UNIVERSITYOF
 BIRMINGHAM

Triangle-tilings in graphs without large independent sets

Balogh, Jozsef; McDowell, Andrew; Molla, Theodore; Mycroft, Richard

DOI:
10.1017/S0963548318000196

License:
None: All rights reserved

Document Version

Peer reviewed version
Citation for published version (Harvard):
Balogh, J, McDowell, A, Molla, T \& Mycroft, R 2018, 'Triangle-tilings in graphs without large independent sets', Combinatorics, Probability and Computing. https://doi.org/10.1017/S0963548318000196

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
Checked for eligibility: 15/01/2018

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
-User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Triangle-tilings in graphs without large independent sets

József Balogh, Andrew McDowell† Theodore Molla \ddagger Richard Mycroft ${ }^{\text {§ }}$

November 13, 2017

Abstract

We study the minimum degree necessary to guarantee the existence of perfect and almost-perfect triangle-tilings in an n-vertex graph G with sublinear independence number. In this setting, we show that if $\delta(G) \geq n / 3+o(n)$ then G has a triangle-tiling covering all but at most four vertices. Also, for every $r \geq 5$, we asymptotically determine the minimum degree threshold for a perfect triangle-tiling under the additional assumptions that G is K_{r}-free and n is divisible by 3 .

Mathematics Subject Classification Numbers: 05C35, 05C70, 05D40.

1 Introduction

A triangle-tiling in a graph G is a collection \mathcal{T} of vertex-disjoint triangles in G. We say that \mathcal{T} is perfect if $|\mathcal{T}|=n / 3$, where n is the order of G. A trivial necessary condition for the existence of a perfect triangle-tiling is that 3 divides n. We let $V(\mathcal{T}):=\bigcup_{T \in \mathcal{T}} V(T)$ and say \mathcal{T} covers $U \subseteq V(G)$ (respectively $v \in V(G)$) when $U \subseteq V(\mathcal{T})$ (respectively $v \in V(\mathcal{T})$), so a perfect triangle-tiling covers every vertex of the host graph. Given disjoint sets A and B which partition $V(G)$, we say that a triangle T in G is an A triangle if T contains two vertices of A and one vertex of B, and likewise that T is a

[^0]B-triangle if T contains two vertices of B and one vertex of A. Observe that if $|A|=1$ $(\bmod 3)$ and $|B|=2(\bmod 3)$, there are no B-triangles in G and also there is no pair of vertex-disjoint A-triangles in G, then G does not have a perfect triangle-tiling. In that case, we call the ordered pair (A, B) a divisibility barrier in G (note that order is important here). Similarly, if $A \subseteq V(G)$ has size $|A| \geq 2 n / 3+r$ for some $r>0$, but $G[A]$ has no triangles, then every triangle-tiling in G contains at most $n-|A| \leq n / 3-r$ triangles, and so leaves at least $3 r$ vertices uncovered. We call such a set A a space barrier.

The classical Corrádi-Hajnal theorem [4] states that if G has minimum degree $\delta(G) \geq$ $2 n / 3$, and n is divisible by 3 , then G contains a perfect triangle-tiling. The minimum degree condition of this result is easily seen to be best-possible by considering, for an arbitrary $m \in \mathbb{N}$, the complete tripartite graph $G_{1}(m)$ with vertex classes of size $m-1, m$ and $m+1$. Indeed, $G_{1}(m)$ then has $n:=3 m$ vertices and $\delta\left(G_{1}(m)\right) \geq 2 m-1=2 n / 3-1$, but $G_{1}(m)$ has no perfect triangle-tiling, as the union of the two largest vertex classes is a space barrier. Observe, however, that $G_{1}(m)$ contains large independent sets. By proving the following theorem, Balogh, Molla and Sharifzadeh [2] recently showed that the minimum degree condition can be significantly weakened if we additionally assume that G has no large independent set. Throughout this paper we write $\alpha(G)$ to denote the independence number of G.

Theorem 1.1 ([2, Theorem 1.2]). For every $\omega>0$ there exist $n_{0}, \gamma>0$ such that the following holds for every integer $n \geq n_{0}$ which is divisible by 3. If G is a graph on n vertices with $\delta(G) \geq n / 2+\omega n$ and $\alpha(G) \leq \gamma n$, then G contains a perfect triangle-tiling.

For an arbitrary $m \in \mathbb{N}$, the graph $G_{2}(m)$ consisting of two copies of $K_{3 m+2}$ intersecting in a single vertex has $n:=6 m+3$ vertices, minimum degree $\delta\left(G_{2}(m)\right)=3 m+1=$ $\lfloor n / 2\rfloor$ and independence number two. Moreover, $G_{2}(m)$ has a divisibility barrier (A, B), where B is the vertex set of one of the copies of $K_{3 m+2}$ and $A=V\left(G_{2}(m)\right) \backslash B$, and so $G_{2}(m)$ does not contain a perfect triangle-tiling. This example demonstrates that the minimum degree condition of Theorem 1.1 is best-possible up to the ωn additive error term. Alon suggested that if one only wants a triangle-tiling that covers all but a constant number of vertices, then perhaps the condition $\delta(G) \geq(1 / 3+o(1)) n$ is sufficient. In this paper, we show that this is indeed the case, by proving that if $\delta(G) \geq(1 / 3+o(1)) n$ and $\alpha(G)=o(n)$, then G has a triangle-tiling covering all but at most four vertices. Furthermore, under the additional assumptions that G has no divisibility barrier and 3 divides n, we show that G contains a perfect triangle-tiling.

Theorem 1.2. For every $\omega>0$ there exist $n_{0}, \gamma>0$ such that if G is a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq n / 3+\omega n$ and $\alpha(G) \leq \gamma n$, then
(a) G contains a triangle-tiling covering all but at most four vertices of G, and
(b) if 3 divides n and G contains no divisibility barrier, then G contains a perfect triangle-tiling.

Observe that for an arbitrary $m \in \mathbb{N}$, the graph $G_{3}(m)$ consisting of two disjoint copies of $K_{3 m+2}$ has $n:=6 m+4$ vertices, minimum degree $\delta\left(G_{3}(m)\right)=3 m+1=n / 2-1$ and independence number two, but every triangle-tiling in $G_{3}(m)$ covers at most $n-4$ vertices. This demonstrates that the conditions of Theorem 1.2 do not guarantee a triangletiling which leaves fewer than four vertices uncovered. Furthermore, a straightforward
construction demonstrates that the ωn error term in the minimum degree condition of Theorem 1.2 cannot be removed completely. For this we use the existence of trianglefree graphs on n vertices with independence number $o(n)$ and minimum degree $\omega(1)$, as exhibited by Erdős in [5]; we refer to such a graph as an Erdős graph and denote it by $\operatorname{ER}(n)$. For an arbitrary $m \in \mathbb{N}$ we then form a graph $G_{4}(m)$ by taking the complete bipartite graph whose vertex classes U and V have sizes $2 m+1$ and $m-1$ respectively, and then placing copies of $\mathrm{ER}(|U|)$ and $\mathrm{ER}(|V|)$ on U and V respectively. The graph $G_{4}(m)$ formed in this way has $n:=3 m$ vertices, minimum degree $\delta\left(G_{4}(m)\right) \geq n / 3+\omega(1)$ and sublinear independence number. Moreover, since U is a space barrier, $G_{4}(m)$ has no perfect triangle-tiling.

The relationship between the results in this paper and the Corrádi-Hajnal theorem is clearly analogous to the relationship between Ramsey-Turán theory and Turán's theorem, as Ramsey-Turán theory is concerned with the maximum possible number of edges in an H-free graph on n vertices with some upper bound on $\alpha(G)$. More precisely, in classical Ramsey-Turán theory the principle object of study is the function $\mathbf{R T}(n, H, m)$, which is defined to be the maximum number of edges in an H-free, n-vertex graph with independence number at most m, whenever such a graph exists for n, H and m. The asymptotic value of $\operatorname{RT}\left(n, K_{r}, o(n)\right)$ was established for odd r by Erdős and Sós [6] and for even r by Erdős, Hajnal, Sós and Szemerédi [7], giving the following theorem.

Theorem 1.3 ([6, Theorem 1] and [7, Theorem 1]). For every $r \geq 3$, we define

$$
f_{R T}(r):= \begin{cases}\frac{r-3}{r-1} & \text { if } r \text { is odd } \\ \frac{3 r-10}{3 r-4} & \text { if } r \text { is even } .\end{cases}
$$

(a) For every $\omega>0$, there exists $\gamma, n_{0}>0$ such that if G is a graph on $n \geq n_{0}$ vertices with $\alpha(G) \leq \gamma n$ and with at least $\left(f_{R T}(r)+\omega\right)\binom{n}{2}$ edges, then G contains a copy of K_{r}.
(b) For every $\omega>0$ and $\gamma>0$, there exists $n_{0}>0$ such that for every $n \geq n_{0}$, there exists a K_{r}-free graph $G:=G_{R T}(n, r, \omega, \gamma)$ on n vertices such that $\delta(G) \geq$ $\left(f_{R T}(r)-\omega\right) n$ and $\alpha(G) \leq \gamma n$.

Observe that for any $r \geq 3, \omega, \gamma>0$ and each sufficiently large n divisible by 6 , the graph $G_{5}(n)$ on n vertices consisting of the disjoint union of $G_{\mathrm{RT}}\left(\frac{n}{2}-1, r, \omega, \gamma\right)$ and $G_{\mathrm{RT}}\left(\frac{n}{2}+1, r, \omega, \gamma\right)$ is K_{r}-free, has minimum degree $\delta\left(G_{5}(n)\right) \geq\left(\frac{f_{\mathrm{RT}}(r)}{2}-\omega\right) n$ and independence number at most γn. However, as $G_{5}(n)$ contains a divisibility barrier, it has no perfect triangle-tiling. Although the construction of $G_{\mathrm{RT}}(n, r, \omega, \gamma)$ was given in [6] (when r is odd) and [7] (when r is even), for completeness, we describe $G_{\mathrm{RT}}(n, r, \omega, \gamma$) at the end of Section 5.

By combining Theorems 1.2 and 1.3 we determine, for every $r \geq 5$, the asymptotic minimum degree threshold for a perfect triangle-tiling in a K_{r}-free graph with sublinear independence number; this is the following corollary.
Corollary 1.4. For every $r \geq 5$ and $\omega>0$ there exist $n_{0}, \gamma>0$ such that the following holds for every integer $n \geq n_{0}$ which is divisible by 3. If G is a K_{r}-free graph on n vertices with

$$
\delta(G) \geq \begin{cases}\frac{f_{R T}(r)}{2} n+\omega n & \text { if } r \geq 7 \\ \frac{n}{3}+\omega n & \text { if } r \in\{5,6\}\end{cases}
$$

and $\alpha(G) \leq \gamma n$, then G contains a perfect triangle-tiling.
Proof. Given $\omega>0$, choose γ small enough and n_{0} large enough to apply Theorem 1.2 with the same constants there as here and so that we may apply Theorem 1.3(a) with 3γ and $n_{0} / 3$ in place of γ and n_{0} respectively. We also insist that $\gamma n_{0}+2 \leq \omega n_{0} / 2$. Since $\frac{f_{\mathrm{RT}}(r)}{2} \geq \frac{1}{3}$ if and only if $r \geq 7$, by Theorem $1.2(\mathrm{~b})$ it suffices to prove that no K_{r}-free graph on $n \geq n_{0}$ vertices with $\delta(G) \geq \frac{f_{\mathrm{RT}}(r)}{2} n+\omega n$ and $\alpha(G) \leq \gamma n$ contains a divisibility barrier. So let G be such a graph, and suppose for a contradiction that (X, Y) is a divisibility barrier in G. Let A be the smaller of X and Y, and let B be the larger, so $|A| \leq n / 2$. By definition of a divisibility barrier, if $A=Y$ then there is no pair of vertex-disjoint B-triangles in G, whilst if $A=X$ then there are no B-triangles in G at all. It follows that at most one vertex $a \in A$ has more than $\gamma n+2$ neighbours in B, as given two such vertices $a, a^{\prime} \in A$ we could use the fact that $\alpha(G) \leq \gamma n$ to choose an edge $b c$ in $N(a) \cap B$ and then an edge $b^{\prime} c^{\prime}$ in $\left(N\left(a^{\prime}\right) \cap B\right) \backslash e$ to obtain a pair of vertex-disjoint B-triangles $a b c$ and $a^{\prime} b^{\prime} c^{\prime}$ in G. So at least $|A|-1$ vertices of A have at least $\delta(G)-\gamma n-2 \geq \frac{f_{\mathrm{RT}}(r)}{2} n+\frac{\omega}{2} n$ neighbours in A. So in particular $|A| \geq \frac{f_{\mathrm{RT}}(r)}{2} n \geq \frac{n}{3}$. Moreover we have
$e(G[A]) \geq \frac{1}{2}(|A|-1)\left(\frac{f_{\mathrm{RT}}(r)}{2}+\frac{\omega}{2}\right) n=\frac{n}{2|A|}\left(f_{\mathrm{RT}}(r)+\omega\right)\binom{|A|}{2} \geq\left(f_{\mathrm{RT}}(r)+\omega\right)\binom{|A|}{2}$,
so $G[A]$ contains a copy of K_{r} by Theorem 1.3(a). This contradicts our assumption that G was K_{r}-free and so completes the proof.

Observe that the graph $G=G_{4}(m)$ given by the construction following Theorem 1.2 has $n=3 m$ vertices, minimum degree at least $n / 3+\omega(1)$ and independence number $o(n)$, and that G contains a space barrier (and therefore does not contain a perfect triangle-tiling). Moreover, G is K_{5}-free since $G[U]$ and $G[V]$ are each triangle-free. This demonstrates that the minimum degree condition in Corollary 1.4 is best-possible up to the ωn error term for $r \in\{5,6,7\}$ (and that the error term cannot be removed entirely in these cases). Furthermore, the graph $G_{5}(n)$ presented after Theorem 1.3 shows that the minimum degree condition in Corollary 1.4 is best-possible up to the ωn error term for $r \geq 8$ also.

In a K_{4}-free graph, we can only construct space barriers when $\delta(G)<n / 6$, so it may be true that, in a K_{4}-free graph, the conditions $\delta(G) \geq(1 / 6+o(1)) n$ and $\alpha(G)=o(n)$ are sufficient to guarantee a perfect triangle-tiling when n is divisible by 3 ; we discuss this further in Section 5. Also in Section 5, we consider the problem of determining the minimum degree condition which guarantees a perfect K_{k}-tiling in a graph with sublinear independence number when $k \geq 4$.

1.1 Proof outline

To illustrate the proof ideas of this paper, we here outline the proof of Theorem 1.2(b). Let G be a graph on n vertices with sublinear independence number and minimum degree somewhat greater than $n / 3$, where n is large and divisible by 3 .

Our proof makes extensive use of the notion of a regular pair in G. Loosely speaking, this is a pair (A, B) of vertex-disjoint subsets of $V(G)$ such that the edges between A
and B are distributed in a 'randomlike' manner (see Section 2.1 for formal definitions). Now suppose that (A, B) is a regular pair in G of density d (i.e. there are $d|A||B|$ edges between A and B), for some not-too-small d and sets A and B of linear size. Most vertices $v \in A$ then have approximately $d|B|$ neighbours in B. Since G has sublinear independence number, there must be an edge in the neighbourhood of v, and this creates a triangle in G whose vertices are v and two neighbours of v in B. The same argument with A and B reversed allows us to find triangles with two vertices in A and one in B. It is not hard to see that, provided $|A|$ and $|B|$ differ by at most a factor of two, then we can construct a triangle-tiling covering almost all of the vertices of $A \cup B$ by greedily choosing and deleting triangles in this way (this is the first part of Lemma 3.1). Moreover, if (A, B) has density greater than $1 / 2$ and is super-regular, meaning that every vertex has neighbourhood of typical size, and $|A|$ and $|B|$ differ by at most a little less than a factor of two, then Lemma 3.1 shows that we can in fact construct a triangle-tiling covering every vertex of $A \cup B$ (so long as 3 divides $|A \cup B|$). The ability to find a spanning triangle-tiling in this setup is one way we may complete a perfect triangle-tiling in G at the end of the proof.

Another setup in which we can find a spanning triangle-tiling is where we have pairwise vertex-disjoint sets $A, B, C \subseteq V(G)$ whose sizes are linear and approximately equal to each other such that $(A, B),(B, C)$ and (A, C) are each super-regular pairs of not-toosmall density and 3 divides $|A \cup B \cup C|$. Indeed, we first greedily find and remove triangles by the method described above so that equally many vertices remain in each of A, B and C, and then apply the Blow-up lemma to find a triangle-tiling covering all remaining vertices of A, B and C by triangles each using one vertex from each set. This argument is formalised by Lemma 3.2.

We begin the proof by a standard application of the Szemerédi regularity lemma to find a partition of G into a bounded number of clusters V_{1}, \ldots, V_{k} of equal size and a small exceptional set V_{0}, and define a reduced graph R whose vertices are the clusters of G and whose edges correspond to pairs of clusters which form regular pairs of not-too-small density in G. Then a straightforward counting argument shows that either
(a) there is an edge $V_{i} V_{j}$ of R for which the pair $\left(V_{i}, V_{j}\right)$ has density somewhat more than $1 / 2$, or
(b) R has minimum degree at least $2 k / 3$. In particular, certainly there are clusters V_{i}, V_{j} and V_{k} which form a triangle in R.

In case (a), by removing a small number of vertices from V_{i} and V_{j} (and adding these to the exceptional set) we can make the pair $\left(V_{i}, V_{j}\right)$ super-regular with density more than $1 / 2$, achieving the first setup described above. Similarly in case (b) we can remove a small number of vertices from each of V_{i}, V_{j} and V_{k} to achieve the second setup described above. These two or three clusters (according to which case we are in) form the 'core' of G. Our proof then proceeds by iteratively removing vertex-disjoint triangles so as to cover every vertex outside the core and only a small number of vertices within the core; we can then complete a perfect triangle-tiling in G by finding a triangle-tiling spanning the remaining vertices of the core as described above.

A key step in achieving this is the use of perfect fractional weighted matchings. The theory for these is developed in Section 2.4, with the key conclusion being that since R has minimum degree somewhat greater than $k / 3$, we can partition all clusters outside
the core into subclusters of linear size, so that the subclusters form regular pairs (A_{i}, B_{i}) of not-too-small density and the sizes of A_{i} and B_{i} differ by at most a little less than a factor of two (the crucial ratio for being able to find a triangle-tiling covering almost all vertices of $A_{i} \cup B_{i}$ as described above). We then define an auxiliary reduced graph R^{*} with a vertex v_{i} corresponding to each pair $\left(A_{i}, B_{i}\right)$ and a final vertex v^{*} corresponding to the core of G, with an edge of R^{*} indicating that the corresponding pairs (or perhaps triple, in the case of the core) include subsets of clusters of an edge of R.

Suppose for simplicity that the reduced graph R is connected; it follows that R^{*} is connected, and using a theorem of Win (Theorem 2.7) we find a spanning tree T in R^{*} of bounded maximum degree. We take v^{*} to be the root of T, and iteratively 'work inwards' from the leaves of T to v^{*} to construct a perfect triangle-tiling in G, as follows. First we choose a leaf v_{i} of T, and remove a triangle-tiling in the corresponding pair $\left(A_{i}, B_{i}\right)$ covering almost all vertices of this pair. Writing v_{j} for the parent of v_{i} in T, we then remove a few more triangles to cover all uncovered vertices of $A_{i} \cup B_{i}$ as well as a small number of vertices in the pair $\left(A_{j}, B_{j}\right)$ corresponding to v_{j}. We then delete the leaf v_{i} from T, and iterate. At the end of this iteration only the root v^{*} of T remains, at which point we have constructed a triangle-tiling covering all vertices of T outside the core as well as a small number of vertices of the core. We then find a perfect triangle-tiling within the remaining vertices of the core (recall that the core was chosen so as to permit this step) to complete the desired perfect triangle-tiling in G.

If instead R is not connected, then R has precisely two components (since $\delta(R)>k / 3$). After allocating exceptional vertices appropriately, these components yield a partition of $V(G)$ into two parts, say X and Y. We may then use the fact that G contains no divisibility barrier to find and remove at most two triangles from G so that following these deletions both $|X|$ and $|Y|$ are divisible by 3 . We then proceed exactly as above within each of $G[X]$ and $G[Y]$ (and the corresponding components of R) to obtain perfect triangle-tilings in each of these subgraphs; together with the removed triangles these form a perfect triangle-tiling in G, completing the proof.

2 Notation and preliminary results

In this section we introduce various results which we will use in the proof of Theorem 1.2, beginning with helpful notation. Given a graph G, we write $|G|$ and $e(G)$ for the number of vertices and edges of G respectively. We write $x=y \pm z$ to mean $y-z \leq x \leq y+z$, and $[n]$ to denote the set of integers from 1 to n. We omit floors and ceilings throughout this paper wherever they do not affect the argument. We write $x \ll y$ to mean that for every $y>0$ there exists $x_{0}>0$ such that the subsequent statements hold for x and y whenever $0<x \leq x_{0}$. Similar statements with more variables are defined similarly.

2.1 Regularity

In a graph G, for each pair of disjoint non-empty sets $A, B \subseteq V(G)$ we write $G[A, B]$ for the bipartite subgraph of G with vertex classes A and B and whose edges are all edges of G with one endvertex in A and the other in B, and denote the density of $G[A, B]$ by $d_{G}(A, B):=\frac{e(G[A, B])}{|A||B|}$. We say that $G[A, B]$ is (d, ε)-regular if $d_{G}(X, Y)=d \pm \varepsilon$ for
every $X \subseteq A$ and $Y \subseteq B$ with $|X| \geq \varepsilon|A|$ and $|Y| \geq \varepsilon|B|$, and we write that $G[A, B]$ is $(\geq d, \varepsilon)$-regular to mean that $G[A, B]$ is $\left(d^{\prime}, \varepsilon\right)$-regular for some $d^{\prime} \geq d$. Also, we say that $G[A, B]$ is (d, ε)-super-regular if $G[A, B]$ is $(\geq d, \varepsilon)$-regular, every vertex of A has at least $(d-\varepsilon)|B|$ neighbours in B and every vertex of B has at least $(d-\varepsilon)|A|$ neighbours in A. The following well-known results are elementary consequences of the definitions.

Lemma 2.1 (Slicing Lemma). For every $d, \varepsilon, \beta>0$, if $G[A, B]$ is (d, ε)-regular, and $X \subseteq A$ and $Y \subseteq B$ have sizes $|X| \geq \beta|A|$ and $|Y| \geq \beta|B|$, then $G[X, Y]$ is $(d, \varepsilon / \beta)$ regular.

Lemma 2.2. For every $d, \varepsilon>0$ with $\varepsilon<\frac{1}{2}$, if $G[A, B]$ is $(\geq d, \varepsilon)$-regular, then there are sets $X \subseteq A$ and $Y \subseteq B$ with sizes $|X| \geq(1-\varepsilon)|A|$, and $|Y| \geq(1-\varepsilon)|B|$ such that $G[X, Y]$ is $(d, 2 \varepsilon)$-super-regular.

We make use of Chernoff bounds on the concentration of binomial and hypergeometric distributions in the following form.

Theorem 2.3 ([8, Corollary 2.3 and Theorem 2.10]). Suppose X has binomial or hypergeometric distribution and $0<a<3 / 2$. Then $\mathbb{P}(|X-\mathbb{E} X| \geq a \mathbb{E} X) \leq 2 e^{-\frac{a^{2}}{3} \mathbb{E} X}$.

The following lemma is similar to lemmas of Csaba and Mydlarz [3, Lemma 14] and Martin and Skokan [14, Lemma 10]. It states that if we randomly select a collection of disjoint subsets from each of the vertex classes of a super-regular pair, every pair of sets from different classes is super-regular with high probability.

Lemma 2.4 (Random Slicing Lemma). Suppose that $1 / n \ll \beta, \varepsilon \ll d$. Let $G[A, B]$ be (d, ε)-super-regular (respectively (d, ε)-regular) where $|A|,|B| \leq n$. Also let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{t} be positive integers each of size at least βn such that $\sum_{i \in[s]} x_{i} \leq|A|$ and $\sum_{j \in[t]} y_{j} \leq|B|$. If $\left\{X_{1}, \ldots, X_{s}\right\}$ is a collection of disjoint subsets of A and $\left\{Y_{1}, \ldots, Y_{t}\right\}$ is a collection of disjoint subsets of B such that $\left|X_{i}\right|=x_{i}$ and $\left|Y_{j}\right|=y_{j}$ for all $i \in[s]$ and $j \in[t]$ selected uniformly at random from all such collections, then, with probability at least $1-e^{-\Omega(n)}, G\left[X_{i}, Y_{j}\right]$ is $\left(d, \varepsilon^{\prime}\right)$-super-regular (respectively $\left(d, \varepsilon^{\prime}\right)$-regular) for all $i \in[s]$ and $j \in[t]$, where $\varepsilon^{\prime}:=(33 \varepsilon)^{1 / 5}$.

For completeness we present a proof of Lemma 2.4 in the Appendix. To make use of regularity properties, we apply the degree form of Szemerédi's Regularity Lemma (see [12, Theorem 1.10]).

Theorem 2.5 (Degree form of Szemerédi's Regularity Lemma). For every $\varepsilon>0$, real number $d \in[0,1]$ and integers t and q there exists integers n_{0} and T such that the following statement holds. Let G be a graph on $n \geq n_{0}$ vertices, and let U_{1}, \ldots, U_{q} be a partition of $V(G)$ into q parts. Then there is a partition of $V(G)$ into an exceptional set V_{0} and k clusters V_{1}, \ldots, V_{k}, and a spanning subgraph $G^{\prime} \subseteq G$ such that
(a) $t \leq k \leq T$,
(b) $\left|V_{1}\right|=\left|V_{2}\right|=\ldots=\left|V_{k}\right|$ and $\left|V_{0}\right| \leq \varepsilon n$,
(c) for every $i \in[k]$ there exists $j \in[q]$ such that $V_{i} \subseteq U_{j}$,
(d) $d_{G^{\prime}}(v) \geq d_{G}(v)-(\varepsilon+d) n$ for all $v \in V(G)$,
(e) $e\left(G^{\prime}\left[V_{i}\right]\right)=0$ for all $i \in[k]$, and
(f) for each distinct $i, j \in[k]$ either $G^{\prime}\left[V_{i}, V_{j}\right]$ is $(\geq d, \varepsilon)$-regular or $G^{\prime}\left[V_{i}, V_{j}\right]$ is empty.

Theorem 2.5 as stated above is stronger than the form given in [12] in that it allows us to specify an initial partition of $V(G)$ and to insist that the clusters $V_{1}, V_{2}, \ldots, V_{k}$ are each a subset of some part of this partition (property (c) above). However, this statement follows from the same proof, which proceeds iteratively by alternately refining a partition of $V(G)$ and deleting some vertices of $V(G)$ (which are then placed in the exceptional set V_{0}). So to prove Theorem 2.5 we take our specified partition as the initial partition of this process.

2.2 Robustly-matchable sets

The following application of the regularity lemma is critical to the entire proof. Given a graph G, a small $A \subseteq V(G)$ and a small matching $B \subseteq E(G)$, we form an auxiliary bipartite graph F with vertex set $A \cup B$ in which there is an edge between $a \in A$ and $b c \in B$ if and only if $a b c$ is a triangle in G. So matchings in F correspond to triangletilings in G. In this setting, Lemma 2.6 allows us to choose subsets $X \subseteq A$ and $Y \subseteq B$ such that if we can find a triangle-tiling in G that covers every vertex of G except for the vertices incident to edges in Y and exactly $|Y|$ of the vertices in X, then we obtain a perfect triangle-tiling in G.

Lemma 2.6. Suppose that $1 / n \ll \phi \ll \varepsilon \ll d$. Let F be a bipartite graph with vertex classes A and B such that $n / 10 \leq|A|,|B| \leq n$ and $d_{F}(A, B) \geq d$. Then there exist subsets $X \subseteq A$ and $Y \subseteq B$ of sizes $|X|=\phi n$ and $|Y|=(1-\varepsilon) \phi n$ such that $F\left[X^{\prime}, Y\right]$ contains a perfect matching for every subset $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right|=|Y|$.

Proof. Let n_{0} and T be the integers returned by Theorem 2.5 given inputs $\varepsilon, d^{\prime}:=d / 200$ and $t=q=2$. We may assume that $\phi \leq 1 / 4 T$. We use Theorem 2.5 with initial partition $U_{1}=A$ and $U_{2}=B$ to obtain a spanning subgraph $F^{\prime} \subseteq F$ and a partition of $V(F)$ into sets $V_{0}, V_{1}, \ldots, V_{k}$ which satisfy properties (a)-(f) of Theorem 2.5. In particular, by Theorem $2.5(\mathrm{~d})$ at most $(\varepsilon+d / 200) n^{2}$ edges of F are not edges of F^{\prime}. Also, by Theorem $2.5(\mathrm{e})$ there are no edges in $F^{\prime}\left[V_{i}\right]$ for any $i \in[k]$, and since $\left|V_{0}\right| \leq \varepsilon n$ by Theorem 2.5(b), at most εn^{2} edges of F contain a vertex of V_{0}. Since

$$
e(F)=d_{F}(A, B)|A||B| \geq d\left(\frac{n}{10}\right)^{2}>\left(\varepsilon+\frac{d}{200}\right) n^{2}+\varepsilon n^{2}
$$

there must exist distinct $i, j \in[k]$ such that $F^{\prime}\left[V_{i}, V_{j}\right]$ is non-empty, and since F is bipartite, by Theorem 2.5(c) we may assume without loss of generality that $V_{i} \subseteq A$ and $V_{j} \subseteq B$. Observe that $F^{\prime}\left[V_{i}, V_{j}\right]$ is $\left(\geq d^{\prime}, \varepsilon\right)$-regular by Theorem $2.5(\mathrm{f})$. Write m for the common size of V_{i} and V_{j}, so $m=\left|V(F) \backslash V_{0}\right| / k \geq n / 2 T \geq 2 \phi n$ by Theorem 2.5(a) and (b). By Lemma 2.2 we may delete at most εm vertices from each of V_{i}^{\prime} and V_{j}^{\prime} to obtain subsets $V_{i}^{\prime} \subseteq V_{i}$ and $V_{j}^{\prime} \subseteq V_{j}$ such that $F\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$ is ($\left.d^{\prime}, 2 \varepsilon\right)$-super-regular. Having done so, choose $X \subseteq V_{i}^{\prime}$ and $Y \subseteq V_{j}^{\prime}$ uniformly at random with sizes ϕn and $(1-\varepsilon) \phi n$ respectively (this is possible since $\left|V_{i}^{\prime}\right|,\left|V_{j}^{\prime}\right| \geq(1-\varepsilon) m \geq \phi n$). Then Lemma 2.4 tells us that $F^{\prime}[X, Y]$ is $\left(d^{\prime}, \varepsilon^{\prime}\right)$-super-regular with high probability, where $\varepsilon^{\prime}:=(66 \varepsilon)^{1 / 5}$, so we may fix sets X and Y with this property. It then follows that every vertex of X has at least $\left(d^{\prime}-\varepsilon^{\prime}\right)|Y| \geq \varepsilon^{\prime}|X|$ neighbours in Y, whilst every set of at least $\varepsilon^{\prime}|X|$ vertices of
X has at least $\left(1-\varepsilon^{\prime}\right)|Y| \geq\left(1-2 \varepsilon^{\prime}\right)|X|$ neighbours in Y (where we say that a vertex y is a neighbour of a set X^{\prime} if y is a neighbour of some element of X^{\prime}). Finally, since every vertex of Y has at least $\left(d^{\prime}-\varepsilon^{\prime}\right)|X|>2 \varepsilon^{\prime}|X|$ neighbours in X, every set of at least $\left(1-2 \varepsilon^{\prime}\right)|X|$ vertices of X has every vertex of Y as a neighbour. So Hall's criterion is satisfied for every $X^{\prime} \subseteq X$ of size $\left|X^{\prime}\right| \leq|Y|$, so for every $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right|=|Y|$ there is a perfect matching in $F^{\prime}\left[X^{\prime}, Y\right]$.

2.3 Spanning bounded degree trees

Our proof requires us to find a spanning tree of bounded maximum degree in the reduced graph R of G. For this, we use the following theorem of Win [16].

Theorem 2.7. If $k \geq 2$ and R is a connected graph such that

$$
\sum_{v \in S} d(v) \geq|R|-1 \text { for every independent set } S \text { of size } k
$$

then R contains a spanning tree T such that $\Delta(T) \leq k$. In particular, if R is a connected graph with $\delta(R) \geq(|R|-1) / k$, then R contains a spanning tree T with maximum degree at most k.

2.4 Fractional weighted matchings via linear programming

Recall from the proof outline that we will consider regular pairs of clusters of vertices of G and use the regularity of each pair to find a triangle-tiling covering a given proportion of vertices from each cluster. We want to choose these proportions so that collectively these triangle-tilings cover (almost) all of the vertices of G. To do this we look for a generalized form of weighted matching in the reduced graph; the proportion of vertices to be covered by a triangle-tiling within a pair of clusters then corresponds to the weight in this matching of the corresponding edge of the reduced graph.

A fractional matching w in a graph G assigns a weight $w_{e} \geq 0$ to each edge $e \in E(G)$ such that for every vertex $u \in V(G)$ we have $\sum_{e \ni u} w_{e} \leq 1$. In other words, if we consider each edge $u v$ to place weight $w_{u v}$ at each of u and v, then the the combined weight placed at each vertex is at most one. This is a relaxation of an integer matching M, in which we insist that for each $e \in E(G)$ we have $w_{e}=1$ (meaning that $e \in M$) or $w_{e}=0$ (meaning that $e \notin M)$. Here we work with a more general notion of an (η, ξ)-weighted fractional matching, in which we consider each edge to place different weights at each end, subject to the restriction that the ratio of these weights is at most $\eta: \xi$. It is most natural to express these matchings in terms of directed graphs, as we can then consider a directed edge $\overrightarrow{u v}$ of weight $w_{\overrightarrow{u v}}$ to place weight $\eta w_{\vec{u} v}$ on its tail u and weight $\xi w_{\overrightarrow{u v}}$ on its head v; as before, we insist that the combined weight placed at each vertex is at most one.

Definition 2.8. Let Γ be a directed graph on n vertices and let η and ξ be positive real numbers. An (η, ξ)-weighted fractional matching w in Γ is an assignment of a weight $w_{\overrightarrow{u v}} \geq 0$ to each edge $\overrightarrow{u v}$ of Γ such that for every vertex $u \in V(\Gamma)$ we have

$$
\begin{equation*}
\sum_{v \in N_{\Gamma}^{+}(u)} \eta w_{\overrightarrow{u v}}+\sum_{v \in N_{\Gamma}^{-}(u)} \xi w_{\overrightarrow{v u}} \leq 1 \tag{1}
\end{equation*}
$$

The total weight of w is defined to be $W:=\sum_{\vec{u} \vec{v} \in E(\Gamma)}(\eta+\xi) w_{\overrightarrow{u v}}$. By (1) we have $W \leq n$; we say that w is perfect if $W=n$. Note that in this case we have equality in (1) for every vertex.

Given an undirected graph G, we consider (η, ξ)-weighted fractional matchings in the directed graph Γ formed by replacing every edge $u v$ of G with both a directed edge $\overrightarrow{u v}$ from u to v and a directed edge $\overrightarrow{v u}$ from v to u. In particular, a $\left(\frac{1}{2}, \frac{1}{2}\right)$-weighted fractional matching w in Γ then corresponds to a fractional matching w^{\prime} in G (in the standard notion of fractional matching as defined above). Indeed, given w, for each edge $e=u v \in E(G)$ we may take $w_{e}^{\prime}=w_{\overrightarrow{u v}}+w_{\overrightarrow{v u}}$. In our proof we will instead consider (η, ξ) weighted fractional matchings in Γ where ξ is close to twice as large as η. The advantage of this is shown by Lemma 2.10, which states that the minimum degree condition on G needed to guarantee the existence of a perfect (η, ξ)-weighted fractional matching in Γ is then approximately $n / 3$, well below the $n / 2$ threshold needed to guarantee the existence of a perfect fractional matching in G.

Let Γ be a directed graph on n vertices v_{1}, \ldots, v_{n}, and fix $\eta, \xi>0$. Then we define the (η, ξ)-weighted characteristic vector of an edge $\overrightarrow{u v} \in E(\Gamma)$ to be the vector $\chi_{\eta, \xi}\left(\overrightarrow{v_{i} v_{j}}\right) \in \mathbb{R}^{n}$ whose i th coordinate is equal to η, whose j th coordinate is equal to ξ, and in which all other coordinates are equal to zero. So an assignment w of non-negative weights to edges of Γ is an (η, ξ)-weighted fractional matching in Γ if and only if

$$
\begin{equation*}
\sum_{\overrightarrow{v_{i} v_{j}} \in E(\Gamma)} w_{\overrightarrow{v_{i} v_{j}}} \chi_{\eta, \xi}\left(\overrightarrow{v_{i} v_{j}}\right) \leq \mathbf{1}, \tag{2}
\end{equation*}
$$

where $\mathbf{1}$ is the vector in \mathbb{R}^{n} with each coordinate equal to 1 and the inequality is treated pointwise. As before, w is perfect if and only if we have equality for each coordinate.

To prove the existence of a (η, ξ)-weighted fractional matching in a directed graph of high minimum indegree, we use the following version of Farkas' Lemma, for which we need the following definition; a vertex $\boldsymbol{v} \in \mathbb{R}^{n}$ is a weighted sum of vectors in $\mathcal{X}=$ $\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right\} \subseteq \mathbb{R}^{n}$ if

$$
\boldsymbol{v} \in\left\{\sum_{i=1}^{m} \lambda_{i} \boldsymbol{x}_{i}: \lambda_{i} \geq 0 \text { for every } i \in[m]\right\}
$$

otherwise \boldsymbol{v} is not a weighted sum of the vectors in \mathcal{X}.
Lemma 2.9 (Farkas' Lemma). For every $\boldsymbol{v} \in \mathbb{R}^{n}$ and every finite $\mathcal{X} \subseteq \mathbb{R}^{n}$, if \boldsymbol{v} is not a weighted sum of the vectors in \mathcal{X}, then there exists $\boldsymbol{y} \in \mathbb{R}^{n}$ such that $\boldsymbol{y} \cdot \boldsymbol{x} \geq 0$ for every $\boldsymbol{x} \in \mathcal{X}$ and $\boldsymbol{y} \cdot \boldsymbol{v}<0$.

We now give the main result of this section.
Lemma 2.10. For every $\eta>0$, every directed graph Γ on n vertices with $\delta^{-}(\Gamma) \geq \eta n$ admits a perfect fractional $(\eta, 1-\eta)$-matching. Furthermore, if $\eta=p / q$ for positive integers p and q, then we can assume that the weights of the matching are rational numbers with common denominator D bounded above by some function of p, q and n.

Proof. Let v_{1}, \ldots, v_{n} be an arbitrary ordering of the vertices of Γ. Then by (2), a perfect $(\eta, 1-\eta)$-weighted fractional matching in Γ corresponds to a weighted sum of the vectors in

$$
\mathcal{X}:=\left\{\chi_{\eta, 1-\eta}\left(\overrightarrow{v_{i} v_{j}}\right): \overrightarrow{v_{i} v_{j}} \in E(\Gamma)\right\}
$$

that equals 1.
If we assume that Γ does not have a perfect $(\eta, 1-\eta)$-weighted fractional matching, then, by Farkas' lemma (Lemma 2.9), as $\mathbf{1}$ is not a weighted sum of the vectors in \mathcal{X}, there exists a vector $\boldsymbol{y} \in \mathbb{R}^{n}$ such that $\boldsymbol{y} \cdot \mathbf{1}<0$ but $\boldsymbol{y} \cdot \chi_{\eta, 1-\eta}\left(\overrightarrow{v_{i} v_{j}}\right) \geq 0$ for every $\overrightarrow{v_{i} v_{j}} \in E(\Gamma)$. By reordering the vertices if necessary, we may assume that $y_{1} \geq \ldots \geq y_{n}$.

Let i be maximal such that $\overrightarrow{v_{i} v_{n}} \in E(\Gamma)$, so $i \geq \delta^{-}(\Gamma) \geq \eta n$. Then,
$0>\boldsymbol{y} \cdot \mathbf{1}=\sum_{j=1}^{i} y_{j}+\sum_{j=i+1}^{n} y_{j} \geq i y_{i}+(n-i) y_{n} \geq \eta n y_{i}+(1-\eta) n y_{n}=n \boldsymbol{y} \cdot \chi_{\eta, 1-\eta}\left(\overrightarrow{v_{i} v_{n}}\right) \geq 0$, a contradiction.

The second statement is implied by basic linear programming theory, if we take the perfect fractional $(\eta, 1-\eta)$-matching to be one with the smallest possible number of non-zero weights, as then w is a basic feasible solution.

Note that if a directed graph Γ admits a perfect (η, ξ)-weighted fractional matching w with $\eta \leq \xi$ and $\eta+\xi=1$, then $\alpha(\Gamma) \leq \xi n$, because for every independent set A in Γ we have

$$
|A|=\sum_{a \in A}\left(\sum_{b \in N^{+}(a)} \eta w_{\overrightarrow{a b}}+\sum_{b \in N^{-}(a)} \xi w_{\overrightarrow{b a}}\right) \leq \xi \sum_{a \in A}\left(\sum_{b \in N^{+}(a)} w_{\overrightarrow{a b}}+\sum_{b \in N^{-}(a)} w_{\overrightarrow{b a}}\right) \leq \xi W \leq \xi n
$$

where the initial equality holds since we have equality in (1), and the penultimate inequality holds because (since A is an independent set) every edge of Γ contributes at most once to the sum. This shows that the minimum indegree condition of Lemma 2.10 is best possible for $\eta \leq 1 / 2$, since weaker conditions do not preclude the existence of independent sets of size greater than $(1-\eta) n$.

3 Triangle-tilings in regular pairs and triples

As described in the proof outline, the proof of Theorem 1.2 proceeds by iteratively constructing a triangle-tiling in G which covers all of the vertices outside of a small 'core' subset of vertices but leaves most vertices inside this 'core' uncovered. This gives a perfect triangle-tiling in G, because the 'core' is robust in the sense that it has a perfect triangle-tiling after the removal of any sufficiently small set of vertices (provided that the number of vertices remaining is divisible by 3). Depending on the structure of the graph G, this 'core' will either consist of sets A and B which form a super-regular pair with density greater than $\frac{1}{2}$, or of sets A, B and C which form three super-regular pairs each with density bounded below by a small constant.

We begin with the case where the 'core' consists of a super-regular pair of density greater than $\frac{1}{2}$ (part (c) of Lemma 3.1). Let G be a graph whose vertex set is the disjoint
union of sets A and B. Recall that a triangle T in G is an A-triangle if T contains two vertices of A and one vertex of B, and likewise that T is a B-triangle if T contains two vertices of B and one vertex of A.

Lemma 3.1. Suppose that $1 / n \ll \gamma \ll \varepsilon \ll \phi, \varepsilon^{\prime} \ll d \ll \omega$. Let A and B be disjoint sets of vertices with $n / 3+\omega n \leq|A|,|B| \leq 2 n / 3-\omega n$ and $|A \cup B|=n$, and let G be a graph on vertex set $V:=A \cup B$ with $\alpha(G) \leq \gamma n$. Then the following statements hold.
(a) If $G[A, B]$ is $(\geq d, \varepsilon)$-regular then G admits a triangle-tiling covering all but at most $2 \varepsilon n$ vertices of G. Moreover, for every a and b with $2 a+b \leq|A|-\varepsilon n$ and $a+2 b \leq|B|-\varepsilon n$ there is a triangle-tiling in G which consists of a A-triangles and $b B$-triangles.
(b) If $G[A, B]$ is (d, ε)-super-regular then, for every $S \subseteq A$ of size $|S|=\phi n$ for which $|A \backslash S|+|B|+\left\lfloor\phi \varepsilon^{\prime} n\right\rfloor$ is divisible by 3, there is a triangle-tiling in G which covers every vertex of $G[V \backslash S]$ and which covers precisely $\left\lfloor\phi \varepsilon^{\prime} n\right\rfloor$ vertices of S.
(c) If n is divisible by 3 and $G[A, B]$ is $(1 / 2+d, \varepsilon)$-super-regular then G contains a perfect triangle-tiling.

Proof. For (a) the triangles may be chosen greedily. Indeed, suppose that we have already chosen a triangle-tiling \mathcal{T} consisting of at most $a A$-triangles and at most $b B$-triangles, then \mathcal{T} covers at most $2 a+b$ vertices of A, and at most $a+2 b$ vertices of B. Taking $A^{\prime}=A \backslash V(\mathcal{T})$ and $B^{\prime}=B \backslash V(\mathcal{T})$, we find that $\left|A^{\prime}\right|,\left|B^{\prime}\right| \geq \varepsilon n$. Since $G[A, B]$ is $(\geq d, \varepsilon)$-regular it follows that $d_{G}\left(A^{\prime}, B^{\prime}\right) \geq d-\varepsilon$, therefore some vertex $x \in A^{\prime}$ has at least $(d-\varepsilon)\left|B^{\prime}\right| \geq(d-\varepsilon) \varepsilon n>\gamma n$ neighbours in B^{\prime}. Since $\alpha(G) \leq \gamma n$ it follows that some two of these neighbours are adjacent, giving a B-triangle which can be added to \mathcal{T}. The same argument with the roles of A^{\prime} and B^{\prime} reversed yields instead an A-triangle which may be added to \mathcal{T}. This proves the second statement of (a); the first follows by setting $a=\frac{1}{3}(2|A|-|B|-\varepsilon n)$ and $b=\frac{1}{3}(2|B|-|A|-\varepsilon n)$.

Next, for (b), let $z:=\left\lfloor\phi \varepsilon^{\prime} n\right\rfloor, t_{4}:=\lfloor z / 2\rfloor$ and $z^{\prime}:=z-2 t_{4} \in\{0,1\}$, so we will construct a triangle-tiling that covers all of $(A \backslash S) \cup B$ and exactly $z=2 t_{4}+z^{\prime}$ vertices of S. Let $B_{1}^{\prime} \subseteq B$ consist of all vertices in B with fewer than $\left(d-\frac{\varepsilon}{\phi}\right)|S|$ neighbours in S; since $G[S, B]$ is $\left(\geq d, \frac{\varepsilon}{\phi}\right)$-regular we have $\left|B_{1}^{\prime}\right| \leq \frac{\varepsilon}{\phi} n$. Form B_{1} by adding at most 2 arbitrarily selected vertices from $B \backslash B_{1}^{\prime}$ to B_{1}^{\prime} so that $\left|B \backslash B_{1}\right|-t_{4}$ is divisible by 3. Since $G[A, B]$ is (d, ε)-super-regular, every vertex of B_{1} has at least $(d-\varepsilon)|A|-|S| \geq \frac{d n}{3}>2\left|B_{1}\right|+\gamma n$ neighbours in $A \backslash S$. Since $\alpha(G) \leq \gamma n$, we may greedily form a triangle-tiling \mathcal{T}_{1} of A-triangles in G of size $\left|B_{1}\right|$ which covers every vertex of B_{1} and does not use any vertex from S. We now select uniformly at random a subset $B_{2} \subseteq B \backslash B_{1}$ of size $\left|B_{2}\right|=t_{4}$. Since every vertex in A has at least $(d-\varepsilon)|B|-\left|B_{1}\right| \geq \frac{d n}{3}$ neighbours in $B \backslash B_{1}$, Theorem 2.3 implies that, with probability $1-o(1)$, every vertex of A has at least $\frac{\phi \varepsilon^{\prime} d}{7} n$ neighbours in B_{2}. Fix a choice of B_{2} for which this event occurs. Let S^{\prime} be an arbitrarily selected subset of S of size z^{\prime} (so S^{\prime} is either empty or a singleton) and let $A^{\prime}:=\left(A \backslash\left(S \cup V\left(\mathcal{T}_{1}\right)\right)\right) \cup S^{\prime}$ and $B^{\prime}:=B \backslash\left(B_{1} \cup B_{2}\right)$. Recall that, by assumption, $|A \backslash S|+|B|+z$ is divisible by 3 , so

$$
\left|A^{\prime}\right|+\left|B^{\prime}\right|=|A \backslash S|+z^{\prime}+|B|-\left|B_{2}\right|-\left|V\left(\mathcal{T}_{1}\right)\right|=(|A \backslash S|+|B|+z)-\left(3 t_{4}+\left|V\left(\mathcal{T}_{1}\right)\right|\right)
$$

is divisible by 3 . Since $\left|B^{\prime}\right|$ is divisible by 3 by our selection of B_{1} and B_{2}, it follows that $\left|A^{\prime}\right|$ is divisible by 3 as well. Let $t_{3}=\left\lfloor\frac{\phi \varepsilon^{\prime} d}{15} n\right\rfloor, a:=\frac{2}{3}\left|A^{\prime}\right|-\frac{1}{3}\left|B^{\prime}\right|$ and $b:=\frac{2}{3}\left|B^{\prime}\right|-\frac{1}{3}\left|A^{\prime}\right|-t_{3}$.

Since $G\left[A^{\prime}, B^{\prime}\right]$ is $\left(\geq d, \frac{\varepsilon}{2}\right)$-regular, (a) implies that there is a triangle-tiling \mathcal{T}_{2} in $G\left[A^{\prime} \cup B^{\prime}\right]$ such that $A^{\prime \prime}:=A^{\prime} \backslash V\left(\mathcal{T}_{2}\right)$ and $B^{\prime \prime}:=B^{\prime} \backslash V\left(\mathcal{T}_{2}\right)$ have sizes precisely $\left|A^{\prime \prime}\right|=\left|A^{\prime}\right|-(2 a+b)=$ t_{3} and $\left|B^{\prime \prime}\right|=\left|B^{\prime}\right|-(a+2 b)=2 t_{3}$. Since by the choice of B_{2} each vertex of $A^{\prime \prime}$ has at least $\frac{\phi^{\prime} d}{7} n>2\left|A^{\prime \prime}\right|+\gamma n$ neighbours in B_{2}, we may greedily form a triangle-tiling \mathcal{T}_{3} in $G\left[A^{\prime \prime} \cup B_{2}\right]$ consisting of exactly $t_{3} B$-triangles which covers every vertex of $A^{\prime \prime}$ and which covers precisely $2 t_{3}$ vertices of B_{2}. At this point we have obtained a triangle-tiling $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup T_{3}$ in G which covers every vertex of A except for those in $S \backslash S^{\prime}$ and every vertex of B except for the precisely $2 t_{3}$ vertices in $B^{\prime \prime}$ and the precisely $t_{4}-2 t_{3}$ vertices in $B_{2} \backslash V\left(\mathcal{T}_{3}\right)$. Therefore, in total, precisely t_{4} vertices of B remain uncovered, each of which has at least $\left(d-\frac{\varepsilon}{\phi}\right)|S|-\left|S^{\prime}\right|>2\left|B_{2}\right|+\gamma n$ neighbours in $S \backslash S^{\prime}$ by the choice of B_{1}. We may therefore greedily form a triangle-tiling \mathcal{T}_{4} of A-triangles in G which covers all the remaining uncovered vertices in B and precisely $2 t_{4}$ vertices of $S \backslash S^{\prime}$. Then $\mathcal{T}_{1} \cup \mathcal{T}_{2} \cup \mathcal{T}_{3} \cup \mathcal{T}_{4}$ is the claimed triangle-tiling.

Finally, since none of the assumptions for (c) involve ϕ or ε^{\prime}, we may assume that $\phi \ll \varepsilon^{\prime}$. We also assume without loss of generality that $|B| \geq|A|$. Since $\alpha(G) \leq \gamma n$, we may greedily form a matching M of size at least $(|B|-\gamma n) / 2 \geq n / 10$ in $G[B]$. Fix such a matching M, and form an auxiliary bipartite graph H with vertex classes A and M where $a \in A$ and $e=x y \in M$ are adjacent if and only if $x y z$ is a triangle in G. Note that for every edge $e=x y \in M$ we have that

$$
\operatorname{deg}_{H}(e)=\left|N_{G}(x) \cap N_{G}(y) \cap A\right| \geq 2((1 / 2+d)-\varepsilon)|A|-|A| \geq d|A|
$$

so H has density at least d. By Lemma 2.6, applied to H with ε^{\prime} here in place of ε there, we may choose subsets $X \subseteq A$ and $M^{\prime} \subseteq M$ such that $|X|=\phi n,\left|M^{\prime}\right|=(1-\varepsilon) \phi n$ and such that $H\left[X^{\prime}, M^{\prime}\right]$ contains a perfect matching for every subset $X^{\prime} \subseteq X$ with $\left|X^{\prime}\right|=\left|M^{\prime}\right|$. Let $B^{\prime}:=B \backslash V\left(M^{\prime}\right)$ and $n^{\prime}:=|A| \cup\left|B^{\prime}\right|$. Then, since we assumed that $|B| \geq|A|$, we have $n^{\prime} / 3+\omega n^{\prime} \leq|A|,\left|B^{\prime}\right| \leq 2 n^{\prime} / 3-\omega n^{\prime}$, so we can apply (b) to $G\left[A \cup B^{\prime}\right]$ with A, B^{\prime} and X in place of A, B and S respectively to obtain a triangle-tiling \mathcal{T}_{1} in G which covers every vertex of G except for the vertices of $V\left(M^{\prime}\right)$ and precisely $\left(1-\varepsilon^{\prime}\right) \phi n$ vertices of X. So, taking X^{\prime} to be the vertices of X not covered by \mathcal{T}_{1}, we have $\left|X^{\prime}\right|=\left|M^{\prime}\right|$. By the choice of X and M^{\prime} it follows that $H\left[X^{\prime}, M^{\prime}\right]$ contains a perfect matching, which corresponds to a perfect triangle-tiling \mathcal{T}_{2} in $G\left[X^{\prime} \cup V\left(M^{\prime}\right)\right]$. This gives a perfect triangle-tiling $\mathcal{T}_{1} \cup \mathcal{T}_{2}$ in G.

We now turn to the case where the 'core' consists of three sets which form three super-regular pairs, for which the following lemma is analogous to Lemma 3.1.

Lemma 3.2. Suppose that $1 / n \ll \gamma, \varepsilon \ll d$, ω, and that 3 divides n. Let V_{1}, V_{2} and V_{3} be disjoint sets of vertices with $\left|V_{i}\right| \geq n / 6+\omega n$ for each $i \in[3]$ such that $V:=\bigcup_{i \in[3]} V_{i}$ has size $|V|=n$. Let G be a graph on vertex set V with $\alpha(G) \leq \gamma n$ such that $G\left[V_{i}, V_{j}\right]$ is (d, ε)-super-regular for each distinct $i, j \in[3]$. Then G contains a perfect triangle-tiling.

To prove Lemma 3.2 we use the celebrated Blow-up Lemma of Komlós, Sárközy and Szemerédi [11] to obtain a perfect triangle-tiling. For simplicity, we state this only in the (very) special case that we use. Note that our definition of super-regularity differs slightly from theirs, but it is not hard to show that the two definitions are equivalent up to some modification of the constants involved (see, for example, [15, Fact 2]), so the validity of Theorem 3.3 is unaffected.

Theorem 3.3 (Blow-up Lemma for triangle-tilings). Suppose that $1 / n \ll \varepsilon \ll d$. Let A, B and C be disjoint sets of vertices with $|A|=|B|=|C|=n$, and let G be a graph on vertex set $V:=A \cup B \cup C$ such that $G[A, B], G[B, C]$ and $G[C, A]$ are each (d, ε)-superregular. Then G contains a perfect triangle-tiling.

The proof of Lemma 3.2 proceeds by iteratively deleting triangles from G with two vertices in one cluster and one in another cluster, until the same number of vertices remain in each cluster. We complete the proof by applying the Blow-up Lemma to obtain a perfect triangle-tiling covering all remaining vertices.

Proof of Lemma 3.2. Throughout this proof we perform addition on subscripts modulo 3. For each $i \in[3]$, the fact that $G\left[V_{i}, V_{i+1}\right]$ is (d, ε)-super-regular implies that each vertex $v \in V_{i}$ has $\left|N(v) \cap V_{i+1}\right| \geq(d-\varepsilon)\left|V_{i+1}\right| \geq d n / 6$. So if we choose uniformly at random a set $Z_{j} \subseteq V_{j}$ of size ωn for each $j \in[3]$, then $\left|N(v) \cap Z_{i+1}\right|$ is hypergeometrically distributed with expectation at least $d \omega n / 6$. By Theorem 2.3 the probability that v has fewer than $d \omega n / 7$ neighbours in $\left|Z_{i+1}\right|$ declines exponentially with n, and likewise the same is true of the probability that v has fewer than $d \omega n / 7$ neighbours in $\left|Z_{i+2}\right|$. Taking a union bound, with positive probability it holds that for each $i \in[3]$ every vertex $v \in V_{i}$ has at least $d \omega n / 7$ neighbours in each of Z_{i+1} and Z_{i+2}. We fix such an outcome of our random selection of the sets Z_{j}, and define $X_{i}^{0}=V_{i} \backslash Z_{i}$ for each $i \in[3]$. Without loss of generality we may assume that $\frac{n}{6} \leq\left|X_{1}^{0}\right| \leq\left|X_{2}^{0}\right| \leq\left|X_{3}^{0}\right| \leq \frac{2 n}{3}-3 \omega n$.

We now proceed by an iterative process. At time step $t \geq 0$, if we have $\left|X_{1}^{t}\right|=\left|X_{2}^{t}\right|=$ $\left|X_{3}^{t}\right|$ then we terminate. Otherwise, we choose a triangle $x y z$ in G with $x \in X_{2}^{t}$ and $y, z \in X_{3}^{t}$ (we shall explain shortly why this will always be possible). We then set $Y_{j}^{t+1}:=$ $X_{j}^{t} \backslash\{x, y, z\}$ for $j \in[3]$ and define X_{1}^{t+1}, X_{2}^{t+1} and X_{3}^{t+1} such that $\left\{X_{1}^{t+1}, X_{2}^{t+1}, X_{3}^{t+1}\right\}=$ $\left\{Y_{1}^{t+1}, Y_{2}^{t+1}, Y_{3}^{t+1}\right\}$ and $\left|X_{1}^{t+1}\right| \leq\left|X_{2}^{t+1}\right| \leq\left|X_{3}^{t+1}\right|$, before proceeding to the next time step $t+1$.

Suppose that this procedure does not terminate prior to some time step T. Using the fact that 3 divides n it is easily checked that we must then have $\left|X_{3}^{t+2}\right|-\left|X_{1}^{t+2}\right| \leq$ $\left|X_{3}^{t}\right|-\left|X_{1}^{t}\right|-3$ for each $t \in[T-2]$. In other words, the size difference between the smallest and largest set decreases by at least 3 over each two time steps. Similarly we find that $\left|X_{1}^{t}\right|-\left|X_{1}^{t+2}\right| \leq 1$ for each $t \in[T-2]$, meaning that the smallest set size decreases by at most 1 over each two time steps. Furthermore, if at some time t we have $0<\left|X_{3}^{t}\right|-\left|X_{1}^{t}\right|<3$, then (since 3 divides n) we must have $\left|X_{1}^{t}\right|+2=\left|X_{2}^{t}\right|+1=\left|X_{3}^{t}\right|$, whereupon the procedure will terminate at time $t+1$. It follows that the procedure must terminate at some time T, and moreover that

$$
T \leq \frac{2}{3}\left(\left|X_{3}^{0}\right|-\left|X_{1}^{0}\right|\right) \leq \frac{2}{3}\left(\left(\frac{2 n}{3}-3 \omega n\right)-\frac{n}{6}\right)=\frac{n}{3}-2 \omega n
$$

This implies that at each time $t<T$ we have $\left|X_{3}^{t}\right| \geq\left|X_{2}^{t}\right| \geq\left|X_{1}^{t}\right| \geq\left|X_{1}^{0}\right|-\left\lceil\frac{t}{2}\right\rceil \geq$ $\left|X_{1}^{0}\right|-\frac{T}{2} \geq \omega n$, and so throughout the procedure it is always possible to pick a triangle as desired. Indeed, $G\left[X_{2}^{t}, X_{3}^{t}\right]$ is $(\geq d, \varepsilon / \omega)$-regular by the Slicing Lemma (Lemma 2.1), so some vertex of X_{2}^{t} has at least $(d-\varepsilon / \omega)\left|X_{3}^{t}\right| \geq \omega d n / 2$ neighbours in X_{3}^{t}. Since $\alpha(G) \leq \gamma n<\omega d n / 2$ some two of these neighbours must be adjacent, giving the desired triangle.

After the procedure terminates, define $V_{i}^{\prime}:=X_{i}^{T} \cup Z_{i}$ for each $i \in[3]$. Then $\left|V_{1}^{\prime}\right|=$ $\left|V_{2}^{\prime}\right|=\left|V_{3}^{\prime}\right| \geq 2 \omega n$, so by Lemma 2.1 and our choice of the sets Z_{j} it follows that $G\left[V_{i}^{\prime}, V_{j}^{\prime}\right]$
is $(d \omega / 7, \varepsilon / 2 \omega)$-super-regular for each distinct $i, j \in[3]$. By Theorem 3.3 there is a perfect triangle-tiling in $G\left[\bigcup_{i \in[3]} V_{i}^{\prime}\right]$; together with the triangles selected by the iterative procedure this gives a perfect triangle-tiling in G.

4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. The following lemma is the central part of the proof, showing that if a graph G can be decomposed into clusters which form regular and super-regular pairs, indexed by a graph R which admits a bounded degree spanning tree, then by 'working inwards' from the leaves of the tree we can form a perfect triangle-tiling in G.

Lemma 4.1. Suppose that $1 / m \ll \gamma \ll 1 / k \ll \varepsilon \ll d, \omega$. Let G be a graph whose vertex set is partitioned into k sets V_{1}, \ldots, V_{k}, and let R be a graph with vertex set $[k]$ which admits a spanning tree T of maximum degree at most 10. Suppose also that the following statements hold.
(a) $\left|V_{1}\right| \geq(1-\varepsilon) m$.
(b) V_{1} admits either a partition into parts A_{1} and B_{1} with $\left|A_{1}\right|,\left|B_{1}\right| \geq(1 / 3+\omega)\left|V_{1}\right|$ such that $G\left[A_{1}, B_{1}\right]$ is $(1 / 2+d, \varepsilon)$-super-regular, or a partition into parts A_{1}, B_{1} and C_{1} with $\left|A_{1}\right|,\left|B_{1}\right|,\left|C_{1}\right| \geq(1 / 6+\omega)\left|V_{1}\right|$ such that $G\left[A_{1}, B_{1}\right], G\left[A_{1}, C_{1}\right]$ and $G\left[B_{1}, C_{1}\right]$ are each (d, ε)-super-regular.
(c) For each $2 \leq i \leq k$, $(1-\varepsilon) m \leq\left|V_{i}\right| \leq m$ and V_{i} admits a partition into parts A_{i} and B_{i} with $\left|A_{i}\right|,\left|B_{i}\right| \geq(1 / 3+\omega) m$ such that $G\left[A_{i}, B_{i}\right]$ is (d, $\left.\varepsilon\right)$-super-regular.
(d) If $i j \in E(R)$, then at least $m / 5$ vertices of V_{i} have at least $d m / 5$ neighbours in V_{j}.
(e) $\alpha(G) \leq \gamma m$.

Then G contains a triangle-tiling covering all but at most two vertices of G.
Proof. Introduce new constants ϕ and ε^{\prime} with $\varepsilon \ll \phi \ll \varepsilon^{\prime} \ll d$ and iterate the following process. Pick a leaf of T other than vertex 1 , say vertex i, and let j be the neighbour of i in T. We will show that there exists a triangle-tiling in $G\left[V_{i} \cup V_{j}\right]$ that covers every vertex of V_{i} and at most $2 \phi m$ vertices of V_{j}. We then delete the vertices covered by this tiling from G and delete vertex i from T. We proceed in this way until only vertex 1 of T remains. We then arbitrarily delete at most two further vertices of V_{1} so that the number of remaining vertices in V_{1} is divisible by three. Since, at this point, we have removed at most $2 \phi m \cdot \Delta(T)+2 \leq 21 \phi m \leq \varepsilon^{\prime} m / 7$ vertices from V_{1}, by (a), (b) and (e) there exists a bipartition or tripartition of the remaining vertices of V_{1} which satisfies the conditions of Lemma 3.1(c) or Lemma 3.2 respectively (with $\omega / 2, \varepsilon^{\prime}$ and 2γ in place of ω, ε and γ respectively). In either case there is a perfect triangle-tiling in the graph induced by the remaining vertices of V_{1}, which together with the deleted triangle-tilings gives a triangle-tiling in G covering every vertex except for the at most two deleted vertices.

It therefore suffices to show that we can find the desired triangle-tiling in $G\left[V_{i} \cup V_{j}\right]$ at each step of this process. To this end, let S^{\prime} be the set of vertices of V_{i} which have at least $d m / 6$ neighbours in V_{j}. Observe that previous deletions can have removed at most $2 \phi m \cdot \Delta(T) \leq d m / 30$ vertices from each of V_{i} and V_{j}, so by (d) we have $\left|S^{\prime}\right| \geq m / 6$, and by (c) the remaining vertices of V_{i} can be partitioned into parts A_{i} and B_{i} with
$\left|A_{i}\right|,\left|B_{i}\right| \geq(1 / 3+\omega / 2) m$ such that $G\left[A_{i}, B_{i}\right]$ is $\left(d, \varepsilon^{\prime}\right)$-super-regular. Without loss of generality we may assume that $\left|S^{\prime} \cap A_{i}\right| \geq\left|S^{\prime} \cap B_{i}\right|$, so $\left|S^{\prime} \cap A_{i}\right| \geq\left|S^{\prime}\right| / 2 \geq m / 12$ and we can arbitrarily select $S \subseteq S^{\prime} \cap A_{i}$ of size ϕn. Now we may use Lemma 3.1(b) (again with $\omega / 2, \varepsilon^{\prime}$ and 2γ in place of ω, ε and γ respectively) to find a triangle-tiling \mathcal{T} in $G\left[V_{i}\right]$ which covers every vertex of $V_{i} \backslash S$. Since each uncovered vertex has at least $d m / 6 \geq 2 \phi m+\gamma m$ neighbours in V_{j}, we may greedily extend \mathcal{T} to a triangle-tiling \mathcal{T}^{\prime} in G which covers every vertex of V_{i} and which covers at most $2 \phi m$ vertices of V_{j}.

It now suffices to show that for every graph G satisfying the conditions of Theorem 1.2, we can delete triangles and/or vertices from G to obtain a subgraph whose structure meets the conditions of Lemma 4.1. The following lemma shows how to do this under the additional assumption that G has no large sparse cut; this assumption is useful as it allows us to assume that the reduced graph R of G is connected, and so has spanning trees of bounded maximum degree. For this we make the following definition: given a graph G and a partition $\{A, B\}$ of $V(G)$, we say that an edge of G is (A, B)-crossing if it has one endvertex in A and one endvertex in B.

Lemma 4.2. For every $\omega, \psi>0$ there exist $n_{0}, \gamma>0$ such that the following statement holds. Let G be a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq n / 3+\omega n$ and $\alpha(G) \leq \gamma n$. Suppose additionally that for every partition $\{A, B\}$ of $V(G)$ with $|A|,|B| \geq n / 3$ there are at least ψn^{2}-many (A, B)-crossing edges of G. Then G contains a triangle-tiling covering all but at most two vertices of G (so in particular, if 3 divides n then G contains a perfect triangle-tiling).

Proof. Introduce new constants satisfying the following hierarchy:

$$
1 / n \ll \gamma \ll 1 / D \ll 1 / T \ll 1 / t \ll \varepsilon^{\prime} \ll \varepsilon \ll d \ll \omega, \psi
$$

Then we may assume that n and T are large enough to apply Theorem 2.5 with constants $\varepsilon^{\prime} / 2, d, t$ and $q=1$. We also assume without loss of generality that ω^{-1} is an integer, and define $D^{\prime}:=30 \omega^{-1}(D!)$. Let G be as in the statement of the lemma, and apply Theorem 2.5 to G to obtain a spanning subgraph $G^{\prime} \subseteq G$, an integer k^{\prime} with $t \leq k^{\prime} \leq T$, an exceptional set U_{0} of size at most $\varepsilon^{\prime} n / 2$ and clusters $U_{1}, \ldots, U_{k^{\prime}}$ of equal size. We now remove at most D^{\prime} vertices from each cluster so that the number of remaining vertices in each cluster is divisible by D^{\prime}, and add all removed vertices to the exceptional set U_{0}. Since the total number of vertices moved in this way is at most $D^{\prime} k^{\prime} \leq 30 \omega^{-1}(D!) T \leq \varepsilon^{\prime} n / 2$, and at most $D^{\prime} \leq \varepsilon^{\prime} n / 2 T \leq \varepsilon^{\prime} / 2\left|U_{i}\right|$ vertices are removed from each cluster U_{i}, by Lemma 2.1 the resulting partition of $V(G)$ into $U_{0}, U_{1}, \ldots, U_{k^{\prime}}$ has the following properties.
(i) $\left|U_{0}\right| \leq \varepsilon^{\prime} n$ and $\left|U_{1}\right|=\left|U_{2}\right|=\ldots=\left|U_{k^{\prime}}\right|=$: m^{\prime}, where D^{\prime} divides m^{\prime}.
(ii) $d_{G^{\prime}}(v) \geq d_{G}(v)-\left(\varepsilon^{\prime}+d\right) n \geq n / 3+2 \omega n / 3$ for all $v \in V(G)$.
(iii) $e\left(G^{\prime}\left[U_{i}\right]\right)=0$ for all $i \in\left[k^{\prime}\right]$.
(iv) for each distinct $i, j \in\left[k^{\prime}\right]$ either $G^{\prime}\left[U_{i}, U_{j}\right]$ is ($\geq d, \varepsilon^{\prime}$)-regular or $G^{\prime}\left[U_{i}, U_{j}\right]$ is empty.

In particular (i) implies that $\left(1-\varepsilon^{\prime}\right) n / k^{\prime} \leq m^{\prime} \leq n / k^{\prime}$. We form the reduced graph R on vertex set $\left[k^{\prime}\right]$ in the usual way, that is, with $i j \in E(R)$ if and only if $e\left(G^{\prime}\left[U_{i}, U_{j}\right]\right)>0$. For each $i \in\left[k^{\prime}\right]$ the number of edges of G^{\prime} with an endvertex in U_{i} is at least $m^{\prime}(n / 3+2 \omega n / 3)$ by (ii). Also, by (iii) there is no edge in $G^{\prime}\left[U_{i}\right]$, and by (i) there are at most at most $m^{\prime} \varepsilon^{\prime} n$
edges in $G^{\prime}\left[U_{0}, U_{i}\right]$. Since for each $j \in\left[k^{\prime}\right]$ there are at most $\left(m^{\prime}\right)^{2}$ edges in $G^{\prime}\left[U_{i}, U_{j}\right]$, it follows that

$$
\begin{equation*}
\delta(R) \geq \frac{m^{\prime}(n / 3+2 \omega n / 3)-m^{\prime} \varepsilon^{\prime} n}{\left(m^{\prime}\right)^{2}} \geq\left(\frac{1}{3}+\frac{2 \omega}{3}-\varepsilon^{\prime}\right) \frac{n}{m^{\prime}} \geq\left(\frac{1}{3}+\frac{\omega}{2}\right) k^{\prime} \tag{3}
\end{equation*}
$$

Now consider a partition $\left\{A_{R}, B_{R}\right\}$ of $\left[k^{\prime}\right]$ with $\left|A_{R}\right|,\left|B_{R}\right| \geq \delta(R)$, and define $A:=$ $U_{0} \cup \bigcup_{i \in A_{R}} U_{i}$ and $B:=\bigcup_{i \in\left[k^{\prime}\right] \backslash B_{R}} U_{i}$. Then

$$
|A|,|B| \geq \delta(R) m^{\prime} \geq\left(\frac{1}{3}+\frac{\omega}{2}\right) k^{\prime} \cdot \frac{\left(1-\varepsilon^{\prime}\right) n}{k^{\prime}} \geq \frac{n}{3}
$$

so by assumption G has at least ψn^{2}-many (A, B)-crossing edges. By (ii) at most $\left(d+\varepsilon^{\prime}\right) n^{2}$ edges of G are not in G^{\prime}, and by (i) at most $\varepsilon^{\prime} n^{2}$ edges of G intersect U_{0}, so G^{\prime} contains at least $\psi n^{2}-\left(d+\varepsilon^{\prime}\right) n^{2}-\varepsilon^{\prime} n^{2}>0$ edges which are (A, B)-crossing but do not intersect U_{0}. Let U_{i} and U_{j} be clusters containing the endvertices of some such edge; then $i j$ is an $\left(A_{R}, B_{R}\right)$-crossing edge of R. In other words, for every partition $\left\{A_{R}, B_{R}\right\}$ of $\left[k^{\prime}\right]$ with $\left|A_{R}\right|,\left|B_{R}\right| \geq \delta(R)$ there is an $\left(A_{R}, B_{R}\right)$-crossing edge of R. Since every connected component of R has size at least $\delta(R)$, it follows that R is connected.

We now form a set V_{1} from which we shall form the 'core' set of vertices mentioned in the proof overview at the beginning of Section 3. Suppose first that there exist $i, j \in\left[k^{\prime}\right]$ with $d\left(G^{\prime}\left[U_{i}, U_{j}\right]\right) \geq 2 / 3$. Then $G^{\prime}\left[U_{i}, U_{j}\right]$ is $\left(\geq 3 / 5, \varepsilon^{\prime}\right)$-regular by (iv). In this case we define $V_{1}:=U_{i} \cup U_{j}$, and for convenience of notation later we define $X_{1}:=U_{i}$ and $Y_{1}:=U_{j}$. Now suppose instead that $d\left(G^{\prime}\left[U_{i}, U_{j}\right]\right)<2 / 3$ for every $i, j \in\left[k^{\prime}\right]$, that is, that each $G^{\prime}\left[U_{i}, U_{j}\right]$ has at most $2\left(m^{\prime}\right)^{2} / 3$ edges. Then we have an extra factor of $2 / 3$ in the denominator of the second term of (3), so we have $\delta(R) \geq k^{\prime} / 2$, and so R contains a triangle $i j \ell$ by Mantel's theorem. In this case we take $V_{1}:=U_{i} \cup U_{j} \cup U_{\ell}$ and set $X_{1}:=U_{i}$, $Y_{1}:=U_{j}$, and $Z_{1}:=U_{\ell}$. We define an auxiliary graph R_{0} to be the subgraph of R formed by deleting vertices i and j in the former case, and by deleting vertices i, j and ℓ in the latter case.

Since ω^{-1} is an integer, we may write $\eta:=1 / 3+\omega / 10$ as a rational number with denominator $L:=30 \cdot \omega^{-1}$. Let $\overrightarrow{R_{0}}$ be the directed graph formed from R_{0} by replacing each edge by a pair of edges, one in each direction. Then by Lemma 2.10, we can find a perfect $(\eta, 1-\eta)$-weighted fractional matching w in $\overrightarrow{R_{0}}$ in which all weights are rational, and the least common denominator L^{\prime} of all weights is bounded above by a function of $\left|V\left(R_{0}\right)\right|$ and L, that is, a function of k^{\prime} and ω. Since $k^{\prime} \leq 1 / T$ and we assumed that $1 / D \ll 1 / T$, ω, we may assume that $L^{\prime} \leq D$, so L^{\prime} divides D !, and so $D!w_{\overrightarrow{i j}}$ is an integer for every $\overrightarrow{i j} \in \overrightarrow{R_{0}}$. Define $m:=m^{\prime} / D!$, and observe that that since $D^{\prime}=D!L$ divides m by (i), both m and ηm are integers.

We now partition each cluster not contained in V_{1} into parts of size ηm and $(1-\eta) m$ according to the weights in w, using the following probabilistic argument. For every $i \in V\left(R_{0}\right)$, we select a partition \mathcal{U}_{i} of U_{i} uniformly at random from all such partitions in which exactly $\sum_{j \in N^{+}(i)} D!w_{\overrightarrow{i j}}$ sets are of size ηm and exactly $\sum_{j \in N^{-}(i)} D!w_{\vec{j} i}$ sets are of size $(1-\eta) m$. Since w is a perfect fractional $(\eta, 1-\eta)$-weighted matching, by (1) we have

$$
\eta m \sum_{j \in N^{+}(i)} D!w_{\overrightarrow{i j}}+(1-\eta) m \sum_{j \in N^{-}(i)} D!w_{\overrightarrow{j i}}=D!m=m^{\prime}=\left|U_{i}\right|,
$$

so we can indeed partition U_{i} in this way. We also consider the two or three clusters contained in V_{1} to be partitioned into a single part. That is, for each $i \in\left[k^{\prime}\right] \backslash V\left(R_{0}\right)$ we set \mathcal{U}_{i} to be the trivial partition $\left\{U_{i}\right\}$ of U_{i}. Now consider any edge $i j \in E(R)$, and recall that $G^{\prime}\left[U_{i}, U_{j}\right]$ is $\left(\geq d, \varepsilon^{\prime}\right)$-regular by (iv), so by Lemma 2.4^{1}, with probability at least $1-e^{-\Omega(n)}$ we have that $G^{\prime}\left[U_{i}^{\prime}, U_{j}^{\prime}\right]$ is $(\geq d, \varepsilon)$-regular for every $U_{i}^{\prime} \in \mathcal{U}_{i}$ and for every $U_{j}^{\prime} \in \mathcal{U}_{j}$. Taking a union bound over all of the at most $\binom{k^{\prime}}{2}$ edges of R we find that with positive probability this property holds for every edge of R. Fix a choice of partitions \mathcal{U}_{i} for $i \in\left[k^{\prime}\right]$ for which this is the case.

We now define another auxiliary graph R_{1} with vertex set $\bigcup_{i \in\left[k^{\prime}\right]} \mathcal{U}_{i}$ in which, for each distinct $i, j \in\left[k^{\prime}\right]$, each $X \in \mathcal{U}_{i}$ and each $Y \in \mathcal{U}_{j}$, there is an edge $X Y$ if and only if $G^{\prime}[X, Y]$ is $(\geq d, \varepsilon)$-regular. Observe that by our choice of partitions \mathcal{U}_{i} the graph R_{1} is then a blow-up of R, formed by replacing each vertex $i \in\left[k^{\prime}\right]$ by a set of $\left|\mathcal{U}_{i}\right|$ vertices and replacing each edge $i j \in E(R)$ by a complete bipartite graph between the corresponding sets. In particular, R_{1} is connected. Also note that for each distinct $i, j \in\left[k^{\prime}\right]$ with $i j \notin E(R)$, each $X \in \mathcal{U}_{i}$ and each $Y \in \mathcal{U}_{j}$, the graph $G^{\prime}[X, Y]$ is empty by (iv).

Next, for every edge $\overrightarrow{i j} \in E\left(\overrightarrow{R_{0}}\right)$, we define $s_{i j}:=D!\cdot w_{\overrightarrow{i j}}$. We then label $s_{i j}$ of the sets in \mathcal{U}_{i} of size ηm as $X_{i j}^{1}, \ldots, X_{i j}^{s_{i j}}$ and label $s_{i j}$ of the sets in \mathcal{U}_{j} of size $(1-\eta) m$ as $Y_{i j}^{1}, \ldots, Y_{i j}^{s_{i j}}$. Since \mathcal{U}_{i} has exactly $\sum_{j \in N^{+}(i)} s_{i j}$ sets of size ηm and exactly $\sum_{j \in N^{-}(i)} s_{j i}$ sets of size $(1-\eta) m$, we may do this so that for each $i \in\left[k^{\prime}\right]$ each set in \mathcal{U}_{i} is uniquely labelled. We now relabel the sets $X_{i j}^{\ell}$ and $Y_{i j}^{\ell}$ for $\overrightarrow{i j} \in E\left(\overrightarrow{R_{0}}\right)$ and $\ell \in s_{i j}$ as X_{2}, \ldots, X_{k} and Y_{2}, \ldots, Y_{k} respectively, where $k-1:=\sum_{\overrightarrow{i j} \in E\left(\overrightarrow{R_{0}}\right)} s_{i j}=D!\sum_{\overrightarrow{i j} \in E\left(\overrightarrow{R_{0}}\right)} w_{i j}=D!\left|V\left(R_{0}\right)\right|$ since w is perfect, so $k^{\prime} \leq k \leq D!k^{\prime}$. Then for each $2 \leq \ell \leq k$ our choice of partition implies that $G^{\prime}\left[X_{\ell}, Y_{\ell}\right]$ is $(\geq d, \varepsilon)$-regular; we define $V_{\ell}:=X_{\ell} \cup Y_{\ell}$, and observe that $\left|V_{\ell}\right|=m$.

We now define a final auxiliary graph R^{*} with vertex set $[k]$ in which $i j$ is an edge of R^{*} if and only if $e\left(G^{\prime}\left[V_{i}, V_{j}\right]\right)>0$. Observe that R^{*} is then a contraction of R_{1}, in which the vertices of R_{1} corresponding to the sets X_{1} and Y_{1} (and Z_{1} if defined) are contracted to the single vertex 1 of R^{*}, and for $2 \leq i \leq k$ the vertices of R_{1} corresponding to X_{i} and Y_{i} are contracted to the single vertex i of R^{*}. So, since R_{1} is connected, R^{*} is connected also. Now suppose that $i j$ is an edge of R^{*}. Since $G^{\prime}\left[V_{i}, V_{j}\right]$ is nonempty there must exist sets $S \in\left\{X_{i}, Y_{i}, Z_{i}\right\}$ and $T \in\left\{X_{j}, Y_{j}, Z_{j}\right\}$ such that $G^{\prime}[S, T]$ is non-empty (ignore Z_{i} unless $i=1$ and Z_{1} exists, and likewise for Z_{j}). We then have $S \in \mathcal{U}_{i^{\prime}}$ and $T \in \mathcal{U}_{j^{\prime}}$ for some $i^{\prime}, j^{\prime} \in\left[k^{\prime}\right]$, so $S T$ is an edge of R_{1}, and so $G^{\prime}[S, T]$ is $(\geq d, \varepsilon)$-regular. Also, a similar calculation to (3) shows that we must have $\delta\left(R^{*}\right) \geq k / 3$, so by Theorem 2.7 there is a spanning tree T in R^{*} with $\Delta(T) \leq 3$.

To recap, at this point we have a formed a partition $\left\{U_{0}, V_{1}, \ldots, V_{k}\right\}$ of $V(G)$ and a graph R^{*} with vertex set $[k]$ which contains a spanning tree of maximum degree at most 3 , such that the following statements hold.
(v) V_{1} admits either a partition $\left\{X_{1}, Y_{1}\right\}$ with $\left|X_{1}\right|=\left|Y_{1}\right|=m^{\prime}$ such that $G^{\prime}\left[X_{1}, Y_{1}\right]$ is $\left(\geq 3 / 5, \varepsilon^{\prime}\right)$-regular, or a partition $\left\{X_{1}, Y_{1}, Z_{1}\right\}$ with $\left|X_{1}\right|=\left|Y_{1}\right|=\left|Z_{1}\right|=m^{\prime}$ such that $G^{\prime}\left[X_{1}, Y_{1}\right], G^{\prime}\left[X_{1}, Z_{1}\right]$ and $G^{\prime}\left[Y_{1}, Z_{1}\right]$ are each $\left(\geq d, \varepsilon^{\prime}\right)$-regular.

[^1](vi) For each $2 \leq i \leq k$, we have $\left|V_{i}\right|=m$ and V_{i} admits a partition $\left\{X_{i}, Y_{i}\right\}$ with $\left|X_{i}\right|,\left|Y_{i}\right| \geq \eta m=(1 / 3+\omega / 10) m$ such that $G^{\prime}\left[X_{i}, Y_{i}\right]$ is $(\geq d, \varepsilon)$-regular.
(vii) If $i j \in E\left(R^{*}\right)$, then there are sets $S \subseteq V_{i}$ and $T \subseteq V_{j}$ with $|S| \geq\left|V_{i}\right| / 3$ and $|T| \geq\left|V_{j}\right| / 3$ such that $G^{\prime}[S, T]$ is $(\geq d, \varepsilon)$-regular.

If we are in the first case of (v), then by Lemma 2.2 we may choose subsets $A_{1} \subseteq X_{1}$ and $B_{1} \subseteq Y_{1}$ with $\left|A_{1}\right|,\left|B_{1}\right| \geq\left(1-\varepsilon^{\prime}\right) m^{\prime}$ such that $G^{\prime}\left(\left[A_{1}, B_{1}\right]\right)$ is (3/5, 2 ε^{\prime})-super-regular, and we then define $W_{1}:=A_{1} \cup B_{1}$. If we are instead in the second case, by three applications of Lemma 2.2 we may choose subsets $A_{1} \subseteq X_{1}, B_{1} \subseteq Y_{1}$ and $C_{1} \subseteq Z_{1}$ with $\left|A_{1}\right|,\left|B_{1}\right|,\left|C_{1}\right| \geq\left(1-2 \varepsilon^{\prime}\right) m^{\prime}$ such that $G^{\prime}\left(\left[A_{1}, B_{1}\right]\right), G^{\prime}\left(\left[B_{1}, C_{1}\right]\right)$ and $G^{\prime}\left(\left[C_{1}, A_{1}\right]\right)$ are each $\left(d, 3 \varepsilon^{\prime}\right)$-super-regular, and we then define $W_{1}:=A_{1} \cup B_{1} \cup C_{1}$.

Next, for each $2 \leq \ell \leq k$, by (vi) and Lemma 2.2 we may choose subsets $A_{\ell} \subseteq X_{\ell}$ and $B_{\ell} \subseteq Y_{\ell}$ with $\left|A_{\ell}\right| \geq(1-\varepsilon)\left|X_{\ell}\right|$ and $\left|B_{\ell}\right| \geq(1-\varepsilon)\left|Y_{\ell}\right|$ such that $G^{\prime}\left[A_{\ell}, B_{\ell}\right]$ is $(d, 2 \varepsilon)$ -super-regular, and define $W_{\ell}:=A_{\ell} \cup B_{\ell}$. Finally, define $W_{0}:=U_{0} \cup \bigcup_{i \in[k]} V_{i} \backslash W_{i}$. Then $\left\{W_{0}, W_{1}, \ldots, W_{k}\right\}$ is a partition of $V(G)$ and, since $\left|W_{i}\right| \geq(1-\varepsilon)\left|V_{i}\right|$ for each $i \in[k]$, we have $\left|W_{0}\right| \leq 2 \varepsilon n$.

Write $W_{0}:=\left\{x_{1}, \ldots, x_{q}\right\}$, so $q \leq 2 \varepsilon n$. To complete the proof we greedily form a triangle-tiling $\mathcal{T}=\left\{T_{1}, \ldots, T_{q}\right\}$ such that $x_{i} \in T_{i}$ for each $i \in[q]$ and $\left|V(\mathcal{T}) \cap W_{j}\right| \leq$ $20 \varepsilon\left|W_{j}\right|$ for each $j \in[k]$. To see that this is possible, suppose that we have already chosen triangles T_{1}, \ldots, T_{s-1} for some $s \in[q]$, let $X:=\bigcup_{i \in[s-1]} V\left(T_{i}\right)$ be the set of vertices covered by these triangles, and let the set X^{\prime} consist of all vertices in sets W_{i} with $\left|X \cap W_{i}\right| \geq 18 \varepsilon\left|W_{i}\right|$ (that is, from which the previously-chosen triangles cover more than a 18ε-proportion of the vertices). Then we have $18 \varepsilon\left|X^{\prime}\right| \leq|X| \leq 3 q \leq 6 \varepsilon n$, so $\left|X^{\prime}\right| \leq n / 3$, and so x_{s} has at least $\delta(G)-|X|-\left|X^{\prime}\right|-\left|W_{0}\right| \geq \omega n-10 \varepsilon n \geq \omega n / 2$ neighbours not in X, X^{\prime} or W_{0}, so (since $\alpha(G) \leq \gamma n<\omega n / 2$) two of these neighbours must be adjacent, giving the desired triangle T_{s} containing x_{s}. Having chosen T_{s} in this way for every $s \in[q]$ to obtain \mathcal{T}, observe that since we chose each T_{s} to avoid every set W_{i} from which at least $18 \varepsilon\left|W_{i}\right|$ vertices were covered by previously-chosen triangles, we must have $\left|V(\mathcal{T}) \cap W_{i}\right| \leq 20 \varepsilon\left|W_{i}\right|$ for each $i \in[k]$, as desired.

Finally, for each $i \in[k]$ define $A_{i}^{\prime}:=A_{i} \backslash V(\mathcal{T}), B_{i}^{\prime}:=B_{i} \backslash V(\mathcal{T}), V_{i}^{\prime}:=W_{i} \backslash V(\mathcal{T})$. Also define $V^{\prime}:=V(G) \backslash V(\mathcal{T})$ and $H:=G\left[V^{\prime}\right]$. We claim that the graphs H and R^{*} and the partition $\left\{V_{1}^{\prime} \ldots, V_{k}^{\prime}\right\}$ of $V(H)$ meet the properties of Lemma 4.1 with $\varepsilon^{*}:=200 \varepsilon$, $\omega^{\prime}:=\omega / 20$ and $\gamma^{\prime}:=2 \gamma k^{\prime}(D!)$ in place of ε, ω and γ respectively and with m, d and k playing the same role there as here. Indeed, our constant hierarchy allows us to assume that $1 / m \ll \gamma^{\prime} \ll 1 / k \ll \varepsilon^{*} \ll d \ll \omega^{\prime}$, as required. Also observe that for each $i \in[k]$ we have $\left|V_{i}^{\prime}\right| \geq\left|V_{i}\right|-20 \varepsilon\left|V_{i}\right|-\varepsilon\left|V_{i}\right|=(1-21 \varepsilon)\left|V_{i}\right|$, so certainly $\left|V_{i}^{\prime}\right| \geq\left(1-\varepsilon^{*}\right) m$ for each $i \in[k]$. So Lemma 4.1(a) holds, and Lemma 4.1(b) and (c) follow immediately from our choice of sets A_{ℓ} and B_{ℓ} (and possible C_{1}). Also, for each $i j \in E\left(R^{*}\right)$ by (vii) there exist sets $S \subseteq V_{i}^{\prime}$ and $T \subseteq V_{j}^{\prime}$ with $|S| \geq\left|V_{i}^{\prime}\right| / 4$ and $|T| \geq\left|V_{j}^{\prime}\right| / 4$ such that $G^{\prime}[S, T]$ is ($\geq d, 2 \varepsilon$)-regular, which implies that at least $(1-2 \varepsilon)|S| \geq m / 5$ vertices in S have at least $(d-2 \varepsilon)|T| \geq d m / 5$ neighbours in T, so Lemma 4.1(d) holds. Last of all, Lemma 4.1(e) holds since $\alpha(H) \leq \alpha(G) \leq \gamma n \leq \gamma\left(2 k^{\prime} m^{\prime}\right)=\gamma^{\prime} m$. So we may apply Lemma 4.1 to obtain a triangle-tiling covering all but at most two vertices of H; together with \mathcal{T} this yields a triangle-tiling in G covering all but at most two vertices.

Finally, to complete the proof of Theorem 1.2 it remains only to consider graphs G which admit a large sparse cut. In this case we show that can remove a small number
of vertices to obtain two vertex-disjoint subgraphs G_{A} and G_{B} of G whose vertex sets partition $V(G)$ and each of which satisfies a stronger minimum degree condition. We then apply Theorem 1.1 to obtain a perfect triangle-tiling in each of G_{A} and G_{B} (alternatively, one could note that the stronger minimum degree conditions preclude either G_{A} or G_{B} from having a large sparse cut and apply Lemma 4.2).

Proof of Theorem 1.2. Fix $\omega>0$ and choose n_{0} sufficiently large and γ sufficiently small for Lemma 4.2 with $\omega^{2} / 40$ in place of ψ and also so that we can apply Theorem 1.1 with $\omega / 2, n_{0} / 3$ and 3γ in place of ω, n_{0} and γ respectively. Now let G be a graph on $n \geq n_{0}$ vertices with $\delta(G) \geq n / 3+\omega n$ and $\alpha(G) \leq \gamma n$. If for every partition $\{A, B\}$ of $V(G)$ with $|A|,|B| \geq n / 3$ there are at least $\omega^{2} n^{2} / 40$-many (A, B)-crossing edges of G, then G contains a triangle-tiling covering all but at most two vertices by Lemma 4.2, so we are done. So we may assume that for some partition $\{A, B\}$ of $V(G)$ with $|A|,|B| \geq n / 3$ there are fewer than $\omega^{2} n^{2} / 40$-many (A, B)-crossing edges. Fix such a partition with the smallest number of (A, B)-crossing edges. Note that we cannot have $|A| \leq n / 3+1$, as then there would be at least $|A|(\delta(G)-n / 3-1) \geq(n / 3) \cdot(\omega n-1) \geq \omega n^{2} / 4$-many (A, B)-crossing edges. It follows that every vertex $x \in A$ lies in at most $\operatorname{deg}(x) / 2$-many (A, B)-crossing edges, as otherwise moving a from A to B would yield a partition of $V(G)$ with parts of size at least $n / 3$ and with fewer (A, B)-crossing edges. So we must have $\delta(G[A]) \geq \delta(G) / 2 \geq n / 6+\omega n / 2$, and the same argument with B in place of A shows that $\delta(G[B]) \geq n / 6+\omega n / 2$.

Our proof now diverges according to whether we are proving conclusion (a) or conclusion (b) of Theorem 1.2. For conclusion (a) we simply choose arbitrarily a set S of at most four vertices of G so that $|A \backslash S|$ and $|B \backslash S|$ are each divisible by 3. For conclusion (b) we instead use our additional assumptions that G has no divisibility barrier and that 3 divides n. Indeed, the latter implies that we must have one of the following three cases:
(a) $|A| \equiv|B| \equiv 0(\bmod 3)$. In this case we take $S=\emptyset$.
(b) $|A| \equiv 1(\bmod 3)$ and $|B| \equiv 2(\bmod 3)$. Since (A, B) is not a divisibility barrier, either G contains an B-triangle or a pair of vertex-disjoint A-triangles, and we take S to be the vertices covered by some such triangle or pair of triangles.
(c) $|A| \equiv 2(\bmod 3)$ and $|B| \equiv 1(\bmod 3)$. Since (B, A) is not a divisibility barrier, either G contains an A-triangle or a pair of vertex-disjoint B-triangles, and we take S to be the vertices covered by some such triangle or pair of triangles.

Observe that in all cases we have $|S| \leq 6$ and that both $|A \backslash S|$ and $|B \backslash S|$ are divisible by 3 . The remaining part of the proof is the same for both cases.

Let $X_{A} \subseteq A$ consist of all vertices of A with $\operatorname{deg}_{G[A]}(x)<n / 3+\omega n / 2$. Then each vertex of X_{A} is contained in more than $\omega n / 2$-many (A, B)-crossing edges, and since there are at most $\omega^{2} n^{2} / 40$-many (A, B)-crossing edges in total, each with one vertex in A, it follows that $\left|X_{A}\right| \leq \omega n / 20$. Since $\alpha(G) \leq \gamma n$ and $\delta(G[A]) \geq n / 6 \geq 2\left|X_{A}\right|+|S|+\gamma n$ we may greedily form a triangle-tiling \mathcal{T}_{A} of size at most $\left|X_{A}\right|$ in $G[A]$ which covers every vertex of X_{A} but which does not intersect S. We then define $A^{\prime}:=A \backslash\left(V\left(\mathcal{T}_{A}\right) \cup S\right)$, $G_{A}:=G\left[A^{\prime}\right]$ and $n_{A}:=\left|A^{\prime}\right|$. Then $\delta\left(G_{A}\right) \geq n / 3+\omega n / 2-\left|V\left(\mathcal{T}_{A}\right)\right|-|S| \geq n / 3+\omega n / 3$, so $n / 3+\omega n / 3 \leq n_{A} \leq 2 n / 3$. It follows that G_{A} is a graph on n_{A} vertices with $\delta\left(G_{A}\right) \geq$ $n_{A} / 2+\omega n_{A} / 2$ and $\alpha\left(G_{A}\right) \leq \gamma n \leq 3 \gamma n_{A}$. Also n_{A} is divisible by 3 (since 3 divides each of $|A \backslash S|$ and $\left.\left|V\left(\mathcal{T}_{A}\right)\right|\right)$, so G_{A} contains a perfect triangle-tiling \mathcal{T}_{A}^{\prime} by Theorem 1.1.

By exactly the same argument with B in place of A we obtain a triangle-tiling \mathcal{T}_{B} in $G[B]$ and a graph G_{B} on vertex set $B^{\prime}:=B \backslash\left(V\left(\mathcal{T}_{B}\right) \cup S\right)$ which contains a perfect triangle-tiling \mathcal{T}_{B}^{\prime}. Finally, for conclusion (a) observe that $\mathcal{T}:=\mathcal{T}_{A} \cup \mathcal{T}_{B} \cup \mathcal{T}_{A}^{\prime} \cup \mathcal{T}_{B}^{\prime}$ is then a triangle-tiling in G covering all vertices outside S, that is, all but at most four vertices of G, and for conclusion (b) note that adding the triangle or triangles covering S to \mathcal{T} gives a perfect triangle-tiling in G.

5 Constructions and questions

Many of the ideas of this section are due to Balogh, Molla and Sharifzadeh [2], but we include them here for completeness.

We first consider the problem of finding perfect K_{k}-tilings instead of perfect triangletilings. By slightly modifying the construction of $G_{4}(m)$ given in the introduction we can give lower bounds for this question.

Question 5.1. Let $k \geq 4$ and let G be an n-vertex graph with $\alpha(G)=o(n)$. What is the best-possible minimum degree condition on G that guarantees a perfect K_{k}-tiling in G ?

The construction is slightly different depending on the parity of $k \geq 4$. We start with the odd case, so let $k=2(\ell-1)+1$ for some integer $\ell \geq 3$. Consider the complete ℓ-partite graph with one part V_{1} of size $n / k-1$, another part V_{2} of size $2 n / k+1$ and the remaining parts V_{3}, \ldots, V_{ℓ} each of size $2 n / k$, and place the Erdős graph $\operatorname{ER}\left(\left|V_{i}\right|\right)$ on each of the parts V_{i}. When $k=2 \ell$ for some integer $\ell \geq 1$, the construction is essentially the same but we have one part of size $2 n / k+1$, one part of size $2 n / k-1$ and the remaining parts are each of size $2 n / k$. In either case we obtain a graph G with $\delta(G) \geq\left(1-\frac{2}{k}\right) n+\omega(1)$, sublinear independence number and no K_{k}-factor. It is worth noting that in the odd case the graph G is K_{k+2}-free and in the even case G contains no K_{k+1}.

We feel that the following is another interesting related question.
Question 5.2. Let G be an n-vertex K_{4}-free graph with $\alpha(G)=o(n)$. What is the bestpossible minimum degree condition on G that guarantees a perfect triangle-tiling in G ?

We use a modified version of the Bollobás-Erdős graph [1] to construct a K_{4}-free graph without a perfect triangle-tiling and with high minimum degree. For every large even n, the Bollobás-Erdős graph is an n-vertex, K_{4}-free graph with sublinear independence number, which we denote by $\operatorname{BE}(n)$. The vertex set of $\operatorname{BE}(n)$ is the disjoint union of two sets V_{1} and V_{2} of the same order such that the graphs $G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are triangle-free and every vertex in V_{1} has at least $(1 / 4-o(1)) n$ neighbors in V_{2} and every vertex in V_{2} has at least $(1 / 4-o(1)) n)$ neighbors in V_{1}. To construct our example, start with $\mathrm{BE}(4 n / 3+2)$ and then remove a randomly selected subset of size $n / 3+2$ from one of the two parts. Note that the two parts now have sizes $n / 3-1$ and $2 n / 3+1$, the resulting graph clearly is K_{4}-free and since the larger part is a space barrier, it has no perfect triangle-factor. Furthermore, with high probability, the minimum degree is $(1 / 6-o(1)) n$. We conjecture that $(1 / 6+o(1)) n$ is the proper minimum degree condition.

Conjecture 5.3. For every $\omega>0$ there exist $\gamma, n_{0}>0$ such that every K_{4}-free graph on $n \geq n_{0}$ vertices with $\delta(G) \geq n / 6+\omega n$ and $\alpha(G) \leq \gamma n$ contains a perfect triangle-tiling.

Using methods similar to those used in our proof of Theorem 1.2 we can show that every graph G which satisfies the conditions of Conjecture 5.3 has a triangle-tiling covering almost all of the vertices of G. More precisely, we can show that for $1 / n \ll \gamma \ll \omega$, if G is a K_{4}-free graph on n vertices with $\delta(G) \geq(1 / 6+\omega) n$ and $\alpha(G) \leq \gamma n$, then G contains a triangle-tiling which covers all but at most ωn vertices. What follows is a brief sketch of the argument.

Apply Theorem 2.5 with $\gamma \ll \varepsilon \ll d \ll \omega$ to obtain a spanning subgraph $G^{\prime} \subseteq G$, an exceptional set V_{0} and clusters V_{1}, \ldots, V_{k} of equal size m. Define the corresponding reduced graph R on vertex set $[k]$ in the usual way. The fact that G is K_{4}-free implies the following two important facts about these clusters and the graph R. (These facts were first observed by Szemerédi in [13].)
(a) there is no pair $i, j \in[k]$ for which $G^{\prime}\left[V_{i}, V_{j}\right]$ is $(1 / 2+d, \varepsilon)$-regular, and
(b) R is triangle-free.

Using a standard argument, it is not hard to see that (a) and the fact that $\delta(G) \geq$ $(1 / 6+\omega) n$ together imply that $\delta(R) \geq k / 3$. So R must be connected, as otherwise Mantel's theorem would give a triangle in the smallest connected component of R, contradicting (b). By a result of Enomoto, Kaneko and Tuza [9], the fact that R is a connected graph on k vertices with $\delta(R) \geq k / 3$ implies that R contains $\lfloor|R| / 3\rfloor$ vertexdisjoint copies of P_{2} (the path on three vertices). In a manner similar to the proof of Lemma 3.1, for each such path $i j k$ we can use the fact that $\alpha(G) \leq \gamma n$ to greedily construct a triangle-tiling covering all but at most $3.1 \varepsilon m$ of the vertices of $G\left[V_{i} \cup V_{j} \cup V_{k}\right]$, where each triangle has one vertex in V_{j}, the central cluster in the path, and the other two vertices either both in V_{i} or both in V_{k}. The union of these $\lfloor|R| / 3\rfloor$ triangle-tilings is then a triangle-tiling in G which covers all but at most ωn vertices.

We can generalize Question 5.2 in the following way.
Question 5.4. Let $k \geq 3$ and let G be an n-vertex K_{k+1}-free graph with $\alpha(G)=o(n)$. What is the best-possible minimum degree condition on G that guarantees a perfect K_{k} tiling in G ?

When k is even, we have previously shown that the minimum degree must be at least $\left(\frac{k-2}{k}+o(1)\right) n$. When $k=2 \ell+1 \geq 5$, we form G by starting with the complete ℓ-partite graph that has one part V_{1} of size $3 n / k+1$, one part V_{2} of size $2 n / k-1$, and the remaining parts, V_{3}, \ldots, V_{ℓ}, each of size $2 n / k$. In V_{1}, we place $\mathrm{BE}\left(\left|V_{1}\right|\right)$ on V_{1}, and, for every $2 \leq i \leq \ell$, we place a copy of $\operatorname{ER}\left(\left|V_{i}\right|\right)$ on V_{i}. We then have $\delta(G) \geq$ $\left(\frac{k-3}{k}+\frac{1}{4} \cdot \frac{3}{k}-o(1)\right) n=\left(\frac{4 k-9}{4 k}-o(1)\right) n$. Furthermore, G has sublinear independence number, is K_{k+1} free, and has no perfect K_{k}-tiling, because each copy of K_{k} in G has at most 3 vertices in V_{1}.

Finally, for $r \geq 3, \omega, \gamma>0$ and sufficiently large n, we give the construction of $G:=G_{\mathrm{RT}}(n, r, \omega, \gamma)$ from Theorem 1.3(b). For odd r the construction was first given in [6] and for even r the construction is from [7]. We say that a partition V_{1}, \ldots, V_{ℓ} of the vertices of a graph is equitable if $\| V_{i}\left|-\left|V_{j}\right|\right| \leq 1$ for all $1 \leq i<j \leq \ell$.

When $r=2 \ell+1$ is odd, we let V_{1}, \ldots, V_{ℓ} be an equitable partition of $V(G)$ and form the complete ℓ-partite graph with vertex classes V_{1}, \ldots, V_{ℓ}. For every $i \in[\ell]$, we then
place a copy of $\mathrm{ER}\left(\left|V_{i}\right|\right)$ on V_{i}, so

$$
\delta(G) \geq n-\left\lceil\frac{n}{\ell}\right\rceil \geq\left(\frac{r-3}{r-1}-\omega\right) n .
$$

We can assume that n is large enough so that for each $i \in[\ell]$ the independence number of $G\left[V_{i}\right]$ is at most γn, which implies that $\alpha(G) \leq \gamma n$. Note that G is K_{r}-free, as $G\left[V_{i}\right]$ is K_{3}-free for $i \in[\ell]$.

When $r=2 \ell$ is even, we let $U_{1}, \ldots, U_{3 \ell-2}$ be a equitable partition of $V(G)$, so $\left|U_{i}\right| \in$ $\left\{\left\lfloor\frac{2 n}{3 r-4}\right\rfloor,\left\lceil\frac{2 n}{3 r-4}\right\rceil\right\}$ for every $i \in[3 \ell-2]$. Let

$$
V_{1}:=U_{1} \cup U_{2} \cup U_{3} \cup U_{4} \quad \text { and } \quad V_{i}:=U_{3 i-1} \cup U_{3 i} \cup U_{3 i+1} \quad \text { for } 2 \leq i \leq \ell-1,
$$

and form the complete $(\ell-1)$-partite graph with vertex classes $V_{1}, \ldots, V_{\ell-1}$. On V_{1}, we then place a copy of $\mathrm{BE}\left(\left|V_{1}\right|\right)$ and assume n is large enough so that $G\left[V_{1}\right]$ has minimum degree at least

$$
\left(\frac{1}{4}-\omega\right)\left|V_{1}\right| \geq\left|V_{1}\right|-\left(\frac{6}{3 r-4}+\omega\right) n
$$

and independence number at most γn. For every $2 \leq i \leq \ell-1$, we place a copy of $\operatorname{ER}\left(\left|V_{i}\right|\right)$ on V_{i} and we ensure that n is large enough so that the independence number of $G\left[V_{i}\right]$ is at most γn. Because every vertex in G is adjacent to all but at most $\left(\frac{6}{3 r-4}+\omega\right) n$ vertices of G, we have that

$$
\delta(G) \geq\left(\frac{3 r-10}{3 r-4}-\omega\right) n
$$

Furthermore, $\alpha(G) \leq \gamma n$ and G is K_{r}-free as $G\left[V_{1}\right]$ is K_{4}-free and each of the subgraphs $G\left[V_{2}\right], \ldots, G\left[V_{\ell-1}\right]$ is K_{3}-free.

Acknowledgement. We thank the anonymous referee for the helpful comments which greatly improved the presentation of this paper.

References

[1] B. Bollobás and P. Erdős, On a Ramsey-Turán type problem, J. Combin. Theory B 21 (1976), 166-168.
[2] J. Balogh, T. Molla and M. Sharifzadeh with an Appendix by C. Reiher and M. Schacht, Triangle factors of graphs without large independent sets and of weighed graphs, Random Struct. and Algorithms, accepted.
[3] B. Csaba, and M. Mydlarz, On the maximal number of independent circuits in a graph, J. Combin. Theory B 102 (2012), 395-410.
[4] K. Corrádi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Mathematica Academiae Scientiarum Hungaricae 14 (1963), 423-439.
[5] P. Erdős, Graph theory and probability. II, Canad. J. Math. 13 (1961), 346-352.
[6] P. Erdős and V.T. Sós, Some remarks on Ramsey's and Turán's theorems, Combinatorial theory and its applications, (Proc. Colloq., Balatonfüred, 1969), (1970), 395-404.
[7] P. Erdős, A. Hajnal, V.T. Sós and E. Szemerédi, More results on Ramsey-Turán type problems, Combinatorica 3 (1983), 69-81.
[8] S. Janson, T. Łuczak and A. Ruciński, Random graphs, Wiley-Interscience, 2000.
[9] H. Enomoto, A. Kaneko and Zs. Tuza, P_{3}-factors and covering cycles in graphs of minimum degree $n / 3$, Combinatorics, (Eger, 1987), Colloq. Math. Soc. János Bolyai 52 (1987), 213-220.
[10] Y. Kohayakawa and V. Rödl, Szemerédi's regularity lemma and quasi-randomness, Recent advances in algorithms and combinatorics, Springer, (2003), 289-351.
[11] J. Komlós, G. Sárközy and E. Szemerédi, Blow-up lemma, Combinatorica 17 (1997), 109-123.
[12] J. Komlós and M. Simonovits, Szemerédi's regularity lemma and its applications in graph theory, Combinatorics, Paul Erdős is eighty, (Keszthely, 1993), Bolyai Soc. Math. Stud., vol. 2, János Bolyai Math. Soc., Budapest, (1996), 295-352.
[13] E. Szemerédi, On graphs containing no complete subgraph with 4 vertices, (in Hungarian), Mat. Lapok 23 (1972), 111-116.
[14] R. Martin and J. Skokan, Asymptotic multipartite version of the Alon-Yuster theorem, preprint, arXiv:1307.5897 (2013).
[15] V. Rödl and A. Ruciński, Perfect matchings in ε-regular graphs and the blow-up lemma, Combinatorica 19 (1999), 437-452.
[16] S. Win, Existenz von Gerüsten mit vorgeschreibenem Maximalgrad in Graphen, Abh. Math. Sem. Univ. Hamburg 43 (1975), 263-267

6 Appendix

The purpose of this appendix is to prove Lemma 2.4. The lemma is essentially a corollary to the following two theorems of Kohayakawa and Rödl [10]. For this we use the following notation: let G be a bipartite graph with vertex classes A and B, and define $d:=$ $d(G[A, B])$. Then for any ε we define $D_{A B}(\varepsilon)$ to be the graph with vertex set A in which $x, x^{\prime} \in A$ are adjacent if and only if

$$
\left|N_{G}(x)\right|,\left|N_{G}\left(x^{\prime}\right)\right|>(d-\varepsilon)|B| \quad \text { and } \quad\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right)\right|<(d+\varepsilon)^{2}|B| .
$$

Theorem 6.1 ([10, Theorem 45]). Let $0<\varepsilon<1$, and let $G[A, B]$ be a bipartite graph with $|A| \geq 2 / \varepsilon$. If $e\left(D_{A B}(\varepsilon)\right)>(1-5 \varepsilon)|A|^{2} / 2$, then $G[A, B]$ is $\left(d,(16 \varepsilon)^{1 / 5}\right)$-regular, where $d:=d(G[A, B])$.

Theorem 6.2 ([10, Theorem 46]). Let $0<\varepsilon<1$, and let $G[A, B]$ be a bipartite graph with $|B| \geq 1 / d$, where $d:=d(G[A, B])$. If $G[A, B]$ is (d, ε)-regular, then $e\left(D_{A B}(\varepsilon)\right) \geq$ $(1-8 \varepsilon)|A|^{2} / 2$.

The following two similar lemmas do most of the remaining work required to complete the proof.
Lemma 6.3. Suppose that $1 / n \ll \xi \ll \xi^{\prime}$ and that $1 / n \ll \beta$. Let $G[A, B]$ be a bipartite graph such that $|A|,|B| \leq n$, and let x_{1}, \ldots, x_{s} and y_{1}, \ldots, y_{t} be positive integers each of size at least βn such that $\sum_{i \in[s]} x_{i} \leq|A|$ and $\sum_{j \in[t]} y_{j} \leq|B|$. If $\left\{X_{1}, \ldots, X_{s}\right\}$ is a collection of disjoint subsets of A and $\left\{Y_{1}, \ldots, Y_{t}\right\}$ is a collection of disjoint subsets of B with $\left|X_{i}\right|=x_{i}$ and $\left|Y_{j}\right|=y_{j}$ for all $i \in[s]$ and $j \in[t]$ selected uniformly at random from all such collections, then, with probability at least $1-e^{-\Omega(n)}$, for every $i \in[s], j \in[t]$, $x, x^{\prime} \in A$ and $y, y^{\prime} \in B$ we have
(a) $\left|N_{G}(x) \cap Y_{j}\right| / y_{j}=\left|N_{G}(x)\right| /|B| \pm \xi$,
(b) $\left|N_{G}(y) \cap X_{i}\right| / x_{i}=\left|N_{G}(y)\right| /|A| \pm \xi$,
(c) $\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right) \cap Y_{j}\right| / y_{j}=\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right)\right| /|B| \pm \xi$,
(d) $\left|N_{G}(y) \cap N_{G}\left(y^{\prime}\right) \cap X_{i}\right| / x_{i}=\left|N_{G}(y) \cap N_{G}\left(y^{\prime}\right)\right| /|A| \pm \xi$, and
(e) $d\left(G\left[X_{i}, Y_{j}\right]\right)=d(G[A, B]) \pm \xi^{\prime}$.

Proof. Note that the at most $t\left(|A|+|A|^{2}\right)+s\left(|B|+|B|^{2}\right) \leq 2 \beta^{-1}\left(n+n^{2}\right)$ random variables of the form $\left|N_{G}(x) \cap Y_{j}\right|,\left|N_{G}(y) \cap X_{i}\right|,\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right) \cap Y_{j}\right|$, and $\left|N_{G}(y) \cap N_{G}\left(y^{\prime}\right) \cap X_{i}\right|$, where $i \in[s], j \in[t], x, x^{\prime} \in A$ and $y, y^{\prime} \in B$, are hypergeometrically distributed, so the fact that (a)-(d) hold with probability $1-e^{\Omega(n)}$ follows directly from Theorem 2.3 by taking a union bound. For (e), let $\ell:=\xi^{-1} / 2$ and define $D_{k}:=\{v \in A: 2(k-1) \xi \leq$ $|N(v)| /|B|<2 k \xi\}$ for each $k \in[\ell]$. Then, with probability $1-e^{\Omega(n)}$, for every $i \in[s]$ and $k \in[\ell]$, we have that

$$
\frac{\left|D_{k} \cap X_{i}\right|}{x_{i}}=\frac{\left|D_{k}\right|}{|A|} \pm \xi^{2}
$$

Fix a choice of X_{1}, \ldots, X_{s} and Y_{1}, \ldots, Y_{t}, for which (a)-(d) hold and this event occurs. Note that for every $k \in[\ell], v \in D_{k}$, and $j \in[t]$,

$$
\frac{\left|N_{G}(v)\right|}{|B|}=(2 k-1) \xi \pm \xi \quad \text { so } \quad \frac{\left|N_{G}(v) \cap Y_{j}\right|}{y_{j}}=(2 k-1) \xi \pm 2 \xi
$$

We compute $d(G[A, B])$ to be

$$
\frac{1}{|A|} \sum_{k \in[\ell]} \sum_{v \in D_{k}} \frac{\left|N_{G}(v)\right|}{|B|}=\sum_{k \in[\ell]}\left(((2 k-1) \xi \pm \xi) \cdot \frac{\left|D_{k}\right|}{|A|}\right)=\left(\sum_{k \in[\ell]}(2 k-1) \xi \frac{\left|D_{k}\right|}{|A|}\right) \pm \xi .
$$

Then for any $i \in[s]$ and $j \in[t]$ we have

$$
\begin{aligned}
d\left(G\left[X_{i}, Y_{j}\right]\right) & =\frac{1}{x_{i}} \sum_{k \in[\ell]} \sum_{v \in D_{k} \cap X_{i}} \frac{\left|N_{G}(v) \cap Y_{j}\right|}{y_{j}}=\sum_{k \in[\ell]}\left(((2 k-1) \xi \pm 2 \xi) \cdot\left(\frac{\left|D_{k}\right|}{|A|} \pm \xi^{2}\right)\right) \\
& =\left(\sum_{k \in[\ell]}(2 k-1) \xi \frac{\left|D_{k}\right|}{|A|}\right) \pm\left(\ell^{2} \xi^{3}+2 \xi+2 \ell \xi^{3}\right)=d(G[A, B]) \pm \xi^{\prime},
\end{aligned}
$$

so (e) holds.

Lemma 6.4. Suppose that $1 / n \ll \xi \ll \xi^{\prime}$ and $1 / n \ll \beta$, and that x_{1}, \ldots, x_{s} are positive integers each of size at least βn such that $\sum_{i \in[s]} x_{i} \leq n$. If G is a graph on n vertices and $\left\{X_{1}, \ldots, X_{s}\right\}$ is a collection of disjoint subsets of $V(G)$ with $\left|X_{i}\right|=x_{i}$ for all $i \in[s]$ selected uniformly at random from all such collections, then, with probability at least $1-e^{-\Omega(n)}$, for every $i \in[s]$ and $x, x^{\prime} \in V(G)$ we have
(a) $\left|N_{G}(x) \cap X_{i}\right| / x_{i}=\left|N_{G}(x)\right| / n \pm \xi$,
(b) $\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right) \cap X_{i}\right| / x_{i}=\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right)\right| / n \pm \xi$, and
(c) $2 e\left(G\left[X_{i}\right]\right) / x_{i}^{2}=2 e(G) / n^{2} \pm \xi^{\prime}$.

Proof. It is straightforward to modify the proof of Lemma 6.3 to prove this lemma; we omit the details.

Now we give the proof of Lemma 2.4.
Proof of Lemma 2.4. Introduce a new constant η with $1 / n \ll \eta \ll \varepsilon$. Suppose that $G[A, B]$ is $(\geq d, \varepsilon)$-regular, let $d^{*}:=d(G[A, B])$, so $d^{*}=d \pm \varepsilon$, and define $D:=D_{A B}(\varepsilon)$. Note that, by Theorem 6.2, we have that $2 e(D) /|A|^{2} \geq 1-8 \varepsilon$. We apply Lemma 6.3 to $G[A, B]$ and Lemma 6.4 to D, with ξ^{\prime} replaced by η in each case, to find that with probability $1-e^{-\Omega(n)}$ our random selection satisfies the conclusions of each of these lemmas. We fix such an outcome of our random selection, and consider any $i \in[s]$ and $j \in[t]$. Define $d_{i j}:=d\left(X_{i}, Y_{j}\right)$, so $d_{i j}=d^{*} \pm \eta$, and

$$
\begin{equation*}
d_{i j}=d \pm(\varepsilon+\eta) \tag{4}
\end{equation*}
$$

We also have that

$$
\frac{2 e\left(D\left[X_{i}\right]\right)}{x_{i}^{2}} \geq \frac{2 e(D)}{|A|^{2}}-\eta \geq 1-8 \varepsilon-\eta \geq 1-5(2 \varepsilon)
$$

Recall that, if $x x^{\prime} \in E\left(D\left[X_{i}\right]\right)$, then

$$
\frac{\left|N_{G}(x)\right|}{|B|}, \frac{\left|N_{G}\left(x^{\prime}\right)\right|}{|B|}>d^{*}-\varepsilon \text { and } \frac{\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right)\right|}{|B|}<\left(d^{*}+\varepsilon\right)^{2},
$$

so

$$
\frac{\left|N_{G}(x) \cap Y_{j}\right|}{y_{j}}, \frac{\left|N_{G}\left(x^{\prime}\right) \cap Y_{j}\right|}{y_{j}}>\left(d^{*}-\varepsilon\right)-\eta>d_{i j}-2 \varepsilon,
$$

and, as we can assume η is small enough so that $\eta^{1 / 2}+\eta<\varepsilon$,

$$
\frac{\left|N_{G}(x) \cap N_{G}\left(x^{\prime}\right) \cap Y_{j}\right|}{y_{j}}<\left(d^{*}+\varepsilon\right)^{2}+\eta<\left(d_{i j}+\eta+\varepsilon\right)^{2}+(\varepsilon-\eta)^{2}<\left(d_{i j}+2 \varepsilon\right)^{2} .
$$

This proves that $x x^{\prime} \in E\left(D_{X_{i} Y_{j}}(2 \varepsilon)\right)$, so D is a subgraph of $D_{X_{i} Y_{j}}(2 \varepsilon)$. Therefore, by Lemma 6.1 with d and ε replaced by $d_{i j}$ and 2ε, respectively, $G\left[X_{i}, Y_{j}\right]$ is $\left(d_{i j},(32 \varepsilon)^{1 / 5}\right)$ regular, and is therefore $\left(d,(32 \varepsilon)^{1 / 5}+2 \varepsilon\right)$-regular, because, by $(4), d=d_{i j} \pm 2 \varepsilon$. Since we can assume that ε is small enough so that $(32 \varepsilon)^{1 / 5}+2 \varepsilon \leq(33 \varepsilon)^{1 / 5}$, it follows that $G\left[X_{i}, Y_{j}\right]$ is $\left(d,(33 \varepsilon)^{1 / 5}\right)$-regular.

Clearly, if $G[A, B]$ is (d, ε)-super-regular, then, by (a) and (b) of Lemma 6.3, we can also ensure that $G\left[X_{i}, Y_{j}\right]$ is $\left(d,(33 \varepsilon)^{1 / 5}\right)$-super-regular for each $i \in[s]$ and $j \in[t]$.

[^0]: *Department of Mathematical Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA. jobal@math. uiuc.edu. Research partially supported by NSA Grant H98230-15-1-0002, NSF Grant DMS-1500121 and Arnold O. Beckman Research Award (UIUC Campus Research Board 15006).
 ${ }^{\dagger}$ Informatics Department, King's College London, London WC2R 2LS, United Kingdom. andrew.mcdowell@kcl.ac.uk. The work for this paper was carried out while this author was a postdoctoral researcher at the University of Birmingham.
 ${ }^{\ddagger}$ University of South Florida, Tampa, Florida 33620, USA. molla@usf.edu. Research partially supported by NSF Grant DMS-1500121. The work for this paper was carried out while this author was a postdoctoral researcher at the University of Illinois at Urbana-Champaign.
 ${ }^{\text {§ }}$ School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom. r.mycroft@bham.ac.uk. Research partially supported by EPSRC grant EP/M011771/1.

 The authors are grateful to the BRIDGE strategic alliance between the University of Birmingham and the University of Illinois at Urbana-Champaign. This research was conducted as part of the Building Bridges in Mathematics BRIDGE Seed Fund project.

[^1]: ${ }^{1}$ Note that m is much smaller than $\varepsilon^{\prime} m^{\prime}$ (since D is much larger than $1 / \varepsilon^{\prime}$) so we must use the random slicing lemma (Lemma 2.4) here, as opposed to, say, the standard slicing lemma (Lemma 2.1).

