancy(LGA; 28.6±7.7; AGA: 28.0±7.1; SGA: 23.8±7.6) for Total cholesterol, HDL- C,LDL-C and triglycerides	<u><i>LGA</i></u> : birth weight above the 90 th percentile. <u><i>SGA</i></u> : birth weight below the 10 th percentile for gestational age. <u><i>AGA</i></u> : birthweight between LGA and SGA.	5

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
			Gestational length (weeks) LGA: 39.3±1.5 AGA: 38.2±1.9 SGA: 36.4±3.7 Fasting blood Yes.	0	laboratory assessment.		
Laleh et al.2013	Study design: Prospective cohort <u>Language:</u> English <u>Location:</u> Iran	Setting: Shariati Hospital affiliated to Tehran University of Medical Sciences, Tehran, Iran Eligibility criteria: Pregnant women were diagnosed with GDM. Exclude criteria: Women with a history of systemic underlying diseases (cardiovascular, renal, thyroid, liver, autoimmune and connective tissue disorder), substance abuser, overt diabetes mellitus (except previous history of GDM), multifetal gestations and major fetal malformation. Sample size: n=112	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 27.23±4.19 <u>Parity</u> 2.74 (66.1) <u>Pre-pregnancy</u> <u>weight (kg²)</u> 67.40±10.00 <u>Gestational length</u> (days) No statement <u>Fasting blood</u> Yes.	<u>Enrolment time</u> Gestational age at entry $(27.02 \pm 0.68 \text{ weeks});$ (Mar 2011 - May 2012) <u>Length</u> Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> A combination of interviews and questionnaires in timing of glycemic screening (24- 28 weeks) <u>Loss to follow-up</u> 20 (15.15%)	Maternal blood samples were collected at 28-32, 32-36 and 36 weeks of gestational age until delivery time to determine fasting serum levels of lipids (TGs, total cholesterol and HDL-c). LDL-c = TC-HDL-(TG/5), if TG>400mg/dl, it was measured directly in serum.	SGA: birthweight <10 th percentile. LGA: birthweight >90 th percentile. Macrosomia: >4000 g	7
Whyte et al. 2013	<u>Study design:</u> Prospective cohort <u>Language:</u> English <u>Location:</u> Ireland	Setting: The Perinatal day centre of University Maternity practice. Eligibility criteria: White European women with an ongoing singleton pregnancy were enrolled when they were referred to the Perinatal day centre for OGTT screening test. Exclude criteria: Women who were unable to give informed consent or who were less than 18 years of age were excluded.	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}$ 32 ± 5 <u>Primigravidas</u> 67(35.4) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> No statement <u>Gestational length</u> (days) 277 ± 14 <u>Fasting blood</u>	Enrolment time Gestational age at entry (when women attend OGTT screening test); (Mar 2011) Length Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurements, diagnosis, hospital's	Maternal fasting venous blood sample was obtained to measure the TC, HDL-C, LDL-C and TG when women attend OGTT screening test.	After delivery, birthweight was obtained from the Hospital's computerized database.	5

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		<u>Sample size: n=189</u>	Yes.	computerized database. <u>Loss to follow-up</u> 0			
Zhou et al.2012	<u>Study design:</u> Prospective cohort <u>Language:</u> English <u>Location:</u> China	Setting:Routine obstetric care in the Nanjing drumtower hospitalEligibility criteria:Nulliparous pregnant women < 20 weeks	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}$ 28.6 ± 3.4 <u>BMI (kg/m²)</u> 22.54 ± 2.86 <u>Gestational length</u> <u>(weeks)</u> 39.3 ± 1.2 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (20 gestation week); (Jun 2009 to Jan 2010) Length Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurement and laboratory diagnosis Loss to follow-up 15 (1.5%)	Maternal overnight fasting blood at 20 weeks gestation were measured for serum TG, TC, LDL-c and HDL-c. Hypo-HDL- cholesterolemia was defined as fasting serum HDL-C levels below the optimal cut-off value.	Infants with birthweight <10 th percentile were classified as SGA based on gestational age and sex adjusted birth weight percentiles, and those with birth weight above 4,000 g were classified as macrosomia.	5
/rijkotte 2011	Study design: Prospective community- based cohort study <u>Language:</u> English <u>Location:</u> Netherlands	Setting: Amsterdam Born Children and their Development (ABCD) study Eligibility criteria: All pregnant women living in Amsterdam were invited to enrol in the ABCD study at their first prenatal visit to an obstetric care provider at about the 12 th week of gestation. Exclude criteria: Women who gave birth to twins, delivered preterm (<37 wks), with known diabetes (pre-existent as well as pregnancy related), or whose infants had congenital abnormalities were excluded. Women who used lipid-altering medication, such as antiepileptic drugs, steroids, insulin, antidepressants, thyroid hormones, or sleep	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 31.0±4.8 <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> <18.5: 115(4.6%) 18.5-24.9: 1869(74.7%) 25.0-29.9: 388(15.5%) ≥30: 130(5.2%) <u>Primigravidas</u> 1412(56.4) <u>Gestational length</u> (weeks) 37-40 wks: 1779(71.6%)	Enrolment time Gestational age at entry (around 12 gestation week); (Jan 2003 to Mar 2004) Length Follow up until 12 months after birth. <u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurement and laboratory diagnosis Loss to follow-up 0	Maternal non- fasting serum samples were taken during routine blood collection for screening purposes after the first prenatal check-up for lipid laboratory measurements (TG and TC).	Birthweight for gestational age SDS was determined based on sex-and partiy-specific standards from the Dutch Perinatal Registry. In the first year, weight and length were measured on average 8 times. Weight, length and BMI were expressed as SDS by using internal sex- specific reference curve from the ABCD study. To further explore postnatal growth, the	7

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		medication also were excluded. Sample size: n=2,502	4143 wks: 707(28.4%) <i>Fasting blood</i> No.			amount of accelerated growth was defined as an increase >0.67 SDS between 2 time points (between 1 and 6 months of age)	
Vinod et al. 2011	Study design: Ongoing prospective cohort study <u>Language:</u> English <u>Location:</u> American	<u>Setting:</u> University of Michigan Health System <u>Eligibility criteria:</u> Eligible participants were 18-45 years of age, between 6 and 10 weeks gestation with a singleton pregnancy, and intended to deliver at the study hospital. <u>Exclude criteria:</u> Participants who did not complete the study and delivered a live infant. 1% of women were excluded from any analysis because of missing data. <u>Sample size: n=143</u>	$\overline{\mathbf{x} \pm \mathbf{SD} \text{ or } \mathbf{n} (\%)}$ $\frac{Age (year)}{\leq 30: 79(55.2)}$ $> 30: 64(44.8)$ $\frac{Pre-pregnancy}{BMI (kg/m^2)}$ Normal weight: 72 (50.4) Overweight/Obese: 71 (49.6) <u>Primigravidas</u> 54 (37.8) <u>Gestational length</u> (days) 274.0 ± 13.2 <u>Fasting blood</u> No.	Enrolment time Gestational age at entry (6-10 gestation week); (No statement on entry date) Length Follow up until birth. Methods Clinic visits Data collection Interview, Questionnaire, Medical records, Clinical measurement and laboratory diagnosis Loss to follow-up (1%)	Maternal non- fasting venous blood were collected at five time points during pregnancy: 6-10, 10-14, 16-20, 22- 26 and 32-36 weeks gestation for laboratory lipid measurements (TC, HDL-C, LDL-C and TG)	Infant birthweight was collected at delivery. The residual values from each fit were used to represent the gestational age-adjusted birthweight (aBW).	6
Zawiejsk a et al. 2008	<u>Study design:</u> prospective observational study <u>Language:</u> English <u>Location:</u> Poland	<u>Setting:</u> Department of Obstetrics and Women Diseases for a tertiary-level, specialistic antenatal care. <u>Eligibility criteria:</u> GDM diagnosed following WHO criteria, singleton pregnancy, live birth and no fetal malformation suspected during gestation or detected postpartum. <u>Exclude criteria:</u> None. <u>Sample size: n=357</u>	Median (min- max) Age (year) 29 (17-48) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 24.2 (16.7-46.1) <u>Primigravidas</u> No statement <u>Gestational length</u> (weeks) 38 (32-42) <u>Fasting blood</u>	Enrolment time Gestational age at entry (GDM diagnosis week); (1993 to 2005) <u>Length</u> Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurement and laboratory diagnosis <u>Loss to follow-up</u> 0	Maternal overnight fasting blood sample were taken for laboratory lipid assessment (TC, HDL and triglycerides) at their first booking weeks (GDM diagnosis week)	Birth weight and the proportion of LGA (defined as a birth weight >90 th percentile for local population after adjusting for gestational age and sex) was studied at the end-point.	5

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
			Yes.				
Clausen et al.2005	<u>Study design:</u> Prospective cohort study <u>Language:</u> English <u>Location:</u> Norway	Setting: Aker Hospital in the Oslo city area Eligibility criteria: All pregnant women living in Oslo area were offered an ultrasound investigation at 17-19 weeks of gestation Exclude criteria: Pre-gestational diabetes, multiple pregnancies, preterm births, missing medical records, no information on birth weight, lost for follow-up Sample size: n=2,050	$\overline{\mathbf{x} \pm \mathbf{SD} \text{ or } \mathbf{n} (\%)}$ $\underline{Age (year)}$ 29.9 ± 4.4 <u>The 1st trimester</u> <u>BMI (kg/m²)</u> 23.0 ± 3.7 <u>Primigravidas</u> 1030(50.3) <u>Gestational length</u> <u>(weeks)</u> 39.7 ± 1.3 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (17-19 th gestation week); (1995-1996) <u>Length</u> Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurement and laboratory diagnosis <u>Loss to follow-up</u> 244(10.6%)	Maternal fasting blood samples were drawn at 17- 19 th gestation weeks for laboratory lipid measurements (TGs, TC, HDL-C, non-HDL- cholesterol).	Macrosomia: birth weight above 4,500 g or a z-score above the 95 percentiles.	7
Mathews et al.2003	Study design: Prospective cohort study <u>Language:</u> English <u>Location:</u> United Kingdom	<u>Setting:</u> The geographic catchment area of St Mary's Hospital, Portsmouth, United Kingdom <u>Eligibility criteria:</u> White nulliparous women attending their first hospital antenatal clinic were stratified by self-reported smoking status. Simple random selection was carried out within each stratum. <u>Exclude criteria:</u> Preterm birth, insufficient blood for assays and still birth <u>Sample size:</u> Subjects for birth weight and early pregnancy nutrition analyses: n=798	$\overline{\mathbf{x} \pm SD}$ or n (%) <u>Age (year)</u> 25.4 \pm 4.9 <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 23.1 \pm 3.9 <u>Gestational length</u> (days) Boys: 280.3 \pm 9.9 Girls: 281.3 \pm 9.5 <u>Fasting blood</u> NS	Enrolment time Gestational age at entry (14-17 th gestation week, range: 9-20 wk); (May 1994 – Feb 1996) <u>Length</u> Follow up until birth <u>Methods</u> Clinical visits <u>Data collection</u> Questionnaire, Clinic measurement and laboratory diagonosis <u>Loss to follow-up</u> 0	Maternal blood samples were obtained from subjects at two time points (early pregnancy: at around 16 gestation week, later pregnancy: at around 28 gestation week) for total cholesterol laboratory analyses	Infants were weighed at delivery to the nearest 5 g on digital scales.	8
Olmos et al.2014	Study design: Prospective observational study Language: English	<u>Setting:</u> Obstetricians <u>Eligibility criteria:</u> Women aged 18-42 years with singleton pregnancy, under the care of an Obstetrician of the University Health Care Network, having GDM confirmed recently (<14 days)	$\overline{\mathbf{x} \pm \mathbf{SD} \text{ or } \mathbf{n}}$ (%) <u>Age (vear)</u> Normal weight: 32.7 \pm 5.0 Overweight: 32.7 \pm 5.3 Obese:	<u>Enrolment time</u> Gestational age at entry (after GDM diagnosis week); (Jan 2009 – Jun 2013) <u>Length</u> Follow up until birth	Maternal fasting lipid (triglycerides, total cholesterol, HDL-C) level were measured in the 2 nd and 3 rd trimesters. All lipid	Birth weight z-scores. Macrosomia: a birth weight above 90 th percentile, was used, applying to that effect the tables of the Chilean	6

Obesity Reviews

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	Location: Chile	by an oral glucose tolerance test (OGTT) test. <u>Exclude criteria:</u> Women unable to give informed consent or who were less than 18 years of age were excluded. <u>Sample size: n=279</u> Normal weight group: n=128 Overweight group: n=105 Obese group: n=46	32.3 ± 4.7 <u>Primiparous</u> No statement <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> Normal weight: 22.3 ±1.5 Overweight: 26.1 ±3.1 Obese: 33.1 ±2.7 <u>Gestational length</u> (weeks) Normal weight: 38.0 ±1.3 Overweight: 37.7 ±1.7 Obese: 37.6 ±1.7 <u>Fasting blood</u> Yes.	<u>Methods</u> Clinic visits <u>Data collection</u> Clinical measurements and diagnosis, and laboratory diagnosis <u>Loss to follow-up</u> 0	parameters were calculated as z- scores based on Alvarez paper.	Ministry of Health, in use since 2004.	
et 13	Study design: Prospective observational study Language: English Location: Turkey	Setting: Antenatal care, Eligibility criteria: 1,000 pregnant patients between 17 and 48 years of age were included in this prospective longitudinal and uni-centre study. Exclude criteria: Patients with type I-II diabetes mellitus and hypothyroidism, multiple gestations, dyslipoproteinemia were excluded from the study. Also, patients on special diets because of underlying diseases or personal preferences such as gluten or casein-free diets, vegetarian diet, liver or renal failure diet, etc., or patients using medications that effect lipid metabolism were excluded as well. Patients whose pregnancies were	$\overline{\mathbf{x} \pm \mathbf{SD} \text{ or } \mathbf{n} (\%)}$ <u>Age (year)</u> 28.5±5.5 <u>Parity</u> 0.94±0.98 <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> No statement <u>Gestational length</u> <u>(weeks)</u> 38.9±1.8 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (<14 gestation week); (Jan 2010 – Dec 2011) <u>Length</u> Follow up until birth <u>Methods</u> Clinic visits <u>Data collection</u> Questionnaire, interview, clinical and laboratory diagnosis <u>Loss to follow-up</u> 76(8.68%)	Maternal lipid profile (TG, TC, HDL, LDL) were tested at the first antenatal visit (<14 weeks) and the last trimester (>28 weeks)	Birthweight was recorded. Third month infant weight was also surveyed.	5
			World Obesit	y Journals			2

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		terminated before 24 gestational week, patients who dropped out of routine antenatal and patients who gave birth outside the hospital were also not included in this analysis <u>Sample size: n=801</u>					
Liu et al. 2016	Study design: Retrospective cohort study Language: English Location: China	<u>Setting:</u> The first affiliated hospital of Sun Yat-sen University <u>Eligibility criteria:</u> Singleton pregnant women who underwent a FPG test at the first prenatal care, and delivered in our centre were recruited for the present study. <u>Exclude criteria:</u> Pregnant women with overt DM before, pregnancy or treated with insulin during gestation were excluded in the present study <u>Sample size: n=1,546</u>	$\overline{x \pm SD}$ <u>Age (year)</u> GDM: 31.85±4.24 NGT: 29.42±3.82 <u>Primiparous</u> GDM: 234 (84.7) NGT: 969 (76.2) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> GDM: 21.20±3.00 NGT: 20.47±2.60 <u>Gestational length</u> (days) GDM: 271.33±11.70 NGT: 273.94±11.91 <u>Fasting blood</u> YES.	Enrolment time Gestational age at entry (10 th -24 th gestation week); (Jan - Dec 2013) Length Follow up until birth <u>Methods</u> Clinic visit <u>Data collection</u> Questionnaire, clinical measurements and diagnosis, laboratory diagnosis. Loss to follow-up 0	Maternal fasting venous plasma were obtained at the first prenatal visit (24-28 gestational weeks) for the examination of lipid profiles (triglyceride, cholesterol, LDL, HDL)	Neonatal birth weight was measured with a calibrated electronic scale.	7
Brunner et al. 2013	Study design: Secondary analyses of RCT study Language: English Location: German	<u>Setting:</u> The Impact of Nutritional Fatty Acid on Infant Adipose Development (INFAT) study, an open-label randomized controlled trial <u>Eligibility criteria:</u> Healthy pregnant women with singleton pregnancies and a pre-pregnancy BMI between 18 and 30 kg/m ² were enrolled and randomly assigned to either an intervention (n=104) or a control group (n=104) from the	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 31.8±4.7 <u>Primiparous</u> 122(58.5) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 22.3±3.0 <u>Gestational length</u> <u>(weeks)</u> 39.6±1.5	<u>Enrolment time</u> Gestational age at entry (before 15 th gestation week); (No statement on recruitment date) <u>Length</u> Follow up until 2 years old. <u>Methods</u> Clinic visits <u>Data collection</u> Clinic measurement,	Maternal blood was collected at the 32 nd week of gestation in the morning after an overnight fast for serum triglycerides laboratory measurement.	The infants were examined at birth (for skinfolds: 3-5 days post- partum), at 6 weeks, 4months, 1 and 2 years post-partum. Birthweight was retrieved from the medical record. Anthropometric measurements of the	7
			World Obesit	y Journals			22

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		15 th week of gestation until 4 months post- partum. <u>Exclude criteria:</u> None. <u>Sample size : n=208</u>	<u>Fasting blood</u> YES	medical records, clinic diagnosis, laboratory analyses <u>Loss to follow-up</u> 0		infants were taken by trained investigators according to standardized procedures. Skinfolds were measured in triplicate with a Holtain calliper at the left body axis at four sites (triceps, biceps, subscapular and suprailiac).	
Knopp et al.1992	Study design: Prospective observational study Language: English Location: American	Setting:Obstetrical practices at the two main GroupHealth hospitals in the King County.Subjects participating in this study wereprenatal registrants at Group HealthCooperative of Puget Sound (WA), aprepaid health care program that enrols~10% of the King County population andcorresponds closely to census estimates inKing County with respect to age, race, andsex, abased on 1970 and 1980 census data.Eligibility criteria:3517 women between 24 and 32 wk ofgestation (average 28 wk), of whom 2019consented to participate. This analysesgroups consist of 521 negative screeneeschosen randomly from 1,654 subjects in thisgroup and 365 women with positive glucosescreening test. Of these women, 264 hadGTT ⁻ and 96 had GTT ⁺ and were designatedas having GDM.Exclude criteria:Five other GDM subjects treated withinsulin were not included in this analysis.Sample size: n=881Negative screenees(NS-): n=521	$\overline{x} \pm SD$ <u>Age (year)</u> NS ⁻ : 28±5 PS ⁺ : 30±5 GDM: 31±5 <u>Multipara (%)</u> NS ⁻ : 53.0 PS ⁺ : 52.4 GDM: 57.3 <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> No statement <u>Gestational length</u> NS ⁻ : 39.8±1.5 PS ⁺ : 39.6±1.6 GDM: 39.4±1.5 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (24 th – 32 nd gestation week); (Jan 1985 – May 1986) Length Follow up until birth <u>Methods</u> Clinic visit <u>Data collection</u> Medical records, laboratory measurement. Loss to follow-up 0	Maternal overnight fasting blood samples collected at between 24 th and 32 nd gestation was measured by laboratory for plasma triglycerides.	Birthweight was adjusted for differences in gestational age by dividing the observed birth weight by the 50 th percentile birth weight for that gestational age, giving a birth-weight ratio.	6

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		Positive screenees(PS+): n=264 GDM: n=96					
Knopp et al.1985	Study design: Prospective observational study Language: English Location: American	Setting: Group Health Cooperative of Puget Sound, a prepaid health program. Eligibility criteria: Subjects were identified at 26-28 wk gestation by a prospective random sampling scheme, were invited to participate, and, after consent was given, had anthropomorphic measurements and blood sampled at home at 36 wk gestation by a visiting research nurse. Exclude criteria: Women were excluded if they aborted or delivered before 36 wk or had fasted <12 h. women who were not Caucasian, were under 18 yr of age, or had a twin pregnancy were also excluded. Sample size: n=283	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}_{28.0\pm 3.8}$ <u>Primiparous</u> 102 (36) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> No statement <u>Gestational length</u> (days) 283.4±18.6 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (26-28 gestation week); (No statement on recruitment date) Length Follow up until birth. <u>Methods</u> Clinic visit, home visit <u>Data collection</u> Interview, hospital records, clinical and laboratory measurements. Loss to follow-up 10 (3.5%)	Maternal fasting blood sampled at home at 36 wk gestation by a visiting research nurse for laboratory lipid measurements (HDL-C, VLDL-C, LDL-C and FFA)	Birth weight data were extracted from hospital records. Birth weight was adjusted for gestational age and expressed as the birth weight ratio as determined from the expected date of confinement by dividing the observed birth weight by the median expected for gestational age using the University of Oregon (sea level) tables.	7
Schaefer -Graf et al.2011	Study design: Prospective observational study Language: English Location: German	Setting: Vivantes Medical Center Department of Obstetrics in Berlin Eligibility criteria: 1)documented normal 75-g oral glucose tolerance test according to Carpenter and Coustan criteria (5.0/10.0/8.6 mmol/L) with three glucose values in capillary blood using the hexokinase method; 2) accurate gestational age, confirmed by an ultrasound examination before 20 weeks of gestation; 3) singleton pregnancy; 4) absence of identified fetal anomalies; 5) delivery after 34 weeks; 6) signed informed consent Exclude criteria: No statement	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}$ 30.0 ± 0.4 <u>Parity</u> 2.07 ± 0.09 <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 25.7 ± 0.4 <u>Gestational length</u> 38.8 ± 0.1 <u>Fasting blood</u> Yes	Enrolment time Gestational age at entry (No statement on recruitment gestation week); (Aug 2007 – Aug 2008) Length Follow-up until 48h after birth <u>Methods</u> Hospital stay <u>Data collection</u> Laboratory diagnosis. No statement around how did they get maternal baseline information. Loss to follow-up	Maternal overnight fast blood samples were taken from a radial vein either on the morning of admission for surgery in cases of primary Caesarean section or at the last visit o the obstetrical clinic, no longer than 1 week before delivery. Serum triacylglycerols, free fatty acids and	Birth weight was obtained shortly after delivery and neonatal skinfold thickness at the flank was measured within 48 h to calculate fat mass. LGA: birthweight <10 th percentile. SGA: birthweight >90 th percentile. Cord blood samples from one of the umbilical arteries were taken immediately after delivery.	5

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		<u>Sample size: n=190</u>		0	cholesterol were measured in laboratory.	Serum glucose, insulin, triacyglycerols, free fatty acids and cholesterol were measured in cord blood.	
Nolan et al.1995	Study design: Prospective observational study <u>Language:</u> English <u>Location:</u> Australia	<u>Setting:</u> Obstetric clinic at the Mercy Hospital for Women <u>Eligibility criteria:</u> Women with singleton pregnancies had routine 3 rd -trimester oral glucose tolerance tests performed and have been included for analyses in this study. <u>Exclude criteria:</u> No statement <u>Sample size: n=388</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 28.4 \pm 5.3 <u>Primiparous</u> No statement <u>BMI at wk 20</u> (kg/m ²) 24.7 \pm 4.2 <u>Gestational length</u> No statement <u>Fasting blood</u> No.	Enrolment timeGestational age at entry $(\leq 20^{th} gestation week);$ (1991) LengthFollow up until birthMethodsclinic visitsData collectionClinic records, clinic visits,laboratory measurementsLoss to follow-up0	During the morning of the first clinic visit (average sampling time: 12.2±6.2 weeks), all women had non-fasting serum TG and cholesterol measured within their routine antenatal screening blood analyses. TG and cholesterol were assayed by enzymatic colorimetric methods.	Birth weight was record. Birth weight ratio (BWR) for all infants was calculated by dividing the observed birth weight by the 50 th percentile birth weight for gestational age.	6
Friis et al.2012	<u>Study design:</u> Prospective observational study <u>Language:</u> English <u>Location:</u> Norway	<u>Setting:</u> A subcohort of the STORK study, <u>Eligibility criteria:</u> women of Scandinavian heritage (n= 1031) who registered for obstetric care at Oslo University Hospital - Rikshospitalet <u>Exclude criteria:</u> Multiple pregnancies, known pre- gestational diabetes, and severe chronic diseases (lung, cardiac, gastrointestinal or renal). <u>Sample size: n=207</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 31 ± 3.5 <u>Primiparous</u> 91(44) <u>Pre-pregnancy</u> <u>height(cm)/weight</u> (kg ²) 168/66 <u>Gestational length</u> 40.1 ± 1.4 <u>Fasting blood</u> Yes	<u>Enrolment time</u> Gestational age at entry (14 th -16 th gestation week); (2001-2008) <u>Length</u> Follow up until 4 days postpartum <u>Methods</u> Clinic visits <u>Data collection</u> Interview, clinic measurements, hospital records <u>Loss to follow-up</u>	Maternal fasting blood samples were collected at 30-32 th gestation weeks for total cholesterol, HDL, triglycerides, free fatty acids laboratory measurements.	Birthweight	6

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
				0			
Lei et al.2016	<u>Study design:</u> Prospective cohort study <u>Language:</u> English <u>Location:</u> China	Setting: The Department of Obstetrics of Guangdong Women and Children Hospital, Guangzhou, Guangdong Province Eligibility criteria: Pregnant women were recruited before 20 gestation wks Exclude criteria: Multiple pregnancy, conception by means of gonadotropin ovulation induction or in vitro fertilization, ischemic heart disease, stroke, peripheral vascular disease, dyslipidaemia, diagnosis of diabetes or/and hypertension before the current to participate in the study. Sample size: n=5,535	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 29.07 \pm 5.04 <u>Primiparous</u> 3152 (56.95) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 20.87 \pm 2.81 <u>Gestational length</u> 38.20 \pm 2.81 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (<20 th gestation week); (Jan 2012 – Dec 2014) Length Follow up until birth <u>Methods</u> Clinic visits <u>Data collection</u> Laboratory assessment, medical surveillance. Loss to follow-up 485 (8.06%)	Maternal fasting venous blood samples were drawn before 20 weeks to assess metabolic profile (TG and HLD-C). High level of TG was defined as \geq 3.49 mmol/L (\geq 75 th percentile). Low level of HDL-C was defined as <1.3 mmol/L (<25 th percentile)	A newborn was considered SGA or LGA if birth weight as smaller or greater than the estimated 10 th /90 th percentile for the baby's gender and gestational age according to the Chinese data published before.	6
Kitajima et al.2001	Study design: Prospective observational study Language: English Location: Japan	Setting:Nagasaki University HospitalEligibility criteria:Japanese pregnant women who had positivediabetic screen test results (at least135mg/dl of plasma glucose level at 1 hourafter 50-g oral glucose challenge) and anormal 75-g oral GTT.Exclude criteria:Women with pregestational or gestationaldiabetes mellitus were excluded. We alsoexcluded women with hypertensivedisorder, thyroid disorder, lupus, andantiphospholipid syndrome. Subjects whodelivered before 37 weeks' gestation andcases of foetal congenital malformation ormultifetal gestation were also excluded.Sample size: n=146	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 32±4 <u>Primiparous</u> 65(44%) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 21.2±2.7 <u>Gestational length</u> 39.0±1.2 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (24-32 gestation week); (Nov 1992 and Oct 1999) Length Follow up until delivery. <u>Methods</u> Clinic visits <u>Data collection</u> Self-report, clinic measurements and diagnosis Loss to follow-up 0	Maternal fasting blood samples were drawn to measure serum <u>triglyceride, free</u> <u>fatty acids</u> and <u>total</u> <u>cholesterol</u> levels at 24-32 gestation week through laboratory measurements. Maternal <u>hyperlipidaemia</u> was defined as a value higher than the 75th percentile value of each lipid concentration.	Neonatal birth weight above the 90th percentile of the gender specific Japanese birth weight curve was defined as <u>LGA</u> .	6
Mossaye	<u>Study design:</u>	<u>Setting:</u>	$\overline{\mathbf{x}} \pm \mathbf{S}\mathbf{D}$	<u>Enrolment time</u>	Maternal blood	Macrosomia was defined	5
			World Obesit	y Journals			26

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
bi et al. 2014	Cohort study Language: English Location: Iran	The prenatal clinic of the Shahid Akbar Abadi Hospital <u>Eligibility criteria:</u> All women were generally healthy pregnant women carrying a single foetus, between 25 weeks and 32 weeks of their gestational age, BMI between 17.5 kg/m2 and 29 kg/m,2 without a history of diabetes prior to or during previous pregnancies and with a negative result from the diabetes screening test in the current pregnancy, hypertensive disease and preeclampsia, thyroid diseases, lupus, antiphospholipid antibody syndrome, and other collagen vascular diseases. <u>Exclude criteria:</u> Exclusion criteria were preterm labour prior to 37 weeks of gestational age and any abnormality or disorder in the foetus or neonate. <u>Sample size: n=154</u>	Age (year) 26.6±5.17 Parity 1.7±0.79 Pre-pregnancy BMI (kg/m ²) 22.6±2.3 Gestational length No statement Fasting blood Yes.	Gestational age at entry (25-32 th gestation week); (2010-2011) <u>Length</u> Follow up until birth <u>Methods</u> Clinic visits <u>Data collection</u> Clinic measurement and diagnosis. Laboratory measurements. <u>Loss to follow-up</u> 16 (8%)	sample for checking fasting triglyceride (TG), total cholesterol, low-density lipoprotein (LDL), and high-density lipoprotein (HDL) after 10-12 hours of fasting at 25-32 th gestation week. (gestational age at the time of blood sampling: 30±2.1)	as neonate birth weight higher than 4000 g. LGA was defined as neonate's birth weight higher than 3412 g for infants at 38 weeks of gestational age, 3622 g for infants at 39 weeks of gestational age, 3798 g for infants at 40 weeks of gestational age, and 3930 g for infants at 41 weeks of gestational age. This definition was according to the neonates' weight higher than 75% of their predicted value according to their gestational age.	
Geraghty et al. 2016	Study design: Secondary analyses of RCT study Language: English Location: Ireland	Setting: Randomised cOntrol trial of Low glycaemic index diet vs no dietary intervention in pregnancy to prevent recurrence of a large baby (ROLO) study, which was carried out in The National Maternity Hospital, Dublin, Ireland. Original study: Eight hundred secundigravida women who did not have gestational diabetes but had previously given birth to a macrosomic baby (birth weight equal to or above 4.0 kg), and were therefore at increased risk of delivering another macrosomic infant, were randomised to receive low glycaemic index (GI) dietary advice or usual antenatal care,	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (vear)</u> 33.10 \pm 3.90 <u>BMI at 14 weeks'</u> <u>gestation(kg/m²)</u> 26.40 \pm 4.60 <u>Gestational length</u> (<u>days)</u> 282.80 \pm 7.50 <u>Fasting blood</u> Yes	<u>Enrolment time</u> Gestational age at entry (<14 th gestation week); (No statement on recruitment time) <u>Length</u> Follow up until 2 years old. <u>Methods</u> Clinic visits and follow-up appointments <u>Data collection</u> Clinic measurements, laboratory measurements. <u>Loss to follow-up</u> 0	Maternal fasting blood samples were taken in early pregnancy (approximately 14 th gestation weeks) and late pregnancy (28 th gestation weeks) for serum total cholesterol, HDL-C and triglyceride laboratory measurements. LDL-C concentration was	Infants were measured at birth, 6 months and 2 years of age for weight and recumbent length along with abdominal circumference and bicep, tricep, subscapular and thigh skinfold thicknesses.	7
			World Obesit	y Journals			27

Obesity Reviews

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		which did not include dietary advice. <u>Eligibility criteria:</u> No statement. <u>Exclude criteria:</u> No statement. <u>Sample size : n=331</u>			estimated using the Friedewald equation.		
Jin et al.2016	Study design: Cohort study <u>Language:</u> English <u>Location:</u> China	<u>Setting:</u> Women's Hospital, Zhejiang University School of Medicine <u>Eligibility criteria:</u> 1) pregnant at 28–37 gestational weeks; 2) had integrated medical records and clear gestational age; 3) singleton pregnancy; and 4) naturally conceived. Inclusion criteria for newborns were singleton and 5-min-postpartum Apgar scores \geq 7. <u>Exclude criteria:</u> 1) multiple pregnancy; 2) had diabetes mellitus, chromosomal abnormalities, inherited metabolic diseases or thyroid diseases before pregnancy; 3) experienced serious infection during early pregnancy; and 4) conceived with assisted reproductive techniques. Exclusion criteria for newborns were chromosomal abnormalities, inherited metabolic diseases and congenital abnormalities. <u>Sample size: n=934</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) $\underline{Age (year)}$ 29.21±3.76 <u>Primiparous</u> 778(83.3%) <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> 20.66±2.70 <u>Gestational length</u> 38.84±1.22 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (7-10 th gestation week); (30 Jun 2010 - 30 Jun 2011) Length Follow up until birth. <u>Methods</u> Clinic visits <u>Data collection</u> Questionnaire, medical records, laboratory measurements and diagnosis Loss to follow-up 0	Maternal venous blood samples were taken after overnight fasting from all the participants at the first (7–10 gestational weeks), second (21–24 gestational weeks) and third (33–37 gestational weeks) trimester of pregnancy. Every sample was assayed for TC, TG, HDL-C and LDL-C concentrations through laboratory.	Newborns were classified into appropriate for gestational age (AGA), SGA and LGA based on Neonatal Birth Weight for Gestational Age and Percentile in 15 Cities of China. <u>LGA:</u> birth weight above the 90 th percentile. <u>SGA:</u> birth weight below the 10 th percentile for gestational age. <u>AGA:</u> birthweight between LGA and SGA. According to the birth weight, neonates could be stratified into low birth weight (<2500 g), normal birth weight (2500–4000 g) and macrosomia (>4000 g) groups.	7
'ian et 1. 2013	<u>Study design:</u> Prospective observational study	<u>Setting:</u> No statement <u>Eligibility criteria:</u> Maternal and neonatal characteristics were investigated between 2581 newborns with	No statement	No statement	Hypertriglyceridem ia and hypercholesterolem ia was diagnosed according to the	Macrosomia	Not applicabl e
			World Obesit	y Journals			28

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
	<u>Language:</u> English <u>Location:</u> China	normal birth weight (controls,2500-3999g) and 306 macrosomia (birth weight over 4000g). <u>Exclude criteria:</u> Pregnancy with twins, premature labour and other complications were all excluded. <u>Sample size: No statement</u>			criteria of Hyperlipidaemia of National Cholesterol Education Program.		
Couch et al.1998	Study design: Perspective observational study <u>Language:</u> English <u>Location:</u> American	Setting:The Department of Obstetrics andGynaecology, Hartford Hospital, Hartford,Connecticut, and private physicians' officesaffiliated with Hartford HospitalEligibility criteria:Women with GDM and healthy pregnantwomen with a negative diabetes screeningtest were recruited.Exclude criteria:Women with hypertension,hyperlipidaemia, renal or liver disease, heartdisease, thyroid disorder, multiplegestations or parity >5 were excluded fromthe study.Sample size: $n=40$	$\bar{x} \pm SD \text{ or n (%)}$ <u>Age (vear)</u> GDM: 31.6±2.7 Controls:30.6±3.2 <u>Primiparous</u> GDM: 8 (40%) Controls: 8 (40%) <u>Maternal BMI</u> (kg/m ²) GDM:25.4±4.6 Controls:23.7±3.8 <u>Gestational length</u> GDM:38.3±1.7 Controls:37.6±2.2 <u>Fasting blood</u> Yes.	<u>Enrolment time</u> Gestational age at entry (26-30 th gestation week); (No statement on recruited time) <u>Length</u> Follow up until delivery <u>Methods</u> No statement <u>Data collection</u> Clinic diagnosis, clinic records. <u>Loss to follow-up</u> 0(0%)	Maternal plasma samples were collected between 37-38 gestation weeks and analysed for TC, HDL, LDL, VLDL and FFA	Cord vein samples were analysed for TC, HDL, LDL, VLDL and TG.	6
)rtega et 1.1996	<u>Study design:</u> Cohort study <u>Language:</u> English <u>Location:</u> Spain	Setting: The INSALUD hospitals Eligibility criteria: Pregnant women carrying only a single child with no congenital malformations at 37 or more weeks of gestation. Participants without registered maternal disease (either before or during pregnancy), vaginal bleeding, blood pressure over 140/90 mm Hg, protein or glucose in the urine, pregnancy-related immunization and drug or alcohol abuse. Exclude criteria:	$\overline{\mathbf{x} \pm \mathbf{SD} \text{ or } \mathbf{n}}$ (%) $\underline{Age} (year)$ 28.6 ± 5.4 <u>Primiparous</u> NS <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> NS <u>Gestational length</u> 39.6 ± 1.3 <u>Fasting blood</u> Yes.	<u>Enrolment time</u> Gestational age at entry (32-35 th gestation week); (October – December 1988) <u>Length</u> Follow up until delivery <u>Methods</u> Clinic visit <u>Data collection</u> Clinic diagnosis, obstetric case notes <u>Loss to follow-up</u> 0(0%)	Venous blood was collected at 32-35 gestation weeks after overnight fasting. TC, HDL- C, LDL-C, VLDL- C and triglycerides were measured by laboratory.	Birthweight was measured using a Marsden spring balance. Cord arteriovenous blood was obtained immediately after clamping and before delivery of the placenta. Blood samples were analysed for a series of lipid parameters (TC, HDL-C, LDL-C VLDL- C and triglycerides).	6

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		None. Sample size: n=292					
Alberti- Fidanza, et al.1995	<u>Study design:</u> Perspective observational study <u>Language:</u> English <u>Location:</u> Italy	<u>Setting:</u> Three towns in the Perugia area (Gubbio, Perugia and Umbertide) <u>Eligibility criteria:</u> Volunteer pregnant women attending the Maternity Advisory Service were recruited at the 1 st trimester. <u>Exclude criteria:</u> Women and newborns in pathological conditions were not included. <u>Sample size: n=70</u> For our interested association, the number of participants is 21.	No statement	Enrolment time Gestational age at entry (1 st trimester); (No statement on recruited time) <u>Length</u> Follow up until 6 months post-partum <u>Methods</u> Clinic visits <u>Data collection</u> Laboratory measurements, clinic records, <u>Loss to follow-up</u> 49(70%)	At the 1 st , 2 nd and 3 rd trimester of pregnancy and at delivery, maternal venous blood was obtained for lipids assessments (TC, TG, HDL-C)	Mixed venous-arterial cord blood was obtained at delivery for TC, TG HDL-C measurements.	5
Brockerh off. 1986	Study design: Perspective observational studyLanguage: GermanyLocation: German	<u>Setting:</u> Obstetrics <u>Eligibility criteria:</u> No statement <u>Exclude criteria:</u> No statement <u>Sample size: n=112</u>	No statement	No statement	Maternal blood was taken at 16 th gestation week for VLDL-C, LDL-C and HDL-C assessments.	Cord blood was obtained at delivery for TC and TG assessments.	
Robin et ıl. 2007	<u>Study design:</u> Retrospective cohort study <u>Language:</u> English <u>Location:</u> American	Setting: Hospital closest to the Greenwood Genetic Centre(GGC) in Greenwood, South Carolina Eligibility criteria: All women who were consecutively screened between 13 and 23 weeks' gestation during 1996-2001. Women who delivered at the hospital closest to GGC	$\overline{\mathbf{x} \pm \mathbf{SD} \text{ or } \mathbf{n}}$ (%) $\underline{Age} (year)$ NS <u>Primiparous</u> NS <u>Pre-pregnancy</u> <u>BMI (kg/m²)</u> NS <u>Gestational length</u>	<u>Enrolment time</u> Gestational age at entry (No statement); (1996-2001) <u>Length</u> Follow up until delivery <u>Methods</u> Clinic visits <u>Data collection</u>	Maternal serum was taken between 13 and 23 weeks' gestation (mean:17.5 weeks, SD: 1.5 weeks) during 1996-2001. Frozen sera(-80°C)	Birthweight.	7
			World Obesit	y Journals			30

Page	78	of	136
------	----	----	-----

Study ID	Basic information	Participants	Maternal characteristics	Follow-up	Exposures	Outcomes	Quality score
		 Exclude criteria: Age<21 or >34 years old; positive smoking history; not dated by ultrasound pregestational diabetes twin gestation race/ethnicity Hispanic, Asian, or Other preeclamptic pregnancies cardiac malformation missing or conflicting data foetal death >1 eligible pregnancy to same mother delivery before 37 gestation week Sample size: Low-TC group:100 Mid-TC group: 757 High-TC group:100 	NS <u>Fasting blood</u> NS	Laboratory measurements, NIH clinical records, <u>Loss to follow-up</u> 47(9.9%) for low-TC group; 233(7.4%) for higher-TC group	were shipped on dry ice from GGC to the NIH. TC in serum was analysed in laboratory.		
Charles et al. 2016	Study design: Perspective longitudinal study Language: English Location: Tunisia, Spain, Serbia, Malta, Italy and Greece	<u>Setting:</u> Some centres (e.g. Malta) recruiting from a general population and others (eg. Greece and Italy) recruiting from an obstetric referral centre. <u>Eligibility criteria:</u> Pregnant Mediterranean women recruited in centres in Tunisia(n=112), Spain(n=187), Serbia(n=126), Malta(n=309), Italy(n=140), and Greece(n=178) who were not known to suffer from any form of carbohydrate metabolism problems outside their pregnancy (type 1 diabetes(T1DM), type 2 diabetes(T2DM), LADA, or MODY). <u>Exclude criteria:</u> None. <u>Sample size: n=1062</u>	$\overline{\mathbf{x} \pm \mathbf{SD}}$ or n (%) <u>Age (year)</u> 31.3 \pm 5.4 <u>Primiparous</u> NS <u>Maternal</u> <u>prepregnancy BMI</u> (kg/m ²) 24.9 \pm 5.3 <u>Gestational length</u> 38.4 \pm 2.8 <u>Fasting blood</u> Yes.	Enrolment time Gestational age at entry (27.9±2.3); (No statement on recruited time) Length Follow up until delivery <u>Methods</u> No statement Data collection Laboratory measurements, clinic records Loss to follow-up 0	Maternal fasting lipid profile levels were assayed at the time of the OGTT. Cholesterol, HDL- C, LDL-C and triglycerides were measured.	Birthweight.	5

Study				Maternal lipids	Statistical Mathada		
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
Ye et al.	$\overline{x} \pm SD$ (mmol/L)	6.6 ± 1.4	2.4 ± 0.5	3.3 ± 0.8	2.9 ± 1.2	_	Statistical software: SPSS 16.0 Two tailed statistical tests and a significant p value < 0.05 .
2015	Birth weight (g) (β, 95% CI)	9.1 (-6.4, 24.6)	-69.5 (-110, -28.2)	35.4 (10.1, 60.8)	25.2 (7.9, 42.6)	_	Multiple linear regression analysis adjusted for materna glucose, maternal age, pre-pregnancy BMI, gestationa weight gain, parity, neonatal sex and gestational age a delivery.
	SGA(n=39) (OR, 95% CI)	0.94 (0.74, 1.20)	1.57 (0.87, 2.83)	0.75 (0.50, 1.14)	0.69 (0.47, 1.03)		Logistic regression analysis adjusted for maternal age, pre
	AGA(n=873)	1.00 (ref)	1.00 (ref)	1.00 (ref)	1.00 (ref)	—	pregnancy BMI, gestational weight gain, parity and materna
	LGA(n=331) (OR, 95% CI)	1.04 (0.94, 1.15)	0.62 (0.47, 0.82)	1.25 (1.06, 1.47)	1.15 (1.03, 1.27)	—	fasting blood glucose.
Wang et al. 2015	Non-GDM (mmol/L (Median, 25 th -75 th)) ND	1.88 (1.65 – 2.12)	ND	1.95 (1.59 - 2.42)	—	Statistical software: SPSS 17.0
	GDM (mmol/L) (Median, 25 th -75 th)	ND	1.81 (1.50 – 2.09)	ND	2.18 (1.84 – 2.82)	—	A significant p value < 0.05 .
	Birthweight (r, p)	ND	-0.12, p=0.01	ND	0.19, p<0.01		Partial correlation coefficients analysis adjusted for neonates sex and gestational age.
Crume et al.	$\frac{1^{st} \text{ visit (11-20 week})}{(\overline{x} \pm \text{SD, mg/dL})}$) 182.3±35.6	61.1±12.6	_	124.3±49.6	373.1±166.0	Statistical software: No statement
2015	$2^{nd} \frac{visit}{x} \pm SD, mg/dL$)) 209.9±40.3	63.1±13.1	_	162.2±62.1	365.1±151.4	
	P value	< 0.0001	< 0.0001	—	< 0.0001	0.3	
	<u>11-20 wk gestation</u> Model	$1 \qquad \begin{array}{c} 0.46 \pm 0.39 \\ P = 0.2 \end{array}$	-0.54±1.17	_	0.09±0.30 P=0.7	0.06±0.09 P=0.5	Regression analyses were performed to determine the
	weight $(\beta \pm SE, g, Model 2)$	$2 \qquad \begin{array}{c} 0.42 \pm 0.42 \\ P=0.3 \end{array}$	-2.67±1.22 P=0.03	_	0.50±0.24 P=0.04	0.05±0.09 P=0.6	association of maternal metabolic fuels and metaboli measures measured at each visit with neonatal outcomes. Model 1 adjusted for the residual value of the predictor from
	P) Model 2	3 0.44±0.41 P=0.3	-1.71±1.23 P=0.2	_	0.41±0.24 P=0.08	-0.11±0.10 P=0.2	the other visit, infant sex, gestational age at birth, materna age, race/ethnicity, parity postnatal age at time of PEAPOI
	20-34 wk gestation						(for outcomes other than birth weight).
	Birth weight Model	I ND	-1.12±1.12 P=0.3	_	0.20±0.24 P=0.4	0.21±0.10 P=0.03	intake, and maternal physical activity during pregnancy
	$\begin{array}{c} (x \pm SE, \\ g, \beta, P) \end{array} Model 2$	2 ND	-3.12±1.16 P=0.07	—	0.39±0.24 P=0.1	0.31±0.11 P=0.003	Model 3 is model 2 plus pre-pregnancy BMI

Study			I	Maternal lipid	Statistical Mathada		
ID		ТС	HDL-C	LDL-C	TG	FFAs	Statistical Methods
	Model 3	ND	-2.20±1.16 P=0.06	_	0.30±0.24 P=0.2	0.24±0.10 P=0.02	
	The modification of composition measures neonatal outcomes (Bi with a null effect for 1 β and P value around t This study also report GDM (n=26), gestatio	effects of mate by pre-pregnance irthweight, Fat m ean women and a chose associations ed that their find nal hypertension	ernal cholesterol l ey BMI was reported lass, Fat free mass, an inverse relations s was reported. ings were not influ (n=61), or pre-ecla	evels in late d in this study. Percent Fat ma hip on FM for enced by the e mpsia (n=34).	pregnancy on all A positive effect v ass) at higher pre-p underweight wome	neonatal body was noted for all regnancy BMIs, en. However, no i identified with	
Hwang et al.	$\frac{15-28 \text{ wks}}{(x \pm \text{SD, mg/dL})}$	—	—	—	143.4±68.5	—	Statistical software: SAS 9.3
2015	$\frac{29-42 \text{ wks}}{(x \pm \text{SD, mg/dL})}$	—	—	—	273.4±123.3	—	Statistical significance was defined as P<0.05.
	Birth weight (g), β (s.e.	<u>), p, R (%)</u>					Maternal serum TG levels was log-transformed before
	15-28 wks	—	—	—	80.446 (31.738) P=0.0015, R=22.4	—	analyses due to its skewed distribution. Multiple regression analysis adjusted for maternal age, weight gain during
	29-42 wks	—	—	—	131.067 (31.242) P<0.0001, R=19.8	—	pregnancy, log-transformed urinary cotinine, gestational age gestational age at blood collection, neonatal gender and long transformed calorie intake.
Kulkar ni et	18 wks (x±SD,mmol/L)	4.11 ± 0.85	1.12 ± 0.28	—	1.09 ± 0.36	_	Statistical software: STATA version 11.2
al. 2013	28 wks (x±SD,mmol/L)	4.80 ± 0.89	4.80 ± 0.89	—	1.51 ± 0.52	—	
	Birthweight (g): Mode	el 0 (β, 95% CI)					Model 0: Multiple regression analyses was performed to
	18 wks	39.07 (10.57, 67.58)	17.57 (-11.64, 46.77)	—	14.76 (-13.34 , 42.86)	_	explore the association of z-standardized maternal plasma glucose and lipid concentrations with neonatal measurements
	28 wks	54.34 (24.85,83.88)	-8.89 (-38.72 ,20.95)	—	36.27 (4.32,68.23)	_	adjusting for gestation at the time of measurements, sex, SES parity, maternal age, maternal BMI before pregnancy and total energy intake at the time of measurements.
	<u>Birthweight (g): multiv</u>	variate analyses	<u>(β, 95% CI)</u>				
	18 wks: model 1	33.42 (0.43,66.41)	6.68 (-24.08, 37.44)	_	4.24 (-26.40, 34.87)		Multiple analyses adjusted for gestation, sex of the baby parity, SES, and maternal age, BMI before pregnancy, tota
	28 wks: model 1	52.52 (19.11,85.92)	-21.58 (-52.62, 9.46)	—	23.93 (-11.29, 59.15)	—	energy intake at the time of measurements and other lipic levels.
	28 wks: model 2	44.42 (8.55,80.29)	-20.29 (-52.73, 12.14)	—	12.90 (-24.25, 50.06)	—	Model 1 entered with maternal fasting glucose. Model 2 entered with maternal 2-h glucose
Vrijkot	SGA (n=364)	4.97 ± 0.86		—	1.35 ± 0.61	—	Statistical software: SPSS 16.0 and the statistical package R
Obesity Reviews

Study				Maternal lipids			Statistical Matheda
ID	-	ТС	HDL-C	LDL-C	TG	FFAs	— Stausucai Methods
te et al.	$(\bar{x} \pm SD, mmol/L)$						2.13.1
2012	Non-SGA (n=3548) ($\bar{x} \pm$ SD, mmol/L)	4.99 ± 0.87	—	—	1.33 ± 0.54	—	A P value <0.05 was considered statistically significant.
	$\frac{\text{LGA (n=364)}}{(x \pm \text{SD, mmol/L})}$	5.06 ± 0.91	—	—	1.44 ± 0.61	—	
	Non-LGA (n=3548) ($\bar{x} \pm$ SD, mmol/L)	4.98 ± 0.86	—	—	1.32 ± 0.54	—	
	Crude model						
	SGA (OR, 95% CI)	0.97 (0.85-1.10)	—	—	1.06 (0.87-1.29)	—	Crude model: unadjusted associations between continuous TC and TG and the outcomes.
	LGA (OR, 95% CI)	1.10 (0.97-1.25)	—		1.44 (1.20-1.71)	—	
	Model 1	0.00			0.0 7		Model 1 is multiple logistic regressions adjusted for maternal
	SGA (OR, 95% CI)	0.98 (0.86-1.12)	—	—	0.97 (0.79-1.19)	—	age, ethnicity, pre-pregnancy BMI, maternal education level, physical activity, smoking during pregnancy, and chronic
	LGA (OR, 95% CI)	1.08 (0.95-1.22)	—	—	1.48 (1.23-1.78)	—	hypertension.
Retnak	$\overline{x} \pm SD$, mmol/L						
al. 2012	Lowest tertile birth weight infant [2020-3260 g] (n=156)	6.48 ± 1.25	1.73 ± 0.36	3.72 ± 1.17	2.25 ± 0.72	—	Statistical software: SAS 9.2
	Middle tertile birth weight infant [3260-3670 g] (n=157)	6.55 ± 1.23	1.72 ± 0.37	3.72 ± 1.12	2.46 ± 0.75	_	
	Highest tertile birth weight infant [3670-5700 g] (n=159)	6.39 ± 1.15	1.66 ± 0.34	3.6 ± 1.04	2.49 ± 0.66	_	
	р	0.5	0.2	0.5	0.006		Analysis of variance for continuous variables
	Birth weight (g, β,95 %	6 <u>CI)</u>					Multiple linear regression adjusted for length of gestation,
	Crude	ND	-120.54 (-244.42 to 3.35)	-15.22 (-55.49 to 25.05)	61.11 (-1.18 to 123.40)	—	infant sex, maternal demographic factors (age, ethnicity, family history of diabetes), smoking status, anthropometric
	Adjusted	ND	-57.16 (-189.42 to 75.09)	-6.79 (-46.98 to 33.39)	-1.59 (-70.67 to 67.49)	_	measure (pre-pregnancy BMI, weight gain during pregnancy up to the time of OGTT), glucose tolerance status, other lipid levels, insulin, adipokines (adiponectin, leptin) and inflammatory proteins (C-reactive protein)
	LGA (OR, 95% CI)						

Study	ıdy				Maternal lipids			Statistical Matheda
ID			ТС	HDL-C	LDL-C	TG	FFAs	— Statistical Methods
	Crude		ND	0.89 (0.69 - 1.15)	0.80 (0.61 - 1.05)	1.26 (0.98 - 1.62)	—	Logistic regression analysis adjusted the same covariate as in the multiple linear regression analyses, except for length of
	Adjusted	d	ND	0.99 (0.70 - 1.39)	0.98 (0.72 - 1.34)	0.98 (0.70 - 1.38)	—	gestation and infant sex.
	White women	LGA (O	R, 95% CI) (n=38	<u>38)</u>				
	Crude		ND	0.82 (0.60 - 1.10)	0.85 (0.62 - 1.16)	1.33 (1.00 - 1.77)	_	
	Adjusted	d	ND	1.03 (0.69 - 1.52)	0.98 (0.69 - 1.38)	1.07 (0.73 – 1.58)	—	Same statistical methods used in the LGA analyses.
Hou et al.	Mmol/L (median, 25 th	n-75 th)	6.28 (5.59-7.09)	1.75 (1.51-2.03)	3.06 (2.44-3.72)	3.05 (2.50-3.75)	—	Statistical software: SPSS 16.0 P<0.05 was considered statistically significant.
2014	AGA(n=22	236)	6.30 (5.62-7.10)	1.76 (1.52-2.05)	3.07 (2.47-3.74)	3.02 (2.48-3.69)	—	Mann-whitney U test
	LGA(n=5	54)	6.18 (5.49-7.04)	1.70 (1.48-1.95)	2.95 (2.30-3.65)	3.19 (2.61-3.97)	—	
	р		0.017	0.000	0.003	0.000	—	
	Outcome: LGA	A, (OR, 9	95% CI)					Binary logistic regression analyses adjusted for maternal age,
	Lowest tertile	e value	Ref	0.202 (0.026-1.562)	Ref	Ref	—	pre-pregnancy BMI, education level, smoking, annual household income, amniotic fluid volume, gestational
	Middle teritle	e value	0.967 (0.712-1.313)	Ref	0.785 (0.58-1.063)	3.037 (1.054-8.747)	—	hypertension, new-born sex, and gestational age at blood collection.
	Highest tertile	e value	1.084 (0.754-1.559)	0.812 (0.636-1.036)	0.829 (0.585-1.173)	3.303 (1.177-9.27)	—	The middle teritle value of maternal TC, HDL-C, LDL-C, TG and FFAs are 5.18-6.22, 1.04-1.55, 3.37-4.14 and 1.70-2.25.
Krame	Infant weight g	gain at 3	s months (β,p)					Statistical software: SAS 9.2
r et al. 2014	GDM gro	up	-26.3,0.57	-150.6, 0.40	-11.7, 0.81	-43.3, 0.62	—	The unit of maternal lipid levels: mmol/L Multiple linear regression analyses adjusted for infant age at
	Non GDM g	group	37.0, 0.32	28.6, 0.80	43.5, 0.28	-14.2, 0.82	—	3-month visit, sex duration of exclusive breastfeeding, maternal and paternal ethnicity, birthweight and length of gestation.
Harmo	Mean \pm SI	EM				mg/dL	μEq/L	
n et al.	Normal	Early	—	—	—	85 ± 5.6	366 ± 52	
2011	weight	Late					326 ± 29	Statistical software: Sigama Stat for Windows version 2.03
	Obese	Early Late	_	_	_	152 ± 14.3	$\begin{array}{c} 535\pm55\\ 547\pm58\end{array}$	
	None of the m	etabolic	measures correla	ted with birth we	ight (data not sho	wn).		A forward stepwise regression was used to generate models between infant adiposity and maternal metabolic parameters.

Obesity Reviews

Study				Maternal lipid	s		Statistical Mathada
ID	_	ТС	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
Son et al.		$Mean \pm SD$	$Mean \pm SD$		Median (IQR)		Statistical software: SPSS 12.0 (SPSS Inc., Chicago, IL, USA)
2010	mmol/L	5.7 ± 1.1	1.7 ± 0.4	ND	2.5 (1.8-3.4)	—	p-value < 0.05 was considered significant.
	Non-LGA	5.8 ± 1.1	1.7 ± 0.5	ND	2.3 (1.8-3.1)		Differences between non-LGA group and LGA group were
	LGA	5.5 ± 0.9	1.6 ± 0.3	ND	3.2 (2.4-3.6)	—	analysed using Student's t-test
	р	0.352	0.232	ND	0.001		-
	Birthweight (g, r, p)	p>0.05	p>0.05	ND	r = 0.17 p = 0.07	—	Statistical Method was not stated.
	LGA (OR. 95% CI)	ND	ND	ND	Hypertriglyceri demia (TG≥3.33 mmol/L) 4.43		Logistic regression model with confounding variables, including parity, age, prepregnancy BMI, gestational weight gain.
A 1					(1.33-14.82)		
Ahma d et al. 2006	Birthweight ratio (g, r,p)	r = 0.147 p = 0.021	—	_	r = 0.122 p = 0.057	—	Statistical software: SPSS 11.0. α =0.05, p<0.05 Univariate analysis.
					High TG (>2.78 mmol/L)		
	LGA (crude OR, 95% CI)	ND	—	—	3.07 (1.33, 7.08)	—	χ^2 test.
	LGA (adjusted OR, 95% CI)	ND	_	—	1.476 (1.15-1.93)	—	Backward wald mode in binary logistic regression. Adjusted for BMI, fasting plasma glucose and 2 hours postprandial plasma glucose.
Di et	mmol/L ($\overline{x} \pm SD$)	6.34 ± 1.3	1.68 ± 0.4	4.01 ± 1	1.99 ± 0.64		Statistical software: SAS
al. 2005	birthweight (g, r^2, p)	ND	ND	ND	r ² =0.09 p<0.05		Univariate regression analyses.
					Hypertriglyceri demia (TG≥2.3 mmol/L)		χ^2 test.
	LGA (crude OR, 95%CI)	ND	ND	ND	5.6(0.93, 33.77)	—	
Schaef		mg/dL			mg/dL	µmol/L	Statistical software: SPSS 12.0 (Chicago, IL)
er- Graf et	$\overline{x} \pm SD$	253.7±55.6			265.9±87.6	262.6±112.4	All statistical tests were two-tailed and a P value <0.05 was
al.	<u>Week 28,32,36</u>						considered significant.
2008	Outcomes	ND	—		ND	ND	
	Close to delivery (r, p)						Bivariate correlation applying Spearman's correlation test

Study]	Maternal lipids	5		Statistical Mathada
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Stausucar Memous
	birthweight	ND	—	—	p>0.05	0.27, p=0.002	
	TGs in cord blood	ND	—		0.19, p=0.003	ND	
	FFAs in cord blood	ND	—	—	ND	0.28, p=0.004	
	After adjustment for m	aternal pre-pregi	nancy BMI, weight	gain, age parity	y, fasting and post	prandial glucose	
	from the profiles at 36	weeks and close $ad = 0.008$ and	to delivery, only n p=0.04 respective.	independently	Logistic represeion analysis		
	Maternal FFA levels w	ere significantly	p=0.04, respective.	with AGA	Logistic regression analysis		
	infants (362.8 ± 101.7)	vs. 252.4 ± 10.1 µ	1000000000000000000000000000000000000				
Swierz	No statistically signific	cant correlation o	f lipid metabolism	parameters with	h neonatal birth we	eight in the	Statistical software: PQStat software.
ewska	GDM and NGT group	was found (data	not shown).	-		-	P value <0.5 was considered statistically significant.
et al.							Multivariate linear regression for numerical factors and
2015							multivariate logistic regression were performed to assess the influence of the factors affecting neonatal birth weight
Somm	$mmol/L(\bar{x} + SD)$						influence of the factors affecting neonatal offith weight.
er et	Visit 1	5.0 ± 0.9	1.73 ± 0.39	2.71 ± 0.73	1.31 ± 0.55	_	Statistical software: IBM SPSS Statistics21, lincom
al.	Visit 2	62 ± 1.1	1.02 ± 0.45	2.11 ± 0.00	1.02 ± 0.60		command in Stata IC 12
2015	V ISIT 2	0.2 ± 1.1	1.95 ± 0.45	5.44 ± 0.99	1.98 ± 0.09		-
	<u>Birthweight (g)</u>	1.2	00.0		40.0		Data were provided by authors through email.
	Model 0 (β, 95%CI)	-4.2	-98.9	ND	48.8		Model () is simple regression analyses
		-61	-105 4		(-14.8, 112.4) 94 A		Noder o is simple regression anaryses.
	Model 1 (β, 95%CI)	(-37.5, 25.2)	(-183.8, -27.0)	ND	(37.8, 150.9)	—	Model 1 is a multiple regression of the risk factor variables
	M- 1-1 2/8 059/CI	-4.8	-118.8	ND	85.4		entered separately, adjusted for gestational week at inclusion,
	Model 2(p, 95%CI)	(-34.0, 24.4)	(-190.1, -47.5)	ND	(37.0, 133.7)	—	maternal age, parity, smoking status ethnic origin, offspring's
	Model 3(β. 95%CI)	-115.4	47.6	ND	97.4	_	sex and gestational age.
	(p,) c / (c))	(-306.6, 75.8)	(-160.3, 255.6)	112	(-3.8, 198.6)		Model 2 = Model 1 + early pregnancy BMI + weight gain.
	Model 4(β, 95%CI)	-74.9	-21.9	ND	83.4	_	
	Sum of skinfolds (mm)	(-200.1, 110.2)	(-225.9, 180.2)		(-14.0, 181.3)		Model 3: (risk variables are entered simultaneously into the
	<u>Sum of skinjolas (min)</u>	0.17	-0.521		0 583		regression, and adjusted for fasting glucose and 2-hour glucose maternal age gestational weak parity athnicity
	Model 0 (β, 95%CI)	(-0.14, 0.48)	(-1.312, 0.270)	ND	(0.015, 1.151)	—	smoking status, offspring's sex and gestational age)
	$M_{-1} = 1 + 1 + (0 + 0.50) = (0.50)$	0.10	-0.608	ND	0.839		
	Model 1 (p, 95%CI)	(-0.21,0.40)	(-1.381, 0.164)	ND	(0.280, 1.397)	—	Model 4 = Model 3 + early pregnancy BMI + weight gain.
	Model 2(β. 95%CI)	0.13	-0.611	ND	0.724		
		(-0.17,0.42)	(-1.321, 0.099)	1,0	(0.245, 1.202)		
	Model 3(β, 95%CI)	-0.71	0.433	ND	0.623	_	
		(-2.57, 0.95)	(-1.412, 2.279)		(-0.508, 1.553)		

Study				Maternal lipids			- Statistical Mathads
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
	Model 4(β, 95%CI)	-0.44 (-2.08, 1.20)	-0.022 (-1.851, 1.808)	ND	0.577 (-0.341, 1.494)	—	
Slagja	mmol/L ($\overline{x} \pm SD$)						Statistical software: SPSS 14.0
na et	LGA (n=50)	$6.0{\pm}1.0$	1.3±0.4	3.8 ± 1.0	3.8 ± 1.8	—	P<0.05 was considered statistically significant.
al.	AGA (n=135)	6.5 ± 1.4	1.6 ± 0.4	3.5 ± 1.2	3.1±1.1		
2014	SGA (n=15)	6.3±1.3	1.5 ± 0.5	3.7±1.4	3.8±1.9	—	
	p (LGA vs. AGA)	p>0.05	0.001	p>0.05	0.012	—	Student t test
	p (AGA vs. SGA)	p>0.05	p>0.05	p>0.05	0.012	_	_
	Birthweight (g, r, p)	ND	ND	ND	0.16, p=0.077	—	correlation analysis
	LGA (standardized β, p)	-0.230, p=0.164	ND	ND	0.326, p=0.045	—	Multiple linear regression
Laleh	mg/dl ($\overline{x} \pm SD$)						Statistical software: SPSS 16.0
et al.	28-32 wks	218.90 ± 33.82	55.37 ± 4.26	128.84 ± 29.23	175.71±24.23	—	
2013	32-36 wks	240.99 ± 29.44	59.29±4.61	137.64 ± 29.22	240.46 ± 32.06	—	
	36-40 wks	254.24±34.13	59.35±3.66	147.12±32.59	353.87±39.61	—	
	covariance (ANCOVA only TG level remind	A) was performed independently rel	. After adjustment lated to LGA (p=0	for maternal pre .04).	-pregnancyBMI, ag	ge, and parity,	
Whyte	mmol/L ($x \pm SD$)						Statistical software: SPSS 18.0
et al. 2013	Normal OGTT (n=167)	5.08±0.89	1.54±0.41	2.74±0.78	1.84±0.86	-6	A p value <0.05 was considered significant.
	Abnormal OGTT (n=22)	5.31±0.97	1.39±0.35	2.86±0.75	2.33±0.78	_	
	Birthweight (kg) ($x \pm$	(SD)			mmol/L		_
	<2.99		—		1.58 ± 0.40	—	
	3.09-3.49	—	—		1.88 ± 0.93	—	
	3.5-3.99	—	—		1.87 ± 0.73	—	
	4.0-4.49	—	—		2.23±1.119	—	
	Maternal triglyceride l	evels increased b	y 0.248 mmol/L f	or each 1.0 kg in	crease in birth weig	ht (p<0.03).	Univariate analysis
	Maternal increased trig No relationship was fo	glyceride levels v ound between fast	vere independently ting cholesterol an	associated with d birth weight or	increased birthwei other clinical varia	ght (p<0.04). bles	Multivariate regression analysis adjusting for age, BMI and GDM.
Zhou	mmol/L ($\overline{x} \pm SD$)	$6.04{\pm}1.48$	2.19±0.45	2.76±0.71	2.44±1.45	—	Statistical software: SPSS 12.0
et al.	Macrosomia (n=89)	5.91±0.93	2.07±0.43	2.77±0.69	$2.47{\pm}1.02$	_	Non-parametric Mann-Whitney Test was used to compare the

Study				Maternal lipids			Statistical Mathada
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Staustical Methods
2012							difference between groups.
	Normal BW (n=890)	6.05 ± 1.53	2.20 ± 0.45	2.76±0.71	2.43 ± 1.48	—	
	р	>0.05	< 0.05	>0.05	>0.05		
	Hypo-HDL-cholestero	<u>olemia</u>					Unconditional logistic regression model.
	Crude OR	ND	1.67	ND	ND		
	Adjusted OR (95%CI)	ND	1.63(1.02-2.60)	ND	ND	—	Adjusted for maternal age and BMI.
	р	ND	0.04	ND	ND	—	
	<u>Macrosomia</u>						
	HDL-c (mmol/L)	Case (all, %)	OR (95%CI)	р			HDL-C was categorized in quartiles based on the distribution
	>2.49	14 (234, 6.0%)	1				in all pregnant women, and risk in each quartile was
	2.18-2.49	23 (246, 9.3%)	1.59(0.78-3.27)	0.202			estimated in reference to lowest or highest quartile of
	1.87-2.16	22(272, 8.1%)	1.47(0.72-2.99)	0.291			metabolic marker level.
	<1.87	30(238, 12.6%)	2.09(1.04-4.21)	0.039			
Vrijkot	mmol/L ($x \pm SD$)						Statistical software: SPSS 16.0
te et	Birth weight<2500g	4.63±0.79			1.21±0.56		A P value<0.05 was considered significant.
2011	2500g-4000g	4.97±0.86			1.31±0.53		
2011	Birth weight>4000g	5.01±0.89			1.40±0.62		
	Standardised Birthwei	i <u>ght, β(SE)</u>				0	Standardized birthweight (already adjusted for gestational age
	TC(mmol/L)	Univariate	Model 1	TG (mmol/L)	Univariate	Model 1	at birth, parity and sex)
	Q1 (3.87±0.33)	-0.12±0.07	-0.09±0.06	Ql	-0.03±0.07	-0.06±0.06	SDS were explored by using regression analyses
	Q2(4.48±0.13)	0.07±0.07	0.09±0.06	Q2	0.03±0.07	0.00±0.06	Model 1 is multivariate analyses further adjusted for maternal
	Q3(4.89±0.12)	Reference	Reference	Q3	Reference	Reference	age, maternal height, hypertension, maternal pre-pregnancy
	Q4(5.36±0.15)	0.07±0.07	0.08 ± 0.06	Q4	0.04 ± 0.07	0.03 ± 0.06	BMI, weight gain during early pregnancy, ethnicity, smoking,
	Q5(6.23±0.61)	0.11±0.07	0.11±0.06	Q5	0.17 ± 0.07	0.20 ± 0.06	alcohol use, education level, and cohabitant status
	Standardised Birthwei	ght,					Data were provided by authors through email.
	β(95%CI)	11.82		_	47.14	_	Univariate linear analysis
		(-10.00, 55.05)			(12.42, 01.07)		Multivariate results linear analysis adjusted for maternal age
	β(95%CI)	22.67	_		86.72		maternal height, hypertension, maternal pre-pregnancy BMI,
	1 ((4.00, 41.33)			(56.13,117.30)		weight gain during early pregnancy, ethnicity, smoking, alcohol use, education level, and cohabitant status
	SDS weight						Linear regression analyses were used to exploring

A significantly different growth patterns over time for SDS of weight (P=0.002). The growth pattern of infants born of women with the lowest TG levels (Q1) deviated more from their individual growth line than postnatal growth patterns (weight, length, and BMI expressed the growth patterns of other infants; that is, they started with a relatively low BW, but their weight

 associations between different TG and TC quintiles and as SDS).

Study				Maternal lipids			Statistical Mathada
ID		TC	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
	progressively increase analyses showed that differences were 0.14 <u>SDS length</u> The individual averag	ed during the first differences in wei 0 SDS for Q1 vs Q ge lines with SDS o	year toward levels ght among TG qu 25, and 0.139 SDS did not differ sign	A multivariable model adjusted for maternal age, maternal height, parity, maternal pre-pregnancy BMI, weight gain during early pregnancy, ethnicity, education level, cohabitan status, smoking, alcohol use, pregnancy duration, infants' age			
	there was a tendency i differences at 1 month <u>SDS BMI</u> A similar tendency wa 12 months_Difference	for the Q1 pattern n only for Q1 vs Q as observed for Q1	to deviate (p=0.0 5 (0.140). 1, with a relatively the first month af	61). Post hoc ana y low BMI at 1 m ter birth only for	lyses revealed si onth and a relati Ω_1 vs Ω_3 (0.129	vely high BMI at	To compare SDS trajectories between the TG and TC quintiles in more detail, post hoc comparisons were done at multiple time points: 1, 3, 6, 9 and 12 months.
	<u>Accelerated weight ge</u> The percentage of infa was significantly high length and BMI show between O1 and other	ants in Q1 that sho er compared with ed a similar tender TG quintiles wer	wed accelerated g the other TG quin ncy with regard to e found.	The amount of accelerated growth in the different quintiles was determined by using the Pearson χ^2 analysis.			
	No associations were and no post hoc differ Weight for gestational Differences between Differences between	found between TC rences). l age according to TG quintiles: %SC TC quintiles: %SC	C quintiles and we TG and TC quint GA (p=0.768), %L GA (p=0.098), %L	(overall pattern			
'inod	Gestational age-adjus	sted birth weight (g) - Normal weigh	ht group – β(95%	<u>CI)</u>		Statistical software: SAS 9.1
et al.			mg/	/dL			A p value of <0.05 was considered significant.
2011	6-10 wks (n=62)	-0.5 (-3.1, 2.1)	-4.1 (-10.4, 2,2)	-0.2 (-3.4, 3.1)	1.1 (-0.4, 2.6)	—	Univariate regression analyses.
	10-14 wks (n=65)	-0.6 (-3.1, 1.8)	-2.1 (-7.7, 3.6)	-0.9 (-4.0, 2.1)	1.5 (0.1, 2.8)		
	16-20 wks (n=68)	-0.9 (-2.9, 1.2)	-1.0 (-6.4, 4.4)	-1.2 (-3.6, 1.3)	0.7 (-0.8, 2.1)	—	
	22-26 wks (n=71)	-1.3 (-2.9, 0.3)	-4.1 (-8.8, 0.6)	-1.5 (-3.4, 0.5)	1.1 (0.0,2.1)	—	
	32-36 wks (n=69)	-1.2 (-3.1, 0.6)	-3.6 (-8.6, 1.4)	-1.3 (-3.4, 0.8)	0.9 (-0.1, 1.9)	—	
	Gestational age-adjus	sted birth weight ()	<u>g) – Obese/Overw</u>	<u>veight group–β(9</u>	<u>95%CI)</u>		
	6-10 wks (n=69)	0.3 (-3.5, 4.0)	-7.7 (-16.1, 0.7)	2.5 (-1.9, 7.0)	0.4 (-2.3, 3.0)		
	10-14 wks (n=71)	1.5 (-1.8, 4.7)	-8.0 (-15.6, -0.4)	2.8 (-1.1,6.7)	1.4 (-0.5, 3.2)		
	16-20 wks (n=65)	0.1 (-3.3,3.5)	-9.3 (-16.4, -2.1)	2.2 (-1.6, 6.1)	0.7 (-1.2. 2.6)	—	
	22-26 wks $(n=71)$	0.1(-2.4, 2.5) 0.4(2.3, 2.1)	-1.4(-14.1,-0.7)	0.9(-2.1, 4.0)	1.5(0.1, 3.0) 1.9(0.6, 3.2)	—	
	The effect size of mate	0.4(-2.3,3.1)	-10.0(-17.3, -2.3)	1.0(-2.0,4.1)	1.9(0.0, 3.2)		
	HDL quartile Normal weight	$\overline{x} \pm SD (mg/dL)$	Mean differen	ce in aBW (g)	<u>on ab w</u>		

Study	Maternal lipids					Statistical Mathada	
ID		TC	HDL-C	LDL-C	TG	FFAs	Staustical Methous
	1(lowest)	60.3±3.5	Refere	ence			
	2	70.4±3.0	-36.5 (-86	.9, 14.1)			
	3	80.5 ± 2.8	72.7 (-173	.7, 28.3)			
	4	100.3 ± 11.5	-144 (-3	44,56)			
	Obese/Overweight						
	1(lowest)	60.0±4.1	Refere	ence			
	2	68.8 ± 1.9	-88 (-154	, -20.2)			
	3	79.1±4.3	-191 (-334	.3, -43.9)			
	4	94.7±8.2	-347 (607.	3, -79.8)			
Zawiej	mmol/L		1.87(1.59.2.26)		2.45(3.22.4.24)		Statistical software: SPSS 12.0
ska et	$(Median, 25^{m} - 75^{m})$						P<0.05 was considered statistically significant.
al. 2008	Birthweight (g)		ND		$R^2 = 0.02$		Lincon momentation analysis
2000	R ² , F, p		ND		$\Gamma = 9.45$ P < 0.01		Linear regression analyses.
-				<u> </u>	1 < 0.01		Data were provided by the author through email
	Macrosomia		0.59(0.32.1.02)				Population: non-obese GDM women
	(RR,95%CI, p)		P=0.051		ND		- · F
	_						Chi-square statistics.
Clause	mmol/L	53(4859)	18(1520)	28(2333)	15(1219)		Statistical software: SPSS 11.0
n et al.	(median, 25^{th} -75 th)	5.5(1.6,5.7)	1.0 (1.0,2.0)	2.0 (2.3,5.5)	1.5 (1.2,1.5)		_ P<0.05 was considered statistically significant.
2005	<u>Macrosomia (OR, 95%</u>	<u>5CI)</u>					
	Triglycerides (case/all)	unadjusted OR	Model A	Model B	Model C	Model D	
	Q1 (10/437)	1.0	1.0	1.0	1.0	1.0	
	Q2 (28/668)	1.9 (0.9-3.9)	1.7(0.8-3.6)	1.9(0.9-3.9)	1.6(0.7-3.3)	1.4(0.7-3.1)	O. quartile
	Q3 (15/394)	1.7(0.8-3.8)	1.4(0.6-3.2)	1.7(0.7-3.8)	1.4(0.6-3.2)	1.3(0.5-2.9)	Univariate logistic regression was used to calculate
	Q4 (35/551)	2.9(1.4-5.9)	2.2(1.1-4.6)	2.9(1.4-5.9)	2.5(1.2-5.2)	1.9(0.9-4.1)	unadjusted OR value.
	P trend	0.004	0.062	0.004	0.016	0.121	Multiple logistic regression analyses was performed in Model
	TC (case/all)	unadjusted OR	Model A	Model B	Model C	Model D	A, B, C and D.
	Q1 (20/497)	1.0	1.0	1.0	1.0	1.0	Variables in model A: first trimester BMI;
	Q2 (19/565)	0.8(0.4-1.6)	0.8(0.4-1.5)	0.8(0.4-1.6)	0.7(0.4-1.4)	0.7(0.3-1.3)	Model B: age, parity smoking
	Q3 (25/448)	1.4(0.8-2.6)	1.4(0.7-2.5)	1.4(0.8-2.5)	1.3(0.7-2.4)	1.4(0.7-2.6)	would C. age, parity, smoking, weight gain, placental weight,
	Q4 (24/540)	1.1(0.6-2.0)	1.0(0.5-1.8)	1.1(0.6-2.0)	0.9(0.5-1.7)	0.9(0.5-1.7)	Model D: model C+ first trimester BMI
	P trend	0.397	0.610	0.451	0.751	0.737	
	HDL-C(case/all)	unadjusted OR	Model A	Model B	Model C	Model D	
	Q1 (38/509)	1.0	1.0	1.0	1.0	1.0	

Study				Maternal lipids			- Statistical Mathads
ID		TC	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
	Q2 (18/498)	0.5(0.3-0.8)	0.5(0.3-0.9)	0.5(0.3-0.8)	0.3(0.3-0.9)	0.6(0.3-1.0)	
	Q3 (18/527)	0.4(0.2-0.8)	0.5(0.3-1.0)	0.4(0.2-0.7)	0.5(0.2-0.8)	0.3(0.3-1.0)	
	Q4 (14/516)	0.3(0.2-0.6)	0.4(0.2-0.8)	0.3(0.2-0.6)	0.4(0.2-0.7)	0.4(0.2-0.8)	
	P trend	< 0.001	0.008	< 0.001	0.001	0.009	
	Non-HLD-C(case/all)	unadjusted OR	Model A	Model B	Model C	Model D	
	Q1 (16/519)	1.0	1.0	1.0	1.0	1.0	
	Q2 (19/530)	1.2(0.6-2.3)	1.2(0.6-2.3)	1.2(0.6-2.3)	1.0(0.5-2.0)	1.0(0.5-2.1)	
	Q3 (21/500)	1.4(0.7-2.7)	1.3(0.7-2.5)	1.4(0.7-2.7)	1.2(0.6-2.5)	1.3(0.7-2.7)	
	Q4 (32/499)	2.2(1.2-4.0)	1.9(1.0-3.5)	2.1(1.2-3.9)	1.8(1.0-3.5)	1.9(1.0-3.6)	
	P trend	0.009	0.034	0.011	0.036	0.035	
Mathe	mmol/L (median, 5th -	9 th)					Statistical software: SPSS 10.0
ws et al.	Early pregnancy (n=733)	5.59(4.30,7.45)		10	_	_	P<0.05 was considered statistically significant. P value cautionsly throughout and considered value < 0.05 but > 0.01
2003	Later pregnancy (n=537)	6.91(5.30,9.14)	—	- 0	-	_	as marginal
	<u>Birthweight (g. β. 95%</u>	<u>6CI)</u>			Nr.		_
	Early pregnancy (≈16wks, n=733)	30.1(1.21.58,9) P=0.041	—	—	~-P	—	Multiple linear regression model adjusted for maternal smoking status and height infant' gender gestational age
	Later pregnancy (≈28wks n=537)	11.1(-18.0, 40.3) P= 0.453	—		- '6		shloking status and horght, mant gender, gestationar age.
Olmos	mmol/L ($\overline{x} \pm SD$)						Statistical software: PASW statistics version 18.00, GraphPad
et al. 2014	2 nd trimester _Normal weight	ND	ND	—	1.99±0.65	—	Prism 5.0 for Windows. P<0.05 was considered statistically significant.
	2 nd trimester _Overweight	ND	ND		2.29±0.75	—	
	2 nd trimester _Obese	ND	ND	_	2.35±0.71		
	3 rd trimester _ Normal weight	ND	ND	—	2.59±0.76	—	
	3 rd trimester _ Overweight	ND	ND		2.76±0.91	—	
	3 rd trimester _ Obese	ND	ND		2.88 ± 0.92	_	
	Newborn weight z-sco	re (r, p)					Maternal lipids z score – newborn weight z score
	Normal weight (n=128)	ND	ND		r=0.12,p=0.158		Linear regression model.
	Overweight (n=105)	ND	ND		r=0.42,p<0.001		

Study				Maternal lipids	i		Statistical Mathada
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Staustical Methods
Emet et al. 2013	$mg/dL(\bar{x} \pm SD)$ 1^{st} trimester 3^{rd} trimester	166.20±28.28 271 28+47 81	53.37±10.51 63 54+21 16	93.75±23.22	93.09±45.57 274.10+101.89		Statistical software: SPSS 15.05 P<0.05 was considered statistically significant.
	Birthweight (p)	0.616	0.754	0.440	0.033		Changed maternal lipid levels - birthweight
	Neonatal weight in 3 rd postnatal month (p)	0.2678	0.860	0.769	0.138	_	Pearson correlation analyses.
Liu et al.	mmol/L($\bar{x} \pm SD$)						Statistical software: SPSS 17.00 P<0.05 was considered statistically significant.
2016	GDM NGT	6.09±0.86 3.30±0.81	1.82±0.35 1.85±0.33	3.26±0.86 3.30±0.81	2.31±0.84 2.09±0.76	_	
	Birth weight (r, p)	0.018, p=0.518	-0.011, p=0.701	-0.005, p=0.843	0.100, p<0.001	—	Partial correlation adjusted for gestational age and pre-gravid BMI
	Birthweight (β , SE, p)	ND	ND	ND	0.070, SE=13.235 P=0.001	_	Multiple linear regression model including First Visit FPG, OGTT FPG, triglyceride, Apolipoprotein E, pre-gravid BMI, GDM, gestational age.
Brunn er et al.	mg/dL ($\overline{x} \pm SD$)		_	_	197.0±66.2	_	Statistical software: R version 2.8.1, PASW version 18.0. A tow-sided P-value<0.05 was considered statistically significant.
2013	Maternal lipid levels a	t gestation weeks	32 (β,95%CI)				
	Birthweight(g)	—	—		-0.54 (-1.56, 0.49)		Data were provided by authors through email.
	Ponderal index (kg/m ³)	—	—	—	-0.00 (-0.01, 0)	$\frac{20}{20}$	Multiple linear regression model, including the covariates
	6 weeks postpartum weight (g)	—	_	_	-0.97 (-2.33, 0.4)	_	maternal pre-pregnancy BMI, gestational weight gain, maternal glucose tolerance status, pregnancy duration, sex
	6 weeks postpartum ponderal index (kg/m ³)		_	—	-0.00 (0, 0)		poderal index at birth and mode of infant feeding at the later time points were performed
	4 months postpartum weight (g)		_	—	-0.62 (-2.27, 1.03)	—	time points, were performed.
	4 months postpartum ponderal index (kg/m ³)	—			0.01 (0, 0.01)	—	
	1 year postpartum weight (g)	—	—	—	-1.46 (-3.83, 0.92)	—	
	1 year postpartum ponderal index (kg/m ³)		—	—	-0.00 (-0.01, 0)		
	1 year postpartum				-0.00		_

Study				Maternal lipids			Statistical Mathada
ID	-	ТС	HDL-C	LDL-C	TG	FFAs	- Staustical Methods
	BMI (kg/m ²)				(0, 0)		
	No significant relations	ships were found	for maternal trigl	yceride levels at	32 nd gestation week	k with	
	birthweight and Ponder	al index (or BM	I) at delivery, 6 w	eeks, 1 years and	l 2 years post-partur	m, and also	
	with weight gain after l	oirth at any time	point.				
	The change in motornal	l comme tri altroom	ide concentration	hatwaan tha 15th	and 20 nd weath of a	actation was	
	weakly but significant	ly associated wit	h infant ponderal	index at 4 month	s post-partium (hadi:	0.001(0-0.01)	
	kg/m3, P=0.020), but n	ot with any of th	e other growth or	body composition	on outcomes up to 2	years post-	
	partum.		-		-		
Knopp	$mM(\bar{x} \pm SD)$						Statistical software: No statement.
et al.	NS- (n=521)	—	—	—	1.86 ± 0.68	—	
1992	PS+ (n=264)	—	—	—	1.92 ± 0.68	—	
	GDM (n=96)	—	—	—	2.29±0.68	—	
	Birthweight ratio						Univariate Spearman's correlation coefficients
	NS-	—	—	—	0.09 (p≤0.05)	—	
	PS+	—	—	—	0.13(p≤0.05)	—	
	GDM	—	—	—	0.11	—	
	PS+ plus GDM	—	—	—	0.16(p≤0.01)	—	
	ALL	—	—	—	0.12(p≤0.01)	—	
Knopp			HDL-C	LDL-C	VLDL-C	FFAs	
et al.	<u>Separman pairwise cor</u>	relation coeffici	<u>ents</u>				Spearman rank correlation coefficients indicate the lin
1985	Birth weight (n=273)	—	-0.06	0.003	0.05	-0.06	relationship between all pairs of variable.
	Birth weight ratio		-0.06	0.01	0.03	0.002	
	(n=248)		0.000	0101	0.00	0.002	
	Standardized regressio	n coefficients					Structured multiple regression analyses. Variables in v
	$D^{1}_{1}(1) = (1, 1) (1, 2, 7, 2)$		0.15	0.04	0.14	0.05	a predefined order
	Birth Weight (n-272)		-0.15	0.04	-0.14	0.05	Unit I: VLDL-C. VLDL-TG.LDL-C. HDL-TG
	Birth weight ratio		0.13	0.01	0.30 p < 0.05	0.00	Unit II: Glucose, insulin, FFA, HPL, progresterone, estrat
	(n=247)		-0.15	0.01	-0.30, p<0.03	-0.09	and estriol
Schaef		mmol/L			mmol/L	µmol/L	Statistical software: SPSS 16.0
er-	$\overline{x} \pm SD$	6.56±0.11			2.84 ± 0.08	320±14	P<0.05 was considered statistically significant.
Graf et	A significant lineal pos	itive correlation	between maternal	and cord blood	serum was found fo	r log	-
al.	transformed FFAs (r=0	.1886, p=0.0172	.).				the correlations between different variables
2011	None of the maternal m	netabolic variable	es measured corre	lated to neonatal	body weight.		the conclations between unrefent variables.
Nolan	TG(r, p)	Asian-born	<i>GDM</i> (<i>n</i> =38)	Asian & GDM	Overall		Statistical software: SPSS-PC software package

Study				Maternal lipids			64-44-41-1 M-41-1-
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
et al.		(<i>n</i> =97)		(<i>n</i> =18)	(n=388)		
1995	Birth weight ratio (univariate analyses)	0.23, p=0.02	0.37, p=0.023	0.63, p=0.005	0.12, p=0.02	—	All statistical tests were two-tailed, and a P value of <0.05 was considered significant.
	Birth weight ratio (multiple regression)	ND	P=0.004	ND	ND	_	Within the total GDM subgroup, using multiple regression analyses to control for the maternal factors of BMI and rate of maternal weight gain.
Friis et al.	mmol/L($\bar{x} \pm SD$)	6.96±1.20	1.71±0.37	—	2.01±0.65	0.44±0.13	Statistical software: SPSS 18.0. All p-values ,0.05 were considered statistically significant.
2012	Birthweight (β,95%CI, p)	p>0.05	-170 (-329, -9) P=0.04	—	94(2,187) P=0.046	p>0.05	Multiple linear regression model adjusted for gestational age at birth.
Lei et	mmol/L(median, IQR)		1.46 (1.3-1.7)	—	2.71(2.12-3.49)		Statistical software: SPSS 22.0.
al. 2016	OR (95%CI)	TG (<3.49 mmol/L)	TG (≥3.49 mmol/L)	HDL-C (≥1.3 mmol/L)	HDL-C (<1.3 mmol/L)		Logistic regression.
	LGA	1 (Ref)	1.6 (1.42-2.01)	1 (Ref)	1.33(1.12-1.58)		
	SGA	1 (Ref)	1.51(1.08-2.12)	1 (Ref)	0.88(0.62-1.25)		
Kitaji ma et al.		mg/dL			mg/dL	mEq/dL	Statistical software: SAS 5.0
2001	$\overline{x} \pm SD$	263.6±46.2		_	213.9±77.7	70.3±12.3	P<0.05 was defined as significant
	Birthweight (r, p)	0.01, p=0.99	_	_	0.22, p=0.009	0.03, p=0.73	Univariable linear regression.
	Birthweight (F,p)	ND	—	—	6.3, p=0.014	ND	After controlling for fasting plasma glucose, prepregnant BMI, maternal weight gain during pregnancy, gestational age at delivery, neonatal gender.
		Hypertriglyceri demia	Normal triglyceride	р	Crude OR	(95%CI)	χ^2 test
	LGA Non-LGA	4 30	1 111	0.012	14.8 (1.59	, 137.38)	
	LGA	Adjusted OR	95%CI	р			Logistic regression model adjusted for fasting plasma glucose
	Hypertriglyceridemia	11.6	(1.1 - 122)	0.04			levels, prepregnant BMI, and weight gain during pregnancy
Mossa	$mg/dL (\bar{x} \pm SD)$	201.4±38.4	46.6±4.36	115.3±34.9	197.5±51.9		Statistical software: SPSS 20.0
yebi et	<u>Birthweight (g)</u>						P<0.05 was defined as significant
al. 2014	r, p	0.50, p<0.001	-0.47, p<0.001	0.40, p<0.001	0.68, p<0.001		Pearson correlation analyses.
2017	β, SE	ND	ND	ND	5.24, SE=0.54	—	Stepwise linear regression adjusted for male gender of the child
	Standardized β , p	ND	ND	ND	0.59, p<0.001	—	

Study				Maternal lipids			- Statistical Methods
ID		ТС	HDL-C	LDL-C	TG	FFAs	Statistical Michigas
	<u>Macrosomia</u>				TG	TG z score	Forward stepwise logistic regression analyses
	β, SE, p	ND	ND	ND	0.04, SE=0.01 P<0.001	ND	Adjusted for maternal age, weight prior to pregnancy, and cholesterol
	OR (95% CI)	ND	ND	ND	1.044(1.02-1.07)	9.44(2.86-31.16)	
	<u>LGA</u>						Forward stepwise logistic regression analyses
	β, SE, p	ND	ND	ND	0.03, SE=0.01 P<0.001	ND	Adjusted for maternal age, weight prior to pregnancy, and cholesterol
	OR (95% CI)	ND	ND	ND	1.035(1.02, 1.05)	5.90 (2.68-13.00)	and enoiesteroi.
	<u>LGA</u>	<u>all</u>	<u>Case(proportion)</u>	Crude OR(95%CI)	<u>aOR (95%CI)</u>		
	<u>Total cholesterol:</u>						Logistic regression model
	Q1:<172	39	2 (5.1)	1 (Ref)	1 (Ref)		
	Q2:172.1-199.9	35	6 (17.1)	3.8 (0.7-20.4)	2.3 (0.4-15.2)		
	Q3:200-234.9	37	9 (24.3)	5.9 (1.2-29.7)	1.2 (0.2-8.6)		
	Q4:≥235	43	18 (41.9)	13.3 (2.8-62.5)	1.1 (0.2-8.1)		
	<u>HDL:</u>						
	Q1: ≤43	40	18 (45.0)	16.4 (3.5-77.2)	0.6 (0.07-5.3)		
	Q2:43.1-46	37	10 (27.0)	7.4 (1.5-36.5)	0.08 (0.08-5.6)		
	Q3:46.1-49.9	35	5 (14.3)	3.3 (0.6-18.4)	1.7 (0.2-11.6)		Variables in model: mother's age, weight prior to pregr
	Q4: ≥50	42	2 (4.8)	1 (Ref)	1 (Ref)		FBS, triglyceride, cholesterol, and child gender. I
	LDL:						categorical variable was one of these confounders of
	Q1: <88	38	3 (7.9)	1 (Ref)	1 (Ref)		colinearity with other variables, we excluded that va
	Q2:88.1-113	40	9 (22.5)	3.4 (0.8-13.6)	2.04 (0.4-10.9)		and only the categorical variable was entered.
	Q3:113.1-143.9	37	10 (27)	4.3 (1.1-17.3)	0.6 (0.1-4.03)		
	Q4: ≥144	39	13 (33.3)	5.8 (1.5-22.6)	0.8 (0.1-4.4)		
	<u>Triglyceride:</u>						
	Q1: <170	37	2 (5.4)	1 (Ref)	1 (Ref)		
	Q2:170-199.9	37	0 (0)	0	0		
	Q3:200-299.9	37	6 (16.2)	3.4 (0.6-18)	3.2 (0.5-20.7)		
	Q4: ≥230	43	27 (62.8)	29.5 (6.2-139.6)	28.2 (3.5-230.3)		
Gerag	mmol/L (median, IQR)					Statistical software: SPSS 20.0
hty et al.	Early pregnancy (n=284)	4.58 (3.87-5.39)	0.64(0.46-0.97)	3.31(2.66-3.94)	1.31(0.80-1.35)	—	
2016	Late pregnancy (n=293)	6.02(5.00-6.87)	0.85(0.54-1.13)	4.15(3.43-5.06)	1.71(1.28-2.19)	—	
	Early pregnancy						×:p>0.1, statistically insignificant;

Study			Maternal lipids			
ID	ТС	HDL-C	LDL-C	TG	FFAs	— Statistical Methods
Birth weight	×	×	×	×	—	$\sqrt{p<0.1}$, statistically significant
Sum of skinfold	×	×	×	\checkmark	—	Pearson correlation was used, and Spearman's correlation for
2 year weight centile		×	×	×	—	the nonparametric data to individually measure the
2 years old waist: length ratio	×	\checkmark	×	×	—	correlation between each blood lipid (in early and late pregnancy and cord blood), HOMA, C-peptide and leptin concentration and each of the anthropometric measures of
2 years old sum of skinfold	×	×	\checkmark	×	—	child weight and adiposity (at birth, 6 months and 2 years of age).
Late pregnancy						Bivariate associations at a significance of $P < 0.1$ were
Birth weight	×	×	×		—	considered significant
Sum of skinfold	×	\checkmark	×		—	
2 year weight centile		×			—	
2 years old waist: length ratio	×	\checkmark	×	×	—	
2 years old sum of skinfold	×	×	×	×	—	
Birthweight (g) (β, p, 95%CI)	ND	ND	ND	β=111.17 p=0.034 (8.48, 213.87)	_	Multiple regression model controlling for confounders (at birth: mother's BMI, gestational age, infant gender, mother's education and smoking status, and at 6-month and 2-years:
Birthweight centile	×	×	×		_	infant gender, age at data collection, mother's education
2 years old weight	×	×	×	×		status and breastfeeding), outcomes associated with maternal
Subgroup analyses_ la	ate pregnancy (r^2)	, <i>p</i>)				blood parameters were birth weight, birth weight centile, and
Birthweight (BMI< 25kg/m ²)	ND	ND	ND	R ² =0.0003, p=0.92	—	weight at 6 months. The final multiple linear regression models that were statistically significant ($P < 0.05$) were reported as the best
Birthweight (BMI≥25kg/m ²)	ND	ND	ND	R ² =0.08, P=0.008	—	predictors of infant weight and adiposity.
<u>Birthweight(g) (β,95%</u>	<u>%CI)</u>					Data were provided by authors through email.
Early pregnancy	27.87 (-17.89,73.63)	-1236.25 (-3322.95, 850.45)	18.39 (-38.44, 75.21)	ND	—	Multiple regression model (controlling for mother's BMI, gestational age, infant gender, mother's education and
Late pregnancy	24.85 (-9.39, 59.09)	30.00 (-114.85, 174.84)	19.97 (-24.34, 64.27)	111.18 (8.48, 213.87)	—	smoking status)
<u>Sum of skinfolds (β,95</u>	<u> %CI)</u>					
Early pregnancy	0.23 (-0.96, 1.41)	-1.59 (-5.68, 2.51)	0.19 (-1.19, 1.56)	ND	—	
Late pregnancy	0.61 (-0.49, 1.71)	-0.16 (-4.24, 3.92)	0.46 (-0.74, 1.66)	ND	—	
Weight at 2 years(kg)	<u>(β,95%CI)</u>					Multiple regression model (controlling for infant gender, age

Obesity Reviews

Study				Maternal lipids			Statistical Mathada
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Statistical Methods
	Early pregnancy	0.15 (-0.14, 0.44)	0.24 (-0.82, 1.29)	0.12 (-0.23, 0.47)	0.71 (-0.06, 1.48)		at data collection, mother's education status and breastfeeding)
	Late pregnancy	0.23 (-0.02, 0.48)	0.16 (-0.77, 1.09)	0.27 (-0.05, 0.58)	0.47 (-0.05, 0.99)		
Jin et	mmol/L (median, IQR	.)					Statistical software: SPSS 19.0
al.	1 st (7-10 weeks)	3.95 (3.66-4.60)	1.66 (1.45-1.77)	2.25 (2.08-2.45)	2.20 (1.77-2.73)		P values < 0.05 were defined as statistically significant.
2016	2 nd (21-24 weeks)	4.65 (4.22-5.10)	1.67 (1.47-1.79)	2.46 (2.22-2.77)	2.45 (2.11-2.89)		
	3 rd (33-37 weeks)	6.27 (5.52-7.03)	1.80 (1.57-2.04)	2.87 (2.32-3.45)	3.06 (2.37-3.98)	—	
	1st trimester (Adjusted	OR, 95%CI, p)					-
	SGA	ND	1.31 (0.32-5.38) P=0.709	ND	ND		Forward stepwise logistic regression analysis.
	Macrosomia	ND	0.51 (0.19-1.36) P=0.178	ND	ND		Odds ratios were adjusted for maternal age, prepregnancy BMI, gestational weight gain, parity, maternal education
	2 nd trimester (Adjusted	d OR, 95%CI, p)					background, family income and cigarette exposure. Values of
	SGA	ND	1.88 (0.47-7.59) P=0.377	ND	ND		macrosomia and SGA were additionally corrected for delivery mode and infant sex.
	Macrosomia	ND	0.25 (0.09-0.73) P=0.011	ND	ND		
	3 rd trimester (Adjusted	l OR, 95%CI, p)					
	SGA	1.12 (0.80-1.56) P=0.520	3.15 (1.15-8.65) P=0.026	1.16 (0.71-1.89) P=0.565	0.63 (0.40-0.99) P=0.046	91	Odds ratios were adjusted for maternal age, prepregnancy BMI, gestational weight gain, parity, maternal education
	LGA	0.98 (0.86-1.11) P=0.715	0.79 (0.52-1.21) P=0.281	0.93 (0.78-1.11) P=0.418	1.13 (1.02-1.26) P=0.025	40	background, family income and cigarette exposure. Values of PTB, SGA, LGA and macrosomia were additionally
	Macrosomia	0.99 (0.81-1.21) P=0.903	0.46 (0.22-0.94) P=0.034	0.93 (0.69-1.25) P=0.621	1.19 (1.02-1.39) P=0.024	_	corrected for delivery mode and infant sex.
Tian et	OR (95%CI)				$\geq 2.27 mmol/L$		No statement on statistic software and method.
al. 2013	Macrosomia	—	—	—	2.20 (1.54-3.14)	—	
Couch et al. 1998	In control group, mate In control group, mate significantly correlated In GDM group, mater	rnal plasma TG is rnal HDL-C signi d with cord vein F nal TC significant	s positively assoc ificantly correlate FFAs (r=0.47, p≤0 tly correlated with	iated with birthwe d with cord vein 7).05). 1 cord vein VLDI	eight (r=0.46,p≤0.0 ГС (r=0.51,p≤0.05) ∠+LDL-C (r=0.48,	5)). Maternal TG p≤0.05).	Software: Statistical Analysis Systems Program Pearson correlation analyses
Ortega	0 17	TČ	HDL-C	LDL-C	TG	VLDL-C	Statistical software: No statement
et al. 1996	mmol/L ($\bar{x} \pm SD$) Newborn lipids (r. n)	6.82±1.16	1.62±0.34	4.07±1.07	2.43±0.83	1.11±0.38	P<0.05 were considered to indicate statistical significance.
	TC	0.3298, p<0.05	ND	0.3204, p<0.05	ND	ND	Spearman's rank correlation
	HDL-C	0.2575, p<0.05	ND	ND	ND	ND	-r
		, r	_	_			

				Maternal lipids			- Statistical Mathods			
ID		ТС	HDL-C	LDL-C	TG	FFAs	- Staustical Methods			
	LDL-C	0.3053, p<0.05	ND	0.3507, p<0.05	ND	ND				
	TG	ND	ND	ND	ND	ND				
	VLDL-C	ND	ND	ND	ND	ND				
	mmol/L	Maternal TC< (n=2	<7.55 mmol/L 215)	Maternal TC≥ (n=	≥7.55 mmol/L :77)	р	Student t test.			
	TC($\bar{x} \pm SD$)	1.65±	±0.47	2.10=	±0.54	< 0.05				
	HDL-C($\bar{x} \pm SD$)	0.63±	±0.25	0.75	±0.21	< 0.05				
	LDL-C($\bar{x} \pm SD$)	0.78±	±0.36	1.14	±0.40	< 0.05				
	$TG(\bar{x} \pm SD)$	0.48±	±0.22	0.45	±0.20	>0.05				
	VLDL-C($\bar{x} \pm SD$)	0.22±	±0.10	0.21	±0.09	>0.05				
	TC/HDL-C($\bar{x} \pm SD$)	2.62±	±0.40	2.81	±0.35	< 0.05				
	Birthweight (g, $\overline{x} \pm SD$)	3301.5	±406.6	3234.5	±411.5	>0.05				
a, et al.	is significant associated	ed with cord blood	TG respectively	p_{1} , p_{2} , p_{2} , p_{2} , p_{3} , p_{1} , p_{2} , p_{3} , p	erides measured in prelation was observed	the 2^{nd} the 2^{nd}	Pearson linear correlation.			
a, et al. 1995 Brocke rhoff	is significant associate trimester is correlated boys. r, p Cord blood TC	ed with cord blood with cord blood T	TG respectively CC level (r=0.80, HDL 0.484	6, p=0.0138) and . 7. Maternal triglyco p=0.0315). No co LDL 0.082	erides measured in rrelation was obse VLDL 0.828, P<0.01	the 2 nd rved among	Pearson linear correlation. No statement on statistic methods.			
a, et al. 1995 Brocke rhoff 1986	is significant associate trimester is correlated boys. r, p Cord blood TC Cord blood TG	ed with cord blood T	HT the 1 ⁻⁴ (1=-0.8 HTG respectively FC level (r=0.80, HDL 0.484 0.063	6, p=0.0138) and . 7. Maternal triglyco p=0.0315). No co LDL 0.082 0.246	VLDL 0.828, P<0.01 0.568, P<0.01	trimester the 2 nd rved among	Pearson linear correlation. No statement on statistic methods.			
a, et al. 1995 Brocke choff 1986 Robin et al. 2007	is significant associate trimester is correlated boys. r, p Cord blood TC Cord blood TG Birthweight, g	Mean(SD)	HT (I=-0.8 ITG respectively ITG level (r=0.80, HDL 0.484 0.063 Unadjusted mean difference, p	6, p=0.0138) and 2 7. Maternal triglyco p=0.0315). No co LDL 0.082 0.246 Adjusted mean difference, p	VLDL 0.828, P<0.01 0.568, P<0.01	218) trimester the 2 nd rved among	 Pearson linear correlation. No statement on statistic methods. Unadjusted mean difference was assessed using 1-wa analysis of variance, comparing low-TC or high-TC grou with mid-TC reference group. Adjusted mean difference was assessed using multivariat 			
a, et al. 1995 Brocke hoff 1986 Robin et al. 2007	is significant associate trimester is correlated boys. r, p Cord blood TC Cord blood TG Birthweight, g Mid-TC group	Mean(SD) 3484(482)	HTG respectively TG respectively TC level (r=0.80, HDL 0.484 0.063 Unadjusted mean difference, p Ref	6, p=0.0138) and . 7. Maternal triglyco p=0.0315). No co LDL 0.082 0.246 Adjusted mean difference, p Ref	 ^{2.44} (F=-0.83, p=0.0 erides measured in prelation was obse VLDL 0.828, P<0.01 0.568, P<0.01 	218) trimester the 2 nd rved among	 Pearson linear correlation. No statement on statistic methods. Unadjusted mean difference was assessed using 1-wa analysis of variance, comparing low-TC or high-TC grouwith mid-TC reference group. Adjusted mean difference was assessed using multivariar linear regression; model adjusted for infant gender, fractional statemeters. 			
a, et al. 1995 Brocke hoff 1986 Robin et al. 2007	is significant associate trimester is correlated boys. r, p Cord blood TC Cord blood TG Birthweight, g Mid-TC group Low-TC group	Mean(SD) 3484(482) 3360(442)	HTC level (r=0.80, HDL 0.484 0.063 Unadjusted mean difference, p Ref -124, 0.015	6, p=0.0138) and . 7. Maternal triglyco p=0.0315). No co LDL 0.082 0.246 Adjusted mean difference, p Ref -150, 0.001	<pre>2^{ma} (r=-0.83, p=0.0 erides measured in prelation was obse VLDL 0.828, P<0.01 0.568, P<0.01</pre>	218) trimester the 2 nd rved among	 Pearson linear correlation. No statement on statistic methods. Unadjusted mean difference was assessed using 1-wa analysis of variance, comparing low-TC or high-TC grouwith mid-TC reference group. Adjusted mean difference was assessed using multivarial linear regression; model adjusted for infant gender, fraction, week of GA within the term interval, maternal weight is pounds, maternal age group, and race in pooled analyse 			
A, et al. 1995 Brocke hoff 1986 Robin et al. 2007	is significant associate trimester is correlated boys. r, p Cord blood TC Cord blood TG Birthweight, g Mid-TC group Low-TC group High-TC group	Mean(SD) 3484(482) 3504(471)	HTC level (r=0.80, HDL 0.484 0.063 Unadjusted mean difference, p Ref -124, 0.015 +20, 0.69	6, p=0.0138) and . 7. Maternal triglyco p=0.0315). No co LDL 0.082 0.246 Adjusted mean difference, p Ref -150, 0.001 +29, 0.47	<pre>2^{ma} (r=-0.83, p=0.0 erides measured in rrelation was obse VLDL 0.828, P<0.01 0.568, P<0.01</pre>	218) trimester the 2 nd rved among	 Pearson linear correlation. No statement on statistic methods. Unadjusted mean difference was assessed using 1-wa analysis of variance, comparing low-TC or high-TC grouwith mid-TC reference group. Adjusted mean difference was assessed using multivaria linear regression; model adjusted for infant gender, fraction week of GA within the term interval, maternal weight pounds, maternal age group, and race in pooled analyse Outliers measurement were excluded from the adjusted model. 			

ND: No documented.

S6 Appendix Quality a	assessi	nent f	orm							
Study ID		Selec	ction		Compa	rability	0	Overall		
	A1	A2	A3	A4	B 1	B2	C1	C2	C3	Scor
Harmon et al.2011	0	1	1	1	0	0	0	1	1	5
Son et al.2010	0	1	1	1	0	0	0	1	1	5
Di et al.2005	0	1	1	1	0	0	0	1	1	5
Schaefer-Graf et al.2008	0	1	1	1	0	0	0	1	1	5
Slagjana et al.2014	0	1	1	1	0	0	0	1	1	5
Zhou et al.2012	0	1	1	1	0	0	0	1	1	5
Zawiejska et al.2008	0	1	1	1	0	0	0	1	1	5
Emet et al.2013	0	1	1	1	0	0	0	1	1	5
Schaefer-Graf et al.2011	0	1	1	1	0	0	0	1	1	5
Mossayebi et al.2014	0	1	1	1	0	0	0	1	1	5
Swierzewska et al.2015	0	1	1	1	0	0	0	1	1	5
Ortega et al.1996	0	1	1	1	0	0	0	1	1	5
Alberti-Fidanza et al. 1995	0	1	1	1	0	0	1	1	0	5
Charles et al. 2016	0	1	1	1	0	0	0	1	1	5
Wang et al.2015	0	1	1	1	1	0	0	1	1	6
Ahmad et al.2006	0	1	1	1	1	0	0	1	1	6
Whyte et al. 2013	0	1	1	1	0	0	1	1	1	6
Vinod et al. 2011	0	1	1	1	1	0	0	1	1	6
Olmos et al.2014	0	1	1	1	1	0	0	1	1	6
Knopp et al.1992	0	1	1	1	1	0	0	1	1	6
Nolan et al.1995	0	1	1	1	1	0	0	1	1	e
Friis et al.2012	0	1	1	1	1	0	0	1	1	6
Lei et al.2016	0	1	1	1	1	0	0	1	1	ϵ
Kitajima et al.2001	0	1	1	1	1	0	0	1	1	e
Couch et al.1998	0	1	1	1	0	0	1	1	1	e
Brockerhoff 1986	0	1	1	1	0	0	1	1	1	e
Retnakaran et al.2012	0	1	1	1	1	1	0	1	1	7
Hou et al.2014	0	1	1	1	1	1	0	1	1	7
Laleh et al.2013	0	1	1	1	1	1	0	1	1	7
Liu et al.2016	0	1	1	1	1	0	1	1	1	7
Brunner et al.2013	0	1	1	1	1	0	1	1	1	7
Knopp et al. 1985	0	1	1	1	1	0	1	1	1	7
Geraghty et al.2016	0	1	1	1	1	1	0	1	1	7
Jin et al.2016	0	1	1	1	1	1	0	1	1	7
Robin et al. 2007	0	1	1	1	- 1	1	0	1	1	7
Ye et al 2015	0	1	1	1	1	1	1	1	1	, 8
Crume et al 2015	0	1	1	1	1	1	1	1	1	8
Hwang et al 2015	0	1	1	1	1	1	1	1	1	8
Kulkarni et al 2013	1	1	1	1	0	1	1	1	1	s
Vrijkotte et al 2012	0	1	1	1	1	1	1	1	1	0 0
Kramer et al 2014	0	1	1	1	1	1	1	1	1	c
Vriikotte et al. 2014	0	1	1	1	1	1	1	1	1	0 c
Clausen et al 2005	1	1	1	1	1	1	1	1	1	8
Mathema et al 2002	1	1	1	1	1	1	1	1	1	8
Mathews et al.2003	0	1	1	1	1	1	1	1	1	8
Sommer et al.2015	1	1	1	1	1	1	1	1	1	(

S7 Appendix Data analysis for birthweight

Data summary

S7.1 Table Results summary of the association of maternal lipid levels with birthweight throughout pregnancy

Maternal lipids	Trimester	Negative associations	No direction	Positive associations	Total
	The first trimester	1	1	2(1)	4
TC	The second trimester	1	4	7(2)	12
	The third trimester	3(1)	12	8(3)	23
	The first trimester	2(1)	0	0	2
HDL-C	The second trimester	6(2)	4	1	11
	The third trimester	11(6)	6	1	18
	The first trimester	1	0	1	2
LDL-C	The second trimester	1	5	2	8
	The third trimester	2	5	7(3)	15
	The first trimester	0	1	4(3)	5
TG	The second trimester	0	2	10(8)	12
	The third trimester	3(1)	4	20(14)	27
	The first trimester	0	0	0	0
VLDL	The second trimester	0	0	0	0
	The third trimester	0	1	1	2
	The first trimester	0	1	0	1
FFAs	The second trimester	0	0	1	1
	The third trimester	0	3	4(2)	7

1. This table summarised the results distribution of studies that reported the association of maternal lipid levels with birthweight throughout pregnancy;

2. Number in this table represent the number of studies;

3. 'No direction' means that the number of studies reported statistically insignificant results without its direction, as well as the number of studies did not report their results;

4. Number in the bracket means the number of studies reported statistically significant results;

5. Abbreviation: Total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglycerides (TG) and free fatty acids (FFAs).

Obesity Reviews

Total cholesterol (TC)

S7.2 Table Results summary of the association of maternal TC level with birthweight

ID	Donulation	Countries	Sample	т:	Reported	Effect	Lower	Upper	-	Statistical	Onality	The	cont	rol o	f con	found	ling	fact	ors
ID	Population	Countries	size	1 11.	measures	size	95%CI	95%CI	р	methods	Quanty	a	b	с	d	e	f	g	h
Vinod et al.2011(1)	Normal weight	USA	65	1	Crude β	-19.33	-120.03	81.36	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	71	1	Crude β	58.00	-67.86	183.87	ND	SLR	6	×	×	×	×	×	×	×	×
Vrijkotte et al.2011	General	Netherlands	2,052	1	Crude β	11.82	-10.00	33.65	ND	Univariate analyses	8		\checkmark	×	×	×	×	\checkmark	×
Vrijkotte et al.2011	General	Netherlands	2,052	1	Adjusted β	22.67	4.00	41.33	ND	MLR	8		\checkmark	\checkmark	\checkmark	\checkmark	×	\checkmark	×
Nolan et al.1995	General	Australia	388	1	ND	ND			ND	ND	6	ND	ND	ND	ND	ND	ND	×	ND
Liu et al.2016	General	China	1,546	2	r	0.02			0.518	Partial correlation	7	×	×	×	×	×	×	×	×
Vinod et al.2011(1)	Normal weight	USA	71	2	Crude B	-50.27	-112.24	11.69	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	71	2	Crude ß	3.87	-91.02	98.75	ND	SLR	6	×	×	×	×	×	×	×	×
Mathews et al.2003	General	UK	733	2	Adjusted β	30.10	1.21	58.90	ND	MLR	8		\checkmark	×	×	×	×	\checkmark	×
Crume et al.2015	General	USA	804	2	Adjusted β	17.79	-11.82	47.39	0.200	MLR	8		\checkmark	\checkmark	×	×	×	\checkmark	×
Kulkarni et al.2013	non-GDM	India	631	2	Adjusted β	39.07	10.57	67.58	ND	MLR	8	×	\checkmark	\checkmark	\checkmark	×	×	\checkmark	×
Geraghty et al.2016	non-GDM	UK	331	2	Adjusted β	27.87	-17.89	73.63	ND	MLR	7		\checkmark	×	\checkmark	\checkmark	×	×	×
Whyte et al. 2013	General	Ireland	189	2	ND	ND			ND	ND	6	ND	ND	ND	ND	ND	ND	×	ND
Wang et al.2015	General	China	636	2	ND	ND			ND	Partial correlation	6		\checkmark	×	×	×	×	×	×
Di et al.2005	OGTT+	Italy	83	2	ND	ND			ND	ND	5	ND	ND	ND	ND	ND	ND	×	ND
Olmos et al.2014	GDM	Chile	279	2	ND	ND			ND	ND	6	ND	ND	ND	ND	ND	ND	×	ND
Mossayebi et al.2014	General	Iran	154	3	r	0.50			<0.001	Pearson correlation	5	×	×	×	×	×	×	\checkmark	×
Charles et al. 2016	General	Multiple	1062	3	r	-0.103			<0.0001	Pearson correlation	4	×	×	×	×	×	×	×	×
Ahmad et al. 2006	non-GDM	Malaysia	246	3	r	0.16			0.021	Univariate analyses	6		×	×	×	×	×	\checkmark	×
Kitajima et al.2001	OGTT +	Japan	146	3	r	0.01			0.990	SLR	6	×	×	×	×	×	×	\checkmark	×
Vinod et al.2011(1)	Normal weight	USA	69	3	Crude β	-46.40	-118.05	25.24	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	70	3	Crude β	15.47	-89.10	120.03	ND	SLR	6	×	×	×	×	×	×	×	×
Sommer et al.2015	General	Norway	699	3	Crude β	-4.20	-39.40	31.00	ND	SLR	9	×	×	×	×	×	×	\checkmark	×
Sommer et al.2015	General	Norway	699	3	Adjusted β	-6.10	-37.50	25.20	ND	MLR	9		\checkmark	\checkmark	×	×	×	\checkmark	×
Mathews et al.2003	General	UK	537	3	Adjusted β	11.10	-18.00	40.30	ND	MLR	8			×	×	×	×		×
Ye et al.2015	non-GDM	China	1,243	3	Adjusted β	9.10	-6.40	24.60	ND	MLR	8		\checkmark	\checkmark	\checkmark	\checkmark			×

ID	Dopulation	Countries	Sample True	Reported	Effect	Lower	Upper	n	Statistical	Qualiter	The	e cont	rol o	f cont	found	in <u>g</u> f	acto	ors
ID	Population	Countries	size ^{111.}	measures	size	95%CI	95%CI	р	methods	Quanty	a	b	c	d	e	f	g	h
Kulkarni et al.2013	non-GDM	India	631 3	Adjusted $\boldsymbol{\beta}$	54.34	24.85	83.88	ND	MLR	8	×	\checkmark	\checkmark	\checkmark	×	×		×
Geraghty et al.2016	non-GDM	UK	331 3	Adjusted $\boldsymbol{\beta}$	24.85	-9.39	59.09	ND	MLR	7	\checkmark	\checkmark	×	\checkmark	\checkmark	×	×	×
Couch et al.1998	General	USA	40 3	р	ND			>0.05	Pearson correlation	6	×	×	×	×	×	×	×	×
Ortega et al.1996	General	Spain	292 3	р	ND			>0.05	Student t test	5	×	×	×	×	×	×	\checkmark	×
Swierzewska et al.2015	General	Poland	136 3	р	ND			>0.05	MLR	5	ND	ND	ND	ND	ND	ND	×	ND
Emet et al.2013	General	Turkey	801 3	р	ND			0.616	Pearson correlation	5	×	×	×	×	×	×	×	×
Friis et al.2012	General	German	207 3	р	ND			>0.05	MLR	6	\checkmark	×	×	×	×	×	×	×
Retnakaran et al.2012	non-GDM	Canada	472 3	р				0.500	Analysis of variance for continuous variables	7	×	×	×	×	×	×	×	×
Schaefer-Graf et al.2011	non-GDM	German	190 3	р	ND			>0.05	Pearson correlation	5	×	×	×	×	×	×	\checkmark	×
Son et al.2010	GDM	Korea	104 3	р	ND			>0.05	ND	5	ND	ND	ND	ND	ND	ND	\checkmark	ND
Crume et al.2015	General	USA	804 3	ND	ND			ND	MLR	8	\checkmark	\checkmark		×	×	×	\checkmark	×
Slagjana et al.2014	non-GDM	Yugoslavia	200 3	ND	ND			ND	ND	5	ND	ND	ND	ND	ND	ND	×	ND
Olmos et al.2014	GDM	Chile	279 3	ND	ND			ND	ND	6	ND	ND	ND	ND	ND	ND	×	ND
Schaefer-Graf et al.2008	GDM	German	150 3	ND	ND			ND	Spearman correlation	5	×	×	×	×	×	×	×	×
Robin et al. 2007	General	American	957 2		Adjusted	MD(g)	r)	MLR	7	\checkmark	\checkmark		×	×	×	\checkmark	×
			High-TC gro Mid-TC gro	up (n=100) up(n=757)	Ref g	roup Ə	Ref g	group 47										
		_	Low-TC gro	oup(n=100)	-15	50	0.0	001										

The bold font represents statistically significant results.

r: Correlation coefficients; β : regression coefficients.

Confounding factors: a. Gestational age; b. Neonatal gender; c. Maternal age; d. Pre-pregnancy BMI; e. Gestational weight gain; f. Maternal glucose level; g. pre-term birth; h. Maternal lipid levels. Abbreviation: Trimesters(Tri.), Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Simple linear regression(SLR),

Multiple linear regression(MLR), United Kingdom(UK), Mean difference(MD), Reference(Ref).

Meta-analysis

S7.1 Figure Overall meta-analysis of crude regression coefficients for the association between maternal TC levels and birthweight throughout pregnancy

S7.2 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal TC levels and birthweight throughout pregnancy

Study or Subgroup Regr	ession coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
1.2.1 The first trimester						
Vrijkotte et al. 2011 Subtotal (95% CI)	22.67	9.52	100.0% 100.0%	22.67 [4.01, 41.33] 22.67 [4.01, 41.33]		
Heterogeneity: Not applicable						
Test for overall effect: $Z = 2.3$	38 (P = 0.02)					
1.2.2 The second trimester						
Crume et al. 2015	17.79	15.1	40.5%	17.79 [-11.81, 47.39]		-
Geraghty et al. 2016	27.87 2	3.35	16.9%	27.87 [-17.90, 73.64]		
Mathews et al. 2003	30.1 1	4.72	42.6%	30.10 [1.25, 58.95]		
Subtotal (95% CI)			100.0%	24.74 [5.91, 43.57]		
Heterogeneity: Tau ² = 0.00;	Chi ² = 0.36, df = 2 (F	P = 0.	83); l² = ()%		
Test for overall effect: $7 = 2^{6}$	58/P = 0.011					
Test for overall effect: $Z = 2.5$	58 (P = 0.01)					
Test for overall effect: Z = 2.5 1.2.3 The third trimester	58 (P = 0.01)					
Test for overall effect: Z = 2.5 1.2.3 The third trimester Geraghty et al. 2016	58 (P = 0.01) 24.85 1	17.47	11.8%	24.85 [-9.39, 59.09]		
Test for overall effect: Z = 2. 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003	58 (P = 0.01) 24.85 1 11.1 1	L7.47 L4.87	11.8% 16.3%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24]	_	
Test for overall effect: Z = 2. 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015	>8 (P = 0.01) 24.85 1 11.1 1 -6.1 1	L7.47 L4.87 L5.99	11.8% 16.3% 14.1%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24]		
Test for overall effect: Z = 2.5 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015	>8 (P = 0.01) 24.85 1 11.1 1 -6.1 1 9.1	17.47 14.87 15.99 7.91	11.8% 16.3% 14.1% 57.7%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60]		
Test for overall effect: Z = 2.5 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI)	>8 (P = 0.01) 24.85 1 11.1 1 -6.1 1 9.1	17.47 14.87 15.99 7.91	11.8% 16.3% 14.1% 57.7% 100.0%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.14 [-2.63, 20.92]		
Test for overall effect: Z = 2.5 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; 1	>8 (P = 0.01) 24.85 1 11.1 1 -6.1 1 9.1 Chi ² = 1.73, df = 3 (f	L7.47 L4.87 L5.99 7.91 P = 0.	11.8% 16.3% 14.1% 57.7% 100.0% 63); I ² = 0	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.14 [-2.63, 20.92] %		
Test for overall effect: Z = 2.5 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; F Test for overall effect: Z = 1.5	24.85 1 11.1 1 -6.1 1 9.1 Chi ² = 1.73, df = 3 (F 52 (P = 0.13)	l7.47 l4.87 l5.99 7.91 P = 0.	11.8% 16.3% 14.1% 57.7% 100.0% 63); I ² = 0	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.14 [-2.63, 20.92] %		
Test for overall effect: Z = 2.5 1.2.3 The third trimester Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI) Heterogeneity: Tau ² = 0.00; 1 Test for overall effect: Z = 1.5	24.85 1 11.1 1 -6.1 1 9.1 Chi ² = 1.73, df = 3 (f 52 (P = 0.13)	L7.47 L4.87 L5.99 7.91 P = 0.	11.8% 16.3% 14.1% 57.7% 100.0% 63); I ² = 0	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.14 [-2.63, 20.92]		

Subgroup analysis

S7.3 Figure Adjusted regression coefficient_General vs. non-GDM_the 2nd trimester_Random effect model

Study or Subgroup	Regression coefficients	SE	Weight	Regression coefficients IV, Fixed, 95% CI	Regressio IV, Fix	n coefficients ed, 95% Cl
1.9.1 General popula	tion					
Crume et al. 2015	17.79	15.1	40.5%	17.79 [-11.81, 47.39]	-	
Mathews et al. 2003 Subtotal (95% CI)	30.1	14.72	42.6% 83.1%	30.10 [1.25, 58.95] 24.10 [3.44, 44.76]		-
Heterogeneity: $Chi^2 =$	0.34, df = 1 (P = 0.56); l ²	= 0%				
Test for overall effect:	Z = 2.29 (P = 0.02)					
1.9.2 Non-GDM popu	ulation					
Geraghty et al. 2016 Subtotal (95% CI)	27.87	23.35	16.9% 16.9%	27.87 [-17.90, 73.64] 27.87 [-17.90, 73.64]	_	
Heterogeneity, Not ap	plicable					
Test for overall effect:	Z = 1.19 (P = 0.23)					
Total (95% CI)			100.0%	24.74 [5.91, 43.57]		•
Heteroaeneity. $Chi^2 =$	0.36. df = 2 (P = 0.83); $ ^2$	= 0%			⊢	
Test for overall effect:	Z = 2.58 (P = 0.01)				-100 -50	0 50 100
Test for subgroup diff	erences: Chi ² = 0.02, df = 1	1 (P = 0	.88), l ² =	0%	Negativ	e Positive

S7.4 Figure Adjusted regression coefficient_ General vs. non-GDM_ the 3rd trimester_ Random effect model

Sensitivity analysis

S7.5 Figure Adjusted regression coe	efficients_ exclude studies	control for pre-pregnancy	BMI or gestational weight gain
	Reare	ession coefficient	Regression coefficient

				Regression coefficient	Regression	coentcient
Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI
1.2.1 The first trime	ster					
Vrijkotte et al. 2011 Subtotal (95% CI)	22.67	9.52	0.0%	22.67 [4.01, 41.33] Not estimable		
Heterogeneity: Not ap	plicable					
Test for overall effect:	Not applicable					
1.2.2 The second tri	mester					
Crume et al. 2015	17.79	15.1	48.7%	17.79 [-11.81, 47.39]		
Geraghty et al. 2016	27.87	23.35	0.0%	27.87 [-17.90, 73.64]		
Mathews et al. 2003	30.1	14.72	51.3%	30.10 [1.25, 58.95]		_
Subtotal (95% CI)			100.0%	24.10 [3.44, 44.76]		
Heterogeneity: Tau ² =	= 0.00; Chi ² = 0.34, df = 1	(P = 0)	56); l ² =	0%		
Fest for overall effect:	Z = 2.29 (P = 0.02)					
1.2.3 The third trime	ester					
Geraghty et al. 2016	24.85	17.47	0.0%	24.85 [-9.39, 59.09]		
Mathews et al. 2003	11.1	14.87	53.6%	11.10 [-18.04, 40.24]		
Sommer et al. 2015	-6.1	15.99	46.4%	-6.10 [-37.44, 25.24]		<u> </u>
Ye et al. 2015	9.1	7.91	0.0%	9.10 [-6.40, 24.60]		
Subtotal (95% CI)			100.0%	3.12 [-18.22, 24.47]		
Heterogeneity: Tau ² =	= 0.00; Chi ² = 0.62, df = 1	(P = 0)	43); l ² =	0%		
Test for overall effect:	Z = 0.29 (P = 0.77)					
	• •••••					
						<u> </u>
					-100 -50	0 5 Decitive
T		1 (D	0 0 7 12	47.00/	Negative	Positive

Test for subgroup differences: $Chi^2 = 1.92$, df = 1 (P = 0.17), $I^2 = 47.8\%$

S7.6 Figure Adjusted regression coefficients_exclude studies control for maternal glucose level

				Regression coefficient	Regression coefficient
Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 The first trimes	ster				
Vrijkotte et al. 2011 Subtotal (95% CI)	22.67	9.52	100.0% 100.0%	22.67 [4.01, 41.33] 22.67 [4.01, 41.33]	
Heterogeneity. Not ap	plicable				
Test for overall effect:	Z = 2.38 (P = 0.02)				
1.2.2 The second trir	nester				
Crume et al. 2015	17.79	15.1	40.5%	17.79 [-11.81, 47.39]	
Geraghty et al. 2016	27.87	23.35	16.9%	27.87 [-17.90, 73.64]	
Mathews et al. 2003	30.1	14.72	42.6%	30.10 [1.25, 58.95]	
Subtatal (05% CI)			100.0%	24.74 [5.91, 43.57]	
Subtotal (95% CI)		~~ ~	oo. 17		-
Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01)	(P = 0.	83); l ² =	0%	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime	0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01)	(P = 0.	83); l ² = 1	0%	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016	: 0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01) :ster 24.85	(P = 0.	83); ² = 1 28.0%	24.85 [-9.39, 59.09]	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003	2 0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01) (ster) 24.85 11.1	(P = 0. 17.47 14.87	83); I ² = 1 28.0% 38.6%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24]	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015	2 0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01) ester 24.85 11.1 -6.1	(P = 0. 17.47 14.87 15.99	83); I ² = 1 28.0% 38.6% 33.4%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24]	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015	2 0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01) ester 24.85 11.1 -6.1 9.1	(P = 0. 17.47 14.87 15.99 7.91	83); I ² = 0 28.0% 38.6% 33.4% 0.0%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60]	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI)	0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01) ester 24.85 11.1 -6.1 9.1	(P = 0. 17.47 14.87 15.99 7.91	83); I ² = 0 28.0% 38.6% 33.4% 0.0% 100.0%	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.20 [-8.91, 27.31]	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI) Heterogeneity: Tau ² =	<pre>0.00; Chi² = 0.36, df = 2 Z = 2.58 (P = 0.01) ster 24.85 11.1 -6.1 9.1 0.00; Chi² = 1.73, df = 2</pre>	(P = 0. 17.47 14.87 15.99 7.91 (P = 0.	83); ² = 0 28.0% 38.6% 33.4% 0.0% 100.0% 42); ² = 0	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.20 [-8.91, 27.31] 0%	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	2 = 2.58 (P = 0.36, df = 2 $2 = 2.58 (P = 0.01)$ ester 24.85 11.1 -6.1 9.1 $20.00; Chi2 = 1.73, df = 2$ $2 = 1.00 (P = 0.32)$	(P = 0. 17.47 14.87 15.99 7.91 (P = 0.	83); ² = 1 28.0% 38.6% 33.4% 0.0% 100.0% 42); ² = 1	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.20 [-8.91, 27.31] 0%	
Heterogeneity: Tau ² = Test for overall effect: 1.2.3 The third trime Geraghty et al. 2016 Mathews et al. 2003 Sommer et al. 2015 Ye et al. 2015 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	2 0.00; Chi ² = 0.36, df = 2 Z = 2.58 (P = 0.01) ester 24.85 11.1 -6.1 9.1 0.00; Chi ² = 1.73, df = 2 Z = 1.00 (P = 0.32)	(P = 0. 17.47 14.87 15.99 7.91 (P = 0.	83); 1 ² = 1 28.0% 38.6% 33.4% 0.0% 100.0% 42); 1 ² = 1	24.85 [-9.39, 59.09] 11.10 [-18.04, 40.24] -6.10 [-37.44, 25.24] 9.10 [-6.40, 24.60] 9.20 [-8.91, 27.31] 0%	

S7.7 Figure Crude regression coefficients_exclude studies control for pre-term birth

Test for subgroup differences: $Chi^2 = 0.90$, df = 2 (P = 0.64), $l^2 = 0\%$

S7.8 Figure Adjusted regression coefficients_exclude studies that did not control for pre-term birth

	5 00			Regression coefficient	Regression coefficient
Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
1.2.1 The first trimes	ter				
Vrijkotte et al. 2011	22.67	9.52	0.0%	22.67 [4.01, 41.33]	
Subtotal (95% CI)				Not estimable	
Heterogeneity: Not app	olicable				
Test for overall effect:	Not applicable				
1.2.2 The second trim	nester				
Crume et al. 2015	17.79	15.1	48.7%	17.79 [-11.81, 47.39]	
Geraghty et al. 2016	27.87	23.35	0.0%	27.87 [-17.90, 73.64]	
Mathews et al. 2003	30.1	14.72	51.3%	30.10 [1.25, 58.95]	
Subtotal (95% CI)			100.0%	24.10 [3.44, 44.76]	-
Heterogeneity: Tau ² =	0.00; Chi ² = 0.34 , df = 1	(P = 0.	56); I ² = 1	0%	
Test for overall effect:	Z = 2.29 (P = 0.02)				
1.2.3 The third trimes	ster				
Geraghty et al. 2016	24.85	17.47	0.0%	24.85 [-9.39, 59.09]	
Mathews et al. 2003	11.1	14.87	18.5%	11.10 [-18.04, 40.24]	
Sommer et al. 2015	-6.1	15.99	16.0%	-6.10 [-37.44, 25.24]	
Ye et al. 2015	9.1	7.91	65.5%	9.10 [-6.40, 24.60]	+=-
Subtotal (95% CI)			100.0%	7.04 [-5.51, 19.58]	★
Heterogeneity: Tau ² =	0.00; $Chi^2 = 0.82$, $df = 2$	(P = 0.	бб); I ² = I	0%	
Test for overall effect:	Z = 1.10 (P = 0.27)				
					+ ++
					-100 -50 0 50
Test for subgroup diffe	erences: Chi ² = 1.92, df =	1 (P =	0.17), l ² =	= 47.8%	Negative Positive

Obesity Reviews

High-Density lipoprotein Cholesterol (HDL-C)

S7.3 Table Results summary of the association of maternal HDL-C level with birthweight

ID	Population	Countries	Sample Tri.	Reported	Effect	Lower	Upper	р	Statistical	Quality	Th	e co	ntrol	of co	nfou	nding	g fact	tors
	1 1		size	measures	size	95%CI	95%CI	ND	methods		a	b	C	d	e	f	g	h
Vinod et al. $2011(1)$	normal weight	USA	65 1	Crude B	-81.21	-300.02	137.61	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	71 1	Crude β	-309.36	-603.69	-15.03	ND	SLR	6	×	×	×	×	×	×	×	×
Wang et al.2015	General	China	636 2	r	-0.12		0).010	Partial correlation	6	V	V	×	×	×	×	×	×
Liu et al.2016	General	China	1,546 2	r	-0.01		C	0.701	Partial correlation	7	×	×	×	×	×	×	×	×
Vinod et al.2011(1)	Normal weight	USA	71 2	Crude β	-158.55	-340.57	23.48	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	71 2	Crude β	-286.16	-545.63	-26.68	ND	SLR	6	×	×	×	×	×	×	×	×
Crume et al.2015	General	USA	804 2	Adjusted β	-20.88	-109.69	67.930).600	MLR	8				×	×	×		×
Kulkarni et al.2013	non-GDM	India	631 2	Adjusted β	17.57	-11.64	46.77	ND	MLR	8	×				×	×		×
Geraghty et al.2016	non-GDM	UK	331 2	Adjusted β	-1236.25	-3322.95	850.45	ND	MLR	7	\checkmark	\checkmark	×		\checkmark	×	×	×
Whyte et al. 2013	General	Ireland	189 2	ND	ND			ND	ND	6	ND	ND	ND	ND	ND	ND	×	ND
Di et al.2005	OGTT+	Italy	83 2	ND	ND			ND	ND	5	ND	ND	ND	ND	ND	ND	×	ND
Zawiejska et al. 2008	GDM	Poland	357 2	ND	ND			ND	ND	5	ND	ND	ND	ND	ND	ND	×	ND
Olmos et al.2014	GDM	Chile	279 2	ND	ND			ND	ND	6	ND	ND	ND	ND	ND	ND	×	ND
Knopp et al. 1985	General	USA	248 3	r	-0.06		>	>0.05	Spearman correlation	7			×	×	×	×		×
Mossayebi et al.2014	General	Iran	154 3	r	-0.47		<	<0.00	Pearson correlation	5	×	×	×	×	×	×		×
Charles et al. 2016	General	Multiple	1062 3	r	-0.139		<	<0.00	Pearson correlation	4	×	×	×	×	×	×	×	×
Vinod et al.2011(1)	Normal weight	USA	69 3	Crude β	-139.21	-332.85	54.43	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	70 3	Crude β	-386.70	-681.03	-92.37	ND	SLR	6	×	×	×	×	×	×	×	×
Sommer et al.2015	General	Norway	699 3	Crude β	-98.90	-188.10	-9.60	ND	SLR	9	×	×	×	×	×	×		×
Retnakaran et al.2012	non-GDM	Canada	472 3	Crude β	-120.54	-244.42	3.35	ND	SLR	7	×	×	×	×	×	×		×
Sommer et al.2015	General	Norway	699 3	Adjusted β	-105.40	-183.80	-27.00	ND	MLR	9				×	×	×		×
Friis et al.2012	General	German	207 3	Adjusted β	-170.00	-329.00	-9.000).040	MLR	6		×	×	×	×	×	×	×
Crume et al.2015	General	USA	804 3	Adjusted β	-43.31	-128.33	41.710).300	MLR	8				×	×	×		×
Retnakaran et al.2012	non-GDM	Canada	472 3	Adjusted β	-57.16	-189.42	75.09	ND	MLR	7								
Kulkarni et al.2013	non-GDM	India	631 3	Adjusted β	-8.89	-38.72	20.95	ND	MLR	8	×				×	×		×
le et al.2015	non-GDM	China	1,243 3	Adjusted β	-69.50	-110.00	-28.20	ND	MLR	8								×
Geraghty et al.2016	non-GDM	UK	331 3	Adjusted β	30.00	-114.85	174.84	ND	MLR	7			×			×	×	×
Emet et al.2013	General	Turkey	801 3	n	ND		0).754	Pearson correlation	5	×	×	×	×	×	×	×	×
Couch et al. 1998	General	USA	40 3	p	ND		>	>0.05	Pearson correlation	6	×	×	×	×	×	×	×	×
Swierzewska et	General	Poland	136 3	p	ND		>	>0.05	MLR	5	ND	ND	ND	ND	ND	ND	×	ND
Son et al.2010	CDM	Vana	104 2	r	ND			0.05	ND	5	ND	ND	ND	ND	ND	ND		ND
· · · · · · · · · · · · · · · · · · ·	GDM	Korea	104 5	D				20.0.1		. /				- · · ·	- · · ·	- · · ·		
Slagiana et al.2014	non-GDM	Yugoslavia	200 3	P ND	ND		/	>0.05 ND	ND	5	ND	ND	ND	ND	ND	ND	×	ND

The bold font represents statistically significant results. r: Correlation coefficients; β: regression coefficients.

Confounding factors: a. Gestational age; b. Neonatal gender; c. Maternal age; d. Pre-pregnancy BMI; e. Gestational weight gain; f. Maternal glucose level; g. pre-term birth; h. Maternal lipid levels. Abbreviation: Trimesters(Tri.), Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Simple linear regression(SLR), Multiple linear regression(MLR), United Kingdom(UK).

Meta-analysis

S7.9 Figure Overall meta-analysis of crude regression coefficients for the association between maternal HDL-C levels and birthweight throughout pregnancy

S7.10 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal HDL-C levels and birthweight throughout pregnancy

Study or Subgroup	Pagrossion coefficient	SE.	Woight	Regression coefficient	I	Regression coe	efficient
1 4 2 The second trime	ester	36	weight	IV, Kalidolli, 55% CI		IV, Kanuoni, s	93/0 CI
Crume et al. 2015 Geraghty et al. 2016 Subtotal (95% CI)	-20.88 -1,236.25	45.31 1,064.64	88.3% 11.7% 100.0%	-20.88 [-109.69, 67.93] -1236.25 [-3322.91, 850.41] -163.11 [-928.83, 602.61]	·		_
Heterogeneity: $Tau^2 = 1$ Test for overall effect: Z	170806.46; Chi ² = 1.30, df 2 = 0.42 (P = 0.68)	7 = 1 (P = 0	0.25); I ² =	23%			
1.4.3 The third trimes	ter						
Ye et al. 2015	-69.5	20.87	57.3%	-69.50 [-110.40, -28.60]		_ 	
Crume et al. 2015	-43.31	43.38	13.3%	-43.31 [-128.33, 41.71]	-		-
Retnakaran et al. 2012	-57.16	67.48	5.5%	-57.16 [-189.42, 75.10]			
Sommer et al. 2015	-105.4	40	15.6%	-105.40 [-183.80, -27.00]			
Friis et al. 2012	-170	81.63	3.7%	-170.00 [-329.99, -10.01]	←		
Geraghty et al. 2016 Subtotal (95% CI)	30	73.9	4.6% 100.0%	30.00 [-114.84, 174.84] - 70.17 [-101.14, -39.20]		•	
Heterogeneity: $Tau^2 = 0$ Test for overall effect: Z	0.00; Chi ² = 4.53, df = 5 (F 2 = 4.44 (P < 0.00001)	9 = 0.48); l ⁱ	2 = 0%			-	
					-200 -	-100 0	100
Test for subgroup differ	randos: Chi ² – 0.06. df – 1.	/P = 0.91)	12 - 0%			Negative Po	sitive

Subgroup analysis

S7.11 Figure Adjusted regression coefficient_ General vs. non-GDM_ the 3rd trimester_ Random effect model

Study or Subaroup	Regression coefficients	SE	Weight	Regression coefficients IV. Random, 95% CI	Regression coefficients IV. Random, 95% CI
1.13.1 General popula	ation	52	neight		
Crume et al. 2015	-43.31	43.38	13.3%	-43.31 [-128.33, 41.71]	-
Sommer et al. 2015	-105.4	40	15.6%	-105.40 [-183.80, -27.00]	
Friis et al. 2012	-170	81.63	3.7%	-170.00 [-329.9910.01]	·
Subtotal (95% CI)			32.6%	-88.50 [-147.30, -29.69]	•
Heterogeneity: Tau ² =	335.07; Chi ² = 2.26, df = 2	(P = 0.3)	(2); $ ^2 = 1$	1%	-
Test for overall effect:)	Z = 2.95 (P = 0.003)		., -		
Ye et al. 2015 Retnakaran et al. 2012 Geraghty et al. 2016 Subtotal (95% CI)	-69.5 -57.16 30	20.87 67.48 73.9	57.3% 5.5% 4.6% 67.4%	-69.50 [-110.40, -28.60] -57.16 [-189.42, 75.10] 30.00 [-114.84, 174.84] - 61.74 [-99.47, -24.02]	_ - ►
Heterogeneity: Tau ² =	0.00; Chi ² = 1.68, df = 2 (P	= 0.43)	$ ^2 = 0\%$		
Test for overall effect: 3	Z = 3.21 (P = 0.001)				
Total (95% CI)			100.0%	-70.17 [-101.14, -39.20]	◆
Heterogeneity: Tau ² =	0.00; Chi ² = 4.53, df = 5 (P	= 0.48)	$ ^2 = 0\%$		
Test for overall effect: 2	Z = 4.44 (P < 0.00001)				-200 -100 0 100 200 Negative Positive
Test for subgroup diffe	rences: $Chi^2 = 0.56$, df = 1 (P = 0.43	5), l ² = 09	*	Negative Positive

Sensitivity analysis

S7.12 Figure Adjusted regression coefficients_ exclude studies control for pre-pregnancy BMI or gestational weight gain

Study or Subaroup	Regression coefficient	SE	Weight	Regression coefficient IV. Random, 95% CI	Regression coefficient
1.4.2 The second trime	ster	52	weight		
Crume et al. 2015	-20.88	45 31	100.0%	-20 88 [-109 69 67 93]	
Geraghty et al. 2016 Subtotal (95% CI)	-1,236.25	1,064.64	0.0% 100.0%	-1236.25 [-3322.91, 850.41] -20.88 [-109.69, 67.93]	
Heterogeneity: Not appli Test for overall effect: Z	icable = 0.46 (P = 0.64)				
1.4.3 The third trimest	er				
Ye et al. 2015	-69.5	20.87	0.0%	-69.50 [-110.40, -28.60]	
Crume et al. 2015	-43.31	43.38	40.6%	-43.31 [-128.33, 41.71]	_
Retnakaran et al. 2012	-57.16	67.48	0.0%	-57.16 [-189.42, 75.10]	
Sommer et al. 2015	-105.4	40	46.5%	-105.40 [-183.80, -27.00]	_
Friis et al. 2012	-170	81.63	12.9%	-170.00 [-329.99, -10.01]	<
Geraghty et al. 2016 Subtotal (95% CI)	30	73.9	0.0% 100.0%	30.00 [-114.84, 174.84] -88.50 [-147.30, -29.69]	
Heterogeneity: $Tau^2 = 3$	35.07; $Chi^2 = 2.26$, $df = 2$	2 (P = 0.32); $l^2 = 1.12$	%	
Test for overall effect: Z	= 2.95 (P = 0.003)				
					-200 -100 0 100
					Negative Positive

Test for subgroup differences: Chi² = 1.55, df = 1 (P = 0.21), I² = 35.4%

S7.13 Figure Adjusted regression coefficients_ exclude studies control for maternal glucose level

				Regression coefficient		Regression coefficient
Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI		IV, Random, 95% CI
1.4.2 The second trime	ester					
Crume et al. 2015	-20.88	45.31	88.3%	-20.88 [-109.69, 67.93]		
Geraghty et al. 2016	-1,236.25	1,064.64	11.7%	-1236.25 [-3322.91, 850.41]	•	
Subtotal (95% CI)			100.0%	-163.11 [-928.83, 602.61]		
Heterogeneity: Tau ² = 1	.70806.46; Chi ² = 1.30, df	= 1 (P = 0)).25); I ² =	23%		
Test for overall effect: Z	= 0.42 (P = 0.68)					
1.4.3 The third trimest	er					
Ye et al. 2015	-69.5	20.87	0.0%	-69.50 [-110.40, -28.60]		
Crume et al. 2015	-43.31	43.38	30.1%	-43.31 [-128.33, 41.71]		
Retnakaran et al. 2012	-57.16	67.48	13.9%	-57.16 [-189.42, 75.10]		
Sommer et al. 2015	-105.4	40	34.3%	-105.40 [-183.80, -27.00]		•
Friis et al. 2012	-170	81.63	9.8%	-170.00 [-329.99, -10.01]	← •	
Geraghty et al. 2016	30	73.9	11.8%	30.00 [-114.84, 174.84]		
Subtotal (95% CI)			100.0%	-70.32 [-121.94, -18.69]		
Heterogeneity. $Tau^2 = 4$	I20.80; Chi ² = 4.53, df = 4	(P = 0.34)); $l^2 = 129$	6		
Test for overall effect: Z	= 2.67 (P = 0.008)					
					-200	-IUU U IUU Nagatiya Positiya
Test for subaroup differ	rences: $Chi^2 = 0.06$, $df = 1$	(P = 0.81),	$ ^2 = 0\%$			Negative Positive

S7.14 Figure Adjusted regression coefficients_ exclude studies control for pre-term birth

Obesity Reviews

Low-Density lipoprotein Cholesterol (LDL-C)

S7.4 Table Results summary of the association of maternal LDL-C level with birthweight

Ю	Population	Countries	Sample _{Tri}	Reported	Effect	Lower	Upper	n	Statistical	Quality	Th	ne con	ntro	ol of c	confo	inding	fact	ors
	ropulation	countries	size	measures	size	95%CI	95%CI	Р	methods	Quanty	Α	b	с	d	e	f	g	h
Vinod et al.2011(1)	Normal weight	USA	65 1	Crude β	-34.80	-152.92	83.32	ND	SLR	6	×	×	\times	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	71 1	Crude β	108.28	-42.76	259.31	ND	SLR	6	×	×	×	×	×	×	×	×
Liu et al.2016	General	China	1,546 2	r	-0.01			0.843	Partial correlation	7	×	×	\times	×	×	×	×	×
Vinod et al.2011(1)	Normal weight	USA	71 2	Crude β	-58.00	-133.52	17.51	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	71 2	Crude β	34.80	-83.32	152.92	ND	SLR	6	×	×	×	×	×	×	Х	×
Geraghty et al.2016	non-GDM	UK	331 2	Adjusted $\boldsymbol{\beta}$	18.39	-38.44	75.21	ND	MLR	7			×			×	×	×
Wang et al.2015	General	China	636 2	ND	ND			ND	Partial correlation	6	\checkmark		×	×	×	×	×	×
Whyte et al. 2013	General	Ireland	189 2	ND	ND			ND	ND	6	ND	ND	Ν	ND	ND	ND	×	ND
Di et al.2005	OGTT+	Italy	83 2	ND	ND			ND	ND	5	ND	ND	Ν	ND	ND	ND		ND
Olmos et al.2014	GDM	Chile	279 2	ND	ND			ND	ND	6	ND	ND	Ν	ND	ND	ND	×	ND
Knopp et al.1985	General	USA	248 3	r	0.01			>0.05	Spearman correlation	1 7	\checkmark	\checkmark	×	×	×	×		×
Mossayebi et al.2014	General	Iran	154 3	r	0.40			< 0.001	Pearson correlation	5	×	×	×	×	×	×		×
Charles et al. 2016	General	Multiple	1062 3	r	0.001			<0.000	l Pearson correlation	n 4	×	×	×	×	×	×	×	×
Retnakaran et al.2012	non-GDM	Canada	472 3	Crude β	-15.22	-55.49	25.05	ND	SLR	7	×	×	\times	×	×	×		×
Vinod et al.2011(1)	Normal weight	USA	69 3	Crude β	-50.27	-131.60	31.06	ND	SLR	6	×	×	×	×	×	×	×	×
Vinod et al.2011(2)	Overweight/obese	USA	70 3	Crude β	38.67	-79.45	156.79	ND	SLR	6	×	×	\times	×	×	×	×	×
Ye et al.2015	non-GDM	China	1,243 3	Adjusted β	35.40	10.10	60.80	ND	MLR	8	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		×
Retnakaran et al.2012	non-GDM	Canada	472 3	Adjusted β	-6.79	-46.98	33.39	ND	MLR	7				\checkmark				
Geraghty et al.2016	non-GDM	UK	331 3	Adjusted β	19.97	-24.34	64.27	ND	MLR	7	\checkmark	\checkmark	×	\checkmark	\checkmark	×	×	×
Emet et al.2013	General	Turkey	801 3	р	ND			0.440	Pearson correlation	5	×	×	×	×	×	×	×	×
Couch et al.1998	General	USA	40 3	р	ND			>0.05	Pearson correlation	6	×	×	×	×	×	×	×	×
Swierzewska et al.2015	5 General	Poland	136 3	р	ND			>0.05	MLR	5	ND	ND	Ν	ND	ND	ND	×	ND
Sommer et al.2015	General	Norway	699 3	ND	ND			ND	ND	9	ND	ND	Ν	ND	ND	ND	×	ND
Slagjana et al.2014	non-GDM	Yugoslavia	200 3	ND	ND			ND	ND	5	ND	ND	Ν	ND	ND	ND	×	ND
Son et al.2010	GDM	Korea	104 3	ND	ND			ND	ND	5	ND	ND	Ν	ND	ND	ND		ND
Olmos et al.2014	GDM	Chile	279 3	ND	ND			ND	ND	6	ND	ND	Ν	ND	ND	ND	×	ND

The bold font represents statistically significant results.

r: Correlation coefficients; β : regression coefficients.

Confounding factors: a. Gestational age; b. Neonatal gender; c. Maternal age; d. Pre-pregnancy BMI; e. Gestational weight gain; f. Maternal glucose level; g. pre-term birth; h. Maternal lipid levels. Abbreviation: Trimesters(Tri.), Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Simple linear regression(SLR), Multiple linear regression(MLR), United Kingdom(UK).

Meta-analysis

S7.15 Figure Overall meta-analysis of crude regression coefficients for the association between maternal LDL-C levels and birthweight throughout pregnancy

S7.16 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal LDL-C levels and birthweight throughout pregnancy

			F	Regression coefficient		Regression coefficien	t
1.6.2 The second trimes	Regression coefficie	nt se	vveight	IV, Random, 95% CI		IV, Kandom, 95% CI	
Gerachty et al. 2016	19.3	0 2000	0.0%	19 20 1 29 / 2 75 211			
Subtotal (95% CI)	10.5	9 20.99	0.0%	Not estimable			
Heterogeneity: Not annlic	ahle			Notesumable			
Test for overall effect: Not	applicable						
	approable						
1.6.3 The third trimester							
Ye et al. 2015	35	.4 12.93	57.1%	35.40 [10.06, 60.74]			
Retnakaran et al. 2012	-6.7	9 20.5	42.9%	-6.79 [-46.97, 33.39]			
Geraghty et al. 2016	19.9	7 22.6	0.0%	19.97 [-24.33, 64.27]			
Subtotal (95% CI)			100.0%	17.30 [-23.62, 58.23]			
Heterogeneity: Tau ² = 59	6.28; Chi² = 3.03, df = 1	(P = 0.08)); I ^z = 67%				
Test for overall effect: Z =	0.83 (P = 0.41)						
					-100	-50 0	50 10
T - 14 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						Negative Positive	
l est for subgroup differe	nces: Not applicable					2	
S7.18 Figure Adjusted	regression coefficier	its_excl	lude studi	es that did not control	for othe	er maternal lipid levels	
			I	Regression coefficient		Regression coefficien	t
Study or Subgroup	Regression coefficie	nt SE	Weight	IV, Random, 95% CI		IV, Random, 95% Cl	
1.6.2 The second trimes	ter						
Geraghty et al. 2016	18.3	9 28.99	100.0%	18.39 [-38.43, 75.21]			
Subtotal (95% CI)			100.0%	18.39 [-38.43, 75.21]			
Heterogeneity: Not applic	able						
Test for overall effect: Z =	0.63 (P = 0.53)						
4.C.2.The third trime star							
1.6.5 The third trimester	25	4 40.00	75.00	25 40 140 00 00 741			
Yeletal. 2015 Detrokeren etal. 2012	35	4 12.93 0 205	(5.3%)	35.40 [10.06, 60.74]			
Reinakaran etai. 2012 Goroabty ot ol. 2016	-0.7	9 20.0 17 00.6	0.070	-0.79[-40.97, 33.39]			
Subtotal (95% CI)	13.3	17 22.0	100.0%	31 59 [9 60 53 59]			•
Heterogeneity: $Tau^2 = 0.0$	0: Chiř = 0.35, df = 1 (P	= 0.55) [,] P	² = 0%	01100 [0100] 00100]			
Test for overall effect: 7 =	2.82 (P = 0.005)	- 0.00), 1	- 0 /0				
	2.02 () = 0.0003						
					H	<u> </u>	+
					-100	-50 U Negotivo Depitivo	50 11
Test for subgroup differe	nces: Chi ² = 0.18, df = 1	(P = 0.67	′), I² = 0%			Negative Positive	

Triglycerides (TG)

S7.5 Table Results summary of the association of maternal TG level with birthweight

ID	Population	Countries	Sample	ſri.	Reported	Effect	Lower	Upper 05% CI	р	Statistical methods	Quality_	Th	ie co	ontro	ol of fact	' con ors	foun	ding
	•		size		measures	size	95%CI	95%CI	•		c i -	a	b	c	d	e	f g	h
Nolan et al.1995	General	Australia	388	1	r	0.12			0.020	Univariate analyses	6	\checkmark	\checkmark	×	×	×	× ×	×
Vinod et al.2011(1)	Normal weight	USA	65	1	Crude β	132.86	13.11	252.62	ND	SLR	6	×	×	×	×	×	× ×	×
Vinod et al.2011(2)	Overweight/obese	USA	71	1	Crude β	124.00	-40.10	288.11	ND	SLR	6	×	×	×	×	×	× ×	×
Vrijkotte et al.2011	General	Netherlands	2,052	1	Crude β	47.14	12.42	81.87	ND	Univariate analyses	8	\checkmark	\checkmark	×	×	×	× √	×
Vrijkotte et al.2011	General	Netherlands	2,052	1	Adjusted β	86.72	56.13	117.30	ND	MLR	8	\checkmark	\checkmark				× √	×
Harmon et al.2011	non-GDM	USA	38	1	р	ND			>0.05	Pearson correlation	5	×	×	×	×	×	× ×	×
Liu et al.2016	General	China	1,546	2	r	0.10			<0.001	Partial correlation	7	×	×	×	×	×	× ×	×
Wang et al.2015	General	China	636	2	r	0.19			<0.01	Partial correlation	6	\checkmark	\checkmark	×	×	×	× ×	×
Di et al.2005	OGTT+	Italy	83	2	r	0.30			< 0.05	SLR	5	×	×	×	×	×	× ×	×
Zawiejska et al. 2008	GDM	Poland	357	2	r	0.14			<0.01	SLR	5	×	×	×	×	×	× ×	×
Vinod et al.2011(1)	Normal weight	USA	71	2	Crude β	97.43	4.29	190.57	ND	SLR	6	×	×	×	×	×	× ×	×
Vinod et al.2011(2)	Overweight/obese	USA	71	2	Crude β	132.86	4.24	261.49	ND	SLR	6	×	×	×	×	×	× ×	×
Crume et al.2015	General	USA	804	2	Adjusted β	7.97	-44.19	60.13	0.700	MLR	8	\checkmark			×	×	× √	×
Kulkarni et al.2013	non-GDM	India	631	2	Adjusted β	14.76	-13.34	42.86	ND	MLR	8	×	\checkmark		\checkmark	×	× √	×
Hwang et al.2015	non-GDM	Korea	1,011	2	Adjusted β^{\wedge}	7125.42	1693.49	12557.35	0.002	MLR	8	\checkmark			×		× ×	×
Whyte et al. 2013	General	Ireland	189	2	р	+			<0.05	SLR	6	×	×	×	×	×	× ×	×
Geraghty et al.2016	non-GDM	UK	331	2	р	ND			>0.1	MLR	7	\checkmark	\checkmark	×			× ×	×
Olmos et al.2014	GDM	Chile	279	2	ND	ND			ND	ND	6 1	NDN	NDN	ND N	ID 1	NDN	$D \times$	ND
Mossayebi et al.2014	General	Iran	154	3	r	0.68			<0.001	Pearson correlation	5	×	×	×	×	×	× √	×
Charles et al. 2016	General	Multiple	1062	3	r	-0.014			<0.000	Pearson correlation	4	×	×	×	×	×	× ×	×
Son et al.2010	GDM	Korea	104	3	r	0.17			0.070	ND	5	×	×	×	×	×	× √	×
Ahmad et al. 2006	non-GDM	Malaysia	246	3	r	0.12			0.057	Univariate analyses	6	\checkmark	×	×	×	×	× √	×
Couch et al.1998(1)	non-GDM	USA	20	3	r	0.46			< 0.05	Pearson correlation	6	×	×	×	×	×	× ×	×
Slagjana et al.2014	non-GDM	Yugoslavia	200	3	r	0.16			0.077	Correlation analysis	5	×	×	×	×	×	× ×	×
Olmos et al.2014(1) G	DM-normal weight	Chile	128	3	r	0.12			0.158	SLR	6	×	×	×	×	×	× ×	×
Olmos et al.2014(2)	GDM-overweight	Chile	105	3	r	0.42			<0.001	SLR	6	×	×	×	×	×	× ×	×
Olmos et al.2014(3)	GDM-obese	Chile	46	3	r	0.47			<0.001	SLR	6	×	×	×	×	×	× ×	×
Kitajima et al.2001	OGTT +	Japan	146	3	r	0.22			0.009	SLR	6	×	×	×	×	×	× √	×

ID	Population	Countries	Sample Tri.	Reported	Effect	Lower	Upper	р	Statistical methods (Quality _	The	cont	trol (fac	of con ctors	nfou	nding	
			size	measures	size	95%CI	95%CI				a b	с	d	e	f g	; h	
Knopp et al.1992(1)	OGTT-	USA	521 3	r	0.09			≤0.05	Spearman correlation	6	× ×	×	×	×	× ×	×	
Knopp et al.1992(2)	OGTT+ plus GDM	USA	264 3	r	0.16			≤0.01	Spearman correlation	6	× ×	×	×	×	× ×	×	
Vinod et al.2011(1)	Normal weight	USA	69 3	Crude β	79.72	-8.99	168.42	ND	SLR	6	× ×	×	×	×	× ×	×	
Vinod et al.2011(2)	Overweight/obese	USA	70 3	Crude β	168.29	52.97	283.61	ND	SLR	6	× ×	×	×	×	× ×	×	
Sommer et al.2015	General	Norway	699 3	Crude β	48.80	-14.80	112.40	ND	SLR	9	× ×	×	×	×	× N	×	
Retnakaran et al.2012	non-GDM	Canada	472 3	Crude β	61.11	-1.18	123.40	ND	SLR	7	× ×	×	×	×	× N	×	
Sommer et al.2015	General	Norway	699 3	Adjusted β	94.40	37.80	150.90	ND	MLR	9	$\sqrt{}$	\checkmark	×	×	× N	×	
Retnakaran et al.2012	non-GDM	Canada	472 3	Adjusted β	-1.59	-70.67	67.49	ND	MLR	7	$\sqrt{}$	\checkmark	\checkmark		$\sqrt{\sqrt{2}}$	/ √	
Brunner et al.2013	General	German	208_3	Adjusted β	-47.83	-138.75	43.09	>0.05	MLR	7	$\sqrt{}$	×	\checkmark		√ ×	×	
Friis et al.2012	General	German	207 3	Adjusted β	94.00	2.00	187.00	0.046	MLR	6	$\sqrt{\times}$	×	×	×	× ×	: ×	
Mossayebi et al.2014	General	Iran	154 3	Adjusted β	464.13	370.24	558.02	ND	MLR	5	× √	×	×	×	× N	×	
Crume et al.2015	General	USA	804 3	Adjusted β	17.71	-24.01	59.44	0.400	MLR	8	$\sqrt{}$	\checkmark	×	×	× N	×	
Geraghty et al.2016	non-GDM	UK	331 3	Adjusted β	111.18	8.48	213.87	ND	MLR	7	$\sqrt{}$	×	\checkmark		× ×	×	
Ye et al.2015	non-GDM	China	1,243 3	Adjusted β	25.20	7.90	42.60	ND	MLR	8	$\sqrt{}$	\checkmark	\checkmark		$\sqrt{\sqrt{2}}$	/ ×	
Kulkarni et al.2013	non-GDM	India	631 3	Adjusted β	36.27	4.32	68.23	ND	MLR	8	× √	\checkmark	\checkmark	×	× N	/ ×	
Hwang et al.2015	non-GDM	Korea	1,011 3	Adjusted β^{\wedge}	11609.12	6177.20	17041.05<	<0.000	1 MLR	8	$\sqrt{}$	\checkmark	×		× ×	×	
Swierzewska et al.2015	General	Poland	136 3	р	ND			>0.05	MLR	5 1	NDNI) ND	ND	NDN	ND ×	NE)
Emet et al.2013	General	Turkey	801 3	p¶	+			0.033	Pearson correlation	5	× ×	×	×	×	× ×	×	
Schaefer-Graf et al.2011	non-GDM	German	190 3	р	ND			>0.05	Pearson correlation	5	× ×	×	×	×	× N	×	
Couch et al.1998(2)	GDM	USA	20 3	р	ND			>0.05	Pearson correlation	6	× ×	×	×	×	× ×	×	
Schaefer-Graf et al.2008	GDM	German	150 3	р	ND			>0.05	Spearman correlation	5	× ×	×	×	×	× ×	×	

The bold font represents statistically significant results.

^ Maternal TG level was log-transformed

¶ Exposure of this study is change in maternal TG level from the first trimester to the third trimester

r: Correlation coefficients; β : regression coefficients.

Confounding factors: a. Gestational age; b. Neonatal gender; c. Maternal age; d. Pre-pregnancy BMI; e. Gestational weight gain; f. Maternal glucose level; g. pre-term birth; h. Maternal lipid levels. Abbreviation: Trimesters(Tri.), Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Simple linear regression(SLR), Multiple linear regression(MLR), United Kingdom(UK).

Meta-analysis

1 2

3 4

30

31

S7.19 Figure Overall meta-analysis of crude regression coefficients for the association between maternal TG levels and birthweight throughout pregnancy

S7.20 Figure Overall meta-analysis of adjusted regression coefficients for the association between maternal TG levels and birthweight throughout pregnancy

birinweigni inrougnoi	ui pregnancy				
				Regression coefficient	Regression coefficient
Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
1.8.1 The first trimest	er				
Vrijkotte et al. 2011	86.72	15.6	100.0%	86.72 [56.14, 117.30]	
Subtotal (95% CI)	V I- I -		100.0%	86.72 [56.14, 117.30]	
Heterogeneity. Not app					
Test for overall effect. 2	r = 5.56 (P < 0.00001)				
1.8.2 The second trim	ester				
Crume et al. 2015	7.97	26.61	100.0%	7.97 [-44.18, 60.12]	
Subtotal (95% CI)			100.0%	7.97 [-44.18, 60.12]	
Heterogeneity. Not app	licable				
Test for overall effect: Z	2 = 0.30 (P = 0.76)				
1.0.2 The shind stimes	•				
1.8.5 The third trimes	ter				
Ye et al. 2015	25.2	8.85	14.3%	25.20 [7.85, 42.55]	
Crume et al. 2015	17.71	21.29	13.8%	17.71[-24.02, 59.44]	
Kethakarah et al. 2012 Semmer et el. 2015	-1.59	35.24	12.7%	-1.59 [-70.66, 67.48]	
Summer et al. 2015 Drupper et al. 2013	94.4 47.00	28.82	11.7%	47 97 [179 75 47 00]	
Früchter et al. 2013 Früchter al. 2012	-47.83	40.59	11.7%	-47.05 [-150.75, 45.09]	
Mossavahi at al 2014	464 13	47.19	11.0%	464 13 [370 25 558 01]	
Geranhtviet al. 2016	111 18	52.4	11.5%	111 18 [8 48 213 88]	
Subtotal (95% CI)	111.10	22.1	100.0%	89.58 [18.52, 160.65]	
Heterogeneity, Tau ² = 9	9095.30: Chi ² = 93.97. df	= 7 (P <	0.0000	1): $ ^2 = 93\%$	
Test for overall effect: Z	2 = 2.47 (P = 0.01)				
	· ·				
					-200 -100 0 100 20 Negative Positive
Test for subgroup differ	rences: $Chi^2 = 6.87$, df = 2	(P = 0.0	03), l ² = 0	70.9%	negative rostive

- 57 58 59
- 60

Subgroup analysis

S7.21 Figure Adjusted regression coefficient_ General vs. non-GDM_ the 3rd trimester_ Random effect model

4	2				Regression coefficient	Regression coefficient	
5	Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
5	1.14.1 General populat	tion					
7	Crume et al. 2015	17.71	21.29	13.8%	17.71 [-24.02, 59.44]	- - -	
	Sommer et al. 2015	94.4	28.85	13.2%	94.40 [37.86, 150.94]		
3	Brunner et al. 2013	-47.83	46.39	11.7%	-47.83 [-138.75, 43.09]		
)	Friis et al. 2012	94	47.19	11.6%	94.00 [1.51, 186.49]		
10	Mossayebi et al. 2014 Subtotal (95% CI)	464.13	47.9	11.5% 61.9%	464.13 [370.25, 558.01] 122.31 [-15.77, 260.39]		
11 12	Heterogeneity: Tau ² = 2 Test for overall effect: Z	3250.17; Chi ² = 80.79, dt = 1.74 (P = 0.08)	f = 4 (P	< 0.0000	01); I ² = 95%		
13							
14	1.14.2 Non-GDM popu	lation					
-	Ye et al. 2015	25.2	8.85	14.3%	25.20 [7.85, 42.55]	-	
15	Retnakaran et al. 2012	-1.59	35.24	12.7%	-1.59 [-70.66, 67.48]	+	
6	Geraghty et al. 2016 Subsets (25% CD	111.18	52.4	11.1%	111.18 [8.48, 213.88]		
7	Subtotal (95% CI)			38.1%	29.90 [-10.34, 70.13]		
8	Heterogeneity. Lau ² = 5	78.32; Chi ² = 3.26, df = 2	2 (P = 0)	.20); 1* =	39%		
9	i est for overall effect: 2	= 1.46 (P = 0.15)					
20	Total (95% CI)			100.0%	89.58 [18.52, 160.65]	◆	
21	Heterogeneity: Tau ² = 9	095.30; Chi ² = 93.97, df	= 7 (P <	0.00003	l); I ² = 93%		
 	Test for overall effect: Z	= 2.47 (P = 0.01)				-200 0 100200 Negative Positive	
22	Test for subgroup differ	ences: Chi ² = 1.59, df <u>=</u> 1	(P = 0.2)	$(21), ^2 = 3$	37.0%	Negative Tositive	
23							
24							

Sensitivity analysis

S7.22 Figure Adjusted regression coefficients the 3rd trimester exclude studies control for pre-pregnancy BMI or gestational weight gain

28	gestational weight gain	ļ				
20					Regression coefficient	Regression coefficient
29	Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
30	Crume et al. 2015	17.71	21.29	25.9%	17.71 [-24.02, 59.44]	
31	Sommer et al. 2015	94.4	28.85	25.6%	94.40 [37.86, 150.94]	│ — -
32	Brunner et al. 2013	-47.83	46.39	0.0%	-47.83 [-138.75, 43.09]	
22	Friis et al. 2012	94	47.19	24.3%	94.00 [1.51, 186.49]	
22	Mossayebi et al. 2014	464.13	47.9	24.2%	464.13 [370.25, 558.01]	•
34	Ye et al. 2015	25.2	8.85	0.0%	25.20 [7.85, 42.55]	
35	Retnakaran et al. 2012	-1.59	35.24	0.0%	-1.59 [-70.66, 67.48]	
36	Geraghty et al. 2016	111.18	52.4	0.0%	111.18 [8.48, 213.88]	
37	Total (95% CI)			100.0%	163.95 [3.26, 324.65]	
38	Heterogeneity, Tau ² = 25	461.60: Chi ² = 72.54. df	f = 3 (P	< 0.0000	01): ² = 96% -	
39	Test for overall effect: Z =	= 2.00 (P = 0.05)			· ·	-200 -100 0 100 200 Negative Positive
40						

S7.23 Figure Adjusted regression coefficients_ the 3rd trimester_ exclude studies control for maternal glucose level

)	57.25 Figure Adjusted regression coefficients_ the 5rd interester_exclude studies control for maternal glucose level							
	Study or Subgroup	Regression coefficient	SE	Weight	Regression coefficient IV, Random, 95% CI	IV, Random, 95% CI		
	Crume et al. 2015	17.71	21.29	21.1%	17.71 [-24.02, 59.44]	-+		
	Sommer et al. 2015	94.4	28.85	20.8%	94.40 [37.86, 150.94]			
	Brunner et al. 2013	-47.83	46.39	0.0%	-47.83 [-138.75, 43.09]			
	Friis et al. 2012	94	47.19	19.5%	94.00 [1.51, 186.49]			
	Mossayebi et al. 2014	464.13	47.9	19.5%	464.13 [370.25, 558.01]		•	
	Ye et al. 2015	25.2	8.85	0.0%	25.20 [7.85, 42.55]			
	Retnakaran et al. 2012	-1.59	35.24	0.0%	-1.59 [-70.66, 67.48]			
	Geraghty et al. 2016	111.18	52.4	19.1%	111.18 [8.48, 213.88]			
	Total (95% CI)			100.0%	153.36 [19.84, 286.89]			
	Heterogeneity: Tau ² = 2 Test for overall effect: 7	1529.40; Chi ² = 72.66, dt = 2.25 (P = 0.02)	01); I ² = 94%	-200 -100 0 100 200				
	Negative Positive							

S7.24 Figure Adjusted regression coefficients_ the 3rd trimester_ exclude studies control for other maternal lipid levels

2					Regression coefficient	Regression coefficient	
3	Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
4	Crume et al. 2015	17.71	21.29	15.6%	17.71 [-24.02, 59.44]	- -	
5	Sommer et al. 2015	94.4	28.85	15.1%	94.40 [37.86, 150.94]	_	
6	Brunner et al. 2013	-47.83	46.39	13.5%	-47.83 [-138.75, 43.09]		
6	Friis et al. 2012	94	47.19	13.4%	94.00 [1.51, 186.49]		
7	Mossayebi et al. 2014	464.13	47.9	13.3%	464.13 [370.25, 558.01]		•
8	Ye et al. 2015	25.2	8.85	16.2%	25.20 [7.85, 42.55]		
9	Retnakaran et al. 2012	-1.59	35.24	0.0%	-1.59 [-70.66, 67.48]		
10	Geraghty et al. 2016	111.18	52.4	12.9%	111.18 [8.48, 213.88]		
11	Total (95% CI)			100.0%	103.46 [23.05, 183.88]		
12	Heterogeneity: Tau ² = 1	0326.69; Chi ² = 92.56, di	f = б (Р	< 0.0000	01); I ² = 94% -	- the the table sta	
12	Test for overall effect: Z	= 2.52 (P = 0.01)				-200 -100 0 100 200 Negative Resitive	
15		•				Negative Positive	
14							

S7.25 Figure Adjusted regression coefficients_ the 3rd trimester_ exclude studies control for pre-term birth

16					Regression coefficient	Regression coefficient
17	Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
10	Crume et al. 2015	17.71	21.29	0.0%	17.71 [-24.02, 59.44]	
10	Sommer et al. 2015	94.4	28.85	0.0%	94.40 [37.86, 150.94]	
19	Brunner et al. 2013	-47.83	46.39	34.3%	-47.83 [-138.75, 43.09]	
20	Friis et al. 2012	94	47.19	33.9%	94.00 [1.51, 186.49]	
21	Mossayebi et al. 2014	464.13	47.9	0.0%	464.13 [370.25, 558.01]	
 	Ye et al. 2015	25.2	8.85	0.0%	25.20 [7.85, 42.55]	
22	Retnakaran et al. 2012	-1.59	35.24	0.0%	-1.59 [-70.66, 67.48]	
23	Geraghty et al. 2016	111.18	52.4	31.8%	111.18 [8.48, 213.88]	
24						
25	Total (95% CI)			100.0%	50.87 [-49.57, 151.30]	
	Heterogeneity: Tau ² = 5!	511.94; Chi ² = 6.67, df =	2 (P =	0.04); l ² =	= 70% -	
20	Test for overall effect: Z	= 0.99 (P = 0.32)				-200 -100 0 100 200
27						Negative rostive

S7.26 Figure Adjusted regression coefficients_ the 3rd trimester_ exclude studies that did not control for gestational age

20					Regression coerricient	Regression coefficient
50	Study or Subgroup	Regression coefficient	SE	Weight	IV, Random, 95% CI	IV, Random, 95% CI
31	Crume et al. 2015	17.71	21.29	19.9%	17.71 [-24.02, 59.44]	
32	Sommer et al. 2015	94.4	28.85	15.4%	94.40 [37.86, 150.94]	
33	Brunner et al. 2013	-47.83	46.39	8.6%	-47.83 [-138.75, 43.09]	
21	Friis et al. 2012	94	47.19	8.4%	94.00 [1.51, 186.49]	
) -	Mossayebi et al. 2014	464.13	47.9	0.0%	464.13 [370.25, 558.01]	
35	Ye et al. 2015	25.2	8.85	28.1%	25.20 [7.85, 42.55]	-
36	Retnakaran et al. 2012	-1.59	35.24	12.4%	-1.59 [-70.66, 67.48]	+
37	Geraghty et al. 2016	111.18	52.4	7.2%	111.18 [8.48, 213.88]	
38	Total (95% CI)			100.0%	36 72 [5 29 68 14]	
39	Heterogeneity $T_{2} = 8$	26.05 [,] Chi ² - 12.46 df -	6 (P -	0.04):12	- 55%	\~
10	Test for overall effect: 7	= 7 79 (P = 0.07)	0() -	0.04), 1 -	- 55%	-2'00 -1'00 Ó 1Ó0 2Ó0
41	rescion over an enect. 2	- 2.25 () - 0.02)				Negative Positive
41						
42						

World Obesity Journals
Free Fatty Acids (FFAs)

S7.6 Table Results summary of the association of maternal FFAs levels with birthweight

ID	Population	Countries	Sample	Tri	Reported	Effect	Lower	Upper	n	Statistical methods (Juality	The	e con	trol o	of con	ıfouı	nding	g fact	ors	FFAs'
ID ID	ropulation	Countries	size	111.	measures	size	95%CI	95%CI	Р	Statistical methods (Quanty	a	b	c	d	e	f	g	h	unit
Harmon et al.2011	non-GDM	USA	38	1	р	ND			>0.0	5 Pearson correlation	5	×	×	×	×	×	×	×	×	$\mu Eq/L$
Crume et al.2015	General	USA	804	2	Adjusted β	0.06	-0.12	0.24	0.50	00 MLR	8		\checkmark	\checkmark	×	×	×	\checkmark	\times	mg/dL
Crume et al.2015	General	USA	804	3	Adjusted β	0.21	0.01	0.41	0.03	30 MLR	8	\checkmark		\checkmark	×	×	×	\checkmark	\times	mg/dL
Knopp et al.1985	General	USA	248	3	r	0.002			>0.0	5 Spearman correlation	7		\checkmark	×	×	×	×	\checkmark	\times	µmol/L
Kitajima et al.2001	OGTT +	Japan	146	3	r	0.03			0.73	30 SLR	6	×	×	×	×	×	×	\checkmark	\times	mEq/dL
Schaefer-Graf et al.2008	GDM	German	150	3	r	0.27			0.00	2 Spearman correlation	5	×	×	×	×	×	×	×	×	µmol/L
Couch et al.1998	General	USA	40	3	р	ND			>0.0	5 Pearson correlation	6	×	×	×	×	×	×	×	×	mg/dL
Friis et al.2012	General	German	207	3	р	ND			>0.0	05 MLR	6		×	×	×	×	×	×	×	ND
Schaefer-Graf et al.2011	non-GDM	German	190	3	р	ND			>0.0	5 Pearson correlation	5	×	×	×	×	×	×	\checkmark	×	µmol/L

The bold font represents statistically significant results.

r: Correlation coefficients; β: regression coefficients.

Confounding factors: a. Gestational age; b. Neonatal gender; c. Maternal age; d. Pre-pregnancy BMI; e. Gestational weight gain; f. Maternal glucose level; g. pre-term birth; h. Maternal lipid levels.

Abbreviation: Trimesters(Tri.), Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Simple linear regression(SLR), Multiple linear regression(MLR). revie

Very Low-density lipoprotein cholesterol (VLDL)

S7.7 Table Results summary of the association of maternal VLDL-C levels with birthweight

	ID	Demolection	C	Sample	T	Reported	Effect		0		The	contro	l of con	nfound	ing fac	tors	
	ID	Population	Countries	size	1 rimester	measures	size	p Statistical methods	Quanty-	a	b	с	d	e	f	g	h
С	ouch et al.1998	General	USA	40	3	р	ND	>0.05 Pearson correlation	6	×	×	×	×	×	×	×	×
K	nopp et al.1985	General	USA	248	3	r	0.03	>0.05 Spearman correlation	7	\checkmark	\checkmark	×	×	×	×	\checkmark	×

r: Correlation coefficients

Confounding factors: a. Gestational age; b. Neonatal gender; c. Maternal age; d. Pre-pregnancy BMI; e. Gestational weight gain; f. Maternal glucose level; g. pre-term birth; h. Maternal lipid levels. Abbreviation: Not documented(ND).

Supplementary 8 Data analysis for Large for gestational age

Total cholesterol (TC)

S8.1 Table Results summary of the association of maternal TC levels with LGA

Study ID	Population	Countries	Sample	Trimesters	Reported	Effect	Lower	Upper	p	Statistical methods (Ouality	The	e cont	trol o fac	f conf tors	oun	ding
study 12	- opulation	00000000	size		measures	s size	95%CI	95%CI	Р		Z uuiii j	a	b	c	d	e	f
Jin et al.2016	non-GDM	China	934	1	ND	ND	I		ND	ND	7	ND	ND	ND	ND	×	ND
Vrijkotte et al.2012	non-GDM	Netherlands	4,008	1	Crude OR	R 1.10	0.97	1.25	ND	Logistic regression	8	×	×	×	×	×	×
Vrijkotte et al.2012	non-GDM	Netherlands	4,008	1	Adjusted O	R 1.08	0.95	1.22	ND	MLOR	8		\checkmark	×	×	×	×
Jin et al.2016	non-GDM	China	934	2	ND	ND	1		ND	ND	7	ND	ND	ND	ND		ND
Di et al.2005	OGTT+	Italy	83	2	ND	ND)		ND	ND	5	ND	ND	ND	ND	×	ND
Mossayebi et al.2014	General	Iran	82	3	Crude OR	* 13.30	2.80	62.50	ND	Chi-squared test	5	×	×	×	×		×
Mossayebi et al.2014	General	Iran	82	3	Adjusted Ol	R* 1.10	0.20	8.10	ND	MLOR	5			×	\checkmark		\checkmark
Ye et al.2015	non-GDM	China	1,204	3	Adjusted O	R 1.04	0.94	1.15	ND	MLOR	8				\checkmark		×
Jin et al.2016	non-GDM	China	934	3	Adjusted O	R 0.98	0.81	1.11	0.715	MLOR	7				×		×
Hou et al.2014	non-GDM	China	2,790	3	Adjusted O	R¶ 1.08	0.75	1.56	ND	MLOR	7			×	×		×
Schaefer-Graf et al.2008	GDM	German	150	3	р	ND			>0.05	MLOR	5				\checkmark	×	×
Laleh et al.2013	GDM	Iran	112	3	р	ND	1		>0.05	ANCOVA	7			×	×	×	×
Kitajima et al.2001	OGTT +	Japan	146	3	ND	ND	7		ND	ND	6	ND	ND	ND	ND		ND
Retnakaran et al.2012	non-GDM	Canada	472	3	ND	ND	1		ND	ND	7	ND	ND	ND	ND		ND
Ahmad et al. 2006	non-GDM	Malaysia	246	3	ND	ND)		ND	ND	6	ND	ND	ND	ND		ND
					mmol/L	Reference	I	GA	р								
Slagjana et al.2014	non-GDM	Yugoslavia	200	3	$\bar{x}\pm SD$	6.5±1.4 (AGA)	6.0	0 ± 1.0	>0.05	5 Student t test	5	×	×	×	×	×	×
Son et al.2010	GDM	Korea	104	3	$\bar{x}\pm SD$ (5.8 ± 1.1 (non-LGA)) 5.5	5 ± 0.9	0.352	2 Student t test	5	×	×	×	×		×
Hou et al.2014	non-GDM	China	2,790	3	Median (IQR)	6.30 (AGA) (5.62, 7.10)) (5.4	5.18 9,7.04)	0.017	Mann-Whitney U test	7	×	×	×	×		×

The bold font represents statistically significant results.

* Result was calculated by comparing the highest quartile with the lowest quartile maternal TC level

¶ Result was calculated by comparing the highest tertile with the lowest tertile maternal TC level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR), Analysis of covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

3 4

23

24 25

<u>Meta-analysis</u>

S8.1 Figure Meta-analysis of adjusted odds ratio for the association between maternal TC levels and LGA

S8.2 Figure Meta-analysis for mean difference of maternal TC levels between LGA and reference groups in the third trimester

26		LGA gi	oup		Refere	nce group			Mean Difference	Mean Difference
27	Study or Subgroup	Mean [mmol/L] S	D [mmol/L]	Total	Mean [mmol/L]	SD [mmol/L]	Total	Weight	IV, Fixed, 95% CI [mmol/L]	IV, Fixed, 95% CI [mmol/L]
28	Son et al. 2010	5.5	0.9	25	5.8	1.4	79	42.0%	-0.30 [-0.73, 0.13]	
29	Total (95% CI)			75			21/	100.0%	0.42[0.69_0.14]	
30	Heterogeneity: Chi ² = 0	.49, df = 1 (P = 0.49)); I² = 0%	15			214	100.070	-0.42 [-0.00, -0.14]	
31	Test for overall effect: Z	C = 2.94 (P = 0.003)							- 1	LGA group Reference group
32										
33										
34										
35										
36										
37										
38										
39										
40										
41										
42										
43										
44										
45										
46										
47										
48										
49										
50										
51										
52										
53										
54										
55										
57										
58										
59										
60										
50										

High-density lipoprotein cholesterol (HDL-C)

	<u>S</u>	8.2	Table	Results	summary	of th	he	association	of	maternal	HD	L-C	level	s with	LC	ĴΑ
--	----------	-----	-------	---------	---------	-------	----	-------------	----	----------	----	-----	-------	--------	----	----

Study ID	Countries	Population	Sample	Trimesters	Reported	Effect	Lower	Upper	n	Statistical methods	Quality -	The c	ontrol	of con	foundi	ing fa	ctors
Study ID	countries	ropulation	size	11 mesters	measures	size	95%CI	95%CI	Р	Statistical methods	Quanty	a	b	c	d	e	f
Jin et al.2016	China	non-GDM	934	1	ND	ND			ND	ND	7	ND	ND	ND	ND	×	ND
Lei et al.2016	China	General	5,535	2	Crude OR^	0.75	0.63	0.89	ND	Logistic regression	6	×	×	×	×	×	×
Jin et al.2016	China	non-GDM	934	2	ND	ND			ND	ND	7	ND	ND	ND	ND		ND
Di et al.2005	Italy	OGTT+	83	2	ND	ND			ND	ND	5	ND	ND	ND	ND	×	ND
Mossayebi et al.2014	Iran	General	82	3	Crude OR*	0.06	0.01	0.29	ND	Chi-squared test	5	×	×	×	×		×
Retnakaran et al.2012	Canada	non-GDM	472	3	Crude OR	0.89	0.69	1.15	ND	Logistic regression	7	×	×	×	×		×
Ye et al.2015	China	non-GDM	1,204	3	Adjusted OR	0.62	0.47	0.82	ND	MLOR	8	\checkmark	\checkmark		\checkmark		×
Retnakaran et al.2012	Canada	non-GDM	472	3	Adjusted OR	0.99	0.70	1.39	ND	MLOR	7	\checkmark	\checkmark		\checkmark		\checkmark
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	0.79	0.52	1.21	0.281	MLOR	7	\checkmark	\checkmark		×		×
Mossayebi et al.2014	Iran	General	82	3	Adjusted OR	* 1.67	0.19	14.29	ND	MLOR	5	\checkmark	\checkmark	×	\checkmark		\checkmark
Hou et al.2014*	China	non-GDM	2,790	3	Adjusted OR	0.81	0.64	1.04	ND	MLOR	7	\checkmark	\checkmark	×	×		×
Laleh et al.2013	Iran	GDM	112	3	р	ND			>0.05	ANCOVA	7	\checkmark	\checkmark	×	×	×	×
					mmol/L	Reference		LGA									
Hou et al.2014	China	non-GDM	2,790	3	Median (IQR)	1.76 (AGA (1.52, 2.05))	1.70 48, 1.95)	0.00	0 Mann-Whitney U test	7	×	×	×	х	\checkmark	×
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	$\bar{x}\pm SD$ 1.	6±0.4(non-L	GA) 1	.3±0.4	0.00	1 Student t test	5	×	×	×	×	×	×
Son et al.2010	Korea	GDM	104	3	$\overline{x} \pm SD$ 1.	$7\pm0.5(\text{non-L})$	GA) 1.	$.6 \pm 0.3$	0.23	2 Student t test	5	×	×	×	×	\checkmark	×

The bold font represents statistically significant results.

^ Results was calculated with self-defined cut-off point: 1.3 mmol/L

* Result was calculated by comparing the highest quartile with the lowest quartile maternal HDL-C level

¶ Result was calculated by comparing the highest tertile with the lowest tertile maternal HDL-C level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR), Analysis of

covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

Meta-analysis

S8.3 Figure Meta-analysis of adjusted odds ratio for the association between maternal HDL-C levels and LGA in the third trimester

6					Odds Ratio		Odds Ratio)	
7	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% Cl		IV, Random, 95	% CI	
8	Jin et al. 2016	-0.2357	0.1655	32.3%	0.79 [0.57, 1.09]				
9	Retnakaran et al. 2012	-0.0101	0.1731	30.9%	0.99 [0.71, 1.39]				
10	Ye et al. 2015	-0.478	0.1426	36.7%	0.62 [0.47, 0.82]				
11 12 13 14 15	Total (95% CI) Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	3; Chi≆ = 4.42, df = 1.86 (P = 0.06)	2 (P = 0.	100.0% 11); I² = 5	0.77 [0.59, 1.01] 5%	L0.2	0.5 1 Negative Posi	2 tive	5

S8.4 Figure Meta-analysis for mean difference of maternal HDL-C levels between LGA and reference groups in the third trimester

18	trimester													
19		LGA	group		Refere	nce group			Mean Difference		Mean	Differen	ice	
12	Study or Subgroup	Mean [mmol/L]	SD [mmol/L]	Total	Mean [mmol/L]	SD [mmol/L]	Total	Weight	IV, Random, 95% CI [mmol/L]		IV, Random	, 95% CI	[mmol/L]	
20	Slagjana et al. 2014	1.3	0.4	50	1.6	0.4	135	53.0%	-0.30 [-0.43, -0.17]					
21	Son et al. 2010	1.6	0.3	25	1.7	0.5	79	47.0%	-0.10 [-0.26, 0.06]		_	₽┼		
22	Total (95% CI)			75			214	100.0%	-0.21 [-0.40, -0.01]		-	►		
22	Heterogeneity: Tau ² =	0.01; Chi ² = 3.59,	df = 1 (P = 0.08	6); I² = 7	2%					1	0.5			
25	Test for overall effect: 2	Z = 2.06 (P = 0.04))							-1	-0.0	U Dofo	0.0	
24											LGA gro	ip Relei	fence group	
25														

Sensitivity analysis

S8.5 Figure Sensitivity analysis_ Adjusted odds ratio_ Exclude study adjust for other maternal lipid levels

	8 2	2 - 3		_	J .]				
29					Odds Ratio		Odds	Ratio	
30	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Rando	m, 95% Cl	
31	Jin et al. 2016	-0.2357	0.1655	44.0%	0.79 [0.57, 1.09]			-	
32	Retnakaran et al. 2012	-0.0101	0.1731	0.0%	0.99 [0.71, 1.39]				
33	Ye et al. 2015	-0.478	0.1426	56.0%	0.62 [0.47, 0.82]				
34							-		
35	Total (95% CI)			100.0%	0.69 [0.54, 0.87]				
36	Heterogeneity: Tau ² = 0.1	01; Chi² = 1.23, df =	1 (P = 0.	.27); I² = 1	9%	0.2	0.5 1		
37	Test for overall effect: Z =	= 3.09 (P = 0.002)				0.2	Negative	Positive	0
38									
39									
40									

<u>S8.3</u>	Table Results	summary	of the	association	of maternal	LDL-C	levels	with	LGA

Standar ID	Commentarios	Donulation	Sample,	T	Reported	Effect	Lower	Upper		Statistical	Onalitar	The	contro	l of co	onfoun	ding f	factors
Study ID	Countries	Population	size	1 rimesters	measures	size	95%CI	95%CI	р	methods	Quanty	a	b	c	d	e	f
Jin et al.2016	China	non-GDM	934	1	ND	ND			ND	ND	7	ND	ND	ND	ND	×	ND
Jin et al.2016	China	non-GDM	934	2	ND	ND			ND	ND	7	ND	ND	ND	ND	\checkmark	ND
Di et al.2005	Italy	OGTT+	83	2	ND	ND			ND	ND	5	ND	ND	ND	ND	×	ND
Retnakaran et al.2012	Canada	non-GDM	472	3	Crude OR	0.80	0.61	1.05	ND	Logistic regression	n 7	×	×	×	×		×
Mossayebi et al.2014	Iran	General	82	3	Crude OR*	5.80	1.50	22.60	ND	Chi-squared test	5	×	×	×	×	\checkmark	×
Mossayebi et al.2014	Iran	General	77	3	Adjusted OR*	0.80	0.10	4.40	ND	MLOR	5	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
Hou et al.2014	China	non-GDM	2,790	3	Adjusted OR¶	0.83	0.59	1.17	ND	MLOR	7			×	×	\checkmark	×
Ye et al.2015	China	non-GDM	1,204	3	Adjusted OR	1.25	1.06	1.47	ND	MLOR	8	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	0.93	0.78	1.11	0.418	MLOR	7	\checkmark	\checkmark	\checkmark	×	\checkmark	×
Retnakaran et al.2012	Canada	non-GDM	472	3	Adjusted OR	0.98	0.72	1.34	ND	MLOR	7	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Laleh et al.2013	Iran	GDM	112	3	р	ND			>0.05	ANCOVA	7	\checkmark	\checkmark	×	×	×	×
Son et al.2010	Korea	GDM	104	3	ND	ND			ND	ND	5	ND	ND	ND	ND		ND
					mmol/L	Reference	1	LGA									
Hou et al.2014	China	non-GDM	2,790	3	Median (IQR)	3.07 (AGA (2.47, 3.74)) (2.3	2.95 0, 3.65)	0.00	3Mann-Whitney U test	7	×	×	×	×		×
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	$\bar{x}\pm SD$	3.5±1.2	3.8	8 ± 1.0	>0.0	5Student t test	5	×	×	×	×	×	×

The bold font represents statistically significant results.

* Result was calculated by comparing the highest quartile with the lowest quartile maternal LDL-C level

¶ Result was calculated by comparing the highest tertile with the lowest tertile maternal LDL-C level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR), Analysis of covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

Meta-analysis

S8.4 Figure Meta-analysis of adjusted odds ratio for the association between maternal LDL-C levels and LGA in the third trimester

6					Odds Ratio		Odds Ratio		
7	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% Cl		IV, Random, 95% Cl		
8	Jin et al. 2016	-0.0726	0.0897	37.3%	0.93 [0.78, 1.11]				
9	Retnakaran et al. 2012	-0.0202	0.1573	24.1%	0.98 [0.72, 1.33]				
10	Ye et al. 2015	0.2231	0.0841	38.5%	1.25 [1.06, 1.47]		— —		
11									
12	Total (95% CI)			100.0%	1.06 [0.86, 1.30]				
13	Heterogeneity: Tau² = 0.0	02; Chi² = 6.17, df =	2 (P = 0.	05); I² = 6	8%	0.5		5	7
14	Test for overall effect: Z =	= 0.51 (P = 0.61)				0.5	Negative Positive		2
15									

Sensitivity analysis

S8.5 Figure Sensitivity analysis _ Adjusted odds ratio _ The third trimester_ exclude studies adjust for other maternal lipid levels

20	levels							-	
21					Odds Ratio		Odds Ratio		
22	Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% Cl		
23	Jin et al. 2016	-0.0726	0.0897	49.4%	0.93 [0.78, 1.11]				
24	Retnakaran et al. 2012	-0.0202	0.1573	0.0%	0.98 [0.72, 1.33]				
25	Ye et al. 2015	0.2231	0.0841	50.6%	1.25 [1.06, 1.47]				
26									
27	Total (95% CI)			100.0%	1.08 [0.81, 1.44]				
28	Heterogeneity: Tau ² = 0.	.04; Chi ² = 5.78, df = 1	1 (P = 0.	.02); I ² = 8	3%	0.5 0.7	7 1	1.5	2
29	Test for overall effect: Z =	= 0.52 (P = 0.60)					Negative Positive		
30									
31									
32									
33									
34									
35									
36									
37									
38									
39									
40									
41									
42									
43									
44									
45									
46									
47									
48									
49 50									
50									
52									
52 53									
55									
55									
56									
57									

Triglycerides (TG)

S8.4 Table Results summary of the association of maternal TG levels with LGA

Study ID	Countries	Population	Sample	Trimostors	Reported	Effect Lo	ower	Upper	P	Statistical mathods (huality	The c	ontrol	of con	found	ing fរ	actors
Study ID	Countries	i opulation	size	11 mesters	measures	size 95	%CI	95%CI	L	Statistical methods (zuanty	a	b	c	d	e	f
Jin et al.2016	China	non-GDM	934	1	ND	ND			ND	ND	7	ND	ND	ND	ND	×	ND
Vrijkotte et al.2012	Netherlands	non-GDM	4,008	1	Adjusted OR	1.48	1.23	1.78	ND	MLOR	8			×	×	×	×
Vrijkotte et al.2012	Netherlands	non-GDM	4,008	1	Crude OR	1.44	1.20	1.71	ND	Logistic regression	8	×	×	×	×	×	×
Lei et al.2016	China	General	5,535	2	Crude OR^	1.60	1.42	2.01	ND	Logistic regression	6	×	×	×	×	×	×
Di et al.2005	Italy	OGTT+	83	2	Crude OR^	5.60	0.93	33.77	ND	Chi-squared test	5	×	×	×	×	×	×
Jin et al.2016	China	non-GDM	934	2	ND	ND			ND	ND	7	ND	ND	ND	ND		ND
Retnakaran et al.2012	Canada	non-GDM	472	3	Crude OR	1.26	0.98	1.62	ND	Logistic regression	7	×	×	×	×		×
Ahmad et al. 2006	Malaysia	non-GDM	246	5 3	Crude OR^	3.07	1.33	7.08	ND	Chi-squared test	6	×	×	×	×		×
Kitajima et al.2001	Japan	OGTT +	146	5 3	Crude OR^	14.80	1.59	137.28	0.012	Chi-squared test	6	×	×	×	×		×
Mossayebi et al.2014	Iran	General	154	3	Adjusted OR	1.04	1.02	1.05	ND	MLOR	5	\checkmark	\checkmark	×	\checkmark		\checkmark
Ye et al.2015	China	non-GDM	1,204	3	Adjusted OR	1.15	1.03	1.27	ND	MLOR	8	\checkmark	\checkmark	\checkmark	\checkmark		×
Retnakaran et al.2012	Canada	non-GDM	472	3	Adjusted OR	0.98	0.70	1.38	ND	MLOR	7	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	1.13	1.02	1.26	0.025	MLOR	7	\checkmark	\checkmark	\checkmark	×		×
Hou et al.2014	China	non-GDM	2,790) 3	Adjusted OR¶	3.30	1.18	9.27	ND	MLOR	7	\checkmark	\checkmark	×	×		×
Ahmad et al. 2006	Malaysia	non-GDM	246	5 3	Adjusted OR^	1.48	1.15	1.93	ND	MLOR	6	×	\checkmark	×	\checkmark		×
Kitajima et al.2001	Japan	OGTT +	146	i 3	Adjusted OR^	11.60	1.10	122.00	0.040	MLOR	6	×	×	×	×		×
Son et al.2010	Korea	GDM	104	3	Adjusted OR^	4.43	1.33	14.82	ND	MLOR	5	\checkmark	\checkmark	\checkmark	×		×
Schaefer-Graf et al.2008	German	GDM	150) 3	р	ND			0.040	MLOR	5	\checkmark	\checkmark	\checkmark	\checkmark	×	×
Laleh et al.2013	Iran	GDM	112	3	р	+			0.040	ANCOVA	7	\checkmark	\checkmark	×	×	×	×
					mmol/L	Reference	e	LGA									
Hou et al.2014	China	non-GDM	2,790) 3	Median (IQR)	3.02 (AGA (2.48, 3.69	A) D)	3.19 (2.61, 3.97)	0.000	Mann-Whitney U test	7	×	×	×	×		×
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	$\bar{x}\pm SD$	3.1±1.1	L	3.8±1.8	0.012	2 Student t test	5	×	×	×	×	×	×

The bold font represents statistically significant results.

^ Results was calculated with self-defined cut-off point: Lei et al.2016, 3.49 mmol/L; Di et al.2005, 2.30mmol/L; Ahmad et al. 2006, 2.78mmol/L; Kitajima et al. 2001, 2.92 mmol/L; Son et al. 2010, 3.33mmol/L. ¶ Result was calculated by comparing the highest tertile with the lowest tertile maternal TG level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR), Analysis of covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

Meta-analysis

S8.6 Figure Meta-analysis of adjusted odds ratio for the association between maternal TG levels and LGA throughout pregnancy

S8.7 Figure Forest plots of crude odds ratio for the association between maternal TG levels and LGA throughout pregnancy

			Odds Ratio		Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	IV, Fixed, 95% CI		IV, Fixed	, 95% CI	
2.8.1 The first trimester							
Vrijkotte et al. 2012	0.3646	0.093	1.44 [1.20, 1.73]			+	
2.8.2 The second trimes	ster						
Di et al. 2005	1.7228	0.916	5.60 [0.93, 33.72]		-		→
Lei et al. 2016	0.47	0.0609	1.60 [1.42, 1.80]			+	
2.8.3 The third trimester	r						
Ahmad et al. 2006	1.1217	0.4268	3.07 [1.33, 7.09]				_
Kitajima et al. 2001	2.6946	1.1382	14.80 [1.59, 137.75]				→
Retnakaran et al. 2012	0.2311	0.1282	1.26 [0.98, 1.62]			+-	
				<u> </u>		<u> </u>	
				0.05	0.2 1	5	20
					Negative	Positive	

S8.8 Figure Forest plots of adjusted odds ratio for the association between maternal TG levels and LGA throughout pregnancy

3	1 6 5			Odda Datia		Odda Datia	
4	Study or Subgroup	log[Oddo Datio]	CE.	Udds Rado		Uggs Rauo	
5 6 7	2.7.1 The first trimester Vrijkotte et al. 2012	0.392	0.0944	1.48 [1.23, 1.78]			
8 9 10 11 12 13 14 15 16 17	2.7.2 Thr third trimester Ye et al. 2015 Son et al. 2010 Retnakaran et al. 2012 Mossayebi et al. 2014 Kitajima et al. 2001 Jin et al. 2016 Hou et al. 2014 Ahmad et al. 2006	0.1398 1.4884 -0.0202 0.0392 2.451 0.1222 1.1939 0.392	0.0562 0.6139 0.1717 0.0099 1.2019 0.0523 0.5247 0.1287	1.15 [1.03, 1.28] 4.43 [1.33, 14.76] 0.98 [0.70, 1.37] 1.04 [1.02, 1.06] 11.60 [1.10, 122.32] 1.13 [1.02, 1.25] 3.30 [1.18, 9.23] 1.48 [1.15, 1.90]		+ -+ + _++	-+
18 19 20					0.1 0.2	0.5 1 2 Negative Positive	

Sensitivity ananlysis

S8.9 Figure Sensitivity analysis_ Exclude studies adjust for other maternal lipid levels

``

				Odds Ratio		Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI		IV, Random, 95% Cl
2.6.1 The first trimest	er					
Vrijkotte let al. 2012	0.392	0.0944	100.0%	1.48 [1.23, 1.78]		-
Subtotal (95% CI)			100.0%	1.48 [1.23, 1.78]		
Heterogeneity: Not app	plicable					
Test for overall effect: 2	Z = 4.15 (P < 0.0001)					
2.6.2 The third trimes	ter					
Jin et al. 2016	0.1222	0.0523	53.6%	1.13 [1.02, 1.25]		
Mossayebi et al. 2014	0.0392	0.0099	0.0%	1.04 [1.02, 1.06]		
Retnakaran et al. 2012	2 -0.0202	0.1717	0.0%	0.98 [0.70, 1.37]		
Ye et al. 2015	0.1398	0.0562	46.4%	1.15 [1.03, 1.28]		
Subtotal (95% CI)			100.0%	1.14 [1.06, 1.23]		
Heterogeneity: Tau ² = I	0.00; Chi ² = 0.05, df =	1 (P = 0)	.82); I ² = 0	%		
Test for overall effect: 2	Z = 3.41 (P = 0.0007)					
						7 1
					0.0 0.7	Negative Positive
Test for subaroup diffe	erences: Chi ² = 6.60	df = 1 (P :	= 0.01). P:	= 84 8%		Negauve FOSILive

Test for subgroup differences: Chi² = 6.60, df = 1 (P = 0.01), l² = 84.8%

Free fatty acids (FFAs)

S8.5 Table Results summary of the association of maternal FFAs levels with LGA

C4J ID	Companies	Denulation	Sample	T	Reported	Tffeed aime		Statistical	Orraliter	The c	contro	ol of c	onfour	nding f	factors	TT
Study ID	Countries	Population	size	1 rimesters	measures	Effect size	р	methods	Quanty	a	b	c	d	e	f	Unit
Schaefer-Graf et al.2008	German	GDM	150	3	р	ND	0.008	MLOR	5	\checkmark		\checkmark		×	×	µmol/L
Kitajima et al.2001	Japan	OGTT +	146	3	ND	ND	ND	ND	6	×	×	×	×	\checkmark	×	ND

For peer Review

Supplementary 9 Data analysis for Small for gestational age (SGA)

Total cholesterol (TC)

S9.1 Table Results summary of the association of maternal TC levels with SGA

Study ID	Companies	Donulotion	Sample	Tuine a stars	Reported	Effect	Lower	Upper		Statistical	Onalitar	The c	The control of confounding factors						
Study ID	Countries	Population	size	I rimesters	measures	size	95%CI	95%CI	р	methods	Quanty	a	b	с	d	e	f		
Vrijkotte et al.2012	Netherlands	non-GDM	4,008	1	Crude OR	0.97	0.85	1.10	ND	Logistic regression	8	×	×	×	×	×	×		
Vrijkotte et al.2012	Netherlands	non-GDM	4,008	1	Adjusted OR	0.98	0.86	1.12	ND	MLOR	8	\checkmark		×	×	×	×		
Jin et al.2016	China	non-GDM	934	- 1	ND	ND			ND	ND	7	ND	ND	ND	ND	\checkmark	ND		
Jin et al.2016	China	non-GDM	934	2	ND	ND			ND	ND	7	ND	ND	ND	ND	\checkmark	ND		
Ye et al.2015	China	non-GDM	912	3	Adjusted OR	0.94	0.74	1.20	ND	MLOR	8			\checkmark	\checkmark	\checkmark	×		
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	1.12	0.80	1.56	0.520	MLOR	7	\checkmark		\checkmark	×	\checkmark	×		
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	p				>0.05	Student t test	5	×	×	×	×	×	×		

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels. Abbreviation: Gestational diabetes mellitus(GDM), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR).

S9.1 Figure Meta-analysis of adjusted odds ratio for the association between maternal TC levels and SGA throughout pregnancy

-				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
4.1.1 The first trime	ester				
Vrijkotte et al. 2012	-0.0202	0.0666	100.0%	0.98 [0.86, 1.12]	
Subtotal (95% CI)			100.0%	0.98 [0.86, 1.12]	-
Heterogeneity: Not a	applicable				
Test for overall effec	t: Z = 0.30 (P = 0.76)	I			
4.1.2 The third trime	ester				_
Jin et al. 2016	-0.0619	0.1221	66.4%	0.94 [0.74, 1.19]	
Ye et al. 2015	0.1133	0.1717	33.6%	1.12 [0.80, 1.57]	
Subtotal (95% CI)			100.0%	1.00 [0.82, 1.21]	
Heterogeneity: Chi ² :	= 0.69, df = 1 (P = 0.	41); I ^z = 0)%		
Test for overall effec	t: Z = 0.03 (P = 0.98)	I			
					0.5 0.7 1 1.5
Test for subgroup di	ifferences: Chi² – 0 (12 df=1	(P = 0.89)) IZ = 0%	Negative Positive
reaction cabigroup a	1000000000000000000000000000000000000	2, ai – i	v = 0.03,	, i = 0.0	

Obesity Reviews

High-density lipoprotein cholesterol (HDL-C)

S9.2 Table Results summary of the association of maternal HDL-C levels with SGA

Study ID	Comtries	Denvelation	Sample	Tuine astans	Reported	Effect	Lower	Upper		Statistical	Oalit	The c	ontro	l of co	onfour	nding f	actors
Study ID	Countries	Population	size	1 rimesters	measures	size	95%CI	95%CI	р	methods	Quanty	a	b	c	d	e	f
Jin et al.2016	China	non-GDM	934	1	Adjusted OR	1.4	1 0.32	5.38	ND	MLOR	7			\checkmark	×		×
Lei et al.2016	China	General	5,535	2	Crude OR^	1.1.	3 0.80	1.61	ND	Logistic regression	6	×	×	×	×	×	×
Jin et al.2016	China	non-GDM	934	2	Adjusted OR	1.8	8 0.47	7.59	ND	MLOR	7	\checkmark	\checkmark	\checkmark	×	\checkmark	×
Ye et al.2015	China	non-GDM	912	3	Adjusted OR	1.5	7 0.87	2.83	ND	MLOR	8		\checkmark	\checkmark	\checkmark	\checkmark	×
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	3.1	5 1.15	8.65	0.02	6 MLOR	7			\checkmark	×	\checkmark	×
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	р				>0.0	5 Student t test	5	×	×	×	×	×	×

The bold font represents statistically significant results.

^ Results was calculated with self-defined cut-off point: 1.3 mmol/L

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR).

S9.2 Figure Meta-analysis of adjusted odds ratio for the association between maternal HDL-C levels and SGA throughout pregnancy

				Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
4.2.1 The first trimes	ster				
Jin et al. 2016	0.3436	0.7567	100.0%	1.41 [0.32, 6.21]	
Subtotal (95% CI)			100.0%	1.41 [0.32, 6.21]	
Heterogeneity: Not ap	oplicable				
Test for overall effect:	Z = 0.45 (P = 0.65)	i i			
4.2.2 The second trir	nester				
Jin et al. 2016	0.6313	0.7073	100.0%	1.88 [0.47, 7.52]	
Subtotal (95% CI)			100.0%	1.88 [0.47, 7.52]	
Heterogeneity: Not ap	oplicable				
Test for overall effect:	Z = 0.89 (P = 0.37)	1			
4.2.3 The third trime	ster				
Jin et al. 2016	1.1474	0.5141	32.1%	3.15 [1.15, 8.63]	_
Ye et al. 2015	0.4511	0.3012	67.9%	1.57 [0.87, 2.83]	
Subtotal (95% CI)			100.0%	1.96 [1.04, 3.71]	
Heterogeneity: Tau ² =	= 0.06; Chi ² = 1.37,	df = 1 (P	= 0.24); l ²	= 27%	
Test for overall effect:	Z = 2.08 (P = 0.04)	i			
					Negative Positive
Test for subgroup dif	ferences: Chi ² = 0.1	l 6, df = 2	(P = 0.92)), I² = 0%	

Obesity Reviews

S9.3 Table Results summary of the association of maternal LDL-C levels with SGA

	Generative	Described	Sample	• • • • • • • • • • • • • • • • • • • •	Reported	Effect	Lower Up	oper	Statistical	0	The c	ng fa	ctors			
Study ID	Countries	Population	size	rimesters	measures	size 9	95%CI 959	%CI ^p	methods	Quanty	a	b	с	d	e	f
Jin et al.2016	China	non-GDM	934	1	ND	ND		ND	ND	7	ND	ND	ND	ND	\checkmark	ND
Jin et al.2016	China	non-GDM	934	2	ND	ND		ND	ND	7	ND	ND	ND	ND	\checkmark	ND
Ye et al.2015	China	non-GDM	912	3	Adjusted OR	0.75	0.50	1.14 ND	MLOR	8	\checkmark	\checkmark	\checkmark		\checkmark	×
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	1.16	0.71	1.89 0.565	5 MLOR	7	\checkmark	\checkmark	\checkmark	×	\checkmark	×
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	р			>0.05	5 Student t test	5	×	×	×	×	×	×

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels. Abbreviation: Gestational diabetes mellitus(GDM), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR).

S9.3 Figure Meta-analysis of adjusted odds ratio for the association between maternal LDL-C levels and SGA in the third trimester

				Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
Jin et al. 2016	0.1484	0.2505	44.8%	1.16 [0.71, 1.90]		
Ye et al. 2015	-0.2877	0.2069	55.2%	0.75 [0.50, 1.13]		
Total (95% CI)			100.0%	0.91 [0.60, 1.39]	-	
Heterogeneity: Tau² =	: 0.04; Chi ² = 1.80,	df = 1 (P :	= 0.18); l ^a	² = 44%		1
Test for overall effect:	Z = 0.43 (P = 0.67)	I			Negative Positive	

Obesity Reviews

Triglycerides (TG)

S9.4 Table Results summary of the association of maternal TG levels with SGA

Ctar la D	Generative	Descalations	Sample	T	Reported	Effect	Lower	Upper		Statistical	OR	The	contro	ol of co	nfound	ling fa	octors
Study ID	Countries	Population	size	1 rimesters	measures	size	95%CI	95%CI	р	methods	Quanty	a	b	c	d	e	f
Jin et al.2016	China	non-GDM	934	1	ND	ND)		ND	ND	7	ND	ND	ND	ND		ND
Vrijkotte et al.2012	Netherlands	non-GDM	4,008	1	Crude OR	1.06	6 0.87	1.29	ND	Logistic regression	8	×	×	×	×	×	×
Vrijkotte et al.2012	Netherlands	non-GDM	4,008	1	Adjusted OR	0.97	0.79	1.19	ND	MLOR	8	\checkmark	\checkmark	×	×	×	×
Jin et al.2016	China	non-GDM	934	2	ND	ND)		ND	ND	7	ND	ND	ND	ND		ND
Lei et al.2016	China	General	5,535	2	Crude OR^	1.51	1.08	2.12	ND	Logistic regression	6	×	×	×	×	×	×
Ye et al.2015	China	non-GDM	912	3	Adjusted OR	0.69	0.47	1.03	ND	MLOR	8	\checkmark	\checkmark		\checkmark		×
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	0.63	6 0.40	0.99	0.046	6 MLOR	7	\checkmark	\checkmark		×		×
Slagjana et al.2014	Yugoslavia	non-GDM	200	3	р				0.012	Student t test	5	×	×	×	×	×	×
TT1 1 110	11 10																

The bold font represents statistically significant results.

^ Results was calculated with self-defined cut-off point: 3.49 mmol/L

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR).

S9.4 Figure Meta-analysis of adjusted odds ratio for the association between maternal TG levels and SGA throughout pregnancy

Vrijkotte et al. 2012 Subtotal (95% CI)	-0.0305	0.1047	100.0% 100.0%	0.97 [0.79, 1.19] 0.97 [0.79, 1.19]					
Heterogeneity: Not applic	able								
Test for overall effect: Z =	0.29 (P = 0.77)								
4.4.2 The third trimseter									
Jin et al. 2016	-0.462	0.2318	43.7%	0.63 [0.40, 0.99]			1		
Ye et al. 2015	-0.3711	0.2044	56.3%	0.69 [0.46, 1.03]			ł		
Subtotal (95% CI)			100.0%	0.66 [0.49, 0.90]					
Heterogeneity: Chi ² = 0.0	9, df = 1 (P = 0.)	77); I² = 0	%						
Test for overall effect: Z =	2.68 (P = 0.007	")							
								I	<u> </u>
					0.5	U.7 ·	1 1	.5	2

Supplementary 10 Data analysis for Macrosomia

Total cholesterol (TC)

S10.1 Table Results summary of the association of maternal TC levels with macrosomia

Starder ID	C	Denulation	Sample	T	Reported	Effect	Lower U	pper			Orealite	The	cont	trol (of con	nfour	nding	, fac	tors
Study ID C	Countries	Population	size	1 11.	measures	size	95%CI95	%CI	р	Stausucai methous	Quanty	a	b	c	d	e	f	g	h
Jin et al.2016	China	non-GDM	934	1	ND	ND)		ND	ND	7	ND	ND	ND	ND	ND	ND	×	ND
Clausen et al.2005	Norway	General	1,037	2	Crude OR*	1.10	0.60	2.00	ND	Logistic regression	8	×	×	×	×	×	×	\checkmark	×
Clausen et al.2005	Norway	General	1,037	2	Adjusted OR*	1.10	0.60	2.00	ND	MLOR	8	×	×		×	×	×	\checkmark	×
Zhou et al.2012	China	General	1,000	2	Р				>0.05	Non-parametric Mann-Whitney Test	5	×	×	×	×	×	×	×	×
Jin et al.2016	China	non-GDM	934	2	ND	ND)		ND	ND	7	ND	ND	ND	ND	ND	ND	\checkmark	ND
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	0.99	0.81	1.21	0.903	MLOR	7	×	\checkmark			\checkmark	×	\checkmark	×
Laleh et al.2013	Iran	GDM	112	3	Р	ND)		>0.05	Bonferroni multiple comparison test	7	×	×	\checkmark	\checkmark	×	×	×	×
Mossayebi et al.2014	Iran	General	154	3	ND	ND)		ND	ND	5	ND	ND	ND	ND	ND	ND	\checkmark	ND

* Result was calculated by comparing the highest quartile with the lowest quartile maternal TC level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), No documented(ND), Multiple logistic regression(MLOR), Analysis of covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

Review

Obesity Reviews

High-density lipoprotein cholesterol (HDL-C)

S10.2 Table Results summary of the association of maternal HDL-C levels with macrosomia

	a		Sample	— •	Reported	Effect	Lower U	bper			0	The	e con	trol (of co	nfou	ndinş	g fac	tors
Study ID	Countries	Population	size	Tri.	measures	size	95%CI95	5%CI	р	Statistical methods	Quality	a	b	c	d	e	f	g	h
Jin et al.2016	China	non-GDM	934	1	Adjusted OR	0.51	1 0.19	1.36	0.178	MLOR	7	×					×		×
Zawiejska et al. 2008	Poland	GDM	357	2	Crude RR	0.59	9 0.32	1.02	ND	Chi-squared test	5	×	×	×	×	×	×	×	×
Clausen et al.2005	Norway	General	1,025	2	Crude OR*	0.30	0 0.20	0.60	ND	Logistic regression	8	×	×	×	×	×	×		×
Clausen et al.2005	Norway	General	1,025	2	Adjusted OR*	0.30	0 0.20	0.60	ND	MLOR	8	×	×		×	×	×	\checkmark	×
Zhou et al.2012	China	General	1,000	2	Adjusted OR^	0.61	1 0.38	0.98	ND	MLOR	5	×	×				×	×	×
Jin et al.2016	China	non-GDM	934	2	Adjusted OR	0.25	5 0.09	0.73	0.011	MLOR	7	×					×	\checkmark	×
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	0.46	6 0.22	0.94	0.034	MLOR	7	×					×	\checkmark	×
Laleh et al.2013	Iran	GDM	112	3	р	NE)		>0.05	Bonferroni multiple comparison te	st 7	×	×			×	×	×	×
Mossayebi et al.2014	Iran	General	154	3	ND	NE)		ND	ND	5	ND	ND	ND	ND	ND	ND		ND

The bold font represents statistically significant results.

^ Results was calculated with self-defined cut-off point: 2.205mmol/L

* Result was calculated by comparing the highest quartile with the lowest quartile maternal HDL-C level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR), Analysis of covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

S10.1 Figure Forest plots of adjusted odds ratio for the association between maternal HDL-C levels and macrosomia throughout pregnancy

Low-density lipoprotein cholesterol (LDL-C)

S10.3 Table Results summary of the association of maternal LDL-C levels with macrosomia

Study ID	Countries	Population	Sample _{Tri}	Reported	Effect	Lower Up	pper	n	Statistical methods	Quality	The	e con	trol	of co	nfou	ndinş	g fac	tors
Study ID	Countries	1 opulation	size	measures	size	95%CI959	%CI	Р	Statistical includes	Quanty	a	b	c	d	e	f	g	h
Jin et al.2016	China	non-GDM	934 1	ND	ND	I	1	ND	ND	7	ND	ND	ND	ND	ND	ND	×	ND
Clausen et al.2005	Norway	General	1,018 2	Crude OR*	2.20	1.20	4.00 1	ND	Logistic regression	8	×	×	×	×	×	×		×
Clausen et al.2005	Norway	General	1,018 2	Adjusted OR*	2.10	1.20	3.90 1	ND	MLOR	8	×	×		×	×	×		×
Zhou et al.2012	China	General	1,000 2	р			>	0.05	Non-parametric Mann-Whitney Test	t 5	×	×	×	×	×	×	×	×
Jin et al.2016	China	non-GDM	934 2	ND	ND	1	1	ND	ND	7	ND	ND	ND	ND	ND	ND		ND
Jin et al.2016	China	non-GDM	934 3	Adjusted OR	0.93	0.69	1.25 0.	.621	MLOR	7	×			\checkmark	\checkmark	×		×
Laleh et al.2013	Iran	GDM	112 3	р	ND)	>	0.05	Bonferroni multiple comparison test	7	×	×		\checkmark	×	Х	×	×
Mossayebi et al.2014	Iran	General	154 3	ND	ND	I	1	ND	ND	5	ND	ND	ND	ND	ND	ND		ND

The bold font represents statistically significant results.

* Result was calculated by comparing the highest quartile with the lowest quartile maternal LDL-C level

Confounding factors: a. Maternal age; b. Pre-pregnancy BMI; c. Gestational weight gain; d. Maternal glucose level; e. pre-term birth; f. Maternal lipid levels.

Abbreviation: Gestational diabetes mellitus(GDM), Positive screenes of Oral Glucose Tolerance test(OGTT+), Confidence interval(CI), Not documented(ND), Multiple logistic regression(MLOR), Analysis of covariance(ANCOVA), Standard deviation (SD), Interquartile range(IQR) and Appropriate for gestational age(AGA).

Review

Triglycerides (TG)

S10.4 Table Results summary of the association of maternal TG levels with macrosomia

Study ID	Countries	Population	Sample	Tri.	Reported	Effect	Lower	Upper	p	Statistical methods	Ouality	The	e con	trol o	of co	nfou	nding	g fac	tors
			size		measures	size	95%CI9	5%CI	r			a	b	c	d	e	f	g	h
Jin et al.2016	China	non-GDM	934	1	ND	NE)		ND	ND	7	ND	ND	ND	ND	ND	ND	×	ND
Clausen et al.2005	Norway	General	988	3 2	Crude OR*	2.90	0 1.40	5.90	ND	Logistic regression	8	×	×	×	×	×	×		×
Clausen et al.2005	Norway	General	988	3 2	Adjusted OR*	2.90	0 1.40	5.90	ND	MLOR	8	×	×	\checkmark	×	×	×		×
Zhou et al.2012	China	General	1,000) 2	р				>0.05	Non-parametric Mann-Whitney Test	5	×	×	×	×	×	×	×	×
Jin et al.2016	China	non-GDM	934	2	ND	NE)		ND	ND	7	ND	ND	ND	ND	ND	ND		ND
Mossayebi et al.2014	Iran	General	154	4 3	Adjusted OR	1.04	4 1.02	1.07	ND	MLOR	5	×	×		\checkmark	×	\checkmark		
Jin et al.2016	China	non-GDM	934	3	Adjusted OR	1.19	9 1.02	1.39	0.024	MLOR	7	×			\checkmark		×		×
Lin et al.2013	China	General	ND	ND	OR^	2.20	0 1.54	3.14	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND
Laleh et al.2013	Iran	GDM	112	2 3	р	-	F		0.001	Bonferroni multiple comparison test	7	×	×		\checkmark	×	×	×	×
Confounding factors: a. M Abbreviation: Gestationa regression(MLOR), Analy S10.2 Figure Meta-	Aaternal age; l al diabetes n ysis of covaria	b. Pre-pregnancy nellitus(GDM), ance(ANCOVA	y BMI; c. G Positive s), Standard ratio for the	estatic creene deviati e asso	onal weight gain es of Oral Glu ion (SD), Interq ociation betwee	; d. Mate acose To uartile ra	ernal gluco olerance te ange(IQR) rnal TG le	se level; est(OGT and App evels an	e. pre- T+), C ropriat	erm birth; f. Maternal lipid levels. onfidence interval(CI), No docume e for gestational age(AGA). osomia	nted(ND), No	ot ap	plicab	ole(NA	A), M	lultip	le lo	gistic
	•	e			Odds Ra	atio			C	dds Ratio									
Study or Subgrou	up loq	[Odds Ratio]	SE V	Veiqh	t IV, Random	n <mark>, 95% (</mark>	CI		IV, Ra	ndom, 95% Cl									
Jin et al. 2016		0.174	0.0786	33.3%	6 1.19[1.	02, 1.39	3]												
Mossayebi et al. 1	2014	0.0392	0.0099	66.7%	6 1.04[1.	U2, 1.08	o]												
Total (95% CI) Heterogeneity: Ta Test for overall ef	au ^z = 0.01; C fect: Z = 1.32	:hi² = 2.90, df = 2 (P = 0.19)	1 = 1 (P = 0.0	1 00.0% 19); 1 ² :	% 1.09 [0. = 65%	96, 1.23	3] 0.5		Nega	1 1.5 2 tive Positive									

World Obesity Journals

Obesity Reviews

S10.3 Figure Forest plots of adjusted odds ratio for the association between maternal TG levels and macrosomia

Study of Subgroup	log[Oddo Datio]	er.	Odds Ratio	Odds Ratio
311 The second trimes	tor	35	IV, FIXed, 95% CI	IV, FIXed, 95% CI
Clauson et al. 2005	1 0647	0 3716	1108 01 100 2	_
Clausell et al. 2005	1.0047	0.3710	2.30 [1.40, 0.01]	
3.1.2 The third trimester				
Jin et al. 2016	0.174	0.0786	1 19 [1 02 1 39]	⊢
Mossavebi et al. 2014	0.0392	0.0099	1.04 [1.02, 1.06]	•
3.1.3 Unkown trimester				
Lin et al. 2013	0.7885	0.182	2.20 [1.54, 3.14]	-+
				Negative Positive
				Ivegauve I osluve
				World Obosity Journals