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Higher Order Expansions for Error Variance Matrix
Estimates in the Gaussian AR(1) Linear Regression

Model

Yiannis Karavias∗ Spyridon D. Symeonides† Elias Tzavalis‡

November 27, 2017

Abstract

We derive a stochastic expansion of the error variance-covariance matrix estimator
for the linear regression model under Gaussian AR(1) errors. The higher order accu-
racy terms of the refined formula are not directly derived from formal Edgeworth-type
expansions but instead, the paper adopts Magadalinos’ (1992) stochastic order of ω
which is a convenient device to obtain the equivalent relation between the stochastic
expansion and the asymptotic approximation of corresponding distribution functions.
A Monte Carlo experiment compares tests based on the new estimator with others in
the literature and shows that the new tests perform well.
Key words: Linear regression; AR(1) disturbances; stochastic expansions; asymp-

totic approximations; autocorrelation robust inference
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1 Introduction

When linear hypotheses are to be tested in the linear regression model with autocorrelated

disturbances, the OLS estimators of the regression parameters need to be standardized by

appropriate standard errors, which perform well only in very large samples. In this note
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we propose estimators of the error variance which perform well in small samples, in OLS-

estimated, single-equation econometric specifications with Gaussian AR(1) disturbances and

no lagged dependent regressors.1 These corrections aim at improving the finite sample prop-

erties of the t and F tests.

If the researcher can soundly hypothesize on the true autocorrelation scheme, the use of

GLS estimators and of the conventional t and F testing procedures, provides a solution, under

the implicit assumption that the number of observations is large enough to permit the normal

and chi-square approximations, respectively, to the true distributions of the corresponding

test statistics. However, since, in finite samples, the standard t and F tests remain oversized,

refined asymptotic techniques have been proposed to correct the finite-sample size of these

tests. Thus, Rothenberg (1984) suggested the use of Edgeworth expansions in terms of the

chi-square and normal distributions to derive general formulae of corrected critical values for

the Wald (or F ) and t statistics, respectively. Edgeworth expansions have been previously

used in dealing with autocorrelation but only in models with no explanatory variables, see

Giraitis and Phillips (2012) and Velasco and Robinson (2001). Alternatively, for the linear

regression model with first-order autocorrelated disturbances, Magdalinos and Symeonides

(1995) suggested the use of degrees-of-freedom-adjusted Cornish-Fisher corrected t and F

statistics, rather than the Edgeworth corrections of the critical values.

This paper considers an alternative approach; given that the autocorrelation process is of

the AR(1) type, we develop a refined-asymptotics, second order, autocorrelation-consistent

estimator of the true variance matrix of the OLS parameter estimator. We suggest the use of

a second order asymptotic approximation to the true disturbance variance matrix in order to

derive a better, more accurate, finite-sample estimate of the OLS-estimator variance matrix.

The higher order accuracy terms of the refined formula are not directly derived from formal

Edgeworth-type expansions, which are challenging but instead, the paper adopts Magdalinos’

1The recent paper by Muller (2014) renewed interest in manipulating specific autocorrelation schemes in
regression hypothesis testing. In that paper, the errors were assumed to be Gaussian AR(1); an assumption
frequently encountered in the literature.
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(1992) stochastic order of ω which can be regarded as a convenient device to obtain the

equivalent relation between the stochastic expansion and the asymptotic approximation of

corresponding distribution functions.2 By using this estimate, we can calculate t and F

test statistics with better finite-sample distributional properties. We prefer to use OLS over

feasible GLS in small samples because the latter is biased. The new estimator can be seen as

a refined parametric estimator of Den Haan and Levin (1994) when the errors are Gaussian

AR(1) errors.

In an extensive Monte Carlo experiment, we show that the new estimator leads to tests

with correct size and good power when serial correlation is strong. The experiment further

compares the performance of some standard and some newly proposed estimators in terms of

size and power of t-tests, including those proposed by Rothenberg (1984), Andrews (1991),

Newey and West (1994), Kiefer, Vogelsang and Bunzel (2000), Goncalves and Vogelsang

(2011) and Muller (2014). Because there is no uniformly most powerful test in our problem,

it is unavoidable that different tests will perform better at various subsets of the parameter

space. We find that the t-tests based on the new error variance estimator have good prop-

erties in many cases; for relatively strong autocorrelation they offer better size control and

more power.

The paper is organized as follows. Section 2 provides some preliminary notations and

the assumptions needed in our expansions. Section 3 develops the first-order asymptotic

approximation of the true error variance matrix and gives the analytic first-order estimation

of the OLS-estimator variance matrix. A Monte Carlo evaluation of the suggested size

corrections is reported in Section 3. Section 4 concludes. The Appendix collects all proofs.

Lemmas needed in the proofs are included in the Supplementary Material.

A word on notation. For any matrix X with T rows, PX = X(X ′X)−1X ′ and MX =

IT−PX = IT−X(X ′X)−1X ′. Further, for any stochastic quantity (scalar, vector, or matrix)

the symbols E(·) and var(·) denote the expectation and variance operators, respectively, and
2This approach was also used by Symeonides et al. (2016) in deriving tests for SUR models.
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the stochastic order ω(·), defined in the Appendix, has the same operational properties as

order O(·). Finally, for any sample size T , the “asymptotic scale” of our expansions is

denoted as τ = 1/
√
T .

2 Model and Assumptions

Consider the single-equation econometric specification

y = Xβ + σu, (1)

where y is the T × 1 vector of observations on the dependent variable, X is the T × k

matrix of observations on a set of k non-stochastic regressors, β is a k×1 vector of unknown

structural parameters, and σu is the T × 1 vector of non-observable stochastic disturbances

with variance-covariance matrix σ2Ω. The elements of the stochastic vector u are assumed

to be generated by a stationary first-order autoregressive (AR(1)) stochastic process, ut =

ρut−1 + εt, (t = 1, . . . , T ),where 0 ≤ |ρ| < 1, u0 ∼ N(0, 1/(1− ρ2)), and εt are independent

normal variables with variance σ2 (σ > 0). The random vector u is distributed as N(0,Ω)

with, Ω = R/(1− ρ2), where R = [(ρ|t−t
′|)t,t′=1,...,T ].3

Let ρ̂ be a consistent estimator of ρ. For any function f = f(ρ), we write f̂ = f(ρ̂).

The ordinary least squares (LS) estimators of β and σ2 are β̂LS = (X ′X)−1X ′y, and σ̂2
LS =

(y −Xβ̂LS)′(y −Xβ̂LS)/(T − k).

In this paper we provide a novel, refined estimator of Ω. To derive the first-order ap-

proximation of matrix Ω, we start by finding the first-order approximation of Ω−1, based

on a number of assumptions concerning its elements. To this end, we denote as Ω−1
ρ the

T × T matrix of first-order derivatives of the elements of matrix Ω−1 with respect to the

autocorrelation coeffi cient ρ. For any estimator ρ̂, we define the scalar δρ = 1
τ
(ρ̂− ρ),which

3The restrictive assumptions of AR(1) and Gaussian errors can be relaxed. Deriving the necessary estima-
tors for this case however, is computationally burdensome. The extension to AR(p) errors is straightforward
and the extension to non-Gaussian distributions can be done along the lines of Phillips (1980).
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can be interpreted as a “measure”of the sampling error of ρ̂.

Following Magdalinos (1992, page 3444), let the open interval J = (0, 1) be a set of

indexes. For any collection of stochastic quantities (scalars, vectors, or matrices) Yτ (τ ∈ J),

we write Yτ = ω(τ i), if for any given n > 0, there exists a 0 < ε <∞ such that

Pr
[
‖Yτ/τ i‖ > (− ln τ)ε

]
= o(τn), as τ → 0, (2)

where the ‖ · ‖ is the Euclidean norm. Further, if (2) is valid for any n > 0, we write

Yτ = τ(∞). To justify the use of order ω(·), notice that if two stochastic quantities differ

by a quantity of order ω(τ i), then, under general conditions, the distribution function of

the first provides an asymptotic approximation to the distribution function of the second,

with an error of order O(·). Also, notice that orders ω(·) and O(·) have similar operational

properties.

The first-order approximation of matrix Ω can be estimated when the following assump-

tions hold:

(i) The elements of Ω and Ω−1 are bounded for all T and all −1 < ρ < 1, and matrices

AΩ =
1

T
X ′ΩX, AΩ−1 =

1

T
X ′Ω−1X, F =

1

T
X ′X, (3)

converge to non-singular limits, as T →∞.

(ii) Up to the fourth order, the partial derivatives of the elements of Ω−1 with respect to

ρ are bounded for all T and all −1 < ρ < 1.

(iii) The estimator ρ̂ is an even function of u, and it is functionally unrelated to the

parameter vector β, i.e., it can be written as a function of X and σu only.

(iv) The nuisance parameter δρ admits a stochastic expansion of the form δρ = d1ρ +

τd2ρ + ω(τ 2),and the expectation E(
√
Td1ρ + d2ρ) exists and has finite limit, as T →∞.
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The first two assumptions imply that matrix

1

T
X ′ΩΩ−1

ρ ΩX (4)

is bounded. Moreover, since the autocorrelation coeffi cient is functionally unrelated to the

regression parameters, assumption (iii) is satisfied for a wide class of estimators of ρ, which

includes the maximum likelihood estimator and the simple or iterative estimators based on

the regression residuals (see Breusch (1980)). Note that we do not need to assume that the

estimator ρ̂ is asymptotically effi cient. Moreover, assumptions (i)—(iv) are satisfied by all the

estimators of ρ, considered in the paper, which are the least squares (LS), Durbin-Watson

(DW), generalized least squares (GL), Prais-Winsten (PW) and maximum likelihood (ML)

estimators.4

Finally, for any estimator ρ̂I , indexed by I={LS, DW , GLS, PW , ML}, we define the

scalar κIρ = limT→∞E(
√
Td1ρ+d2ρ), which can be interpreted as a “measure”of the accuracy

of the expansion of estimator ρ̂I around its true value.

3 Main results

In this section, we present the main theorems which provide the asymptotic expansions of

Ω̂ and Ω̂−1, as well as the first-order approximations the variance of the LS estimator β̂LS.

4The closed forms of these estimators of ρ are given as follows:

(i) LS: ρ̂LS =
(∑T

t=1 ũ
2
t

)−1 (∑T
t=2 ũtũt−1

)
,where ũt are the LS residuals of regression model (1).

(ii) DW: ρ̂DW = 1 − (DW/2),where the DW is the Durbin-Watson statistic. (iii) GLS: ρ̂GL =(∑T
t=1 û

2
t

)(∑T
t=2 ûtût−1

)
, where ût denote the GLS estimates of ut, based on the autocorrelation-correction

of regression model (1), using any asymptotically effi cient estimator of ρ. (iv) PW: This estimator of ρ, de-
noted as ρ̂PW , together with the PW estimator of β, denoted as β̂PW , minimize the sum of squared GLS
residuals (see Prais and Winsten (1954)). (v) ML: This estimator, denoted as ρ̂ML, satisfies a cubic equation
with coeffi cients defined in terms of the ML residuals (see Beach and MacKinnon (1978)).
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3.1 Asymptotic expansions of Ω̂−1 and Ω̂

In this section, we derive the first-order approximation of matrix Ω based on the following

asymptotic expansions of matrices Ω̂−1 and Ω̂:

Theorem 1 Any consistent estimator Ω̂−1 of matrix Ω−1 admits a stochastic expansion of

the form Ω̂−1 = Ω−1 + τΩ−1
ρ δρ + ω(τ 2).

Theorem 2 Any consistent estimator Ω̂ of matrix Ω admits a stochastic expansion of the

form Ω̂ = Ω− τΩΩ−1
ρ Ωδρ + ω(τ 2).

Define the scalars c1 = tr(AΩ−1F
−1ΓF−1)+(1−ρ2)tr(F−1Γ), and c2 = (1−ρ2)tr(FGΩ−1),

where GΩ−1 = A−1
Ω−1 and Γ = (X ′RX)/T are k × k matrices. The first-order approximation

of matrix Ω is derived in the next theorem.

Theorem 3 According to the estimator ρ̂I used, the first-order approximation of matrix Ω

can be written as

Ω = Ω̂ + τ Ω̂Ω̂−1
ρ Ω̂κIρ + ω(τ 2), (5)

where κLSρ = −
[
(k + 3)ρ+ (c1−2k)

2ρ

]
, κDWρ = κLSρ +1, κGLρ = κPWρ = κLSρ −

(1−ρ2)c2
2ρ

+ (c1−(1−ρ2)k)
2ρ

and κML
ρ = κGLρ + ρ.

In the above expression, Ω̂ = R̂/(1− ρ̂2
I), R̂ = [(ρ̂

|t−t′|
I )t,t′=1,...,T ], and Ω̂−1

ρ = 2ρ̂IIT −D −

2ρ̂I∆, with ∆ a T × T matrix with 1 in (1, 1)-st nd (T, T )-th positions and 0’s elsewhere.

Also, D is the T × T band matrix whose (t, t′)-th element is equal to 1 if |t − t′| = 1 and

0 otherwise and IT is the T × T identity matrix. In the above expressions, Ω̂ and R̂ are

functions of ρ̂I and thus depend on I but we suppress this dependence to avoid burdensome

notation.
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3.2 Example: First order approximation of var(β̂LS)

Let S = var(β̂LS) be the variance matrix of the least squares estimator of β. Since the

disturbances in model (1) are AR(1)-autocorrelated, the true variance matrix of the estimator

β̂LS is S = σ2(X ′X)−1X ′ΩX(X ′X)−1.We suggest employing the first-order approximation

of Ω given by (5). This will give the following first-order approximation of matrix S, derived

in the next theorem.

Proposition 4 For all ρ̂I , the first-order approximation of matrix S can be written as S =

Ŝ + τ Ŝρκ
I
ρ + ω(τ 2),where

Ŝρ = σ̂2
LS(X ′X)−1X ′Ω̂Ω̂−1

ρ Ω̂X(X ′X)−1. (6)

Note that matrix Sρ is bounded. This is straightforward, since (3), (4), and (6) imply

that

Ŝρ =
σ̂2
LS

T

(
X ′X

T

)−1
(
X ′Ω̂Ω̂−1

ρ Ω̂X

T

)(
X ′X

T

)−1

=
σ̂2
LS

T
F−1

(
X ′Ω̂Ω̂−1

ρ Ω̂X

T

)
F−1, (7)

i.e., Ŝρ is a function of bounded matrices.

4 Simulation

In this section, we examine the small sample performance of the proposed refined estimator

in a t-test framework like the one presented in Section 3.2 (henceforth denoted by BC from

"bias corrected"), by conducting a Monte Carlo study. We choose to compare methods

using t-testing because of the attention it has received from the literature (see e.g. Muller

(2014)). We compare our new procedure with extant ones from the literature, including

those proposed by Rothenberg (1984) (denoted by R), Andrews (1991) (A), Newey and

West (1994) (NW), Den Haan and Levin (1994) (VARHAC), Kiefer, Vogelsang and Bunzel
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(2000) (KVB), the naive bootstrap of Goncalves and Vogelsang (2011) (GV) and Muller

(2014) (MUL). For completeness we have also included the t-statistic based on the OLS

estimator. We denote t-tests based on the above estimators as tBC , tMUL, tR, etc.

All experiments are conducted based on 5000 iterations and consider sample sizes of

T = {15, 30, 60} observations, respectively. The data generating process is given as yt =

β0x0t+β1x1t+β2x2t+ut, where ut = ρut−1+et and where ρ = {0.6, 0.7, 0.8, 0.9}, et ∼ N(0, 1),

y1 ∼ N(0, (1−ρ2)−1) and β0 = β1 = β2 = 1. For the regressors, we assume that x0t = 1, and

xjt = a1/2ζ1t + (1− a)1/2ζjt, for j = 1, 2, where ζjt follow an AR(1) model with parameter ρ

and N(0, 1) errors. Finally, a = {0.5} determines the correlation between regressors xjt.5

The hypothesis of interest tested in our simulation exercise is H0: β1 = 1 against its

one sided alternative H1: β1 > 1. In the simulations the alternative is set to β = 1.2. The

method of Andrews (1991) is implemented by assuming an AR(1) model and using both the

quadratic spectral kernel (A-QS) and the Bartlett kernel (A-B). For the tNW test, we choose

the value 0.75T 1/3 and the Bartlett kernel. We use the S12 version of Muller’s (2014) test,

as we found that this version is almost equally powerful to versions S24 and S48 and is not

size distorted for small samples, as the latter. For the bootstrap procedures we draw 499

bootstrap samples and we employ blocks of length 3 for samples with 15 observations, and

blocks of length 5 for the other cases.

Table 1 presents the size of t-tests. Overall performance deteriorates as persistence

increases. The tNW , tR, tA−B, tA−QS and tGV tests are oversized everywhere in the table.

The tMUL and tKV B perform better. For T = {15, 30} and ρ = {0.6, 0.7, 0.8} the new tBC

tests have overall the best size. When T = 60 tests based on tV ARHAC have a smaller size.

From the rest of the tests tMUL has size very close to the nominal. For ρ = 0.9 it surpasses

tBC and tV ARHAC . Table 2 presents the size-adjusted power of the t-tests. The most powerful

test is tR which is based on the asymptotically effi cient feasible GLS. The tests that had good

size properties are also the least powerful. For T = {15, 30} and ρ = {0.6, 0.7, 0.8} the new
5Note that in our simulation exercise we have also tried different values of a like a = {0.1, 0.9}, but these

do not change the results. These results are available upon request.
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tBC tests have more power than tMUL, sometimes almost twice as much. The tV ARHAC tests

have more power than the tBC ones.

To evaluate the robustness of our method we provide, in the supplementary material,

the results of two other experiments, in which the errors are AR(2) and ARMA(1,1). We

find that the tBC is robust to such departures from the AR(1) case. These results show

that our methodology is useful for applied work and warrant the extension to AR(p) and

non-Gaussian errors. This is left for future work.

5 Appendix

In this appendix, we provide the proofs of the theorems presented in the main text. These proofs

rely on a number of lemmas, which are proved in the Supplementary material.

The following proofs are based on the expansion of Ω̂−1 around Ω−1 and the asymptotic ex-

pansion of the scalar δρ, defined by δρ = 1
τ
(ρ̂− ρ).

Proof of Theorem 1: Using Corollary 2 of Magdalinos (1992) and the definition of δρ, we

can write Ω̂−1 = Ω−1 + ∂Ω−1

∂ρ
(ρ̂− ρ) + ω(τ 2)

= Ω−1 + τΩ−1
ρ

(ρ̂− ρ)

τ
+ ω(τ 2) = Ω−1 + τΩ−1

ρ δρ + ω(τ 2). (8)

Proof of Theorem 2: Re-write the expansion of matrix Ω̂−1, given by Theorem 1, as follows:

Ω̂−1 = Ω−1 + τΩ−1
∗ , where Ω−1

∗ = Ω−1
ρ δρ + ω(τ). (9)

Using Magdalinos’(1992) Corollary 1, we can derive Ω̂ = [Ω−1 + τΩ−1
∗ ]
−1

= Ω−τΩΩ−1
∗ Ω+ω(τ 2)

Using (9), the last relationship implies

Ω̂ = Ω− τΩ[Ω−1
ρ δρ + ω(τ)]Ω + ω(τ 2) = Ω− τΩΩ−1

ρ Ωδρ + ω(τ 2) (10)

Proof of Theorem 3: Based on the results of Theorem 2 and the results of lemmas which
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appear in the supplementary material, we can see that, for all estimators considered (i.e., ρ̂I ,

indexed by I = {LS,DW,GL, PW,ML}), we can write Ω = Ω̂ + τ Ω̂Ω̂−1
ρ Ω̂δIρ +ω(τ 2),where the

sampling errors δIρ =
√
T (ρ̂I−ρ) admit the stochastic expansion, for all I :

δLSρ = −(1− ρ2)u′Ω−1
2 u

2
√
T

−τ(1− ρ2)

2

[
u′MXΩ−1

2 MXu−
(1− ρ2)u′uu′Ω−1

2 u

T

]
+ω(τ 2)

δDWρ = δLSρ +
τ 2(1− ρ2)

2
(u2

1 + u2
T ) + ω(τ 2)

δGLρ = δPWρ = δLSρ − τ 2(1− ρ2)

[
u′MXΩ−1

2 PXΣΩ−1u+
1

2
u′Ω−1ΣPXΩ−1

2 PXΣΩ−1u

]
+ ω(τ 2)(11)

δML
ρ = δGLρ + τρ

[
(1− ρ2)(u2

1 + u2
T )− 1

]
+ +ω(τ 2).

Taking expectations and collecting terms of order O(1) of the above relationships, we can complete

the proof of the theorem.
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Table 1: Size of t-tests
T tOLS tR tA−B tA−QS tNW tGV tKVB tMUL tV ARHAC tBC

ρ=0.6 15 0.114 0.078 0.382 0.192 0.183 0.109 0.085 0.065 0.117 0.052
30 0.128 0.068 0.341 0.163 0.148 0.118 0.068 0.055 0.056 0.042
60 0.130 0.060 0.249 0.117 0.187 0.070 0.057 0.057 0.035 0.044

ρ=0.7 15 0.133 0.092 0.391 0.205 0.200 0.111 0.096 0.071 0.122 0.062
30 0.148 0.075 0.341 0.179 0.157 0.117 0.071 0.066 0.067 0.042
60 0.160 0.062 0.263 0.145 0.195 0.069 0.061 0.061 0.037 0.043

ρ=0.8 15 0.151 0.094 0.395 0.231 0.216 0.101 0.100 0.076 0.133 0.070
30 0.196 0.086 0.360 0.215 0.199 0.107 0.091 0.068 0.082 0.062
60 0.210 0.071 0.280 0.162 0.221 0.095 0.079 0.064 0.049 0.052

ρ=0.9 15 0.169 0.103 0.410 0.256 0.231 0.118 0.109 0.073 0.152 0.089
30 0.229 0.099 0.376 0.251 0.224 0.125 0.106 0.065 0.097 0.086
60 0.268 0.103 0.310 0.224 0.254 0.131 0.117 0.061 0.075 0.076

Table 2: Size-adjusted power of t-tests
T tOLS tR tA−B tA−QS tNW tGV tKVB tMUL tV ARHAC tBC

ρ=0.6 15 0.173 0.170 0.246 0.203 0.198 0.145 0.170 0.070 0.169 0.110
30 0.227 0.234 0.284 0.242 0.233 0.220 0.212 0.098 0.193 0.123
60 0.338 0.368 0.374 0.315 0.351 0.349 0.303 0.124 0.219 0.169

ρ=0.7 15 0.179 0.154 0.233 0.207 0.201 0.132 0.178 0.058 0.163 0.106
30 0.238 0.229 0.279 0.240 0.238 0.231 0.222 0.078 0.169 0.122
60 0.317 0.367 0.345 0.283 0.325 0.333 0.299 0.109 0.186 0.150

ρ=0.8 15 0.168 0.175 0.219 0.197 0.183 0.142 0.163 0.064 0.175 0.115
30 0.204 0.242 0.238 0.217 0.206 0.212 0.208 0.078 0.182 0.120
60 0.284 0.366 0.294 0.279 0.287 0.317 0.281 0.097 0.176 0.140

ρ=0.9 15 0.177 0.172 0.209 0.188 0.183 0.151 0.164 0.062 0.154 0.119
30 0.205 0.242 0.203 0.199 0.203 0.219 0.218 0.070 0.165 0.132
60 0.230 0.342 0.248 0.222 0.220 0.251 0.230 0.077 0.155 0.135

[17] Velasco, Carlos and Robinson, Peter M. (2001). Edgeworth expansions for spectral

density estimates and studentized sample mean Econometric Theory, 17 (3). 497-539.
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