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Is Flood Risk Capitalised into Property Values? 
 

Allan Beltrán†, David Maddison*, Robert Elliott*’** 

 

Abstract 

Economic theory suggests that, other things being equal, properties located within a floodplain 

should suffer a price discount. A survey of the existing evidence nonetheless reveals that this 

price discount lies anywhere between −75.5 percent to a +61.0 percent price premium. The 

objective of this paper is to summarise and explore the wide variation in the empirical results to 

obtain ‘best’ estimates with which to guide policy decisions. Results from our meta-analysis 

comprising 37 published works and 364 point estimates indicate the existence of marked 

differences between studies according to when and where they were conducted. For coastal 

regions the results show that properties located in the floodplain command higher prices; this 

finding is however likely to be caused by a high correlation between omitted coastal amenities 

and flood risk. There is moreover, some evidence that publication bias affects the coastal 

flooding literature. Results from meta-regression analyses intended to uncover sources of 

heterogeneity confirm that controlling for time elapsed since the most recent flood is especially 

important. For inland flooding the price discount associated with location in the 100-year 

floodplain is −4.6 percent. Although other estimates are defensible, we suggest this figure be 

used as a rule of thumb to determine the benefits of flood relief projects to households.  
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Is Flood Risk Capitalised in Property Values? 
 

 
1. Introduction 

Since the year 2000, there have been over 2,800 major flood events reported globally (EM-DAT, 

2017).1 The economic losses reported to have been caused by these floods exceeds 538 billion 

USD  globally (EM-DAT, 2017). Asia has been the region most affected by flooding in terms of 

the number of flood events (40 percent), number of victims (70 percent) and total flood damages 

(59 percent). Other regions such as Africa and the Americas have also been badly hit with each 

of these regions accounting for about 20 percent of the total number of flood events. Although 

the number of flood events that occurred in Europe represents only 13 percent of the total the 

economic losses in this region over the last 15 years account for 22 percent of global damages 

(EM-DAT, 2017). By the year 2050 the annual expected losses from floods are predicted to 

exceed 1 trillion USD (Hallegatte et al., 2013; World Bank 2013; Munich Re, 2013).  

 

Because of the scale of the problem, combatting floods is a significant policy issue. Considerable 

sums continue to be earmarked for flood relief projects although it is widely accepted that it is 

neither desirable nor feasible to protect all localities from flooding. Cost-benefit analysis of such 

projects entails comparing the monetised costs and benefits of each alternative and determining 

which yield an acceptable cost-benefit ratio. This enables scarce resources to be efficiently 

allocated between flood prevention schemes and other public works. In such analyses however 

                                                           
1 As reported by “EM-DAT: The Emergency Events Database”. To consult the inclusion criteria for quantification of natural 
disasters in the EM-DAT database see: http://www.emdat.be/. 
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the main challenge is to provide accurate measures of the benefits, not least because these 

combine both market and nonmarket impacts. 

 

Some studies quantify the economic benefits of structural flood protection measures using a 

damage cost approach (Brouwer and Van Ek, 2004; Blonn et al., 2010; Jongman et al., 2012). 

Others use stated preference valuation techniques to estimate willingness to pay (WTP) for flood 

protection (Brouwer et al., 2009; Phillips, 2011; Veronesi et al., 2014). There are also studies 

estimating the economic value of flood protection afforded by natural ecosystems (Bateman and 

Langford, 1997; Bateman et al., 2001; Gibbons et al., 2014) and other non-structural defence 

measures (Holway and Burby, 1990; Meyer et al., 2012; Troy and Romm, 2004). Kazmierczack 

and Bichard (2010), Bramley and Bowker (2002) and Osberghaus (2015) consider the 

determinants of private flood mitigation measures. Another popular approach is to use hedonic 

analysis to estimate the benefits of a reduction in flood risk.  

 

In an efficient housing market the price of property located inside the floodplain ought to be 

lower than the price of equivalent property outside. This price discount is interpreted as a 

measure of the benefits of a reduction in flood risk. Numerous authors have investigated the 

effect of location in a 500-year or 100-year floodplain on property prices for both inland and 

coastal locations. The results are however inconsistent and sometimes point to the presence of a 

price premium rather than the expected discount. Without a meta-analysis it is difficult to 

suggest a ‘best’ estimate of the percentage discount for floodplain location.  
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The use of meta-analysis is ubiquitous in environmental risk analysis. Smith and Huang (1995) 

use meta-analysis to infer WTP for reductions in air pollution based on evidence from hedonic 

studies. Nelson (2004) also conducts a meta-analysis of hedonic estimates of WTP for a 

reduction of noise from airports. More recently, Hjerpe et al. (2015) estimate the value of 

ecosystem conservation by means of a meta-analysis combining different stated preference 

valuation studies whilst Bergeijk and Lazzaroni (2015) use a meta-analysis to analyse the 

macroeconomic impact of natural disasters. Siriwardena et al. (2016) estimate the value of tree 

cover using a meta-analysis of hedonic studies undertaken in the US. 

 

We make four main contributions to the literature. First, we update the only other meta-analysis 

of the discount for floodplain location. In so doing so we double the number of research papers 

and treble the number of observations used. Second, our analysis changes the way that primary 

studies contributing more than one study are weighted. Third, we conduct tests for publication 

bias and, finding that studies of coastal locations are severely affected by publication bias, 

exclude them from further analysis. Finally and most importantly, we collect supplementary 

information enabling us to control for the recent flood-history of locations where studies were 

undertaken. 

 

The only existing meta-analysis of flood risk is Daniel et al. (2009a) who employ a meta-sample 

comprising 19 empirical studies and 117 estimates. They use meta-regression to explore the 

variation encountered using a set of 18 explanatory variables describing the spatio-temporal 

features of the studies, the design characteristics and the controls included in the original studies. 
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Their paper finds that an increase in the yearly risk of flooding of 0.01 results in a change in 

house prices of −0.6 percent.  

 

We by contrast argue that knowing the flood history of areas in which primary studies were 

undertaken is of fundamental importance. The meta-analysis of Daniel et al. (2009a) 

distinguishes between those studies undertaken in periods during which there were no floods as 

well as difference in difference (DID) studies that provide separate estimates of the effect of 

floodplain location both before and after a flood event. They ignore the fact that all study 

locations possess a prior flood history the consequences of which may still be present. 

Distinguishing between studies by adding dummy variables identifying a before-the-flood or an 

after-the-flood DID estimate does not adequately control for recovery in prices. Our paper uses 

meta-regression to control for time elapsed since the most recent flood event in all of the primary 

studies.  

 

Judging by the information we have assembled, existing studies tend to be undertaken in areas 

hit by recent floods rather than in areas which, although located in the floodplain, have avoided 

recent flooding. But by focusing on such sites the floodplain discount might have been 

overestimated.  

 

Once we eliminate studies dealing with coastal flooding and control for the time elapsed since 

previous flood events, our preferred price discount for location within a 100-year floodplain is 

almost an order of magnitude different to that of Daniel et al. (2009a). Our findings call into 

question the simple pooling of studies undertaken in locations with different flood histories. 
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They also serve as an example of how including in meta-analyses a set of observations that are 

severely affected by various forms of bias can seriously alter findings.  

 

The remainder of our paper is arranged as follows. Section 2 describes the theory used to infer 

the impact of floodplain location, carefully distinguishing between the different sorts of 

evidence. Section 3 describes the data. Section 4 provides a meta-analysis of the change in 

property prices encountered in 100-year and 500-year floodplain locations. Section 5 addresses 

the issue of publication bias. Section 6 attempts to explain sources of heterogeneity in published 

results using meta-regression. Section 7 discusses these findings, assesses their robustness and 

explains why they differ from earlier ones. Section 8 concludes.  

 

2. The Theoretical Model 

This section defines the hedonic price function (HPF) in such a way as to consider explicitly the 

flood risk associated with particular properties. Based on the model of Hallstrom and Smith 

(2005), the subjective probability 𝑝 that a property will be flooded is a function 𝑝(𝑖, 𝑟) of the 

information set 𝑖 that the individual possesses about flood risk in the vicinity, and 𝑟 that 

represents all of the site attributes related to the risk of flooding e.g. elevation or proximity to 

water bodies. It is vital to differentiate the subjective assessment of the probability the house will 

be flooded from 𝜋 which is the objective probability of flooding (Knuth et al. 2014). 

Nevertheless, in areas where the disclosure of the existence of flood risk is mandatory or publicly 

available, the set of information, 𝑖, might include the objective probability of flooding, 𝜋. The 

HPF is represented by the equation:  

 

𝑃 = 𝑃�𝑍, 𝑟, 𝑝(𝑖, 𝑟)� (1) 
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Here 𝑃 denotes the price of the house and, whilst this is exogenous to prospective buyers and 

sellers, depends on the subjective risk perception 𝑝(𝑖, 𝑟); Z represents an additional set of 

structural, environmental and locational characteristics of the house not indicative of flood risk. 

Following Brookshire et al. (1985) the decision of the household is modeled using a state 

dependent expected utility (EU) function:   

 

𝐸𝐸 = 𝑝(𝑖, 𝑟) ∙ 𝑈𝐹[𝑍, 𝑟, 𝑄] + �1 − 𝑝(𝑖, 𝑟)� ∙ 𝑈𝑁𝑁[𝑍, 𝑟, 𝑄] (2) 
   

𝑈𝐹(∙) is the homeowner’s utility in a state in which a flood occurs and 𝑈𝑁𝑁(∙) is the 

homeowner’s utility when no flood occurs. The variable Q denotes a composite commodity. The 

household’s budget constraint is given by equation (3) where M represents income: 

 

𝑀 = 𝑃�𝑍, 𝑟, 𝑝(𝑖, 𝑟)� + 𝑄 (3) 
 

Maximising expected utility with respect to 𝑝 subject to the budget constraint and then dividing 

through by the expected marginal utility of income results in the following expression: 

 

𝜕𝜕
𝜕𝜕

=
𝑈𝐹 − 𝑈𝑁𝑁

𝑝(𝑖, 𝑟) 𝜕𝑈
𝐹

𝜕𝜕 + �1 − 𝑝(𝑖, 𝑟)� 𝜕𝑈
𝑁𝑁

𝜕𝜕

 (4) 

 

Equation (4) gives the coefficient on the subjective risk variable in the HPF. For optimality the 

implicit price of flood risk is equal to the difference in utility across states divided by the 

expected marginal utility of household income. Hence the household’s locational decision 

provides a measure WTP for a marginal change in the probability of flooding.  
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Empirical applications of the hedonic technique can be divided into two sorts. The first sort is 

able only to identify the impact on prices of changes in the subjective probability of flooding. 

The second sort is able to identify both the impact on prices of changes in the subjective 

probability of flooding as well as the impact on prices of the changes in information affecting the 

subjective probability of flooding. And whilst there are other sources of information, the variable 

that most obviously impacts the subjective probability of a flood is the actual occurrence of a 

flood. Consider the following HPF:  

 

𝑙𝑙𝑃𝑖𝑖 = 𝛼0 + �𝛼𝑗
𝑗=1

𝑍𝑖𝑖 + 𝛽𝑟𝑖 +  𝛾𝛾𝛾𝛾𝑖 + 𝛿𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝜃(𝐹𝐹𝐹𝐹𝐹𝑖𝑖 × 𝐹𝐹𝐹𝑖) + 𝜀𝑖𝑖 (5) 

 

Here, 𝑙𝑙𝑙𝑖 indicates the log of the sale price of house 𝑖 𝐹𝐹𝐹𝐹𝐹 is a dummy variable that assumes 

the value unity if the transaction of property i happened after some flood event and 𝐹𝐹𝐹 is a 

dummy variable which assumes the value unity if the property is located within the floodplain 

and ε is a property specific error which is assumed ε𝑖~N(0, σ2I). Floodplain location here serves 

as a proxy for the subjective probability of flooding whereas the occurrence of the flood event 

potentially alters the subjective probability of flooding. The parameter γ measures the pre-flood 

relative price differential for house located in the floodplain, δ measures the relative sale price 

differential for all those properties which were sold after the flood whilst θ measures the impact 

on prices located within the floodplain arising out of the information conveyed by the flood.  

 

Specifications like the one in equation (5) are termed DID models because they contain 

information about houses within and outside the floodplain, and a treatment i.e. flooding that 

effects only those houses in one group. Note also that according to the HPF the post-flooding 

price differential for houses located inside the floodplain is given by the sum of γ and θ.  
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There is evidence that the information effect θ will differ according to how long after the event it 

is measured. In particular, recent studies such as Atreya et al. (2013) and Bin and Landry (2013) 

find evidence suggesting that the information effect of flood events dies away. This suggests 

rewriting the HPF in such a way that θ is time dependent:  

 

𝑙𝑙𝑃𝑖𝑖 = 𝛼0 + �𝛼𝑗
𝑗=1

𝑍𝑖𝑖 + 𝛽𝑟𝑖 +  𝛾𝛾𝛾𝛾𝑖 + 𝛿𝐹𝐹𝐹𝐹𝐹𝑖𝑖 + 𝜃𝑡(𝐹𝐹𝐹𝐹𝐹𝑖𝑖 × 𝐹𝐹𝐹𝑖) + 𝜀𝑖𝑖 (6) 

 

In this HPF the post-flood price differential is now γ + θt. However, having admitted this, it is 

now no longer obvious whether the pre-flood estimate of the coefficient γ might itself not also be 

affected by earlier floods.  

 

In reality all estimates of the floodplain discount are post-flood estimates; even if no flood 

occurred during the period under observation it might be that a flood occurred just prior to the 

start of the study. In addition, the same issue effecting pre-flood estimates from DID models will 

also effect estimates of the floodplain discount from hedonic models estimated over periods 

during which no significant flood event occurred. 

 

Differences in estimates of the floodplain price discount depend on floodplain designation. 

Clearly a greater price discount is expected for location in a 100-year floodplain than in a 500-

year floodplain. We are for the purposes of cost-benefit analysis interested in how the discount 

varies according to floodplain designation. However, heterogeneity in the floodplain price 

discount is caused by combining analyses with different flood histories. This heterogeneity 
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depends on the extent to which people overreact to flood events and how quickly the memory of 

such events fades. In order to control for this source of heterogeneity one has to know something 

about the flood history of each location. 

 

Although it could certainly be the case that a flood event causes households to correct a poor 

subjective prior there are reasons to believe that the use of post-flood estimates from DID 

hedonic models is likely to result in biased estimates of the implicit price of flood risk in the 

housing market. The first argument is derived from Tversky and Kahneman’s (1973) idea of an 

availability heuristic in the perception of risk; basically individuals assess the probability of an 

event by the ease with which the actual occurrence of such an event can be brought to mind 

(Wachinger et al. 2013; Knuth et al. 2014; Kellens et al., 2013). Cameron and Shah (2015) 

provide an illustration of this in a study of Indonesian households where they conclude that after 

a flood individuals inaccurately updated their perception of flood risk. In particular they find that 

individuals affected by flooding reported unrealistically high probabilities that another flood 

event would occur in the next year and that it would be severe, with an effect lasting for several 

years. The second reason for fearing bias is that studies looking at the post-flood discount of 

prices attribute the update in prices entirely to the effect of new information conveyed by the 

flood. They do not generally acknowledge the extent to which these changes might be driven by 

actual flood damages and a recovery of prices as individuals restore their property to its former 

condition. Atreya and Ferreira (2015) suggest that the majority of this effect might indeed be 

driven by flood damages, and that after identifying those properties directly affected by flooding 

there is no significant price update on other properties located inside the floodplain.2   

                                                           
2 A referee has pointed out to us a further issue: whereas a standard hedonic study can identify the implicit price for flood risk 
reductions, a DID identifies capitalisation in the housing market which is not directly interpretable as marginal WTP (Kuminoff 
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3. The Data 

We follow the reporting guidelines for meta-regression analysis in economics provided by 

Stanley et al. (2013), who list the four basic steps necessary to undertake a meta-analysis. First, it 

is necessary to define the theoretical relationship of interest. Second, one has to collect the 

population of studies that provide data on the relationship of interest. The third step involves 

coding the studies and computing the effect sizes. We detail these two steps in this section. The 

final steps which we present in sections 5 and 6 are examination of the distribution of effect sizes 

and the influence of the moderating variables.  

 

Our meta-analysis is founded on a systematic literature review employing widely-used 

proprietary databases and a secondary search through the bibliography of any studies thereby 

traced. Using Boolean operators the search was undertaken in English only. The combination of 

words used for this exercise were:  

 

(Flood* OR Inundat* OR Hurricane*) AND (Propert* OR Hous* OR Resident* OR “Real 

Estate”)   

 

The use of * as the wildcard character permits us to enlarge the search by substituting a sequence 

of letters. For example, searching for flood* will retrieve, flood, floods, floodplain, flooding and 

so on.  

 

                                                                                                                                                                                           
and Pope, 2014). For those who are concerned about this issue we also present results for hedonic and DID studies separately in 
appendix A2.  
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A number of databases e.g. the Social Science Research Network (SSRN) do not permit the use 

of wildcards or Boolean operators and here different strategies were employed. Other databases 

e.g. ProQuest retrieved too many irrelevant works. A chronologically-ordered summary of the 

studies identified in the literature review is contained in Table 1. This exercise successfully 

retrieved all of the papers in Daniel et al. (2009a) and many more besides.  

 

Table 1. Chronologically ordered summary of literature review 

Database Date Total of 
Entries 

Saved for further 
research 

EconLit 18/04/2013 365 59 

Social Science Citation Index 
and Conference Proceedings 
Citation Index 

24/04/2013 249 34 

IngentaConnect 25/04/2013 982 12 

Environmental Valuation 
Reference Inventory 30/04/2013 228 11 

AGRICOLA. US National 
Agricultural Library Catalog 02/05/2013 143 0 

SSRN 02/05/2013 285 16 

ProQuest 03/05/2013 3,776 32 

Total  6,028 164 
Source: Own elaboration. 

 

In excess of 6,000 records from various electronic databases were scrutinised and 164 studies 

earmarked for further inspection. A further update was undertaken in May 2014 to guarantee that 

any recently published studies were also included (resulting in an additional four studies). The 

rules for inclusion of studies into the meta-analysis are identical to those employed by Daniel et 

al. (2009a), chiefly: 

 

(i) Estimates have necessarily to be obtained using an econometrically estimated HPF, 
either the DID or the standard hedonic model.  
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(ii) Estimates must be capable of being expressed, after recalculation if necessary, as a 
percentage of average house prices. 

(iii) The risk of flooding should be captured by a dummy variable, where the dummy 
variable indicates location within the 500-year or 100-year floodplain. 

(iv) For those studies which are available in more than one version of a paper only the 
most recent version is considered.  

 

Adhering to these rules we compile a meta-sample which includes only those studies which are 

sufficiently homogenous for meaningful conclusions to be obtained through meta-analysis. 

These rules however, imply that certain sorts of studies were excluded. The first rule excludes 

those studies with estimates that were obtained through a comparison of average sale prices both 

outside and within a floodplain, such as Babcock and Mitchell (1980) and Zimmerman (1979), 

studies comparing rates of property price appreciation, such as Lamond et al. (2010) or Eves 

(2002) and those studies utilising repeat-sales models, such as Carbone et al. (2006) and Lamond 

and Proverbs (2006).3 The second rule necessitates dropping studies that provide monetary 

estimates of the change in the price associated with floodplain location but fail to provide 

information on the mean house price e.g. Holway and Burby (1990). The third rule excludes 

studies such as Barnard (1978), Tobin and Montz (1994) and Shilling et al. (1985) who use the 

cost of flood insurance, elevation or flood depth rather than floodplain location as an indicator 

for flood risk. Also excluded is the study of Atreya and Ferreira (2012b) who use a solitary 

dummy variable in order to identify those properties that are located in a floodplain irrespective 

of designation, in addition to some results from studies by Bin and Landry (2013) and Bin et al. 

(2008b) where the extent of the risk is unspecified.  

 

                                                           
3 Repeat sales models value only the change in the price of property located in the floodplain following an ‘informational update’ 
i.e. a flood event. In other words, using results from repeat-sales models we are only be able to recover an estimate of θ as 
expressed in equation (5) which corresponds to the price update after a flood. Without information on γ (the pre-flood price 
differential) we are unable to compute the post-flood price differential. 
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The resulting meta-sample contains 37 studies and 349 point estimates, twice the studies 

considered by Daniel et al. (2009a) and three times the number of point estimates. The 

publication dates of studies contained in the meta-sample ranges from 1987 to 2013. The meta-

sample contains 33 studies from the United States as well as studies from Australia, New 

Zealand, the Netherlands and the United Kingdom (as shown in Table 2).  

 

Whilst all the studies use dummy variables controlling for floodplain location the functional 

form selected for the HPF differs from study to study, and various adjustments were required. 

The effect size of interest is the relative house price differential for floodplain location and, 

adopting the notation of Daniel et al. (2009a), we refer to this as 𝑇, with 𝑠𝑇 the associated 

standard errors. The majority of studies employ a semi-log functional form as in equation (7), the 

variables are defined as in equation (5).4 Here, the effect size 𝑇 and the standard error 𝑠𝑇 

correspond to the parameter 𝛾 and the standard error 𝑠𝛾 as extracted direct from the primary 

studies themselves.5 Studies by Donnelly (1989), Speyrer and Ragas (1991), Bialaszewski and 

Newsome (1990), US Army Corps of Engineers (1998), Shultz and Fridgen (2001) and Harrison 

et al. (2001) by contrast provide estimates that are taken from linear specifications such as those 

in equation (8) so that 𝑇 = 𝛾 𝑃�⁄  and 𝑠𝑇 = 𝑠𝛾 𝑃�⁄ , where 𝑃� is the mean selling price of the sample. 

 

𝑙𝑙𝑙𝑖  = 𝛼0 + 𝛾𝐹𝐹𝐹𝑖 + ∑ 𝛼𝑗𝑗=1 𝑍𝑖𝑖 + 𝜀𝑖  (7) 

    𝑃𝑖  = 𝛼0 + 𝛾𝐹𝐹𝐹𝑖 + ∑ 𝛼𝑗𝑗=1 𝑍𝑖𝑖 + 𝜀𝑖  (8) 

𝑃𝑖
𝜆−1
𝜆

= 𝛼0 + 𝛾𝐹𝐹𝐹𝑖 + ∑ 𝛼𝑗𝑗=1 𝑍𝑖𝑖 + 𝜀𝑖  (9) 

                                                           
4 For convenience we exclude the variable 𝑟𝑖. 
5 Note that, strictly, with a dummy variable contained in a semi-log functional form the marginal effect ought to be adjusted to  
𝑒𝛾 − 1 (Halvorsen and Palmquist, 1980). Despite this, following Daniel et al. (2009a) these adjustments are ignored given the 
very small size of the coefficients. 
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Studies by MacDonald et al. (1987), Dei-Tutu and Bin (2002), MacDonald et al. (1990) and Bin 

(2004) resort to a Box-Cox specification such as that shown in equation (9). Here 𝑇 = 𝛾𝑃��1−𝜆�, 

where 𝑃�� represents the average price and 𝜆̂ is a non-linear parameter. In this instance 𝑇 depends 

upon two random parameters and accordingly 𝑠𝑇 cannot readily be calculated from the reported 

parameters. Using the same strategy as Daniel et al. (2009a) the  standard errors have been 

approximated by means of the Delta method, as shown in equation (10). 

 

𝑠𝑇 = ��
𝜕𝜕
𝜕𝜕
�
2

𝜎𝜆2 + �
𝜕𝜕
𝜕𝜕
�
2

𝜎𝛾2 + 2 �
𝜕𝜕
𝜕𝜕
� �
𝜕𝜕
𝜕𝜕
� 𝑟𝛾𝛾𝜎𝛾𝜎𝜆 (10) 

 

Here 𝜎𝑖 denotes the standard error of 𝜆 and 𝛾, respectively, and 𝑟𝛾𝛾 is the associated correlation 

coefficient. For studies like MacDonald et al. (1990) and MacDonald et al. (1987) which fail to 

provide any estimate of 𝜎𝜆, this is approximated with a standard error of 𝜆 2⁄  as in Daniel et al. 

(2009a); a step which makes 𝜆 significant at the 5 percent level of confidence. Since an estimate 

of 𝑟𝛾𝛾 is typically unavailable, the value of ±0.9 has been inserted depending on whether the 

expression (𝜕𝜕 𝜕𝜕⁄ )(𝜕𝜕 𝜕𝜕⁄ ) is positively or negatively signed to generate conservative standard 

errors.    

 

All the estimates used in our analysis are based on actual sales data; 13 estimates from a study 

conducted by the US Army Corps of Engineers (1998) based on appraised values are excluded 

whilst other estimates from the same study are retained.6 For studies using a spatial lag we 

record the total effect of flood risk location meaning that any spatial spillovers arising out of the 

                                                           
6 These were, included in Daniel et al. (2009a). 
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prices of neighbouring properties are included.7 Studies incorporating a spatial lag include 

Daniel et al. (2007), Posey and Rogers (2010), Bin et al. (2008a, 2008b), Atreya and Ferreira 

(2012a), Atreya et al. (2012), Atreya and Ferreira (2012c), Atreya et al. (2013) and Meldrum 

(2013).8  

 

Finally, we collect information on the flood history of each study’s location. Using this 

information we calculate time elapsed since the last flood. Some hedonic studies such as Bin and 

Landry (2013), Turnbull et al. (2013), Rambaldi et al. (2011), Bin et al. (2008a), Lamond and 

Proverbs (2006), Bin (2004), Bartosova et al. (1999) and US Army Corps of Engineers (1998) 

already discuss the flood history of the location. In these cases, months elapsed since the most 

recent flood is then easily calculated by subtracting the date of the most recent flood from the 

median date of the transaction data used in the study. For DID studies the time elapsed since the 

most recent flood is, for ‘pre-flood’ estimates, clearly different to that for ‘post-flood’ estimates. 

Since DID studies invariably mention the date of the flood event around which the study is 

constructed it is easy to calculate time elapsed for the post-flood estimates. For recent studies by 

Atreya et al. (2012, 2013), Atreya and Ferreira (2011, 2012a, 2012c) and Bin and Landry (2013) 

which investigate how the information content of flood events diminishes with the passage of 

time as in equation (6), the resulting post-flood price differential is the price discount for 

floodplain location immediately after the flood.  

 

                                                           
7 For studies using spatial econometric methods the total effect was calculated following Golgher and Voss (2016). In an earlier 
version of the manuscript for spatial studies we included only the direct effect. The results are largely unaffected by using the 
total effect rather that the direct effect.  
8 Note that the average effect sizes contained in Table 2 correspond to the relative house price differential for floodplain location 
and are not adjusted for differing levels of risk. In contrast Daniel et al. (2009a) standardised both the effect sizes as well as the 
corresponding standard errors in order to account for any differences in the degree of risk reporting them as 𝑇∗ = 𝑇 ×
(1/𝜔 × 100)−1, where 𝑇 denotes the unstandardised effect size and the recurrence interval is 𝜔. In our research no 
standardisation has been attempted and any differences arising out of differences in the levels of risk in our study are investigated 
as part of our meta-analysis. 
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To determine time elapsed since the previous flood for studies that do not discuss the flood 

history of the location as well as for the ‘pre-flood’ period of DID studies it was necessary to 

examine historical records. Using the google search engine we retrieved information from 

previous floods at the city or county level according to the area of interest in the primary studies. 

More specifically, we focus on identifying major flood events that could cause a significant 

impact on the price of properties. The search was conducted on a study by study basis based on 

four criteria: (1) the location of interest of the primary study, (2) the use of words such as “flood” 

or “inundation” to define the nature of the event, (3) the use of words such as “major”, “large” or 

“extreme”, to denote the magnitude of the flood, and (4) the date of occurrence of the flood 

before the start date of the sample. In general, the date of the previous flood is taken from official 

online reports of the local authority or reports from local news. The occurrence of the event was 

then confirmed using different sources to ensure a consistent description of the event as a 

“major” flood event. Table A1 in the appendix shows the date of the previous flood for each 

study considered in the meta-analysis. The number of months elapsed since the previous flood 

was calculated by subtracting the date of the previous flood from the median date of the 

transaction data used in the study.9 

 

It is interesting to note that, although all primary studies investigate properties located in either 

the 100-year or the 500-year floodplain, according to the evidence we have compiled the time 

elapsed since the last flood event is surprisingly short. In those hedonic studies which do not 

observe a flood event during the period of the study, the average amount of time elapsed since 

                                                           
9 Note that there are 5 studies where the “event” corresponded to a change in law or regulation (Samarasinghe and Sharp, 2010; 
Troy and Romm, 2004; Pope, 2008; Troy, 2001; Harrison et al., 2001). When collecting the data from these studies we handled 
them in the same way as we handled the estimates of a flood. That is for the post-disclosure effect we add a pre-disclosure 
discount plus the update after disclosure. In this way, the disclosure is considered similar to the occurrence of a flood in that both 
events provide new information with which individuals are able to update their perception of risk. In this case, however, the date 
of the previous flood is the same for the pre- and post-disclosure effects. 
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the most recent flood was 15.8 years. For the post-flood component of the DID study the average 

time elapsed was 2.5 years. But whereas choosing a location with a recent flood event is 

necessary for the conduct of a DID study even for these studies there seems to have been a prior 

flood event occurring shortly before the ‘main’ event. On average a prior flood occurred 21.2 

years before the midpoint of the pre-flood period of DID studies. 

 

Either researchers have chosen locations subject to recent flooding or these locations contain 

low-lying areas which are in fact subject to flooding far more frequently than their 100-year or 

500-year floodplain designation suggests. We suspect part of the explanation is that a 100-year 

floodplain is defined by the risk at the edge of the floodplain. Highfield et al. (2013) and 

Czajkowski et al. (2013) note floodplain designations are neither an accurate nor sufficient 

indication of the level of risk because houses are treated equally regardless of their distance to 

the source of risk. Within a 100-year floodplain there are properties which can be affected by 

floods with a shorter return period e.g. of 1 in 50 years, and individuals with a different 

perception of risk (O’Neil et al. 2016; Ho et al. 2008). Despite this we suspect researchers are 

drawn to conduct analyses in locations with a recent flood history. In situation in which the price 

discount for locating within a 100-year floodplain is partially determined by the time elapsed 

since the most recent flood event a different set of results might be obtained from randomly 

selecting floodplains rather than concentrating on those recently flooded.  
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Table 2. Summary of studies included in the meta-sample 

No. Authors Year Country1 Location Flood risk 
(floodplain) 

No. 
Obs. 

Effect size (T) 
Mean S.D. Min. Max. 

1 MacDonald et al. 1987 US Louisiana 100 2 -0.077 0.014 -0.086 -0.067 
2 Skantz and Strickland 1987 US Texas 100 8 -0.025 0.019 -0.056 -0.012 
3 Donnelly 1989 US Wisconsin 100 1 -0.121 - - - 
4 Shilling et al. 1989 US Louisiana 100 1 -0.076 - - - 
5 Bialszewski and Newsome 1990 US Alabama 100 1 0.000 - - - 
6 MacDonald et al. 1990 US Louisiana 100 2 -0.100 0.024 -0.117 -0.083 
7 Speyrer and Ragas 1991 US Louisiana 100 4 -0.098 0.073 -0.204 -0.042 
8 US Army Corps of Engineers 1998 US Texas 100 14 -0.029 0.083 -0.268 0.080 
9 Bartosova et al. 1999 US Wisconsin 100 and 500 7 -0.016 0.074 -0.078 0.144 
10 Harrison et al. 2001 US Florida 100 4 -0.025 0.013 -0.041 -0.014 
11 Shultz and Fridgen 2001 US ND and MI 2 100 and 500 4 -0.032 0.073 -0.102 0.031 
12 Troy 2001 US California 100 20 0.024 0.022 -0.017 0.061 
13 Dei-Tutu and Bin 2002 US North Carolina 100 1 -0.062 - - - 
14 Bin 2004 US North Carolina 100 4 -0.062 0.015 -0.076 -0.044 
15 Bin and Polasky 2004 US North Carolina 100 3 -0.060 0.023 -0.084 -0.038 
16 Troy and Romm 2004 US California 100 2 -0.011 0.030 -0.032 0.009 
17 Hallstrom and Smith 2005 US Florida 100 8 0.066 0.118 -0.113 0.173 
18 Bin and Kruse 2006 US North Carolina 100 and 500 9 0.107 0.235 -0.103 0.610 
19 Lamond and Proverbs 2006 UK North Yorkshire 100 2 -0.175 0.005 -0.178 -0.171 
20 Daniel et al. 2007 NL Meuse River 100 15 -0.033 0.054 -0.082 0.084 
21 Morgan 2007 US Florida 100 3 0.254 0.080 0.165 0.321 
22 Bin et al. 2008a US North Carolina 100 2 -0.146 0.026 -0.165 -0.128 
23 Bin et al. 2008b US North Carolina 100 and 500 6 -0.055 0.031 -0.078 -0.010 
24 Pope 2008 US North Carolina 100 and 500 22 -0.002 0.025 -0.045 0.038 
25 Daniel et al. 2009b NL Meuse River 100 4 -0.049 0.041 -0.086 0.005 
26 Kousky 2010 US Missouri 100 and 500 46 -0.024 0.017 -0.073 0.008 
27 Samarasinghe and Sharp 2010 NZ Auckland 100 4 -0.040 0.025 -0.064 -0.014 
28 Posey and Rogers 2010 US Missouri 100 2 -0.099 0.002 -0.100 -0.098 
29 Atreya and Ferreira 2011 US Georgia 100 and 500 6 -0.134 0.143 -0.375 0.042 
30 Atreya and Ferreira 2012c US Georgia 100 20 -0.187 0.245 -0.722 0.127 
31 Atreya and Ferreira 2012a US Georgia 100 and 500 18 -0.174 0.195 -0.677 0.102 
32 Atreya et al. 2012 US Georgia 100 and 500 22 -0.084 0.164 -0.382 0.101 
33 Rambaldi et al. 2013 AU Queensland 100 1 -0.013 - - - 
34 Atreya et al. 2013 US Georgia 100 and 500 40 -0.166 0.229 -0.755 0.089 
35 Bin and Landry 2013 US North Carolina 100 and 500 18 -0.096 0.113 -0.423 0.041 
36 Meldrum 2013 US Colorado 100 21 -0.057 0.060 -0.158 0.010 
37 Turnbull et al. 2013 US Louisiana 100 and 500 10 -0.006 0.016 -0.023 0.014 
 Overall     349 -0.061 0.149 -0.755 0.610 

Notes: 1 AU = Australia, NL = The Netherlands, NZ = New Zealand, UK = United Kingdom, US = United States. 
           2 ND = North Dakota, MI = Minnesota.  

 
 

4. Meta-Analysis 

According to Table 2 there is general agreement that the price of property located in the 

floodplain is lower than that of an equivalent property outside; 33 out of 37 studies report, on 

average, a depressing effect of floodplain location. Properties situated inside a floodplain are 
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reduced in value by on average −6.1 percent although there is significant within and between 

study variation as revealed by the columns recording the standard deviations (SD) of the effect 

sizes and the minimum and maximum effect size. Estimates range from the −75.5 percent price 

discount found by Atreya et al. (2013) to the +61.0 percent price premium reported by Bin and 

Kruse (2006). Figure 1 displays the 349 estimates of the effect size included in our meta-sample.  

 
 

Figure 1. Meta-sample: Relative price differential for location in the floodplain  

 
Source: Authors’ own elaboration founded on results from primary studies. 

 
 
We now perform a meta-analysis of the estimated effect sizes. There are in the literature two 

commonly encountered models used for combining together effect-sizes: the fixed-effects and 

random-effects models. In either weights are usually chosen using the (inverse) error-variance 

with the consequence that greater weight is given to more precise studies. The essential 

difference between these two models resides in the assumptions that define the error variance. 

 

With the fixed-effects model the assumption is that all studies possess a common effect size; any 

differences in the observed effects occur only because of sampling error. Alternatively put, if the 

sample size was infinite the observed effect would be the same for all studies. However, because 

studies commonly differ in terms of both the way that they are implemented as well as the 

underlying population the assumption of the fixed-effects is here implausible. By contrast the 
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random-effects model allows the real effect size to differ across observations. In this case the 

goal is to estimate the mean of the distribution of true effect sizes. 

 

Table 3 reports the statistics from the random-effects model estimated on all 349 effect sizes. 

Also reported are results from different subsamples where observations have been put into 

categories according to the floodplain designation, inland versus coastal flooding and whether it 

is a before or after-the-flood DID estimate or an estimate from a standard hedonic model. The 

table additionally reports the between-study variance 𝜏2, the 90 percent confidence intervals, the 

𝐼2 and the Q-statistic. 

 

So far we have treated each observation as if it were a separate study, something which results in 

inappropriate weight being placed on those studies reporting in excess of one outcome. To 

rectify this shortcoming, Table 3 also shows the summary statistics invoking another common 

weighting scheme: conferring weights according to a study’s sample size. The weight given to 

each particular observation corresponds to the square root of the mean sample size of each study, 

divided by however many estimates each study contributes to the final meta-sample. Hence 

studies are given more weight because of the information they contain and not simply because 

the researchers happened to report more estimates (Stanley and Doucouliagos, 2015). 

 

The overall effect size for estimates in the 100-year floodplain points to a premium of +3.7 

percent rather than the expected price discount. This premium however, is attributable to 

properties threatened by coastal flooding. If we further divide the sample the overall effect size 

for properties affected by inland flooding points to a discount of −5.6 percent but for properties 

at risk of coastal flooding a premium of +14.8 percent. Bin and Kruse (2006), Hallstrom and 

Smith (2005) and Bin et al. (2008a) suggest such results are due to the failure to control for the 

presence of amenities associated with proximity to the coast. Using an equilibrium sorting 

model, Fan and Davlasheridze (2016) also find evidence that amenity values dominate flood risk 
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in coastal regions. We believe that it is at present impossible to draw reliable inferences from 

studies carried out in coastal regions.  

 

For properties subject to inland flooding in the 100-year floodplain, if we focus only on the 

evidence from DID models before the flood event, there is a sizeable discount of −2.9 percent. 

After a flood the discount rises to −6.9 percent. For houses in the 500-year floodplain, before a 

flood event DID models suggest that the price differential is +0.3 but after a flood event there is 

a discount of −5.2 percent.10 This finding supports the idea that there is a significant updating of 

beliefs in localities where no prior capitalisation of flood risk has occurred (Kousky, 2010).  

 

Table 3. Meta-analysis: Summary statistics 

Sample 
Random-Effects  Sample size weights 

N 
Summary 
Statistic1 

90% Conf. 
Interval 

𝝉𝟐 Q-Stat2 I2  
Summary 
Statistic1 

90% Conf. 
Interval 

Q-Stat2 I2 

All 349 -0.027*** [-0.035; -0.020] 0.0032 5962.7*** 94.2  -0.032*** [-0.037; -0.027] 6940.3*** 95.0 
500 year 93 -0.001 [-0.006;  0.005] 0.0001 133.9*** 31.3  -0.019*** [-0.030; -0.009] 374.7*** 75.4 
100 year 256 -0.036*** [-0.046; -0.027] 0.0042 5736.4*** 95.6   0.037*** [ 0.043;  0.032] 6569.1*** 96.1 
Inland 314 -0.028*** [-0.033; -0.022] 0.0011 2132.7*** 85.3  -0.044*** [-0.049; -0.038] 3528.6*** 91.1 
Inland 100-year 226 -0.038*** [-0.044; -0.031] 0.0013 1794.7*** 87.5  -0.056*** [-0.062; -0.050] 3248.6*** 93.1 
DID Inland 100-year BF 63 -0.017*** [-0.029; -0.006] 0.0011 239.4*** 74.1  -0.029*** [-0.039; -0.020] 120231*** 99.9 
DID Inland 100-year AF 71 -0.079*** [-0.101; -0.058] 0.0039 222.4*** 68.5  -0.069*** [-0.088; -0.051] 257.2*** 72.8 
Inland 500-year 88  0.003 [-0.002; 0.007] 0.0000 104.5* 16.7  -0.019*** [-0.030; -0.008] 347.1*** 74.9 
DID Inland 500-year BF 31  0.005 [-0.003; 0.013] 0.0000 14.7 0.0    0.003 [-0.008;  0.014] 1512.5*** 98.0 
DID Inland 500-year AF 32 -0.025*** [-0.041; -0.009] 0.0000 14.6 0.0  -0.052*** [-0.078; -0.027] 26.24 0.0 
Coast 35  0.028 [-0.032;  0.089] 0.0308 2074.2*** 98.4   0.134*** [ 0.122;  0.146] 2076.9*** 98.4 
Coast 100 year 30  0.045 [-0.019;  0.109] 0.0298 1813.7*** 98.4   0.148*** [ 0.134;  0.161] 1819.4*** 98.8 
DID Coast 100-year BF 7  0.118 [-0.030;  0.265] 0.0391 841.3*** 99.3   0.241*** [ 0.229;  0.253] 969.7*** 99.4 
DID Coast 100-year AF 7  0.016 [-0.072;  0.105] 0.0110 43.02*** 86.1   0.100*** [ 0.067;  0.132] 45.47*** 86.8 
Coast 500-year 5 -0.066*** [-0.092; -0.040] 0.0000 1.35 0.0  -0.069*** [-0.100; -0.037] 1.40 0.0 
Hedonic 138 -0.030*** [-0.040; -0.021] 0.0023 3383.3*** 96.0  -0.039*** [-0.043; -0.034] 4299.4*** 96.8 
DID Hedonic 211 -0.033*** [-0.047; -0.019] 0.0067 2383.9*** 91.2  -0.027*** [-0.035; -0.019] 2931.9*** 92.8 
DID Hedonic BF 101 -0.004 [-0.023;  0.015] 0.0070 1928.7*** 94.8  -0.001 [-0.008;  0.006] 2071.7*** 95.2 
DID Hedonic AF 110 -0.060*** [-0.078; -0.043] 0.0039 339.0*** 67.8  -0.053*** [-0.067; -0.039] 381.8*** 71.5 

Notes: 1 H0: that the summary effect size is insignificantly different from zero. 2 H0: that all studies contained in the sample share a single 
effect size. 
*, ** and *** implies rejection of the null at the 10 percent, 5 percent and 1 percent significance level. 
BF= Before flooding event, AF= After flooding event. 

 
 

                                                           
10 It has been pointed out to us that insurance is mandatory for houses in high risk areas in the US when the house is purchased 
using a mortgage from a federally regulated lender. 
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5. Publication Bias 

So far, our meta-analysis has assumed the effect sizes from published studies constitutes a 

representative sample of the population of all possible studies, notwithstanding the possible 

tendency of researchers to conduct studies in locations with a recent history of flooding. The 

chance of sample selection has hitherto been ignored. Since De Long and Lang (1992), 

publication bias has however been acknowledged as an important issue in empirical work. Card 

and Krueger (1995) list three possible sources of selection bias: 

 

1. Editors and reviewers might be inclined to accept papers with findings consistent with 
economic theory.  

2. Researchers might use as a criterion for model selection the presence of an expected 
result. 

3. A general tendency to view statistically significant results in a more favourable light. 
 

We have avoided adding to this problem by undertaking a comprehensive review and by 

incorporating evidence irrespective of significance and the sign of the effect. However, as noted 

publication bias could originate from other sources, and hence our efforts might eliminate some, 

but not all the potential bias. The purpose of this section is to gauge whether publication bias is 

present in the literature.  

 

Publication bias results from selective sampling. The literature identifies two main kinds of 

publication bias: 

 

Type I.  Directional: Selection supports a particular effect, e.g. a negative or positive 
effect. 

Type II.  Statistical significance: Selection favours statistically significant results, 
irrespective of their sign.  
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Meta-regression is now a popular means of identifying publication bias, in particular by testing 

for funnel plot asymmetry. Card and Krueger (1995) illustrate this technique by examining the 

effect of minimum wage legislation on employment. At its simplest, meta-regression for testing 

and correcting for publication bias takes the form of a regression between the effect sizes and 

their associated standard errors, as in equation (11).   

 

𝑇𝑖 = 𝛽0 + 𝛽1𝑠𝑇𝑇 + 𝜀𝑖 (11) 
 

In the absence of selection, effect sizes ought to vary randomly around 𝛽0, and be independent of 

the standard error. Yet as Egger et al. (1997) notes when publication bias is present it is revealed 

by the sign and statistical significance of 𝛽1, whereas 𝛽0 can be regarded as the true effect size, 

after controlling for publication bias. The meta-regression is however frequently transformed 

because the error term 𝜀𝑖 will be heterosedastic because primary studies use different sample 

sizes. Accordingly, a variant of equation (11) is typically used to obtain superior estimates. 

Dividing by the estimated standard errors results in equation (12). Stanley (2005) shows this 

procedure eliminates both sorts of publication bias noted above.  

 

𝑇𝑖 𝑠𝑇𝑇⁄ = 𝛽1 + 𝛽0(1 𝑠𝑇𝑇⁄ ) + 𝑒𝑖 (12) 
 

Table 4 reports the results for equation (12). Column 1 displays the results using the entire 

sample of effect sizes. We report Huber-White standard errors to account for remaining 

heteroskedasticity. A t-test on the intercept, 𝛽1, points to significant publication bias with a 

tendency to reporting more negative impacts. Egger et al. (1997) suggest the power of this test is 

restricted and prefer to base evidence of asymmetry on the one tailed t-test with 𝑝 < 0.1. Results 

of this second test are provided in square brackets in Table 4. This test also reveals evidence of 
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publication bias. Additionally, the coefficient 𝛽0 seems to suggest that the effect of flood risk on 

house prices is insignificant. However, the coefficients contained in column 1 weight all of the 

effect sizes as if wholly independent studies; something which results in an overrepresentation of 

particular studies contributing more than one observation. To address this issue we again assign 

weights in proportion to the square root of each study’s sample size divided by however many 

estimates it contributes. Column 2 displays the results with weighting for the entire sample, and 

columns 3-7 report coefficients for different samples. 

 

Table 4. Meta-regression: The Funnel Asymmetry Test 

  Sample size weights 
 (1) (2) (3) (4) (5) (6) (7) 
Variables Full Sample Full Sample 100 year 500 year Inland Inland 

100 year Coast 

        
1 𝑆𝑆𝑖⁄  (𝛽0) -0.002434 -0.0404 -0.0507* 0.00815*** -0.0517** -0.0633*** 0.363*** 
 (0.00727) (0.0253) (0.0271) (0.00188) (0.0206) (0.0202) (0.0255) 

Constant (𝛽1) -0.707*** 1.093 1.479 -0.956*** 0.831 0.793 -10.15*** 
 (0.212) (1.008) (1.102) (0.128) (0.892) (0.938) (1.170) 

t 𝛼 = 0.10 [0.000]*** [0.139] [0.112] [0.000]*** [0.176] [0.199] [0.000]*** 
        
Observations 349 349 256 93 314 226 35 
R-squared 0.001 0.097 0.121 0.222 0.356 0.472 0.929 
Rmse 4.109 8.284 9.705 0.835 4.747 4.870 5.002 

Note: The dependent variable corresponds to the standardised effect size, i.e. the corresponding t-value. Standard errors in 
parentheses are Huber-White robust. Numbers in square brackets correspond to p-values for the one-tailed t-test. *, ** and 
*** means rejection of the null at the 10 percent, 5 percent and 1percent level of significance.  

 
 

After accounting for the overrepresentation of studies contributing multiple estimates, the results 

in column 2 reveal that there is now no longer any evidence of publication bias in the literature 

as a whole. Critically however, the coefficient 𝛽0 is at the same time insignificantly different 

from zero; something suggesting that the effect of flood risk on house prices is imperceptible 

when publication bias is removed.  
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Once we consider different subsamples results change. There is no evidence of publication bias 

for studies looking at the 100-year floodplain, inland flooding or inland flooding in the 100-year 

floodplain. By contrast, there is evidence of publication bias for studies examining the 500-year 

floodplain and coastal flooding. After correcting for publication bias properties located in coastal 

floodplains enjoy a price premium of 36.3 percent, although, as discussed, it is almost certain 

that this results from a failure to adequately control for any amenities associated with nearness to 

the coast. Figure 2 displays, by the level and type of risk, the distribution of effect sizes. As 

expected, the distribution from properties located in the 100-year floodplain displays a larger 

discount, when compared to those properties located in the 500-year floodplain. Figure 2.2 

shows that most, if not all, of the high premiums for the 100-year floodplain estimates in figure 

2.1 correspond to results from coastal regions.  

 

 

Figure 2. Effect size: Distribution density plots for different types of risk and different levels of risk. 
 

Figure 2.1. 100 and 500-year  Figure 2.2. Inland and Coastal 

  
Source: Authors’ own elaboration based on the results of the primary studies. 
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6. Meta-Regression Analysis 

Our database comprises 50 variables describing the specific attributes of every study. However, 

it is impossible to incorporate all of them in the meta-regression since the necessary information 

is not always available. As a consequence, a set of 18 explanatory variables was included in the 

regression. These are described in Table 5. The first and for us most interesting variable controls 

for changes in flood risk perception caused by the amount of time elapsed since the last flood. 

The second group of variables controls for whether the study relates to a 100-year or 500-year 

floodplain. Following Daniel et al. (2009a) this variable is coded 0.002 for properties that are 

located in a 500-year floodplain and 0.01 for properties located in a 100-year floodplain. Making 

the assumption that any change in the objective risk of flooding ceteris paribus results in an equal 

change in the subjective risk of flooding we thus identify the relationship between the house 

price discount and the subjective risk of flooding from the inter-study variation in the objective 

risk of flooding. More specifically the coefficient on this variable can be interpreted as the 

percentage discount for houses located in the 100-year floodplain.  

 

The third set of moderator variables accounts for context. It includes the log of the mean square 

footage of houses included in each primary study (lav_feet) in order to control for dissimilarities 

in the kind of houses and the log of the mean price of a house in 2010 USD (lavprice_2010) 

serving as a proxy for the incomes of households and for any income differences across studies. 

As Carbone et al. (2006) and Hallstrom and Smith (2005) point out, following a flood the price 

discount is expected to be more substantial because some homeowners are likely to have suffered 

flood damages; hence we include a dummy variable identifying studies which explicitly state 

that their estimated coefficient corresponds to properties that have been flooded (flooded). 

Similarly, following Pryce et al. (2011), we anticipate a somewhat higher discount for houses in 

the floodplain in the aftermath of a second successive flood (scnd_flood). Also included is a 

dummy variable (dd_afterlaw) that is used to identify the effect sizes drawn from those studies 

looking at the price differential for floodplain location following any changes in regulations and 

last of all a dummy variable (coast) is used to identify the effect sizes of studies undertaken in 

coastal locations.    
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A fourth set of moderator variables comprises two dummy variables representing the presence of 

a range of controls in primary studies. The first of these (amenity) assumes the value unity for 

studies that include variables controlling for proximity to water. As already mentioned, if 

amenity values that correlate with flood risk are omitted we expect resulting estimates of the 

value of risk to be biased. A second dummy (real_p) identifies those studies that explicitly use 

constant house prices in an attempt to control for time trends.11 The fifth set of moderator 

variables refers to econometric differences exhibited by the primary studies. Two dummies 

(linear and Box-Cox) account for any differences in the functional form of the HPF; the omitted 

category corresponds to a semi-log functional form. A further dummy variable (spatial) 

highlights the use of spatial econometrics and the variable dd_hpm assumes the value unity for 

any estimates from DID models, either before or after a flood event.  

 

The final set of moderator variables controls for miscellaneous features of primary studies. In 

order to account for the quality of each study, we include a dummy (published) taking the value 

unity to distinguish studies published in refereed journals from working papers, dissertations or 

conference proceedings. The median sample year of each primary study (med_sampleyear) is 

included to identify time trends in the effect size; we also include the time span (time_span) of 

every study. Table 5 includes summary statistics for all these variables.  

 

Recall that in our meta-regression the weight assigned to every observation is proportionate to 

the square root of the sample size divided by the number of estimates contributed by each 

study.12 Lewis and Linzer (2005) show that, when used in conjunction with heteroskedastic 

consistent standard errors, this technique yields very satisfactory results. We use the Huber-

White variance estimator (White, 1980) accounting for both heteroskedasticity and any 

correlation between effect sizes drawn from the same study (Williams, 2000). 
                                                           
11 In a small number of instances it was not possible to establish whether the study did indeed use constant house prices.  
12 The meta-regression presented by Daniel et al. (2009a) uses three different weighting schemes. First they use a random-effects 
model (mixed-effects) where the weights are as stated above. Secondly, they present an unweighted model using Huber-White 
standard errors robust to heteroskedasticity and cluster correlation among effect sizes drawn from the same primary study. Third, 
they present results using inverse-variance weights in a fixed-effect model with Huber-White standard errors. All of these models 
treat observations as if they were a separate study resulting in the abovementioned problem of assigning improper weight to 
studies contributing multiple estimates of the effect size. 
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Table 5. Description of variables included in the meta-regression model 

Variable Description 
Summary statistics 

No. Obs. Mean St. dev. Min. Max. 
Dependent variable      
Effect size (T) Relative price differential for floodplain location. 349 -0.061 0.149 -0.755 0.610 
Flood risk perception      
months Number of months elapsed since the previous flood. 349 144.4 175.7 3.0 840.0 
Flood risk       

Flood Risk Variable = 0.01 if the effect refers to the 100-year 
floodplain and 0.002 for a 500-year floodplain. 349 0.0079 0.0035 0.002 0.01 

Context of the study      

lav_feet Natural log of the mean square feet of the properties 
per study. 349 7.425 0.249 6.558 8.051 

lavprice_2010 Natural log of the mean price of the houses per 
study in 2010 US dollars.  349 11.861 0.557 9.191 12.956 

flooded Dummy = 1, if the effect refers to flooded 
properties. 349 0.025 0.155 0 1 

scnd_flood Dummy = 1, if the effect refers to a second flood. 349 0.033 0.179 0 1 

dd_after Dummy =1, if the effect corresponds to a post-flood 
DID estimate.  349 0.329 0.471 0 1 

dd_afterlaw 
Dummy = 1, if the effect is from a DID model 
following a change in a regulation for floodplain 
designated areas.  

349 0.074 0.262 0 1 

coast Dummy = 1, if the study area has a coastline. 349 0.102 0.303 0 1 
Control variables of study      

amenity 
Dummy = 1, if the study includes variables 
controlling for the amenity value of proximity to 
waterbodies. 

349 0.876 0.330 0 1 

real_p Dummy = 1, if the study converts prices to a 
constant measure prior to estimation. 349 0.667 0.472 0 1 

Characteristics of econometric model      

linear Dummy = 1, if the effect corresponds to a linear 
specification of a hedonic price function. 349 0.071 0.258 0 1 

Box-Cox Dummy = 1, if the study utilises a semi-logarithmic 
HPF. 349 0.019 0.137 0 1 

spatial Dummy = 1, if the effect corresponds to a spatial 
econometric model. 349 0.343 0.475 0 1 

dd_hpm Dummy = 1, if the effect corresponds to a DID 
specification. 349 0.593 0.492 0 1 

Characteristics of the study      

published Dummy = 1, if the primary study is published in a 
refereed journal. 349 0.580 0.494 0 1 

med_sampleyear  The median sample year of the study. 349 1995.1 6.464 1978 2006 
time_span The time span of the data covered in the study. 349 7.173 6.416 1 40 

Source: Own elaboration based on estimates from primary studies. 
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Having addressed the issue of weighting in our meta-regression, we now test the hypothesis that 

the flood history of the locations matters and whether its inclusion means that there is no longer 

any statistically significant effect from differences in the objective risk. Following Atreya and 

Ferreira (2015), Atreya et al. (2013) and Bin and Landry (2013), we investigate four different 

transformations for the variable months: a linear specification (𝑓(𝑚𝑚𝑚𝑚ℎ𝑠) = 𝑚𝑚𝑚𝑚ℎ𝑠), a 

logarithmic transformation (𝑓(𝑚𝑚𝑚𝑚ℎ𝑠) = ln (𝑚𝑚𝑚ℎ𝑠)), a ratio specification (𝑓(𝑚𝑚𝑚𝑚ℎ𝑠) =

(𝑚𝑚𝑚𝑚ℎ𝑠 − 1) 𝑚𝑚𝑚𝑚ℎ𝑠⁄ ) and a square root specification (𝑓(𝑚𝑚𝑚𝑚ℎ𝑠) = 𝑆𝑆𝑆𝑆(𝑚𝑚𝑚𝑚ℎ𝑠)). These 

three transformations impose different degrees of curvature in the recovery of house prices 

following a flood.  

 

The results of our meta-regression are shown in Table 6 where models 1-4 are the results 

obtained from assigning weights as above with different transformations of the months variable. 

In each of the models the coefficient on the variable months and transformations thereof is highly 

significant. These results indicate that as expected the price discount for floodplain location is 

much greater immediately following a flood, after which it starts to decay. Based on the 

goodness of fit criterion our preferred specification is model 3 which uses the ratio 

transformation of the variable months. This is similar to the preferred transformation of the time 

variable used by Bin and Landry (2013). Our results seem to suggest that results from earlier 

studies might be influenced as much by changes in subjective risk caused by an actual flood as 

by objective measures of flood risk.  

 

Turning to the other main variable of interest differences in the objectively assessed risk are 

significant and highly consistent across the different specifications. In the preferred model 3 it 

appears that there is almost a −4.6 percent discount for being located in the 100-year floodplain 

compared to locations outside it. A number of other variables appear to have a consistent impact 
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on the effect size including whether the primary study used a linear functional form as well as 

regional dummies. The coefficients on the regional dummies are always positive and highly 

significant. These coefficients are measured with respect to Georgia, US, which is the omitted 

region in our regressions and for which primary studies report the highest discounts in our meta-

sample. Specifically, Atreya and Ferreira (2012a, 2012b) and Atreya et al. (2013) analyse the 

impact of tropical storm Alberto in 1994 using DID hedonic models. This storm is considered to 

be among the worst flood disasters in the history of the US (The Albany Herald, 2014).  

 

As a further test of robustness we include only those studies which are for inland flooding given 

our concerns about studies dealing with coastal flooding. In this approach, we follow DeCicca 

and Kenkel (2015) who suggest excluding from the meta-sample studies where the internal 

validity of the estimates could be compromised. In this case all 35 observations belonging to 

studies undertaken in coastal regions are dropped. The results are displayed in Table 7. We 

continue to find strong evidence that the effect size of floodplain location is greatest immediately 

after a flood but there remains a statistically significant effect of differences in floodplain 

designation pointing to a discount of −4.6 percent for location in a 100-year floodplain. The only 

difference is that now the effect size depends on average house size too. Even if they are biased 

and suggest a premium for floodplain location including studies dealing with coastal flooding 

does not make any difference.   
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Table 6. Meta-regression results 
 

Variables 

Sample size weights  
(1) (2) (3) (4)  

𝑚𝑚𝑚ℎ𝑠 ln (𝑚𝑚𝑚ℎ𝑠) (𝑚𝑚𝑚ℎ𝑠 − 1)
𝑚𝑚𝑚ℎ𝑠  𝑆𝑆𝑆𝑆(𝑚𝑚𝑚ℎ𝑠)  

Flood risk perception     
Mnths 0.000285*** 0.0479*** 1.117*** 0.00937***  
 (5.54e-05) (0.00850) (0.210) (0.00177)  
Flood risk level      
Risk level -4.748*** -4.683*** -4.573*** -4.748***  
 (0.665) (0.628) (0.629) (0.639)  
Context of the study     
lav_feet 0.0324 0.0571 0.0460 0.0456  
 (0.0386) (0.0366) (0.0356) (0.0378)  
lavprice_2010 0.00503 -0.0180 -0.00506 -0.00988  
 (0.0555) (0.0536) (0.0533) (0.0547)  
Flooded -0.0303 -0.0103 -0.0255 -0.0153  
 (0.0623) (0.0644) (0.0633) (0.0643)  
scnd_flood 0.0218 -0.0260 -0.0623* 0.00680  
 (0.0348) (0.0361) (0.0355) (0.0360)  
dd_after -0.0627** -0.0338 -0.0137 -0.0523*  
 (0.0293) (0.0280) (0.0291) (0.0288)  
dd_afterlaw 0.0584** 0.0430* 0.0192 0.0543*  
 (0.0293) (0.0256) (0.0239) (0.0286)  
coast 0.0416 0.0336 0.0306 0.0388  
 (0.0331) (0.0310) (0.0310) (0.0320)  
Control variables of study     
amenity -0.0112 -0.0108 -0.00816 -0.00913  
 (0.0235) (0.0216) (0.0201) (0.0227)  
real_p 0.0551* 0.0937*** 0.0869*** 0.0732**  
 (0.0306) (0.0311) (0.0307) (0.0306)  
Characteristics of econometric model    
linear -0.165*** -0.172*** -0.179*** -0.167***  
 (0.0508) (0.0470) (0.0465) (0.0493)  
Box-Cox -0.0351 -0.0387 -0.0311 -0.0397  
 (0.0289) (0.0274) (0.0268) (0.0275)  
spatial -0.0232* -0.0186 -0.0157 -0.0215*  
 (0.0125) (0.0119) (0.0116) (0.0123)  
dd_hpm 0.0173** 0.0108 0.0105 0.0141*  
 (0.00812) (0.00693) (0.00666) (0.00770)  

  (Continued…) 
 
 
 
 
 

Note: 1 The omitted region is Georgia, US. 
The dependent variable is 𝑇 the effect size. Standard errors are in parentheses; for results employing sample size weights they correspond to Huber-White robust 
standard errors. *, ** and *** means rejection of the null at the 10 percent, 5 percent and 1 percent significance level. 

Characteristics of the study    
published -0.00860 -0.0182 -0.0160 -0.0130 
 (0.0189) (0.0170) (0.0156) (0.0184) 
med_sampleyear 0.00342* 0.00221 -0.000760 0.00351* 
 (0.00206) (0.00204) (0.00210) (0.00208) 
time_span 0.00512** 0.000735 0.00130 0.00269 
 (0.00212) (0.00203) (0.00184) (0.00211) 
Regional fixed effects1    
louisiana 0.162*** 0.266*** 0.168*** 0.234*** 
 (0.0605) (0.0669) (0.0568) (0.0661) 
n_carolina 0.160*** 0.171*** 0.106*** 0.178*** 
 (0.0397) (0.0388) (0.0337) (0.0407) 
texas 0.354*** 0.343*** 0.266*** 0.367*** 
 (0.0531) (0.0501) (0.0455) (0.0535) 
wisconsin 0.216*** 0.204*** 0.131** 0.226*** 
 (0.0607) (0.0606) (0.0532) (0.0624) 
alabama 0.453*** 0.455*** 0.371*** 0.473*** 
 (0.0602) (0.0563) (0.0489) (0.0610) 
florida 0.352*** 0.375*** 0.326*** 0.374*** 
 (0.0574) (0.0551) (0.0512) (0.0577) 
california 0.252*** 0.304*** 0.223*** 0.292*** 
 (0.0547) (0.0570) (0.0503) (0.0572) 
missouri 0.118*** 0.104*** 0.0380 0.128*** 
 (0.0434) (0.0382) (0.0348) (0.0429) 
colorado -0.00351 0.0279 0.0367 0.00974 
 (0.0594) (0.0570) (0.0572) (0.0580) 
minesota 0.355*** 0.373*** 0.357*** 0.366*** 
 (0.0637) (0.0629) (0.0641) (0.0627) 
nl 0.196*** 0.251*** 0.211*** 0.229*** 
 (0.0623) (0.0620) (0.0571) (0.0628) 
uk 0.0937** 0.171*** 0.110** 0.141*** 
 (0.0460) (0.0542) (0.0493) (0.0509) 
aus 0.00794 0.173 0.105 0.106 
 (0.121) (0.122) (0.115) (0.123) 
nz 0.0834 0.0807 0.0402 0.0927 
 (0.0746) (0.0692) (0.0697) (0.0720) 
Constant -7.362* -5.023 0.00363 -7.515* 
 (3.812) (3.775) (3.857) (3.866) 
     
Observations 349 349 349 349 

𝑅2 0.674 0.692 0.697 0.682 
Adj. 𝑅2 0.640 0.660 0.665 0.649 
Rmse 0.0544 0.0529 0.0525 0.0538 
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Table 7. Meta-regression results: inland flood risk 
 

Variables 

Sample size weights  
(1) (2) (3) (4)  

𝑚𝑚𝑚ℎ𝑠 ln (𝑚𝑚𝑚ℎ𝑠) (𝑚𝑚𝑚ℎ𝑠 − 1)
𝑚𝑚𝑚ℎ𝑠  𝑆𝑆𝑆𝑆(𝑚𝑚𝑚ℎ𝑠)  

Flood risk perception     
mnths 0.000315*** 0.0451*** 1.066*** 0.00974***  
 (5.34e-05) (0.00843) (0.213) (0.00170)  
Flood risk level      
Risk level -4.884*** -4.747*** -4.604*** -4.847***  
 (0.584) (0.584) (0.590) (0.575)  
Context of the study     
lav_feet 0.132*** 0.150*** 0.143*** 0.146***  
 (0.0312) (0.0298) (0.0284) (0.0309)  
lavprice_2010 -0.0196 -0.0367 -0.0296 -0.0347  
 (0.0626) (0.0616) (0.0602) (0.0626)  
flooded -0.0133 -0.00361 -0.0172 -0.00112  
 (0.0584) (0.0605) (0.0586) (0.0606)  
scnd_flood 0.00866 -0.0379 -0.0733** -0.00774  
 (0.0287) (0.0295) (0.0300) (0.0296)  
dd_after -0.0353 -0.0135 0.00814 -0.0265  
 (0.0282) (0.0286) (0.0293) (0.0283)  
dd_afterlaw 0.00741 0.000145 -0.0239 0.00537  
 (0.0271) (0.0249) (0.0222) (0.0269)  
coast - - - -  
      
Control variables of study     
amenity -0.00743 -0.00698 -0.00771 -0.00522  
 (0.0180) (0.0175) (0.0171) (0.0174)  
real_p -0.0880*** -0.0424 -0.0460 -0.0675***  
 (0.0227) (0.0272) (0.0293) (0.0244)  
Characteristics of econometric model    
linear -0.175*** -0.164*** -0.180*** -0.172***  
 (0.0617) (0.0576) (0.0656) (0.0582)  
Box-Cox 0.00892 0.00262 0.00962 0.00339  
 (0.0254) (0.0283) (0.0277) (0.0266)  
spatial -0.00801 -0.00536 -0.00272 -0.00696  
 (0.00971) (0.00986) (0.00991) (0.00974)  
dd_hpm 0.00683 0.00245 0.00188 0.00424  
 (0.00611) (0.00595) (0.00552) (0.00609)  

(Continued…) 
 
 
 
 
 

Note: 1 The omitted region is Georgia, US. 
The dependent variable is 𝑇 the effect size. Standard errors in parentheses; for results using sample size weights they correspond to Huber-White robust standard 
errors. *, ** and *** means rejection of the null hypothesis at the 10 percent, 5 percent and 1 percent significance level. 

Characteristics of the study    
published -0.0145 -0.0240 -0.0223 -0.0195 
 (0.0174) (0.0158) (0.0148) (0.0169) 
med_sampleyear 0.00135 0.000316 -0.00265 0.00145 
 (0.00198) (0.00204) (0.00210) (0.00203) 
time_span 0.00277 -0.000739 -0.000401 0.000391 
 (0.00221) (0.00206) (0.00187) (0.00214) 
Regional fixed effects1    
louisiana 0.0662 0.153*** 0.0687 0.136** 
 (0.0556) (0.0580) (0.0509) (0.0584) 
n_carolina 0.116*** 0.117*** 0.0580* 0.130*** 
 (0.0377) (0.0379) (0.0347) (0.0392) 
texas 0.206*** 0.186*** 0.115*** 0.213*** 
 (0.0414) (0.0354) (0.0414) (0.0387) 
wisconsin 0.281*** 0.253*** 0.189*** 0.287*** 
 (0.0492) (0.0445) (0.0419) (0.0484) 
alabama 0.341*** 0.324*** 0.255*** 0.354*** 
 (0.0608) (0.0522) (0.0572) (0.0576) 
florida 0.246*** 0.251*** 0.215*** 0.263*** 
 (0.0606) (0.0510) (0.0560) (0.0564) 
california 0.167*** 0.209*** 0.141*** 0.205*** 
 (0.0533) (0.0558) (0.0504) (0.0562) 
missouri 0.150*** 0.124*** 0.0640* 0.157*** 
 (0.0469) (0.0413) (0.0378) (0.0460) 
colorado 0.0692 0.0893 0.106* 0.0823 
 (0.0660) (0.0627) (0.0604) (0.0646) 
minesota 0.246*** 0.247*** 0.246*** 0.251*** 
 (0.0629) (0.0585) (0.0671) (0.0587) 
nl 0.0808 0.138** 0.109** 0.117* 
 (0.0588) (0.0580) (0.0526) (0.0601) 
uk 0.0281 0.0945** 0.0426 0.0740* 
 (0.0379) (0.0457) (0.0430) (0.0425) 
aus - - - - 
     
nz - - - - 
     
Constant -3.552 -1.559 3.531 -3.727 
 (3.584) (3.719) (3.772) (3.689) 
     
Observations 314 314 314 314 

𝑅2 0.602 0.607 0.614 0.607 
Adj. 𝑅2 0.560 0.565 0.573 0.565 
Rmse 0.0465 0.0462 0.0458 0.0462 
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7. Sensitivity analysis 

Our findings point to a statistically significant difference in effect size depending on whether 

properties are located in the 100-year or 500-year floodplain, as well as to the importance of 

the amount of time elapsed since the last flood event. These findings moreover, are 

unaffected by the inclusion of studies undertaken in coastal locations, although such studies 

are subject to publication bias and point to a price premium for floodplain location. In this 

section we try to understand why our results are almost an order of magnitude different to the 

ones obtained by Daniel et al. (2009a). We also offer some advice for cost-benefit analysis of 

flood-relief projects. We begin however with a further test of robustness.  

 

Earlier, we argued that all estimates of the floodplain discount are ‘post-flood’ estimates and 

that the only substantive difference is how much time has since elapsed. As a further test of 

robustness we divide the sample effect sizes into four groups: those derived from standard 

hedonic studies undertaken during a period in which there was no flooding, those from DID 

hedonic models (both before and after), the ‘pre-flood’ ones from DID studies and the ‘post-

flood’ ones from DID studies. We then investigate whether the observed relationships 

between the floodplain discount, location in the 100-year rather than the 500-year floodplain 

and the amount of time elapsed change. These results appear in table A2 of the appendix for 

our preferred specification using the ratio transformation of the months variable 

(𝑓(𝑚𝑚𝑚𝑚ℎ𝑠) = (𝑚𝑚𝑚𝑚ℎ𝑠 − 1) 𝑚𝑚𝑚𝑚ℎ𝑠⁄ ). 

 

Analysing separately these observations yields a very similar set of coefficient estimates for 

the effect of location in the 100-year rather than the 500-year floodplain, as well as the effect 

of time elapsed for standard hedonic studies and DID estimates. But for the regression 

analysis using the ‘pre-flood’ subsample as well as for the ‘post-flood’ DID subsample none 
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of the coefficients on time elapsed are statistically significant. This is not however surprising. 

For ‘pre-flood’ DID estimates the average time elapsed with respect to the preceding flood is 

21 years (254 months) which we believe is too long to capture any ongoing recovery of 

prices. For ‘post-flood’ DID studies by contrast, the sample is typically not long enough to 

draw inferences about the subsequent recovery in property prices.  

 

We now compare the results of our meta-regression with those from Daniel et al. (2009a). 

Before doing so however, recall that being within a 100-year floodplain does not mean the 

probability of flooding therein is 1 percent per year. The reason is that a floodplain is defined 

by the probability of flooding only at its boundary. It would be wrong to interpret our results 

as suggesting that the effect of a 1 percent increase in the probability of flooding is equal to a 

−4.6 percent reduction in the price of a property. The correct interpretation of our results is 

that location inside a 100-year floodplain is associated with a discount of −4.6 percent.  

 

In Daniel et al. (2009a) the authors regress effect size against an objective measure of risk 

which, as here, takes the value of 0.01 for location in a 100-year floodplain and 0.002 for 

location in a 500-year floodplain. The coefficient on this variable is, in their preferred 

specification, −0.6. They then use this finding to associate a −0.6 percent reduction in house 

prices with a 0.01 increase in the probability of flooding. But as we have just noted, this 

finding is more correctly interpreted as indicating that location inside a 100-year floodplain is 

associated with a −0.6 percent discount. Properly interpreted the −0.6 figure nevertheless 

sounds too small and is certainly very different from our estimate of −4.6.  

 

To determine why their estimates are almost an order of magnitude different to ours we 

compiled the same set of observations from the same research papers used in Daniel et al. 
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(2009a). We also therefore now include those observations from the US Army Corps of 

Engineers (1998) referring to 50, 20 and 10-year floodplain locations which are based on 

appraisals. The results appear in table A3 of the appendix. Despite the fact that our control 

variables are slightly different to those used by Daniel et al. (2009a) we nonetheless obtain a 

similar, statistically insignificant estimate of −0.4 percent for location in a 100-year 

floodplain, even when we use our preferred weighting method and include time elapsed since 

the last flood. But critically, when 37 observations relating to coastal flooding are removed 

the coefficient associated with the price discount for location in a 100-year floodplain 

increases to a statistically significant estimate of −2.7 percent.  

 

Combining coastal and inland studies in the same analysis is clearly problematical even if a 

dummy variable is used to identify studies in coastal locations. We observed earlier that 

studies in areas prone to coastal flooding are subject to significant publication bias and 

produce estimates pointing to a substantial price premium – a result others have attributed to 

failure to control for amenities associated with coastal location. Although Daniel et al. 

(2009a) note the problem of omitted variable bias and test for publication bias critically they 

do not distinguish between studies undertaken in coastal and inland floodplains. The question 

remains however, as to why including coastal studies in our meta-regression has almost no 

effect. The reason is that whereas in Daniel et al. (2009a) coastal studies contribute 41 

percent of the observations in our study they contribute only 10 percent of the observations – 

most if not all of the recent research has dealt with inland locations.  

 

It now remains only to recommend which estimate of the floodplain discount should be used 

in cost-benefit analyses of flood relief projects. In fact there are several candidates. Our meta-

analysis of estimates of the floodplain discount produced an estimate of −5.6 percent. This 
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estimate, which is based on 226 observations, is for location in the 100-year floodplain and 

refers exclusively to inland flooding. Another candidate is the −6.9 percent discount observed 

immediately after a flood. Our preferred estimate however is taken from our meta-regression, 

once more limited to inland flooding and implicitly referring to location inside the 100-year 

floodplain, points to a −4.6 percent discount based on 314 observations.  

 

The chief difference between these estimates is that the third excludes short term impacts 

from recent floods whereas the former two ignore this source of heterogeneity. The first 

estimate has the advantage that it explicitly accounts for study heterogeneity whereas the 

second estimate is immediately after a flood when the consequences of flooding are most 

salient.  

 

We suggest that the more conservative figure of −4.6 percent be used as a rule of thumb for 

benefits estimation whenever a flood relief project in effect changes the boundaries of the 

floodplain. For example, if a project in effect removes a property from the 100-year 

floodplain placing it instead in the 500-year floodplain then the benefit of that project should 

be 4.6 × (0.01 − 0.002) = 0.037 of the average price of property. Benefits will be greater for 

properties exposed to a higher level of risk. For instance, properties within the 25-year 

floodplain that are to be protected by a flood defence designed to prevent all but a 100-year 

event would enjoy benefits of 4.6 × (0.04 – 0.01) = 0.138 of the average price of property. 

Obviously this figure does not consider potential positive or negative impacts associated with 

the defences e.g. visual intrusion or loss of access.  
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8. Conclusions 

Economic theory suggests that housing markets provide a suitable means of measuring the 

benefits of flood risk reduction. Empirical evidence however indicates that properties within 

a 500-year or 100-year floodplain attract anything between a −75.5 percent discount to a 

+61.0 percent premium. This paper contains the results of a meta-analysis looking at the 

reported price discount for location inside the floodplain. The goal of the analysis is to 

provide answers to three questions: what is the most defensible point estimate of the price 

discount for floodplain location, is there any evidence of publication bias and what factors 

explain the observed variation in effect size?  

 

Our results suggest there are important differences between alternative estimates of the 

effect-size. Dealing first with inland flooding, discounts for houses within a 100-year 

floodplain are −2.9 percent rising to −6.9 percent immediately after a flood. And although 

there seems to be a premium of +0.3 percent for location in 500-year floodplains after a flood 

properties are discounted by −5.2 percent. Such findings appear to confirm the view that 

recent floods cause homeowners to alter their perceptions of flood risk.  

 

Evidence suggesting that properties exposed to coastal flooding enjoy a premium of +13.4 

percent seems to be a consequence of the correlation between floodplain location and the 

unrecorded amenities associated with proximity to the coast. Not only do studies into coastal 

flooding produce estimates of the percentage price discount with the ‘wrong’ sign there is 

also evidence of publication bias. Remarkably the results of the publication bias test suggest 

the real effect of flood risk in coastal regions after filtering out publication bias is even 

greater (+36.3%) and that there is a bias towards publishing results with smaller estimates. 

This leads us to agree with other researchers that studies of coastal floodplains are generally 

unreliable. 
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That researchers adopting a DID methodology are able to present ‘pre-flood’ and ‘post-flood’ 

estimates of the floodplain discount one tends to forget that all estimates have a prior flood 

history. We find that including a variable measuring time elapsed has considerable 

explanatory power. There is a significant recovery in house prices following a flood. But 

even after controlling for short term impacts objectively determined differences in floodplain 

designation have an impact equivalent to −4.6 percent for location in a 100-year floodplain. 

Although there are other candidates this is our preferred estimate for use in cost-benefit 

analysis of projects that effectively change properties’ floodplain designation. Such findings 

might have implications for attempts to conduct studies into the impact of other natural 

hazards. Here too it seems important to control for prior history of study locations.  

 

Our ability to generalise on the basis of these results is hindered by the limited number of 

studies from outside the US. Out of 37 studies contained in the meta-sample only 5 are from 

countries other than the US. Hence it is possible that our conclusions are applicable mainly to 

the US, and the observed floodplain discount is determined by US flood policies. Even inside 

the US evidence is limited to only 12 States. More research is therefore required for the 

purposes of understanding better the impact of flood risk on property in other countries.  

 

Apart from the need to conduct studies outside the US other priorities include the following. 

First it is clear that location within a floodplain is a poor measure of the probability of any 

individual property flooding. Second, it is necessary to include superior controls for the 

amenities associated with nearness to the coast e.g. a view of the sea. Finally, it would be 

interesting to examine the effect on property prices of major engineering projects that in 

effect change properties’ floodplain designation. A repeat sales study of property prices 

before the announcement of such works and after their completion would help isolate the 

benefits of reduced flood risk from other water-related amenity values. 
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APPENDIX (Tables A1 – A3) 

Table A1. Main characteristics of the studies included in the meta-sample 
 

Study 
ID1 Author Year Estimation period Year last 

flooded2 
Flood risk 
(floodplain) 

Average 
sample 

Hedonic 
specification 

Functional form of 
dependent variable 

Econometric 
model Notes 

1 MacDonald, Murdoch and White  1987 Jan 1985 – Mar 1985 1983 100 139 Standard Box-Cox OLS  
2 Skantz and Strickland  1987 Jul 1977 – Jul 1981 1975 100 176 Standard/DND Semi-log OLS  
3 Donnelly  1989 Jan 1984 – Dec 1985 1981 100 334 Standard Linear OLS  
4 Shilling, Sirmans and Benjamin  1989 Dec 1982 – Feb 1984 1973 100 114 Standard Semi-log OLS  
5 Bialszewski and Newsome  1990 1987 – 1989 1983 100 93 Standard Linear OLS  
6 MacDonald et al.  1990 Jan 1988 – Jul 1988 1983 100 183 Standard Box-Cox OLS  
7 Speyrer and Ragas  1991 1971 – 1986 1969 100 999 Standard Linear/Semi-log OLS  

8 US Army Corps of Engineers  1998 Apr 1988 – Mar 1993 1981 100 344 Standard Linear OLS 13 flood events during 1974 and 1986, 
the most destructive in 1981. 

9 Bartosova et al.  1999 Jan 1995 – Jul 1998 1986 100 and 500 1,431 Standard Semi-log OLS  
10 Harrison, Smersh and Schwartz  2001 1980 – 1997 1964 100 22,411 Standard/DND Linear OLS  
11 Shultz and Fridgen  2001 Jan 1995 – Aug 1998 1969 100 and 500 3,783 Standard Linear OLS  

12 Troy 2001 Dec 1996 – Jan 2000 1996 100 15,716 Standard/DND Semi-log OLS/WLS 
Before and after the implementation of 
the 1998 California Natural Hazard 
Disclosure Law 

13 Dei-Tutu and Bin  2002 Jan 1998 – Jun 2002 1996 100 5,122 Standard Box-Cox OLS  
14 Bin 2004 Jul 2000 – Jun 2002 1999 100 1,397 Standard Semi-log OLS  

15 Bin and Polasky  2004 Jul 1992 – Jun 2002 1991/1999 100 8,375 Standard/DND Semi-log OLS Before and after Hurricane Floyd in 
1999.  

16 Troy and Romm  2004 Dec 1996 – Jan 2000 1996 100 21,693 DND Semi-log WLS 
Before and after the implementation of 
the 1998 California Natural Hazard 
Disclosure Law. 

17 Hallstrom and Smith  2005 1982 – 2000 1960/1992 100 5,212 DND Semi-log OLS  
18 Bin and Kruse  2006 Sept 2000 – Sept 2004 1995 100 and 500 2,895 Standard Semi-log OLS  
19 Lamond and Proverbs 2006 2000 – 2005 2000 100 159 Standard Semi-log OLS  

20 Daniel et al.  2007 1990 – 2004 1926/1993/1995 100 9,505 Standard/DND Semi-log OLS/Spatial Before and after floods along the 
Meuse River in 1993 and 1995. 

21 Morgan 2007 Jan 2000 – Feb 2006 1998/2004 100 20,882 Standard/DND Semi-log OLS 
Before and after Hurricane Ivan in 
2004. Ivan was the 4th Hurricane to hit 
Florida in 2004. 

(Continued) 
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Table A1. Continue 
 

Study 
ID1 Author Year Estimation period Year last 

flooded2 
Flood risk 
(floodplain) 

Average 
sample 

Hedonic 
specification 

Functional form of 
dependent variable 

Econometric 
model Notes 

22 Bin et al.  2008a 1995 – 2002 1991 100 990 Standard Semi-log OLS/Spatial  
23 Bin et al.  2008b Sept 2000 – Sept 2004 1999 100 and 500 3,106 Standard Semi-log Spatial  

24 Pope  2008 Jan 1995 – Sept 1996 1989 100 and 500 9,349 Standard/DND Semi-log OLS Before and after Residential Property 
Disclosure Act in 1995. 

25 Daniel et al.  2009b 1990 – 2004 1926/1993/1995 100 9,505 Standard/DND Semi-log OLS Before and after floods along the 
Meuse River in 1993 and 1995. 

26 Kousky 2010 1979 – 2006 1973/1993 100 and 500 291,831 Standard/DND Semi-log OLS Before and after flood in 1993 along 
the Mississippi-Missouri River.  

27 Samarasinghe and Sharp 2010 2006 2001 100 2,241 DND Semi-log OLS/Spatial Before and after publication of maps 
outlining flood-hazard boundaries. 

28 Posey and Rogers 2010 2000 1997 100 69,022 Standard Semi-log OLS/Spatial  

29 Atreya and Ferreira 2011 1985 – 2010 1959/1994 100 and 500 15,650 Standard/DND Semi-log OLS Before and after Tropical Storm 
Alberto in 1994. 

30 Rambaldi et al. 2012 1970 – 2010 1931 100 3,944 Standard Semi-log Spatial  

31 Atreya and Ferreira 2012c 1985 – 2010 1959/1994 100 3,005 DND Semi-log OLS/Spatial Before and after Tropical Storm 
Alberto in 1994. 

32 Atreya and Ferreira 2012a 1985 – 2010 1959/1994 100 and 500 9,958 DND Semi-log OLS/Spatial Before and after Tropical Storm 
Alberto in 1994. 

33 Atreya, Ferreira and Kriesel 2012 1985 – 2010 1959/1994 100 and 500 10,348 Standard/DND Semi-log OLS/Spatial Before and after Tropical Storm 
Alberto in 1994. 

34 Atreya, Ferreira and Kriesel 2013 1985 – 2004 1959/1994 100 and 500 8,042 DND Semi-log Spatial Before and after Tropical Storm 
Alberto in 1994. 

35 Bin and Landry 2013 1992 – 2008 1992/1996/1999 100 and 500 4,080 Standard/DND Semi-log Spatial Before and after Hurricane Fran 1996 
and Floyd 1999. 

36 Meldrum 2013 1995 – 2010 1974 100 25,512 Standard Semi-log OLS/Spatial  
37 Turnbull, Zahirovic and Mothorpe 2013 1984 – 2005 1983 100 and 500 22,351 Standard Semi-log OLS/Spatial  
 
Notes: 1 Corresponds to the same ID as in table 2. 
           2 For studies using a DND approach before and after a flood the dates correspond to the year of the previous flood for the pre-flood and post-flood sample. 
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Table A2. Meta-regression results: Standard hedonic and DID estimates 

 

Variables 

Sample size weights  
(1) (2) (3) (4)  

Standard 
Hedonic 

DID 
estimates DID before DID after  

Flood risk perception     
Mnths 0.830** 0.787*** 1.079 -1.622  
 (0.342) (0.248) (0.683) (1.355)  
Flood risk level      
Risk level -2.770*** -3.934*** -2.519** -5.292***  
 (0.979) (0.711) (1.217) (0.656)  
Context of the study     
lav_feet 0.164*** 0.0648 -0.388 0.185  
 (0.0343) (0.193) (0.477) (0.153)  
lavprice_2010 -0.0367 -0.108 0.305 -0.0300  
 (0.0675) (0.257) (0.540) (0.137)  
Flooded 0.0217 -0.00592 - -0.0114  
 (0.0306) (0.0776)  (0.0647)  
scnd_flood - -0.0835** -0.0667 0.0130  
  (0.0383) (0.0560) (0.0155)  
dd_after - -0.0622* - -  
  (0.0341)    
dd_afterlaw - 0.0473* - 0.0514*  
  (0.0256)  (0.0281)  
coast 0.133*** - - -  
 (0.0408)     
Control variables of study     
amenity 0.00367 -0.250 0.177 0.782  
 (0.0139) (0.243) (0.536) (0.705)  
real_p -0.0718 -0.0427 0.232 0.148  
 (0.0448) (0.105) (0.232) (0.160)  
Characteristics of econometric model    
linear -0.224*** -0.408 -0.000767 0.734  
 (0.0463) (0.263) (0.529) (0.736)  
Box-Cox 0.0291 - - -  
 (0.0393)     
spatial -0.0113 0.0108 -0.0176 0.0169  
 (0.00855) (0.0263) (0.0350) (0.0271)  
dd_hpm - - - -  
      

(Continued…) 
 
 
 
 
 

Note: 1 The omitted region is Georgia, US. 
The dependent variable is the effect size 𝑇. Standard errors in parentheses; for results using sample size weights they correspond to Huber-White robust standard 
errors. *, ** and *** means rejection of the null hypothesis at the 10 percent, 5 percent and 1 percent confidence level.

Characteristics of the study    
published -0.0258 -0.00520 -0.0272* 0.00778 
 (0.0278) (0.0181) (0.0151) (0.0165) 
med_sampleyear 0.00364 0.00332 -0.0140*** 0.0294 
 (0.00333) (0.00246) (0.00513) (0.0235) 
time_span 0.00493** 0.00391 -0.00614 -0.0496 
 (0.00221) (0.00272) (0.00777) (0.0318) 
Regional fixed effects1    
louisiana -0.108 - - - 
 (0.0721)    
n_carolina -0.0673 0.139 0.128 -0.359 
 (0.0543) (0.0888) (0.177) (0.229) 
texas 0.135* -0.0889 0.335 0.920 
 (0.0692) (0.360) (0.759) (0.907) 
wisconsin 0.156*** - -  
 (0.0458)    
alabama 0.274*** - -  
 (0.0470)    
florida 0.179*** 0.209 0.479 0.526* 
 (0.0559) (0.133) (0.294) (0.290) 
california 0.0664 0.219 0.0453 -0.340 
 (0.0606) (0.196) (0.403) (0.260) 
missouri 0.00675 0.102 0.0741 0.389* 
 (0.0585) (0.0835) (0.185) (0.216) 
colorado -0.0512 - -  
 (0.0645)    
minesota 0.194*** - -  
 (0.0505)    
nl -0.118* 0.252 0.0446 -0.0280 
 (0.0690) (0.193) (0.408) (0.108) 
uk -0.0640 - -  
 (0.0729)    
aus -0.294** - -  
 (0.138)    
nz - 0.199 -0.163 -0.894 
  (0.358) (0.744) (0.612) 
Constant -8.823 -6.419 25.80** -58.48 
 (6.466) (5.452) (10.98) (47.48) 
     
Observations 133 216 115 101 

𝑅2 0.769 0.748 0.690 0.916 
Adj. 𝑅2 0.710 0.718 0.628 0.896 
Rmse 0.0430 0.0521 0.0643 0.0257 
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Table A3. Meta-regression results: Only including sample in Daniel et al. (2009a) 
 

Variables 

Sample size weights  
(1) (2) (3)   

Inc. Coast  
(no months) 

No Coast 
(no months) 

No Coast 
(inc. months)   

Flood risk perception     
Mnths  - 0.601***   
   (0.152)   
Flood risk level      
Risk level -0.403 -2.717** -2.283**   
 (1.541) (1.174) (0.972)   
Context of the study     
lav_feet -0.0606 -0.0867** -0.100**   
 (0.0786) (0.0383) (0.0404)   
lavprice_2010 -0.0408 0.0422 0.0448*   
 (0.0698) (0.0267) (0.0267)   
Flooded - - -   
      
scnd_flood - - -   
      
dd_after -0.0734* -0.0241** -0.0488***   
 (0.0429) (0.00915) (0.0113)   
dd_afterlaw 0.0650* 0.0103** 0.0418***   
 (0.0373) (0.00420) (0.00742)   
coast 0.0947 - -   
 (0.0730)     
Control variables of study     
amenity -0.0444 0.166** 0.0601   
 (0.0280) (0.0815) (0.0888)   
real_p -0.0307 0.0226 0.0760***   
 (0.0403) (0.0223) (0.0175)   
Characteristics of econometric model    
linear -0.129*** 0.131** 0.0910   
 (0.0373) (0.0570) (0.0553)   
Box-Cox -0.0485* -0.0454** -0.0625***   
 (0.0264) (0.0170) (0.00834)   
spatial -0.164* - -   
 (0.0904)     
dd_hpm 0.00952 -0.00364 -0.00420   
 (0.0109) (0.00418) (0.00341)   

(Continued…) 
 
 
 
 
 

Note: 1 The omitted region is Georgia, US. 
The dependent variable is the effect size 𝑇. Standard errors in parentheses; for results using sample size weights they correspond to Huber-White robust standard 
errors. *, ** and *** means rejection of the null hypothesis at the 10 percent, 5 percent and 1 percent confidence level. 

Characteristics of the study    
published -0.0221 -0.0213 -0.0316***  
 (0.0161) (0.0143) (0.00765)  
med_sampleyear 0.00140 -0.00407 -0.00485**  
 (0.00481) (0.00249) (0.00198)  
time_span 0.000418 -0.00435** -0.00545***  
 (0.00406) (0.00203) (0.00142)  
Regional fixed effects1    
louisiana -0.0327 0.0660 0.00432  
 (0.0340) (0.0489) (0.0494)  
n_carolina 0.0796 -0.0130 0.0553  
 (0.0993) (0.0555) (0.0569)  
texas 0.0618 0.109** 0.0896**  
 (0.0479) (0.0539) (0.0442)  
wisconsin - -0.139*** -0.137***  
  (0.0135) (0.0116)  
alabama 0.135*** - -  
 (0.0371)    
florida 0.123* 0.0450** 0.0488***  
 (0.0700) (0.0207) (0.0158)  
california 0.0868 -0.0180 0.0645  
 (0.114) (0.0506) (0.0505)  
missouri - - -  
     
colorado - - -  
     
minesota 0.135 -0.181* -0.0531  
 (0.0939) (0.0910) (0.0971)  
nl - - -  
     
uk - - -  
     
aus - - -  
     
nz - - -  
     
Constant -1.854 8.164 9.237**  
 (9.993) (5.022) (4.044)  
     
Observations 104 77 77  

𝑅2 0.411 0.736 0.813  
Adj. 𝑅2 0.241 0.635 0.736  
Rmse 0.0589 0.0204 0.0173  
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