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OPEN

CD103þCD11bþ mucosal classical dendritic
cells initiate long-term switched antibody
responses to flagellin
A Flores-Langarica1, K Müller Luda2, EK Persson2, CN Cook1, S Bobat1, JL Marshall1, MW Dahlgren2,
K Hägerbrand2, KM Toellner1, MD Goodall1, DR Withers1, IR Henderson3, B Johansson Lindbom2,4,
AF Cunningham1,3,5 and WW Agace2,4,5

Antibody responses induced at mucosal and nonmucosal sites demonstrate a significant level of autonomy. Here, we

demonstrate a key role for mucosal interferon regulatory factor-4 (IRF4)-dependent CD103þCD11bþ (DP), classical

dendritic cells (cDCs) in the induction of T-dependent immunoglobulin G (IgG) and immunoglobulin A (IgA) responses in

the mesenteric lymph node (MLN) following systemic immunization with soluble flagellin (sFliC). In contrast, IRF8-

dependent CD103þCD11b� (SP) are not required for these responses. The lack of this response correlated with a

complete absence of sFliC-specific plasma cells in the MLN, small intestinal lamina propria, and surprisingly also the

bone marrow (BM). Many sFliC-specific plasma cells accumulating in the BM of immunized wild-type mice expressed

a4b7
þ , suggesting a mucosal origin. Collectively, these results suggest that mucosal DP cDC contribute to the generation

of the sFliC-specific plasma cell pool in the BM and thus serve as a bridge linking the mucosal and systemic immune

system.

INTRODUCTION

Flagellin is the filament protein component of bacterial flagella.
Extracellular flagellin is recognized primarily through Toll-like
receptor 5 (TLR5) and this can induce profound responses in
innate and adaptive immune cells.1 Immunization with purified,
soluble flagellin (sFliC) protein from Salmonella Typhimurium is
sufficient to drive T- and B-cell responses against itself and co-
immunized antigens in the absence of additional adjuvant.2–5 This
autoadjuvant activity of flagellin has led to its use as a carrier
protein in a number of vaccine strategies,6–8 including an influenza
fusion vaccine tested in humans.9,10 Additionally, immunization
of sFliC in mice has been shown to enhance protection against
viral infections11 and radiation exposure,12 promote antigen
presentation through major histocompatibility complex class-II
(MHC-II),13 and reduce T helper cell type 1 (Th1) differentiation
after coimmunization with Salmonella Typhimurium.14 Although

such findings indicate that flagellin is an important modulator of
the adaptive immune system, the cellular mechanism(s) under-
lying its mode of action remain unclear.

Previously, it has been shown that systemic immunization
with sFliC, given subcutaneously in the footpad or intraper-
itoneally, induces immunoglobulin G (IgG) responses in the
spleen and concurrent IgG and IgA responses in the intestinal
draining mesenteric lymph nodes (MLNs).15 This unexpected
induction of intestinal responses after systemic immunization
was TLR5 dependent and associated with the rapid and
extensive recruitment of antigen-loaded CD103þ classical
dendritic cells (cDCs) into the MLN. This coincided with a
decrease in the frequency of these cells in the small intestine
lamina propria (SI-LP) and suggests that the autoadjuvant
activity of sFliC may, in part, be mediated through the
activation of mucosal CD103þ cDCs.
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The intestinal mucosa contains three major subsets of
cDCs: CD103þCD11bþ , CD103þCD11b� , and CD103�

cDCs,16,17 that require different transcription factors for their
development and survival. Deletion of the transcription factors
interferon regulatory factor-8 (IRF8), BATF3, or ID2 results in
a loss of intestinal and MLN CD103þCD11b� cDCs,18–20

whereas deletion of IRF4 and NOTCH-2 results in a loss of
intestinal-derived CD103þCD11bþ cDCs in the MLN.21,22

We, and others, have recently demonstrated that these subsets
play key non-redundant roles in regulating intestinal immune
homeostasis. For example, IRF4-dependent cDCs play an
important role in intestinal Th17 (refs. 21,23) and Th2
responses24 and for driving postoperative ileitis.25 In contrast,
IRF8-dependent CD103þCD11b� cDCs are required for the
maintenance of T cells within the small intestinal epithelium
and for the generation and maintenance of intestinal inter-
feron-g� producing Th1 cells.26,27

In this study, we assessed the role of mucosal cDCs in the
generation of sFliC-specific IgG and IgA responses in the MLN
following systemic immunization, and the impact of this
response on the accumulation of plasma cells in the bone
marrow (BM). We demonstrate that mucosal CD103þ

CD11bþ but not CD103þCD11b� cDCs are essential for
the generation of sFliC-specific responses in the MLN, and that
the absence of this response affects long-term systemic
antibody (Ab) response in the BM. Collectively, these results
suggest that mucosal CD103þCD11bþ cDCs act as a bridge to
link adaptive immune responses of the intestinal mucosa to
serological memory and systemic protection.

RESULTS

DP cDCs recruited to the MLN after direct stimulation by
sFliC are functional

Intraperitoneal (IP) or subcutaneous immunization with sFliC
drives a TLR5-dependent accumulation of CD103þ cDCs in
intestinal draining MLN.15 To determine which CD103þ cDC
subset accumulates in the MLN in response to sFliC, wild-type
(WT) mice were immunized IP with sFliC and numbers of
CD103þCD11bþ (DP), CD103þCD11b� (SP), and CD103�

cDCs in the MLN and SI-LP were assessed 24 h later by flow
cytometry (for gating strategy see Supplementary Figure S1a
online). sFliC immunized mice had an increased frequency of
CD11cþMHC-IIhi cDCs in MLN (Figure 1a). In the steady
state this population has been suggested to contain cDCs that
have migrated from the SI-LP28 and potentially some resident
CD8aþ and CD11bþ cDCs that have upregulated MHC-II
upon activation. Within the CD11cþMHC-IIhi population, DP
but not SP or CD103� cDC numbers increased in the MLN in
response to sFliC (Figure 1a) that paralleled a selective loss of
DP cDCs in the SI-LP (Figure 1b). Despite the selective increase
in DP cDC numbers in MLN, sFliC immunization induced
upregulation of CD40 and CD86 in all MLN cDC subsets
(Figure 1c).

sFliC immunization failed to induce DP cDC accumulation
in the MLN of mice lacking MyD88 in CD11cþ cells (Cd11c-
cre.MyD88fl/fl mice28) (Figure 1d), indicating that sFliC may

directly drive DP cDC recruitment to MLN. To assess this
possibility, mixed BM chimeras were generated with BM from
Cd11c-cre.Irf4fl/flmice, which lack DP cDC in MLN,21 and
Cd11c-cre.MyD88fl/fl mice (Figure 1e). In these chimeras, DP
cDCs in the MLN are MyD88 deficient, whereas other CD11cþ

cells are a mixture of MyD88-sufficient and -deficient cells.
sFliC also failed to induce DP cDC accumulation in the MLN of
these mice (Figure 1e). Deletion of IRF4 in Cd11c-cre.MyD88fl/

fl leads to the expression of green fluorescent protein (GFP)21 in
CD11cþ cells and thus can be used to discriminate between
CD11cþ cells derived from different donor mice. Assessment
of GFP expression in cDCs from the SI-LP of the chimeras
showed that both MyD88fl/fl (GFP� ) and Cd11c-cre.MyD88fl/fl

cDCs (GFP� ) were found in similar proportions in compar-
ison with cDCs derived from Cd11c-cre.Irf4fl/fl (GFPþ ) donor
BM (Supplementary Figure S1b). Collectively, these results
demonstrate that sFliC signaling in DP cDCs is required for their
accumulation in the MLN.

It has previously been shown that CD103þ cDCs are
responsible for T-cell priming in the MLN following IP
immunization with sFliC.15 To determine which of the two
MLN CD103þ cDC subsets underlie this response, SP and DP
cDCs were fluorescence-activated cell sorted (FACS) from the
MLN 24 h after IP immunization with sFliC and co-cultured
with SM1 transgenic T cells that are specific for an epitope in
Salmonella Typhimurium FliC (amino acids 427–441).29,30 DP
cDCs were far more efficient than SP cDCs at inducing SM1
T-cell division and activation as assessed by carboxyfluorescein
succinimidyl ester dilution, downregulation of CD62L, and
total cell counts (Figure 1f). Importantly, ex vivo addition of
sFliC to the SP and DP cDC-T cell co-cultures resulted in
similar SM1 T-cell division (Figure 1f), demonstrating that the
diminished capacity of SP cDCs to present sFliC in vivo was not
due to an inability of these cells to present antigen. Thus, DP
cDCs represent the major sFliC peptide-presenting cells in the
MLN.

CD103þCD11bþ DP cDCs are required for the generation of
mucosal anti-sFliC IgA and IgG responses

To assess the role of MLN CD103þ cDC subsets in sFliC-
specific Ab responses, we used a prime–boost system as
previously described.15 First, we determined whether priming
with sFliC could interfere with the accumulation of DP cDCs
(for example, through the induction of antibodies) after
secondary immunization. Secondary immunization induced
a similar and selective accumulation of DP cDCs in the MLN as
observed after primary immunization (Figure 2a), despite the
presence of sFliC-specific IgG in the serum (Figure 2b).

To address the role of DP cDCs in the sFliC-specific Ab
response, Cd11c-cre.Irf4fl/flmice were immunized twice with
sFliC and the response was examined 4 days after boost. In
marked contrast to control Irf4fl/flmice, the number of plasma
cells did not increase in the MLN of Cd11c-cre.Irf4fl/flmice
following boosting with sFliC (Figure 3a; detailed gating
strategy is shown in Supplementary Figure S1c), suggesting a
reduced sFliC-specific Ab response at this site. Consistent with
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Figure 1 Soluble flagellin (sFliC) stimulates CD103þCD11bþ (DP) classical dendritic cells (cDCs) directly to induce their accumulation in the
mesenteric lymph node (MLN) and loss from the small intestine lamina propria (SI-LP). Wild-type (WT) mice were immunized intraperitoneally (IP) with
sFliC and cDC (MHC-IIþCD11chi) subsets evaluated in (a) MLN and (b) SI-LP 24 h later by flow cytometry. NI, nonimmunized. Representative plots with
percentages for CD103þCD11b� (SP), CD103þCD11bþ (DP), and CD103� cDC subsets are shown. Graphs show absolute numbers of the gates. (c)
Representative histograms of expression of CD86 and CD40 on SP, DP, and CD103� cDC subsets 24 h after sFliC immunization. Graphs show mean
fluorescent index (MFI). Data are mean þ s.d. of 4 mice and are representative of 3 independent experiments. ***Po0.0001, by Mann–Whitney test, NS,
not significant. (d) Absolute numbers of DP cDCs in the MLN of Cd11c-cre.MyD88fl/fl(white) or MyD88fl/fl (black) mice 24 h after sFliC immunization.
Meanþ s.d. (n¼ 6 mice/group) of 2 independent experiments. ***Po0.0001, by two-way analysis of variance (ANOVA). (e) Lethally irradiated WT mice
were reconstituted with MyD88fl/fl or Cd11c-cre.MyD88fl/fl bone marrow (BM) or with a 50:50 mixture of MyD88fl/fl or Cd11c-cre.MyD88fl/fl with Cd11c-
cre.Irf4fl/fl BM. Absolute numbers of DP cDCs in the MLN 24 h after immunization. Meanþ s.d. (n¼ 8 mice/group) from 2 independent experiments.
***Po0.0001, by two-way ANOVA. (f) MLN SP and DP cDC subsets were fluorescence-activated cell sorted (FACS) from WT mice 24 h after sFliC
immunization and cultured for 4 days with carboxyfluorescein succinimidyl ester (CFSE)-labeled FliC-specific transgenic (SM1) T cells in a 1:30 ratio.
sFliC (2 mg) was added to some cultures (in vitro loaded) as indicated. T-cell division was assessed by CFSE dilution and CD62L downregulation, blue
overlay represents T cells cultured alone, and representative plots are shown. Graphs depict absolute numbers of T cells. Data are meanþ s.d. (n¼ 4
mice/group) from two pooled experiments. **Po0.001, by Mann–Whitney test.
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this, sFliC-specific IgG and IgA Ab-secreting cells (ASCs) were
readily detected in the MLN of Irf4fl/flbut not Cd11c-cre.Irf4fl/fl

mice as assessed by ELISPOT (Enzyme-Linked ImmunoSpot)
(Figure 3b). Plasma cells derived from the MLN can migrate to
the SI-LP contributing to the specific response in this site. To
examine whether this element of the response was also affected,
cells were isolated from the SI-LP and sFliC-specific ASCs
assessed as above. As with the MLN, sFliC-specific IgGþ and
IgAþ ASCs were detected in the SI-LP of Irf4fl/fl but not Cd11c-
cre.Irf4fl/flmice (Figure 3b, lower panels). To exclude the
possibility that the reduced numbers of sFliC-specific ASCs
observed in Cd11c-cre.Irf4fl/flmice was a result of an intrinsic
defect in B-cell function,31 mixed BM chimeras were generated
using a 50:50 mix of BM cells from Irf4fl/fl or Cd11c-cre.Irf4fl/fl

mice with BM cells from Rag-1� /� mice. In these chimeras
Irf4-dependent cDCs derive from Rag-1� /� BM, whereas the
B-cell compartment derives from Cd11c-cre.Irf4fl/fl BM.
RAG-1� /� BMs fully rescued the defect in plasma cell
numbers observed in single Cd11c-cre.Irf4fl/fl chimeras

(Figure 3c lower graph) as well as sFliC-specific IgG- and
IgA-producing ASCs (Figure 3c), confirming that the absence
of Ab response in the Cd11c-cre.Irf4fl/flmice was not due to an
intrinsic B-cell defect.

In marked contrast to Cd11c-cre.Irf4fl/flmice, Cd11c-cre.Irf8fl/fl

mice, which lack migratory SP cDCs and LN-resident CD8aþ

cDCs in the MLN,26 induced equivalent numbers of plasma
cells and anti-sFliC IgG and IgA ASCs in the MLN as control
Irf8fl/flmice, following sFliC prime–boost (Figure 3d,e).
Collectively, these results demonstrate that the generation of
sFliC-specific Ab responses in the MLN requires DP cDCs.

Tfh cells and germinal centre responses to sFliC in the MLN
are absent in Cd11c-cre.Irf4fl/fl mice

As the Ab response to sFliC is T dependent,3,5 we next assessed
whether the absence of a sFliC-specific Ab response in the MLN
of Cd11c-cre.Irf4fl/flmice reflected alterations in the generation
of sFliC-specific germinal centre (GC) and T follicular helper
(Tfh) cells. sFliC-specific GCs were readily detected in the MLN
of Irf4fl/fl but not Cd11c-cre.Irf4fl/fl mice (Figure 4a) and
confocal microscopy showed the presence of PD1- and BCL6-
expressing Tfh-like T cells in these GCs (Figure 4a, lower
panels). Quantification of the GC and the total sFliC-specific
area per section showed that immunized Irf4fl/fl mice had
significantly more area containing GC than immunized Cd11c-
cre.Irf4fl/flmice (Figure 4b). Consistent with this finding, GC
B-cell numbers increased in sFliC-immunized Irf4fl/fl but not
Cd11c-cre.Irf4fl/flmice, as determined by flow cytometry
(Figure 4c; for gating strategy see Supplementary Figure
S1c). Similarly, the total number of Tfh cells (defined as
CD3þCD4þCD62LloPD1þCXCR5þ , for gating strategy see
Supplementary Figure S1d) increased in the MLN of Irf4fl/fl mice
but not in Cd11c-cre.Irf4fl/flmice (Figure 4d). In contrast, Cd11c-
cre.Irf8fl/flmice displayed a similar increase in total GC area, sFliC-
specific GC area, GC B cells, and Tfh cells in the MLN to Irf8fl/fl

mice (Figure 4e–h). Thus, the defective mucosal Ab response
observed in the absence of DP cDC is associated with a loss in the
generation of Tfh cells and sFliC-specific GCs in the MLN.

sFliC-specific splenic ASCs are reduced in Cd11c-cre.
Irf4fl/fl mice

As sFliC induces concurrent Ab responses in the spleen and
MLN15 we next determined whether Cd11c-cre.Irf4fl/flmice
displayed a defective ASC response in the spleen.

First, we evaluated the cDC response in the spleen after
immunization with sFliC. In contrast to the MLN, immuniza-
tion with sFliC did not affect the frequency or total number of
CD4þ or CD8aþ cDCs (Figure 5a), although it led to
increased expression of CD86 and CD40 by both subsets
(Figure 5b). As expected,21 splenic CD4þ cDC numbers were
reduced in Cd11c-cre.Irf4fl/flcompared with Irf4fl/flmice in
steady state (Figure 5a), and this difference was maintained
after sFliC immunization.

When assessing the Ab response 4 days after secondary
immunization, Cd11c-cre.Irf4fl/fl mice displayed a reduction in
sFliC-specific IgGþ ASCs and virtually no IgAþ ASCs when
compared with Irf4fl/fl mice (Figure 5c). sFliC-specific GCs

Figure 2 Secondary soluble flagellin (sFliC) immunization does not
affect the mesenteric lymph node (MLN) classical dendritic cell (cDC)
accumulation. (a) CD103þCD11bþ (DP) and CD103þCD11b� (SP)
cDC accumulation in the MLN of wild-type (WT) mice 24 h after sFliC
primary or boost immunization. Representative plots with percentages for
SP and DP cDC subsets. Graphs show absolute numbers of the gates. (b)
Serum levels of anti-sFliC 21 days after SFliC immunization (black) or 1
day after boost (d22) (white) as indicated. Data are meanþ s.d. (n¼ 4
mice/group) of two independent experiments. **Po0.001 and
***Po0.0001, by one-way analysis of variance (ANOVA), NS, not
significant.
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were observed in the spleens of Cd11c-cre.Irf4fl/fl mice after
immunization, although to a lesser extent when compared with
Irf4fl/flmice (Figure 5d). Strikingly, splenic GC B-cell and Tfh-
cell numbers were not significantly different in Irf4fl/fland
Cd11c-cre.Irf4fl/flmice after sFliC immunization (Figure 5e,f).

Thus, in contrast to the MLN, IRF4-dependent cDCs are not
required for Tfh cell generation and GC induction in the spleen
in response to sFliC immunization.

We hypothesized that Tfh cells were still detectable in the
spleens of Cd11c-cre.Irf4fl/fl mice because CD8aþCD11b� splenic

Figure 3 CD103þCD11bþ (DP) classical dendritic cells (cDCs) control the induction of the mucosal antibody (Ab) response to soluble flagellin (sFliC).
Irf4fl/fl(black) or Cd11c-cre.Irf4fl/fl (white) mice were either nonimmunized (NI) or primed and boosted with sFliC. The Ab response was evaluated 4 days
after boost. (a) Representative plots and absolute number (graphs) of plasma cells (TCRb�CD19þB220lowCD138þ ) in the mesenteric lymph node
(MLN). (b) ELISPOT (Enzyme-Linked ImmunoSpot) analysis of sFliC immunoglobulin G (IgG) and immunoglobulin A (IgA) responses in the MLN and
small intestine lamina propria (SI-LP). Number of spot-forming units (SFUs) per 5� 105 cells (graphs) and representative pictures of wells (lower panels).
Data are meanþ s.d. (n¼4 mice/group) and are from one representative experiment of three performed. ***Po0.0001, by two-way analysis of variance
(ANOVA), NS, not significant. (c) Indicated bone marrow (BM) chimeras were either NI or sFliC primed–boosted. Total number of CD45.2þ plasma
(CD138þ ) cells (lower left graph), sFliC-specific antibody-secreting cells (ASCs, right upper graphs) and representative ELISPOT wells (lower right) from
the MLN of chimeric mice 4 days after boost. Data are meanþ s.d. (n¼ 4 mice/group). ***Po0.0001, by one-way ANOVA. (d,e) Cd11c-cre.Irf8fl/fl

(white) or Irf8fl/flcontrol mice (black) were either NI or sFliC primed–boosted, and the absolute number of (d) plasma cells and (e) sFLiC-specific IgG and
IgA ASCs in the MLN assessed 4 days after boost. Data are meanþ s.d. (n¼8 mice/group) from two pooled experiments. ***Po0.0001, by two-way
ANOVA.
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Figure 4 Soluble flagellin (sFliC)-specific germinal centre (GC) and T follicular helper (Tfh) cell induction in the mesenteric lymph node (MLN) are dependent on
CD103þCD11bþ (DP) mucosal classical dendritic cells (cDCs). (a) Representative photomicrographs of sFliC-specific GC in the MLN of Irf4fl/fl(black) or Cd11c-
cre.Irf4fl/fl (white)nonimmunized(NI)orsFliCprime–boostedmice.Scalebar¼ 200mm.First row,GCidentification (Peanutagglutinin (PNA),blue; immunoglobulin
D (IgD), brown). Second row, sFliC-specific GC (sFliC, blue; IgD, brown indicated with black arrows. T indicates T zone, B indicates B zone). Lower panel, confocal
analysis of the previously selected GC stained to identify Tfh cells (BCL6, green; PD1, red and CD3, blue, indicated with white arrows). Scale bar¼ 50mm. (b)
Quantification of total GC and sFliC-specific area per section. Meanþ s.d. (n¼ 10 sections/group, from 2 experiments *Po0.01, **Po0.001). Number of (c) GC B
cells (TCR�CD138�GL7þCD95þ ) and (d) Tfh cells (CXCR5þPD1þ ). Meanþ s.d. (n¼12 mice/group) from 3 pooled experiments. ***Po0.0001, by two-way
analysis of variance (ANOVA), NS, not significant. (e) Representative photomicrographs and (f) quantitation of total GC area and SFliC-specific area in serial MLN
sections from NI or sFliC prime–boosted Irf8fl/fl(black) or Cd11c-cre.Irf8fl/fl (white) mice. (e) Scale bar¼200mm. First row, GC identification (PNA, blue; IgD, brown).
Second row, sFliC-specific GC (sFliC, blue; IgD, brown). (f) Meanþ s.d. (n¼ 8 sections/group, from 2 experiments). Number of (g) GC B cells
(TCR�CD138�GL7þCD95þ ) and (h) Tfh cells (CXCR5þPD1þ ) as assessed by fluorescence-activated cell sorting (FACS). Meanþ s.d. (n¼8 mice/group)
from 2 experiments. **Po0.001, by two-way ANOVA.
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Figure 5 Systemic responses to soluble flagellin (sFliC) are reduced in the absence of splenic CD4þCD11bþ classical dendritic cells (cDCs). Irf4fl/fl

(black) or Cd11c-cre.Irf4fl/fl (white) mice were either nonimmunized (N.I.) or sFliC prime–boosted. (a) Representative plots (with percentage) and
absolute number (right graphs) of CD4þ and CD8aþ splenic cDCs. (b) Representative histograms and pooled mean fluorescence intensity (MFI) of
CD86 and CD40 levels on CD4þ and CD8aþ splenic cDC subsets 24 h after sFliC immunization. Meanþ s.d. (n¼4 mice/group) from 1 representative
experiment of 3 performed. ***Po0.0001, by two-way analysis of variance (ANOVA), NS, not significant. (c) ELISPOT (Enzyme-Linked ImmunoSpot)
analysis of splenic sFliC-specific G (IgG) and immunoglobulin A (IgA) cells. Lower panels show representative pictures. Meanþ s.d. (n¼12 mice/group)
of 3 experiments. *Po0.01, **Po0.001, by two-way ANOVA. (d) Representative micrographs of (first row) GC (PNA, blue; IgD, brown), (second row),
sFliC-specific GC (sFliC, blue; IgD, brown), and (last row), high magnification of identified area. Scale bar¼ 200 mm. Quantification of total GC area and
sFliC-specific area per section. Meanþ s.d. (n¼ 10 sections/group) of 2 experiments. Total number of (e) Splenic GC and (f) T follicular helper (Tfh) cells
(CXCR5þPD1þ ) cells. Meanþ s.d. (n¼12 mice/group) of 3 experiments. ***Po0.0001, by two-way ANOVA. (g) CD4þ and CD8aþ splenic cDC
subsets were cell sorted (97% purity) from wild-type (WT) mice 24 h after immunization with sFliC and cultured for 4 days with carboxyfluorescein
succinimidyl ester (CFSE)-labeled SM1 transgenic T cells in a 1:30 ratio. cDCs were used a sorted (in vivo loaded) or additional 2 mg of sFliC was added to
the culture (in vitro loaded). T-cell division was assessed by CFSE dilution and CD62L expression, and blue overlay represents culture of only T cells.
Representative histograms from three independent experiments are shown. Data are shown as meanþ s.d. (n¼4 mice/group) and are representative of
two independent experiments polled together. **Po0.001, by Mann–Whitney test.
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cDCs could potentially contribute to antigen presentation. To
address this possibility, WT mice were immunized with sFliC for
24 h and CD4þCD11bþ and CD8aþCD11b� splenic cDCs
were FACS sorted and co-cultured with SM1 T cells. Both
CD4þCD11bþ and CD8aþCD11b� cDCs induced SM1 T-cell
proliferation, although CD8aþCD11b� cDC did so less
efficiently (Figure 5g). The difference in T-cell proliferation
after co-culture probably reflects differences in antigen capture
in vivo rather than an intrinsic difference in their capacity to
present antigen as T-cell proliferation was similar when sFliC was
added to the cultures ex vivo (Figure 5g). Collectively, these results
suggest that IRF4-dependent and -independent cDCs contribute to
the splenic sFliC-specific response.

Mucosal DP cDCs contribute to sFliC-specific Ab
responses in the BM

To study the persistence of the anti-sFliC Ab response, we
next examined the BM, representing an important site for
maintenance of long-lived plasma cells. Strikingly, although
sFliC-specific IgGþ and IgAþ ASCs were readily detected in
the BM of Irf4fl/fl mice, they were completely absent in the BM
of Cd11c-cre.Irf4fl/fl mice (Figure 6a). In contrast, the BM of
Cd11c-cre.Irf8fl/flmice had a similar number of sFliC-specific
ASCs as control Irf4fl/fl mice (Figure 6b). The complete lack of
sFliC-specific ASCs in the BM of Cd11c-cre.Irf4fl/fl mice
suggested that mucosal DP cDCs may contribute to the
long-term Ab response in the BM. To assess this possibility,
expression of the intestinal-associated signature integrin a4b7

(refs. 32,33) was examined on BM sFliC-specific plasma cells
from WT mice primed–boosted with sFliC. A sFliC-specific
population of plasma cells was detected in the BM of sFliC
immunized but not unimmunized mice, as assessed by flow
cytometry (Figure 6c). Furthermore, a proportion of these
sFliC-specific but not non-sFliC-specific BM plasma cells
expressed a4b7 (Figure 6c). Consistent with these findings,
sFliC-specific cells expressing a4b7 were detected on cytospins
preparations of enriched CD138þ BM cells from the same mice
(Figure 6d). Finally, the data suggest that loss of DP cDCs
should have an effect on the total serum antibody response
to sFliC. IgG titers were 490% reduced in Cd11c-cre.Irf4fl/fl

mice compared with control mice and IgA was
undetectable (Figure 6e). Collectively, these results suggest
that mucosal DP cDC priming of antibody responses in the
MLN can enhance sFliC-specific ASC numbers in the BM
following IP immunization with sFliC.

DISCUSSION

Previously, it has been shown that systemic immunization with
sFliC induces parallel Ab responses in systemic and mucosal
secondary lymphoid tissues, with the latter responses asso-
ciated with a rapid TLR5-dependent accumulation of antigen-
carrying CD103þ cDCs in the intestinal-draining MLN.15 Here
we demonstrate that mucosal DP cDCs are required for the
anti-sFliC response in the MLN and provide evidence that
plasma cells derived from this response can ultimately take up
residence in the BM and contribute to the systemic antibody

Figure 6 The mucosal response to soluble flagellin (sFliC) contributes to
the systemic antibody response. Irf4fl/fl(black) or Cd11c-cre.Irf4fl/fl (white)
mice were either nonimmunized (NI) or sFliC prime–boosted. (a)
ELISPOT (Enzyme-Linked ImmunoSpot) analysis of sFliC
immunoglobulin G (IgG) and immunoglobulin A (IgA) responses in the
bone marrow (BM). Number of spot-forming units (SFUs) per 5� 105 cells
(graphs) and representative pictures of wells (lower panels). Data are
shown as meanþ s.d. (n¼ 12 mice/group) of three independent
experiments pooled together. *Po0.01, **Po0.001, by two-way analysis
of variance (ANOVA). (b) Cd11c-cre.Irf8fl/fl (white) or Irf8fl/flcontrol mice
(black) were either NI or sFliC primed–boosted. ELISPOT analysis of sFliC
IgG and IgA responses in the BM. Data are shown as meanþ s.d. (n¼ 8
mice/group) of two independent experiments pooled together. *Po0.01,
by two-way ANOVA. (c) Wild-type (WT) mice were NI or sFliC primed–
boosted. BM CD138þ cells were intracellularly stained with sFliC-
biotinylated, expression of a4b7 is shown in sFliCþ and sFliC� CD138þ

cells by fluorescence-activated cell sorting (FACS) and (d) cytospins show
a4b7 (brown) and sFliC (blue) in pre-enriched CD138þ cells. Scale
bar¼ 20mm. Representative plots and photomicrographs (n¼4 mice/
group) from 2 independent experiments. (e) Serum anti-sFliC IgG
and IgA evaluated by enzyme-linked immunosorbent assay (ELISA). Data
are shown as meanþ s.d. (n¼ 12 mice/group) and are representative of
three independent experiments pooled together. *Po0.01, by two-way
ANOVA.
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pool. The ability of sFliC to efficiently engage the mucosal
immune system after a systemic immunization may confer a
significant advantage to sFLiC-containing vaccines, such as the
influenza–flagellin fusion vaccine that has shown safety and
potential not only in healthy adults but also in the elderly9,10

who often induce poor Ab responses.34

Although multiple MLN cDC subsets can induce T-cell
responses to sFliC after antigen loading in vitro,35 we
demonstrate here that only DP cDCs drive T- and B-cell
responses in the MLN in vivo. The reasons why IRF4-
dependent DP cDCs are so critical in driving sFliC-specific
T-cell responses in the MLN remain to be fully elucidated but
are likely multifactorial. Previous studies have demonstrated
that IRF4-dependent cDCs have an enhanced intrinsic capacity
to prime CD4þ T cells compared with IRF8-dependent
cDCs.23,36 Interestingly, sFliC induced MyD88-dependent
accumulation was similar after secondary immunization, even
in the presence of high-affinity sFliC Ab,2,3 indicating a high
efficiency of sFliC capture by TLR5. These results are consistent
with prior observations that small amounts of sFliC are
required for its immune modulatory effects37 and further
suggest that inclusion of sFliC in boost as well as in prime
vaccines could further promote mucosal immune system
engagement. Notably, recognition of intestinal microbiota-
derived flagellin is also TLR5 dependent and boosts vaccine
responses through the action of clodronate-sensitive (pre-
sumably monocyte derived) cells.38 Given our current findings,
the cross-talk between these cells and DP cDCs in driving the
microbiota-derived flagellin response warrants further study.
sFliC-specific responses in the spleen were reduced in Cd11c-
cre.Irf4fl/fl mice. Splenic CD4þ cDCs from immunized WT
mice efficiently primed sFliC-specific T cells ex vivo and these
cells were selective reduced in Cd11c-cre.Irf4fl/fl mice, collec-
tively indicating that IRF4-dependent CD4þ cDCs are
required for optimal sFliC-specific responses in the spleen.
Despite these findings, sFliC-induced Tfh cell accumulation
was not significantly altered, and sFliC-specific GCs were
readily detectable in the spleen in the absence of IRF4-
dependent cDCs, suggesting that additional antigen-presenting
cells contribute to the sFliC-specific response at this site.
Although the identity of these IRF4-independent antigen-
presenting cells remains to be identified, splenic CD8þ cDCs
isolated from immunized mice induced limited sFliC-specific
T-cell generation ex vivo, indicating that IRF8-dependent cDCs
may contribute to this response. Collectively, these findings
indicate that the cellular and molecular mechanisms driving
sFliC-specific immune responses in the spleen and MLN are, in
part, distinct.

These findings are consistent with prior studies demonstrat-
ing that immune responses induced by sFliC are both complex
and site specific. Thus, although sFliC drives both an IgG and
IgA response in the MLN, it drives primarily an IgG response in
the spleen.15 sFliC-specific IgA responses are TLR5 depen-
dent,15 whereas sFliC-specific IgG responses, in particular IgG1
responses, can occur through TLR5- and inflammasome-
independent pathways.13,39 Furthermore, sFliC-specific T-cell

responses in the spleen are also less dependent on TLR5 than in
the MLN15 and splenic cDCs have been reported to express
lower levels of TLR5 in comparison with cDCs from the
intestinal mucosa.40 Thus, the features of sFliC that enable it to
have these effects are likely to relate to it being the ligand for
TLR5 and its modest molecular size. The accumulation of
CD103þ cDCs in the MLN after sFliC immunization is TLR5
dependent41 and SI-LP cDCs with a similar phenotype as DP
cDC (CD103þCD11chiCD11bhi) have been shown to express
high levels of TLR5.42 In contrast, splenic cDCs do not appear to
express as high levels of TLR5 as SI-LP cDCs.40 Indeed,
consistent with the need for TLR5 expression, we show that
MyD88 expression in DP cDCs is needed for their accumula-
tion in the MLN after immunization. Furthermore, TLR5 itself
can enhance presentation of antigen through MyD88-inde-
pendent mechanisms, indicating its function in promoting
antigen presentation may be multifactorial.13 Although these
points may help explain why DP cDCs have an enhanced
capacity to capture and present sFliC, it does not explain how
sFliC gets to this site. This could relate to the use of highly
purified, monomeric flagellin in these studies. sFliC has a
relatively modest size of B50 kDa, meaning it can disseminate
readily through the host after systemic immunization. Other
studies have found molecules of a similar or greater size are also
able to disperse rapidly throughout the host and prime
responses in multiple sites.43 While not addressed in the
present study, it remains possible that DP cDC promote sFliC
responses in part through direct interactions with B cells. A
more detailed understanding of the molecular pathways by
which antigen-presenting cell subsets orchestrate these diverse
responses to sFliC should provide important information
regarding sFliC usage in future vaccines.

Interestingly, IgAþ and IgGþ sFliC-specific ASCs were
completely absent in the BM of sFliC immunized Cd11c-
cre.Irf4fl/fl mice and we found that a proportion of sFliC-specific
ASCs accumulating in the BM of sFliC immunized WT mice
expressed the intestinal homing receptor a4b7. This suggests
that some of these ASCs were initially generated in intestinal
lymph nodes.44 Nevertheless, this does not necessarily mean all
ASCs in the BM derive from the mucosa, nor does it exclude the
possibility that long-lived ASCs can be generated in other sites,
as we detected sFliC-specific ASCs in the spleen. For instance, it
has been shown that long-lived plasma cells can be found in the
spleen, as well as the BM, indicating multiple reservoirs can
exist.45 Collectively, these results suggest that the priming of
responses in the MLN by DP cDCs may contribute to the
accumulation of sFliC-specific plasma cells in the BM and
hence to sFliC-specific serological memory. In support of this,
sFliC-specific IgAþ plasma cells are detected in the MLN and
not the spleen during a primary response15 and long-lived BM
plasma cell responses can be induced in splenectomized mice
after immunizing mice orally with high doses of ovalbumin
and cholera toxin.46 The ability of sFliC to engage DP cDCs,
and in so doing promote both mucosal and serological antibody
responses, could mean that optimal serological memory
requires engagement of the mucosa. Alternatively, this effect
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could be restricted to the response to sFliC, or just last for
the period assessed in this study. Indeed, the ablated ASC
response in the MLN and SI-LP observed when mucosal DP
cDCs were reduced was not observed in the spleen, indicating
that other pathways for the generation of ASCs remain. Thus,
this reduction in ASC in the BM may not be permanent or
absolute. Either way, it suggests it may be possible to use
flagellin to direct mucosally induced plasma cells to the BM.
Understanding this may help identify how to enhance the
longevity of responses to vaccines that can be dramatically
different depending upon their nature and how they are
administered.47

In summary, our results show how sFliC, by targeting DP
cDCs, can overcome the difficulties in inducing a mucosal
response after systemic immunization. This highlights the
interplay between the mucosal and systemic immune systems
and offers an alternative and highly desirable approach to
drive long-lived systemic immunity by engaging mucosal DP
cDCs.

METHODS

Mice. Cd11c-cre.MyD88fl/fl,28 Cd11c-cre.Irf4fl/f,21 and Cd11c-creIrf8fl/fl

mice26 were maintained at the Biomedical Center at Lund University
(Lund, Sweden). SM1 transgenic29 mice were maintained at the
University of Birmingham Biomedical Service Unit (Birmingham,
UK). Specific pathogen-free 6–8-week-old C57BL/6 mice were
purchased from Harlan Sprague-Dawley (Huntington, UK). Litter-
mates or age-matched mice were used for all experiments where
appropriate. All animal procedures were carried out in strict
accordance with the Lund/Malmö Animal Ethics Committee, the
University of Birmingham Ethics Committee, and the UK Home
Office approval (project license 30/2850).

Antigen preparation and immunizations. sFliC was generated as
previously described.3 Briefly, the FliC gene from Salmonella
Typhimurium was cloned into pETT22bþ via ndeI and xhoI sites to
incorporate a poly-histidine tag. After induction, His-tagged
recombinant protein was enriched by nickel affinity chromatography
resulting in a purity of 95%. Following dialysis, the protein was further
purified by immunoprecipitation with a sFliC-specific monoclonal.
Each batch was tested by immunization of WT and TLR5-deficient
mice. Batches were only accepted if cDCs in the spleen and MLN
matured in WT but not TLR5-deficient mice. Mice were immunized IP
with 20 mg recombinant sFliC, IP boosted 21 days later with the same
dose, and responses were assessed 4 days after boost.

Cell isolation and flow cytometry. Single-cell suspensions from
spleen and MLN and BM were generated by mechanical disruption.
When evaluating cDCs, MLN and spleen were enzymatic digested with
collagenase IV digestion (400 U ml� 1; 25 min; 37 1C). Cell suspen-
sions from SI-LP were generated as previously described48 using
Liberase (0.2–0.3 WunchU ml� 1, Roche, Basel, Switzerland). Cells
were processed for flow cytometry according to standard procedures.15

Data acquisition was performed on a LSRII (BD Bioscience, San Jose,
CA) or a CyAn ADP (Beckman Coulter, Brea, CA) and analyzed using
FlowJo software 9.8.2. (Tree Star, Aghland, OR). All antibodies used
are listed in Supplementary Table S1.

Mixed BM chimeras. BM chimeras were generated by transferring BM
cells (1.5� 106 cells) intravenously from the indicated donor mice into
lethally irradiated (900 rad) recipient mice. Mixed BM chimeras were
generated by transferring a 50:50 mix of BM from the indicated strains.

Mice were used for immunization experiments 8 weeks after BM
transfer.

In vitro co-culture to evaluate cDC antigen loading in vivo. Spleen
and MLN were collected 24 h post IP immunization with sFliC (20mg),
and single-cell suspensions prepared as described above. The cDCs were
pre-enriched using MACS beads (anti-CD19, CD5 and DX5). Cell
suspensions were subsequently stained with anti-CD11c, MHC-II,
CD103, and CD11b (MLN) or CD11c, MHCII, CD4, and CD8 (spleen)
and the indicated cDC subsets FACS sorted on a BD FACSAria Fusion.
The following subsets were isolated: SP (CD103þCD11b� ) and DP
(CD103þCD11bþ ) cDCs from the MLN from the CD11chiMHC-IIþ

population. From the spleen using again a pregate CD11chiMHC-IIþ

CD8aþCD11b� and CD4þCD11bþ cDCs were sorted to a purity of at
least 97%. SM1 T cells were MACS enriched (CD5þ selection) and
carboxyfluorescein succinimidyl ester labeled. The cDCs and T cells were
co-cultured for 4 days (1:30 ratio cDC/T) before flow cytometry analysis.

ELISPOT analysis. ELISPOT was performed as described pre-
viously.15 In brief, 5� 105 cells were added per well in triplicates in a
sFliC precoated plate and cultured for 6 h at 37 1C. After incubation,
plates were incubated overnight at 4 1C with alkaline phosphate-
conjugated anti-IgG and IgA (Southern Biotech, Birmingham, AL).
Reaction was developed with SIGMA Fast BCIP/NBT (Sigma Aldrich,
St. Louise, MO). Spots were counted using the AID ELISPOT Reader
System and AID software version 3.5 (Autoimmune Diagnostika,
Strassberg, Germany). Counts were expressed as spot-forming units
per 5� 105 cells.

Immunohistochemistry and confocal microscopy. Immunohistol-
ogy was performed as described previously.3 Cryosections were incubated
with primary unconjugated Abs for 45 min at room temperature before
addition of either horseradish peroxidase-conjugated or biotin-con-
jugated secondary antibodies. sFliC-binding cells were identified as
previously described3,15 using biotinylated sFliC. When using cytospins,
1� 105 cells were used per cytospin and cells were fixed in cold acetone for
10 min. Signal was detected using diaminobenzidine for horseradish
peroxidase activity and naphthol AS-MX phosphate with Fast Blue salt
and levamisole for alkaline phosphatase activity. Images were acquired
using a Leica (Milton Keynes, UK) microscope DM6000 using 10� and
20� objectives or the Zeiss (Jena, Germany) Axio ScanZ1 Slide Scanner
using 10� objective. Quantification of GC area was performed using Zen
2012 (blue edition, Jena, Germany) software.

Confocal was performed on frozen sections as previously
described.49 Staining was performed in phosphate-buffered saline
containing 10% fetal calf serum, 0.1% sodium azide, and sections were
mounted in 2.5% 1,4-Diazabicyclo(2,2,2)octane (pH 8.6) in 90%
glycerol in phosphate-buffered saline. Confocal images were acquired
using a Zeiss LSM510 laser scanning confocal microscope with a Zeiss
AxioVert 100M. Signals obtained from lasers were scanned separately
and stored in four non-overlapping channels as pixel digital arrays of
2,048� 2,048 (10� objective) or 1,024� 1,024 (63� objective).

FliC-specific enzyme-linked immunosorbent assay. Enzyme-linked
immunosorbent assay plates were coated with 5 mg ml� 1 of sFliC (2 h
at 4 1C) and blocked with 1% bovine serum albumin overnight at 4 1C.
Serum, diluted 1:100 in phosphate-buffered saline–0.05% Tween, was
added and diluted stepwise. To measure total Ab titers serum was
diluted in 1:1,000 and added and further diluted stepwise on uncoated
plates. Following incubation for 1 h at 37 1C, plate-bound antibodies
were detected using alkaline phosphatase-conjugated goat anti-mouse
IgG, IgG1, and IgA (Southern Biotech). Reaction was developed with
Sigma-Fast p-nitrophenylphosphate (Sigma Aldrich). Relative reci-
procal titers were calculated by measuring the dilution at which the
serum reached a defined OD405.

Statistics. Statistics were calculated using the nonparametric Mann–
Whitney sum of ranks test or two-way analysis of variance as appropriate
using the GraphPad Prism software (GraphPad, La Jolla, CA).
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